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Abstract  16 

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land 17 

surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel 18 

and simple topography-driven runoff generation parameterization – the HAND-based Storage Capacity 19 

curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify 20 

hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module 21 

in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve 22 

Technique (MCT) to estimate root zone storage capacity (SuMax), we developed a calibration-free runoff 23 

generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for 24 

comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked 25 

against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-26 

mapped saturation area extent. We found that HSC, HBV and TOPMODEL all perform well to reproduce 27 

the hydrograph, but the HSC module performs better in reproducing saturated area variation, in terms of 28 
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correlation coefficient and spatial pattern. The HSC and HSC-MCT modules were subsequently tested for 29 

323 MOPEX catchments in the US, with diverse climate, soil, vegetation and geological characteristics. In 30 

comparison with HBV and TOPMODEL, the HSC performs better in both calibration and validation, 31 

particularly in the catchments with gentle topography, less forest cover and arid climate. Despite having 32 

no calibrated parameters, the HSC-MCT module performed comparably well with calibrated modules, 33 

highlighting the robustness of the HSC parameterization to describe the spatial distribution of the root 34 

zone storage capacity and the efficiency of the MCT method to estimate SuMax. This novel and calibration-35 

free runoff generation module helps to improve the Prediction in Ungauged Basins and has great potential 36 

to be generalized at the global scale.   37 

 38 

1 Introduction  39 

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge 40 

in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust 41 

runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers. 42 

Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins 43 

(PUB) (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013), it is not uncommon that models 44 

become increasingly complicated in order to capture the details of hydrological processes shown by 45 

empirical studies (McDonnell, 2007; Sivapalan, 2009; Yu et al., 2014). More detailed process 46 

conceptualization normally demands higher data requirements than our standard climatological and 47 

hydrological networks can provide, leading to more calibrated parameters and a probable increase in 48 

model uncertainty (Sivapalan, 2009).  49 

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation. 50 

It is a property emerging at larger scales, describing the temporal dynamics of how spatially 51 

heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm 52 

runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Blöschl, 2004; 53 

Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and 54 

van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including 55 

but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld 56 

and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and 57 

McDonnell, 2007), land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel et al., 58 
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2014), the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al., 2011; McMillan et 59 

al., 2014; Nippgen et al., 2015). 60 

In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of 61 

topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven 62 

and Freer, 2001) uses topographic wetness index (TWI) to distinguish hydrologic similarity; and SHE 63 

(Abbott et al. 1986) and tRIBS (Ivanov et al. 2004; Vivoni et al. 2005) use partial differential equations to 64 

describe the water movement based on pressure gradients obtained by topography; and the 65 

Representative Elementary Watershed (REW) approach divides catchment into a number of REWs to 66 

build balance and constitutive equations for hydrological simulation (Reggiani et al., 1999; Zhang and 67 

Savenije, 2005; Tian et al., 2008). As the relevant model parameters such as local topographic slope and 68 

hydraulic conductivity can, in spite of several unresolved issues for example relating to the differences in 69 

the observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), be obtained from direct 70 

observations, they could in principle be applied without calibration.  71 

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional 72 

relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional 73 

relationships require parameters that are effective on the modelling scale and that can largely not be 74 

directly determined with small-scale field observations (cf. Beven, 1995), thus traditionally determined 75 

by calibration. However, frequently the number of observed variables for model calibration is, if 76 

available at all, limited to time series of stream flow. The absence of more variables to constrain models 77 

results in such models being ill-posed inverse problems. Equifinality in parameterization and in the 78 

choice of parameters then results in considerable model uncertainty (e.g. Beven, 1993, 2006). To limit 79 

this problem and to also allow predictions in the vast majority of ungauged catchments, it is therefore 80 

desirable to find ways to directly infer effective model parameters at the modelling scale from readily 81 

available data (Hrachowitz et al., 2013).  82 

The component that is central for establishing connectivity in most top-down models is the soil moisture 83 

routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and 84 

partitions water into evaporative fluxes, groundwater recharge and fast lateral storm flow generating 85 

runoff (Gao et al., 2018a; Shao et al., 2018). The latter of which is critical from the aspect of connectivity. 86 

In majority regions, Hortonian overland flow (HOF, i.e. infiltration excess overland flow) is of minor 87 

importance(Dunne and Black, 1970; Sklash and Farvolden, 1979; Beven, 2004; Burt and McDonnell, 88 

2015), even in arid regions where often most locally generated HOF is re-infiltrated while flowing on 89 
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hillslopes (Liu et al., 2012) and never reaches the stream channel network. Thus the term saturation 90 

excess flow (SEF) can represent, depending on the model and the area of application, different 91 

processes, such as saturation overland flow, preferential flow, flow through shallow, high permeability 92 

soil layers or combinations thereof. The interplay between water volumes that are stored and those that 93 

are released laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down 94 

models described by functions between water stored in the unsaturated root zone (“soil moisture”) and 95 

the areal proportion of heterogeneous, local storage thresholds that are exceeded and thus 96 

“connected” (Zhao et al., 1980). In other words, in those parts of a catchment where the storage 97 

threshold is exceeded will generate lateral flows, and can alternatively be interpreted as runoff 98 

coefficient (e.g. Ponce and Hawkins, 1996; Perrin and Andreassian, 2001; Fenicia et al., 2007; Bergström 99 

and Lindström, 2015). Thus the idea goes back to the variable contributing area concept, assuming that 100 

only partial areas of a catchment, where soils are saturated and thus storage thresholds are exceeded, 101 

contribute to runoff (Hewlett, 1961; Dunne and Black, 1970; Hewlett and Troendle, 1975). Although 102 

originally developed for catchments dominated by saturation overland flow, the extension of the 103 

concept to subsurface connectivity, posing that surface and subsurface connectivity are “two sides of 104 

the same coin” (McDonnell, 2013), proved highly valuable for models such as Xinanjiang (Zhao et al., 105 

1980), HBV (Bergström and Forsman, 1973; Bergström and Lindström, 2015), SCS-CN (Ponce and 106 

Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) and GR4J (Perrin and Andreassian et al., 107 

2001).  108 

Among these models, connectivity is formulated in a general form as CR=f(SU(t),SuMax,β), where CR is the 109 

runoff coefficient, i.e. the proportion of the catchment generating runoff, SU(t) is the catchment water 110 

content in the unsaturated root zone at any time t, SuMax is a parameter representing the total storage 111 

capacity in the unsaturated root zone and β is a shape parameter, representing the spatial distribution 112 

of heterogeneous storage capacities in the unsaturated root zone. The parameters of these functions 113 

are typically calibrated. In spite of being the core component of soil moisture routines in many top-down 114 

models, little effort was previously invested to find ways to determine the parameters at the catchment-115 

scale directly from available data. An important step towards understanding and quantifying 116 

connectivity pattern directly based on observations was recently achieved by intensive experimental 117 

work in the Tenderfoot Creek catchments in Montana, US. In their work Jencso et al. (2009) were able to 118 

show that connectivity of individual hillslopes in their headwater catchments is highly related to their 119 

respective upslope accumulated areas. Using this close relationship, Smith et al. (2013) successfully 120 

developed a simple top-down model with very limited need for calibration, emphasizing the value of 121 
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“enforcing field-based limits on model parameters” (Smith et al., 2016). Based on hydrological landscape 122 

analysis, FLEX-Topo model (Savenije, 2010) can dramatically reduce the need for calibration (Gharari et 123 

al., 2014), and hold considerable potential for spatial model transferability without the need for 124 

parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016). In a recent development, several 125 

studies suggest that SuMax can be robustly and directly inferred from long term water balance data, by 126 

the Mass Curve Technique (MCT) (Gao et al., 2014; de Boer-Euser et al., 2016; Nijzink et al., 2016). The 127 

MCT is an engineering method for reservoir design, in which the reservoir size is estimated as a function 128 

of accumulated inflow and human water demand. The MCT treats the root zone as a reservoir, and 129 

estimates catchment-scale SuMax from measurable hydrometeorological data, without the need for 130 

further calibration. This leaves shape parameter β as the only free calibration parameter for soil 131 

moisture routines of that form. Topography is often the dominant driver of water movement caused by 132 

prevailing hydraulic gradients. More crucially, topography usually provides an integrating indicator for 133 

hydrological behavior, since topography is usually closely related with other landscape elements, such as 134 

soil vegetation climate and even geology (Seibert et al., 2007; Savenije, 2010; Rempe and Dietrich, 2014; 135 

Gao et al., 2014b; Maxwell and Condon, 2016; Gomes, 2016). The Height Above the Nearest Drainage 136 

(HAND; Rennó et al., 2008; Nobre et al., 2011; Gharari et al., 2011), which can be computed from readily 137 

available digital elevation models (DEM), could potentially provide first order estimates of groundwater 138 

depth , as there is some experimental evidence that with increasing HAND, groundwater depths 139 

similarly increase (e.g. Haria and Shand, 2004; Martin et al., 2004;  Molenat et al., 2005, 2008; Shand et 140 

al., 2005; Condon and Maxwell, 2015; Maxwell and Condon, 2016). HAND can be interpreted as a proxy 141 

of the hydraulic head and is thus potentially more hydrologically informative than the topographic 142 

elevation above sea level (Nobre et al., 2011). Compared with the TWI in TOPMODEL, HAND is an 143 

explicit measure of a physical feature linking terrain to water related potential energy for local drainage 144 

(Nobre et al., 2011). More interestingly, topographic structure emerges as a powerful force determining 145 

rooting depth under a given climate or within a biome (Figure 1), revealed by a global synthesis of 2,200 146 

root observations of >1000 species (Fan et al., 2017). This leads us to think from ecological perspective 147 

to use the topographic information as an indicator for root zone spatial distribution without calibrating 148 

the β, and coupling it with the MCT method to estimate the SuMax, eventually create a calibration-free 149 

runoff generation module. 150 

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial 151 

distribution of storage capacities and therefore can be used to develop a new runoff generation module 152 

(HAND-based Storage Capacity curve, i.e. HSC); (2) the distribution of storage capacities determined by 153 
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HAND contains different information than the topographic wetness index; (3) the HSC together with water 154 

balance-based estimates of SuMax (MCT method) allow the formulation of calibration-free 155 

parameterizations of soil moisture routines in top-down models directly based on observations. All these 156 

hypotheses will be tested firstly in a small data-rich experimental catchment (the Bruntland Burn 157 

catchment in Scotland), and then apply the model to a wide range of larger MOPEX catchments (Model 158 

Parameter Estimation Experiment). 159 

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e. 160 

HSC and HSC-MCT, and two benchmark models (HBV, TOPMODEL). This section also includes the 161 

description of other modules (i.e. interception, evaporation and routing) in rainfall-runoff modelling, and 162 

the methods for model evaluation, calibration and validation. The Dataset section reviews the empirically-163 

based knowledge of the Bruntland Burn catchment in Scotland and the hydrometerological and 164 

topographic datasets of MOPEX catchments in the US for model comparison. The Results section presents 165 

the model comparison results. The Discussion section interprets the relation between rainfall-runoff 166 

processes and topography, catchment heterogeneity and simple model, and the implications and 167 

limitations of our proposed modules. The conclusions are briefly reviewed in the Summary and 168 

Conclusions section.  169 

2 Methods 170 

Based on our perceptual model that saturation excess flow (SEF) is the dominant runoff generation 171 

mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module. 172 

Subsequently, estimating the parameter of root zone storage capacity (SuMax) by the MCT method without 173 

calibration, the HSC-MCT was developed. In order to assess the performance of our proposed modules, 174 

two widely-used runoff generation modules, i.e. HBV power function and TOPMODEL module, were set 175 

as benchmarks. Other modules, i.e. interception, evaporation and routing, are kept with identical 176 

structure and parameterization for the four rainfall-runoff models (HBV, TOPMODEL, HSC, HSC-MCT, 177 

whose names are from their runoff generation modules), to independently diagnose the difference among 178 

runoff generation modules (Clark et al., 2008; 2010).  179 

2.1 Two benchmark modules 180 

HBV power function  181 
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The HBV runoff generation module applies an empirical power function to estimate the nonlinear 182 

relationship between the runoff coefficient and soil moisture (Bergström and Forsman, 1973; Bergström 183 

and Lindström, 2015). The function is written as:  184 

  ( )u
s

uMax

S
A

S

        (1) 185 

Where As (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall 186 

event; Su (mm) represents the averaged root zone soil moisture; SuMax (mm) is the averaged root zone 187 

storage capacity of the studied catchment; β (-) is the parameter determining the shape of the power 188 

function. The prior range of β can be from 0.1 to 5. The Su - As has a linear relation while β equals to 1. And 189 

the shape becomes convex while the β is less than 1, and the shape turns to concave while the β is larger 190 

than 1. In most situations, SuMax and β are two free parameters, cannot be directly measured at the 191 

catchment scale, and need to be calibrated based on observed rainfall-runoff data.   192 

TOPMODEL module 193 

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at 194 

catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby, 195 

1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff 196 

generation potential. More specifically, the areas with larger TWI values tend to be saturated first and 197 

contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate 198 

runoff. The equations are written as follow: 199 

( )
ii uMax TW TWD D S I I         (2) 200 

  uMax uD S S        (3) 201 

 _ ;    while  0s s i i
A A D        (4) 202 

Where Di (mm) is the local storage deficit below saturation at specific location (i); 𝐷̅ (mm) is the averaged 203 

water deficit of the entire catchment (Equation 2), which equals to (SuMax - Su), as shown in Equation 3. ITWi 204 

is the local ITW value. TWI is the averaged TWI of the entire catchment. Equation 2 means in a certain soil 205 

moisture deficit condition for the entire catchment (𝐷̅), the soil moisture deficit of a specific location (Di), 206 

is determined by the catchment topography (ITW and ITWi), and the root zone storage capacity (SuMax). 207 
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Therefore, the areas with Di less than zero are the saturated areas (As_i), equal to the contributing areas. 208 

The integration of the As_i areas (As), as presented in Equation 4, is the runoff contributing area, which 209 

equals to the runoff coefficient of that rainfall event.  210 

Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area 211 

(As) from the estimated relative soil moisture (Su/SuMax), and then map it back to the original TWI map, 212 

which makes it possible to test the simulated contributing area by field measurement. It is worth 213 

mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one, 214 

which combines the saturated and unsaturated soil components. 215 

2.2 HSC module 216 

In the HSC module, we assume 1) primarily saturation excess flow as the dominant runoff generation 217 

mechanism; 2) the local root zone storage capacity has a positive and linear relationship with HAND, from 218 

which we can derive the spatial distribution of the root zone storage capacity; 3) rainfall firstly feeds local 219 

soil moisture deficit, and no runoff can be generated before local soil moisture being saturated.  220 

Figure 2 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a 221 

real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage 222 

capacity, based on topographic analysis and the second assumption as mentioned in the preceding 223 

paragraph. Figure 3 shows the approach to derive the Su-As relation, which are detailed as follows.  224 

I. Generate HAND map. The HAND map, which represents the relative vertical distance to the 225 

nearest river channel, can be generated from DEM (Gharari et al., 2011). The stream initiation 226 

threshold area is a crucial parameter, determining the perennial river channel network 227 

(Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and significantly impacting the HAND 228 

values. In this study, the start area was chosen as 40ha for the BB catchment to maintain a close 229 

correspondence with observed stream network. And for the MOPEX catchments, the stream 230 

initiation area threshold is set as 500 grid cells (4.05 km2), which fills in the range of stream 231 

initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). HAND 232 

maps were then calculated from the elevation of each raster cell above nearest grid cell flagged 233 

as stream cell following the flow direction (Gharari et al., 2011).  234 

II. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in 235 

ascending order. Secondly, the sorted HAND values were evenly divided into n bands (e.g. 20 236 

bands in this study), to make sure each HAND band has similar area. The averaged HAND value of 237 
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each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and 238 

then plot the normalized HAND distribution curve (Figure 2b).  239 

III. Distribute SuMax to each HAND band (SuMax_i). As assumed, the normalized storage capacity of each 240 

HAND band (SuMax_i) increases with HAND value (Figure 2c). Based on this assumption, the 241 

unsaturated root zone storage capacity (SuMax) can be distributed to each HAND band as SuMax_i 242 

(Figure 3a). It is worth noting that SuMax needs to be calibrated in the HSC module, but free of 243 

calibration in the HSC-MCT module.  244 

IV. Derive the Su - As curve. With the number of s saturated HAND bands (Figure 3a-c), the soil 245 

moisture (Su) can be obtained by Equation 5; and saturated area proportion (As) can be obtained 246 

by Equation 6. 247 

𝑆u =
1

𝑛
[∑ 𝑆uMax_i

𝑠
𝑖=1 + 𝑆uMax_s(𝑛 − 𝑠)]      (5) 248 

𝐴s =
𝑠

𝑛
       (6) 249 

Where SuMax_s is the maximum SuMax_i of all the saturated HAND bands. Subsequently, the As - Su 250 

curve can be derived, and shown in Figure 3d.  251 

The SEF mechanism assumes that runoff is only generated from saturation areas, therefore the proportion 252 

of saturation area is equal to the runoff coefficient of that rainfall-runoff event. Based on the Su-As curve 253 

in Figure 3d, generated runoff can be calculated from root zone moisture (Su). The HSC module also allows 254 

us to map out the fluctuation of saturated areas by the simulated catchment average soil moisture. For 255 

each time step, the module can generate the simulated root zone moisture for the entire basin (Su). Based 256 

on the Su-As relationship (Figure 3d), we can map Su back to the saturated area proportion (As) and then 257 

visualize it in the original HAND map. Based on this conceptual model, we developed the computer 258 

program and created a procedural module. The technical roadmap can be found in Figure 4.  259 

2.3 HSC-MCT module  260 

The SuMax is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4J), which 261 

determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that 262 

SuMax represents the adaption of ecosystems to local climate. Ecosystems may design their SuMax based on 263 

the precipitation pattern and their water demand. The storage is neither too small to be mortal in dry 264 

seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we can 265 

estimate the SuMax without calibration, by the MCT method, from climatological and vegetation 266 

information. More specifically, the average annual plant water demand in the dry season (SR) is 267 
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determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal 268 

NDVI. Subsequently, based on the annual SR, the Gumbel distribution (Gumbel, 1935), frequently used for 269 

estimating hydrological extremes, was used to standardize the frequency of drought occurrence. SR20y, i.e. 270 

the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for 271 

SuMax due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly, 272 

1994), and the fact that SR20y has the best fit with SuMax . The SR20y of the MOPEX catchments can be found 273 

in the map of (Gao et al., 2014a).  274 

Eventually, with the MCT approach to estimate SuMax and the HSC curve to represent the root zone storage 275 

capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters. 276 

It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived Su-As relation, 277 

and their distinction lays in the methods to obtain SuMax. So far, the HBV power function module has 2 free 278 

parameters (SuMax, β). While the TOPMODEL and the HSC both have one free parameter (SuMax). Ultimately 279 

the HSC-MCT has no free parameter.  280 

2.4 Interception, evaporation and routing modules 281 

Except for the runoff generation module in the root zone reservoir (SUR), we need to consider other 282 

processes, including interception (SIR) before the SUR module, evaporation from the SUR and the response 283 

routine (SFR and SSR) after runoff generation from SUR (Figure 5). Precipitation is firstly intercepted by 284 

vegetation canopies. In this study, the interception was estimated by a threshold parameter (SiMax), set to 285 

2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9) 286 

(de Groen and Savenije, 2006). For the SUR reservoir, we can either use the HBV beta-function (Equation 287 

12), the runoff generation module of TOPMODEL (Equation 2-4) or the HSC module (Section 2.3) to 288 

partition precipitation into generated runoff (Ru) and infiltration. The actual evaporation (Ea) from the soil 289 

equals to the potential evaporation (Ep), if Su/SuMax is above a threshold (Ce), where Su is the soil moisture 290 

and SuMax is the catchment averaged storage capacity. And Ea linearly reduces with Su/SuMax, while Su/SuMax 291 

is below Ce (Equation 13). The Ep can be calculated by the Hargreaves equation (Hargreaves and Samani, 292 

1985), with maximum and minimum daily temperature as input. The generated runoff (Ru) is further split 293 

into two fluxes, including the flux to the fast response reservoir (Rf) and the flux to the slow response 294 

reservoir (Rs), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is 295 

estimated by a convolution delay function, with a delay time of TlagF. Subsequently, the fluxes into two 296 

different response reservoirs (SFR and SSR) were released by two linear equations between discharge and 297 

storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from 298 
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groundwater reservoir. The two discharges (Qf and Qs) generated the simulated streamflow (Qm). The 299 

model parameters are shown in Table 1, while the equations are given in Table 2. More detailed 300 

description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining 301 

that the only difference among the benchmark HBV type, TOPMODEL type, HSC, and HSC-MCT models is 302 

their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in TOPMODEL 303 

and HSC model, and 5 in the HSC-MCT model. 304 

2.5 Model evaluation, calibration, validation and models comparison 305 

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a 306 

more robust approach to quantifying model performance with different criteria than a single one. The 307 

Kling-Gupta efficiency (Gupta et al., 2009) (IKGE) was used as the criteria to evaluate model performance 308 

and as an objective function for calibration. The equation is written as: 309 

 
2 2 2

KGE 1 ( 1) ( 1) ( 1)I r          (7) 310 

Where r is the linear correlation coefficient between simulation and observation; 𝛼 (
m o/   ) is a 311 

measure of relative variability in the simulated and observed values, where σm is the standard deviation 312 

of simulated streamflow, and σo is the standard deviation of observed streamflow; ε is the ratio between 313 

the average value of simulated and observed data. And the IKGL (IKGE of the logarithmic flows) (Fenicia et 314 

al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation.  315 

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for 316 

the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were 317 

assumed to be the behavioral parameter sets and can equally represent model performance. The 318 

averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result 319 

of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number 320 

of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the 321 

number of initial samples was set to 210 and a total number of 50000 model iterations for all the 322 

catchment runs. For each catchment, the first half period of data was used for calibration, and the other 323 

half was used to do validation.  324 

In module comparison, we defined three categories: if the difference of IKGE of model A and model B in 325 

validation is less than 0.1, model A and B are regarded as “equally well”. If the IKGE of model A is larger 326 



12 
 

than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the IKGE of 327 

model A is less than model B in validation by -0.1 or less, model B is regarded as outperforming model A. 328 

3 Dataset 329 

3.1 The Bruntland Burn catchment  330 

The 3.2 km2 Bruntland Burn catchment (Figure 6), located in north-eastern Scotland, was used as a 331 

benchmark study to test the model’s performance based on a rich data base of hydrological 332 

measurements. The Bruntland Burn is a typical upland catchment in North West Europe (e.g. Birkel et al., 333 

2010), namely a combination of steep and rolling hillslopes and over-widened valley bottoms due to the 334 

glacial legacy of this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift 335 

deposits (e.g. till) containing a large amount of stored water superimposed on a relatively impermeable 336 

granitic solid geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas, 337 

which remain saturated throughout most of the year with a dominant near-surface runoff generation 338 

mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream 339 

network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy 340 

hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes 341 

do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water 342 

movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough 343 

grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months 344 

(May-August) generally being the driest (Ali et al., 2013). Snow makes up less than 10% of annual 345 

precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and 346 

annual discharge around 659 mm. The daily precipitation, potential evaporation, and discharge data range 347 

from January 1 in 2008 to September 30 in 2014. The calibration period is from January 1, 2008 to 348 

December 31, 2010, and the data from January 1, 2011 to September 30, 2014 is used as validation.  349 

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 6). 350 

There are 7 saturation area maps (Figure 7) (May 2, July 2, August 4, September 3, October 1, November 351 

26, in 2008, and January 21, in 2009), measured directly by the “squishy boot” method and field mapping 352 

by global positioning system (GPS), to delineate the boundary of saturation areas connected to the stream 353 

network (Birkel et al., 2010; Ali et al., 2013). These saturation area maps revealed a dynamic behavior of 354 

expanding and contracting areas connected to the stream network that were used as a benchmark test 355 

for the HSC module. 356 
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3.2 MOPEX catchments  357 

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al., 358 

2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The 359 

longest time series range from 1948 to 2003. 323 catchments were used in this study (see the name list 360 

in SI), with areas between 67 and 10,329 km2, and excluding the catchments with data records <30 years, 361 

impacted by snowmelt or with extreme arid climate (aridity index Ep/P > 2). In order to analyze the impacts 362 

of catchment characteristics on model performance, excluding hydrometeorology data, we also collected 363 

the datasets of topography, depth to rock, soil texture, land use, and stream density (Table 3). These 364 

characteristics help us to understand in which catchments the HSC performs better or worse than the 365 

benchmark models.  366 

Hydrometeorology 367 

The dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily 368 

streamflow. The daily streamflow was used to calibrate the free parameters and validate the models.  369 

Topography  370 

The Digital Elevation Model (DEM) of the CONUS in 90m resolution was download from the Earth Explorer 371 

of United States Geological Survey (USGS, http://earthexplorer.usgs.gov/). The HAND and TWI map can 372 

be generated from DEM. The averaged elevation and HAND are used to as two catchment characteristics.  373 

Soil texture  374 

In this study, soil texture is synthetically represented by the K factor, since the K factor is a lumped soil 375 

erodibility factor which represents the soil profile reaction to soil detachment (Renard et al., 2011). 376 

Generally, the soils (high in clay and sand) have low K values, and soils with high silt content have larger K 377 

values. The averaged K factor for each catchment was calculated from soil survey information available 378 

from USGS (Wolock, 1997). 379 

Land use 380 

Land use data was obtained from National Land Cover Database (NLCD, http://www.mrlc.gov/nlcd.php). 381 

Forest plays an essential role in hydrological processes (Gao et al., 2018a), especially for the runoff 382 

generation (Brooks et al., 2010). Forest area proportion was utilized as an integrated indictor to represent 383 

the impact of vegetation cover on hydrological processes.  384 

http://earthexplorer.usgs.gov/
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Stream density 385 

Stream density (km/km2) is the total length of all the streams and rivers in a drainage basin divided by the 386 

total area of the drainage basin. Stream density data was obtained from Horizon Systems Corporation 387 

(http://www.horizon-systems.com/nhdplus/). 388 

Geology  389 

Bedrock is a relative impermeable layer, as the lower boundary of subsurface stormflow in the catchments 390 

where soil depth is shallow (Tromp-van Meerveld & McDonnell). The depth to bedrock, as an integrated 391 

geologic indicator, was accessed from STATSGO (State Soil Geographic, 392 

http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb) (Schwarz & Alexander, 1995). 393 

The averaged depth to bedrock for each catchment was calculated for further analysis.  394 

4 Results of the Bruntland Burn 395 

4.1 Topography analysis 396 

The generated HAND map, derived also from the DEM, is shown in Figure 6, with HAND values ranging 397 

from 0m to 234m. Based on the HAND map, we can derive the Su-As curve (Figure 8) by analyzing the 398 

HAND map with the method in Section 2.3. The TWI map of the BB (Figure 6) was generated from its DEM. 399 

Overall, the TWI map, ranging from -0.4 to 23.4, mainly differentiates the valley bottom areas with the 400 

highest TWI values from the steeper slopes. This is probably caused by the fine resolution of the DEM map 401 

in 2 m, as previous research found that the sensitivity of TWI to DEM resolution (Sørensen and Seibert, 402 

2007). From the TWI map, the frequency distribution function and the accumulative frequency 403 

distribution function can be derived (Figure 8), with one unit of TWI as interval.   404 

4.2 Model performance 405 

It is found that all the three models (HBV, TOPMODEL, and HSC) can perform well in reproducing the 406 

observed hydrograph (Figure 9). The IKGE of the three models are all around 0.66 in calibration, which is 407 

largely in line with other studies from the BB (Birkel et al, 2010; 2014). And the IKGL are 0.76, 0.72 and 0.74 408 

for HSC, HBV and TOPMODEL respectively in calibration. While in validation, IKGE of the three models are 409 

also around 0.66, while IKGL are 0.75, 0.70 and 0.65 for the three models. Since the measured rainfall-410 

runoff time series only lasts from 2008 to 2014, which is too short to estimate the SR20y (proxy for SuMax) 411 

by MCT approach (which needs long-term hydro-meteorological observation data,) the HSC-MCT model 412 

was not applied to this catchment.  413 

http://www.horizon-systems.com/nhdplus/
http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb
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Figure 8 shows the calibrated power curve by HBV (averaged beta=0.98) with the Su-As curve obtained 414 

from the HSC module. We found the two curves are largely comparable, especially while the relative soil 415 

moisture is low. This result demonstrates that for the BB catchment with glacial drift deposits and 416 

combined terrain of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve 417 

can essentially be derived from the Su-As curve of HSC module merely by topographic information without 418 

calibration.  419 

The normalized relative soil moisture of the three model simulations are presented in Figure 9. Their 420 

temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL 421 

has larger variation, compared with HBV and HSC (Figure 9).  422 

4.3 Contributing area simulation 423 

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are 424 

shown in Figure 7, 9, 10. We found although both modules overestimated the saturated areas, they can 425 

capture the temporal variation. For example, the smallest saturated area both observed and simulated 426 

occurred on July-02-2008, and the largest saturated area both occurred on January-21-2009. Comparing 427 

the estimated contributing area of TOPMODEL with the HSC module, we found the results of the HSC 428 

correlates better (R2=0.60, IKGE=-3.0) with the observed saturated areas than TOPMODEL (R2=0.50, IKGE=-429 

3.4) (Figure 10). For spatial patterns, the HSC contributing area is located close to the river network and 430 

reflects the spatial pattern of observed saturated area. While TOPMODEL results are more scattered, 431 

probably due to the sensitivity of TWI to DEM resolution (Figure 7). The HSC is more discriminating in 432 

terms of less frequently giving an unrealistic 100% saturation and retaining unsaturated upper hillslopes.  433 

5 Results from the MOPEX catchments  434 

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments  435 

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold 436 

height of 100m (recommended by Esri). The TWI map of the CONUS is produced (Figure S1). Based on the 437 

TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments with their catchment 438 

boundaries. And then the TWI frequency distribution and the accumulated frequency distribution of the 439 

323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were derived based on the 323 TWI 440 

maps. 441 
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In Figure 11, it is shown that the regions with large HAND values are located in Rocky Mountains and 442 

Appalachian Mountains, while the Great Plains has smaller HAND values. The Great Basin, especially in 443 

the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest drainage, 444 

despite a high elevation above sea level. From the CONUS HAND map, we clipped the HAND maps for the 445 

323 MOPEX catchments with their catchment boundaries. We then plot their HAND-area curves, following 446 

the procedures of I and II in Section 2.2. Figure 12a shows the normalized HAND profiles of the 323 447 

catchments.  448 

Based on the HAND profiles and the Step III in Section 2.2, we derived the normalized storage capacity 449 

distribution for all catchments (Figure 12b). Subsequently, the root zone moisture and saturated area 450 

relationship (As-Su) can be plotted by the method in Step IV of Section 2.2. Lastly, reversing the curve of 451 

As-Su to Su-As relation (Figure 12c), the latter one can be implemented to simulate runoff generation by 452 

soil moisture. Figure 12c interestingly shows that in some catchments, there is almost no threshold 453 

behavior between rainfall and runoff generation, where the catchments are covered by large areas with 454 

low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly 455 

and generate runoff without a precipitation–discharge threshold relationship characteristic of areas with 456 

higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished 457 

between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to 458 

rainfall is almost instantaneous.  459 

5.2 Model performance 460 

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data 461 

(Figure 13) is comparable with the previous model comparison experiments, conducted with four rainfall-462 

runoff models and four land surface parameterization schemes (Duan et al., 2006; Kollat et al., 2012; Ye 463 

et al., 2014). The median value of IKGE of the HBV type model is 0.61 for calibration in the 323 catchments 464 

(Figure 13), and averaged IKGE in calibration is 0.62. In validation, the median and averaged values of IKGE 465 

are kept the same as calibration. The comparable performance of models in calibration and validation 466 

demonstrates the robustness of benchmark models and the parameter optimization algorithm (i.e. 467 

MOSCEM-UA). The TOPMODEL improves the median value of IKGE from 0.61 (HBV) to 0.67 in calibration, 468 

and from 0.61 (HBV) to 0.67 in validation. But the averaged values of IKGE for TOPMODEL are slightly 469 

decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving the 470 

HAND topographic information without calibrating the β parameter, improves the median value of IKGE to 471 

0.68 for calibration and 0.67 for validation. The averaged values of IKGE in both calibration and validation 472 
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are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore, Figure 13 473 

demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median and 474 

averaged values were improved by the HSC module, but also the 25th and 75th percentiles and the lower 475 

whisker end, all have been improved. The performance gains on baseflow (IKGL) have been investigated 476 

and shown in the supplementary figure S3. These results indicate the HSC module improved model 477 

performance to reproduce hydrograph for both peak flow (IKGE) and baseflow (IKGL).  478 

Additionally, for HSC-MCT model, the median IKGE value is improved from 0.61 (HBV) to 0.65 in calibration, 479 

and from 0.61 (HBV) to 0.64 in validation, but not as well performed as TOPMODEL (0.67 for calibration 480 

and validation). For the averaged IKGE values, they were slightly reduced from 0.62 (HBV) and 0.61 481 

(TOPMODEL) to 0.59 for calibration and validation. Although the HSC-MCT did not perform as well as the 482 

HSC module, considering there is no free parameters to calibrate, the median IKGE value of 0.64 (HBV is 483 

0.61) and averaged IKGE of 0.59 (TOPMODEL is 0.61) are quite acceptable. In addition, the 25th and 75th 484 

percentiles and the lower whisker end of the HSC-MCT model are all improved compared to the HBV 485 

model. Moreover, the largely comparable results between the HSC and the HSC-MCT modules 486 

demonstrate the feasibility of the MCT method to obtain the SuMax parameter and the potential for HSC-487 

MCT to be implemented in prediction of ungauged basins.  488 

Figure 14 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark models. 489 

We found that the HSC performs “equally well” as HBV (the difference of IKGE in validation ranges -0.1 ~ 490 

0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the 491 

improvement of IKGE in validation is larger than 0.1). In not a single catchment did the calibrated HBV 492 

outperform the HSC. Comparing the HSC model with TOPMODEL, we found in 91% of the catchments that 493 

the two models have approximately equal performance. In 8% of the catchments, the HSC model 494 

outperformed TOPMODEL. Only in 1% of the catchments (two in the Appalachian Mountains and one in 495 

the Rocky Mountains in California), TOPMODEL performed better. 496 

In order to further explore the impact of catchment characteristics on model performance, we used 497 

topography (averaged HAND, averaged slope, and averaged elevation), soil (K-factor), land cover (forest 498 

area proportion), climate (aridity index), stream density, and geology (depth to rock) information to test 499 

the impact of catchment features on model performance. Table 4 clearly shows that compared with HBV, 500 

the 39 catchments with better performance have lower HAND values (37m), more gentle slopes (4.0 501 

degree), and smaller forest area (22%); while the elevation, K-factor, aridity index, stream density and 502 

depth to rock are almost similar. Also, in the catchments where HSC outperformed TOPMODEL, the 503 
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catchments have smaller HAND (27m), more gentle slopes (3.6 degree), moderate elevation (469 m), less 504 

forest proportion (14%), and more arid climate (aridity index is 1.3). TOPMODEL performs better in only 505 

three catchments with larger HAND (193m), steeper slopes (13.5 degree), higher elevation (740 m), more 506 

humid climate (aridity index is 0.8), and larger depth to rock (333 cm). In summary, the HSC showed better 507 

performance in catchments with gentle topography and more arid climate.  508 

Without calibration of SuMax, as expected, the performance of HSC-MCT module slightly deteriorates 509 

(Figure 13). In comparison with HBV, the outperformed percentage reduced from 12% (HSC) to 4% (HSC-510 

MCT), the approximately equal-well simulated catchments dropped from 88% to 79%, and the inferior 511 

performance increased from 0% to 17%. Also, in comparison with TOPMODEL, the better performance 512 

dropped from 8% (HSC) to 7% (HSC-MCT), the approximately equal catchments reduced from 91% to 72%, 513 

and the inferior performance increased from 1% to 21%. The inferiority of the HSC-MCT model is probably 514 

caused by the uncertainty of the MCT method for different ecosystems which have different survival 515 

strategies and use different return periods to bridge critical drought periods. By using ecosystem 516 

dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).  517 

To further explore the reason for the better performance of the HSC approach, we selected the 08171000 518 

catchment in Texas (Figure 14), in which both the HSC module and the HSC-MCT module outperformed 519 

the two benchmark modules to reproduce the observed hydrograph (Figure S4). The HBV model 520 

dramatically underestimated the peak flows, with IKGE as 0.54, while TOPMODEL significantly 521 

overestimated the peak flows, with IKGE as 0.30. The HSC-MCT model improved the IKGE to 0.71, and the 522 

HSC model further enhanced IKGE to 0.74.   523 

Since the modules of interception, evaporation and routing are identical for the four models, the runoff 524 

generation modules are the key to understand the difference in model performance. Figure S5 shows the 525 

HBV β curve and the Su-As curve of the HSC model, as well the TWI frequency distribution. We found that 526 

with a given Su/SuMax, the HBV β function generates less contributing area than the HSC model, which 527 

explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep 528 

accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment 529 

area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that 530 

even with low soil moisture content (Su/SuMax), the contributing area by TOPMODEL is relatively large, 531 

leading to the sharply increased peak flows for all rainfall events.  532 
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6 Discussion 533 

6.1 Rainfall-runoff processes and topography  534 

We applied a novel approach to derive the relationship between soil moisture storage and the saturated 535 

area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher 536 

HAND values, due to the larger storage capacity in higher HAND locations. The outperformance of the HSC 537 

over the benchmark HBV and TOPMODEL in gentle sloping catchments indicates that the HSC module 538 

likely has a higher realism than the calibrated HBV beta-function and the TWI of TOPMODEL in these 539 

regions. Very interestingly, Fan et al., (2017) presented an ecological observation in global scale, and 540 

revealed the systematic variation of rooting depth along HAND (Fig.1, in Fan et al., 2017). Since rooting 541 

depth can be translated to root zone storage capacity through combination with soil plant-available water 542 

(Wang-Erlandsson et al., 2016). This large sample dataset, from ecological perspective, provides a strong 543 

support for the assumption of the HSC model on gentle slopes, i.e. the increase of root zone storage 544 

capacity with HAND. More interestingly, on excessively drained uplands, rooting depth does not follow 545 

the same pattern, with shallow depth and limited to rain infiltration (Fig.1, in Fan et al., 2017). This could 546 

explain the inferior performance of HSC model to TOPMODEL in three MOPEX catchments with 547 

excessively drained uplands (larger HAND, steeper slope, higher elevation, and deeper depth to rock), 548 

where Hortonian overland flow is likely the dominant mechanism, and the HSC assumption likely does not 549 

work well. This indicates that comparing with TWI, the HAND is closer to catchment realism distinguishing 550 

hydrological similarity in gentle topography catchments. The HSC module assumes SEF as the dominant 551 

mechanism. But since in a real catchment different runoff generating processes may act simultaneously 552 

in different environments (McDonnell, 2013; Hrachowitz and Clark, 2017). Such SEF dominated 553 

catchments, or parts thereof, are typically characterized by a subdued relief and thus gently sloping. In 554 

steeper catchments, where the groundwater table is deeper and thus more additional water can be stored 555 

in the soil, another conceptual parametrisation would be appropriate. 556 

The FLEX-Topo model (Savenije, 2010) also uses HAND as a topographic index to distinguish between 557 

landscape-related runoff processes and has both similarity and differences with the HSC model. The 558 

results of the HSC model illustrate that the riparian areas are more prone to be saturated, which is 559 

consistent with the concept of the FLEX-Topo model. Another important similarity of the two models is 560 

their parallel model structure. In both models it is assumed that the upslope area has larger storage 561 

capacity, therefore the upper land generates runoff less and later than the lower land. In other words, in 562 

most cases, the local storage is saturated due to the local rainfall, instead of flow from upslope. The most 563 
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obvious difference between the HSC and the FLEX-Topo is the approach towards discretization of a 564 

catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. wetlands, hillslopes 565 

and plateau. This discretization method requires threshold values to classify landscapes, i.e. threshold 566 

values of HAND and slope, which leads to fixed and time-independent proportions of landscapes. The HSC 567 

model does not require landscape classification, which reduced the subjectivity in discretization and 568 

restricted the model complexity, as well as simultaneously allowing the fluctuation of contributing areas 569 

(termed as wetlands in FLEX-Topo).  570 

6.2 Catchment heterogeneity and simple models 571 

Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of 572 

landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often 573 

consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots, 574 

soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and 575 

McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of 576 

runoff processes, and hydrological and land surface modelers are developing more and more complicated 577 

models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no 578 

compelling evidence to support the outperformance of sophisticated “physically-based” models in terms 579 

of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in 580 

rainfall-runoff simulation (Beven, 1989; Orth et al., 2015). 581 

But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts 582 

(Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not 583 

require complex laws (Chase, 1992; Passalacqua et al., 2015). Parsimonious models (e.g. Perrin et al., 584 

2003), with empirical curve shapes, likely result in good model performance. Parameter identifiability in 585 

calibration is one of the reasons. However, the physical rationale of these parsimonious models is still 586 

largely unknown lacking a physical explanation to interpret these empirical curves described by 587 

mathematical functions (e.g. Equation 3 in Perrin et al., 2003).  588 

The benefits of the new HSC module are two-fold. From a technical point of view, the HSC allows us to 589 

make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual 590 

hydrological models. Furthermore, the HSC module, from a scientific point of view, provides us with a new 591 

perspective on the linkage between the spatial distribution patterns of root zone storage capacity (long-592 

term ecosystem evolution) with associated runoff generation (event scale rainfall-runoff generation).  593 
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Asking questions of “why” rather than “what” likely leads to more useful insights and a new way forward 594 

(McDonnell et al., 2007). The HSC module provides us with a rationale from an ecological perspective to 595 

understand the linkage and mechanism between large-sample hillslope ecological observations and the curve 596 

of root zone storage capacity distribution (Figure 1, 2, 3). Catchment is a geomorphological and even an 597 

ecological system whose parts are related to each other probably due to catchment self-organization and 598 

evolution (Sivapalan and Blöschl, 2015; Savenije and Hrachowitz, 2017). This encourages the hope that 599 

simplified concepts may be found adequate to describe and model the operation of the basin runoff 600 

generation process. It is clear that topography, with fractal characteristic (Rodriguez-Iturbe and Rinaldo, 601 

1997), is often the dominant driver of runoff, as well as being a good integrated indicator for vegetation 602 

cover (Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone evaporation and transpiration deficits 603 

(Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), and even geology (Rempe and Dietrich, 604 

2014; Gomes, 2016). Therefore, we argue that increasingly detailed topographic information is an 605 

excellent integrated indicator allowing modelers to continue systematically represent heterogeneities and 606 

simultaneously reduce model complexity. The model structure and parameterization of both HSC and 607 

TOPMODEL are simple, but not over simplified, as they capture likely the most dominant factor controlling 608 

runoff generation, i.e. the spatial heterogeneity of storage capacity. Hence, this study also sheds light on 609 

the possibility of moving beyond heterogeneity and process complexity (McDonnell et al., 2007), to 610 

simplify them into a succinct and a priori curve by taking advantage of catchment self-organization 611 

probably caused by co-evolution or the principle of maximum entropy production (Kleidon and Lorenz, 612 

2004).  613 

6.3 Implications and limitation  614 

The calibration-free HSC-MCT runoff generation module enhances our ability to predict runoff in 615 

ungauged basins. PUB is probably not a major issue in the developed world, with abundant of 616 

comprehensive measurements in many places, but for the developing world it requires prediction with 617 

sparse data and fragmentary knowledge. Topographic information with high spatial resolution is freely 618 

available globally, allowing us to implement the HSC model in global scale studies. In addition, thanks to 619 

the recent development, testing, and validation of remote sensing evaporation products in large spatial 620 

scale (e.g. Anderson et al., 2011; Hu and Jia, 2015), the SuMax estimation has become possible without in 621 

situ hydro-meteorological measurements (Wang-Erlandsson et al., 2016). These widely-accessible 622 

datasets make the global-scale implementation of HSC-MCT module promising.  623 
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Although the new modules perform well in the BB and the MOPEX catchments, we do not intend to 624 

propose “a model fits all”. The assumption of HSC, to some extent, is supported by large-sample ecological 625 

field observation (Fan et al., 2017), but it never means the As-Su curve of HSC can perfectly fit the other 626 

existing curves (e.g. HBV and TOPMODEL). Unify all model approaches into one framework is the objective 627 

of several pioneer works (e.g. Clark, et al., 2010; Fenicia et al., 2011), but out of the scope of this study. 628 

Moreover, while estimating the runoff coefficient by the As-Su relation, rainfall in the early time may cause 629 

the increase of Su/SuMax and runoff coefficient (Moore, 1985; Wang, 2018). Therefore, neglecting this 630 

influence factor, HBV (Equation 1), TOPMODEL (Equation 2-4) and HSC (Equation 5-6) theoretically 631 

underestimate the runoff coefficient, which needs to be further investigated. 632 

Finally, we should not ignore the limitations of the new module, although it has better performance and 633 

modelling consistency. 1) The threshold area for the initiating a stream was set as a constant value for the 634 

entire CONUS, but the variation of this value in different climate, geology and landscape classes 635 

(Montgomery and Dietrich, 1989; Helmlinger et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to 636 

be future investigated. 2) The discrepancy between observed and simulated saturation area needs to be 637 

further investigated, by utilizing more advanced field measurement and simultaneously refining the 638 

model assumption. To our understanding, there are two interpretations. Firstly, the overestimation of the 639 

HSC model is possibly because two runoff generation mechanisms – SOF and the SSF occur at the same 640 

time. However, the saturated area observed by the “squishy boot” method (Ali et al., 2013), probably only 641 

distinguished the areas where SOF occurred. Subsurface stormflow, also contributing to runoff, cannot be 642 

observed by the “squishy boot” method. Thus, this mismatch between simulation and observation 643 

probably leads to this saturated area overestimation. The second interpretation might be the different 644 

definition of “saturation”. The observed saturated areas are places where 100% of soil pore volume is 645 

filled by water. But the modelled saturation areas are located where soil moisture is above field capacity, 646 

and not necessarily 100% filled with water, which probably also results in the overestimation of saturated 647 

areas. Interestingly, in theory the observed saturated area should be within the simulated contributing 648 

area, due to the fact that the saturated soil moisture is always larger than field capacity. From this point 649 

of view, the observed saturated area is smaller and within the contributing area simulated by HSC, but 650 

TOPMODEL missed this important feature. 4) Only the runoff generation module is calibration free, but 651 

the interception and response routines still rely on calibration. Although we kept the interception and 652 

response routine modules the same for the four models, the variation of other calibrated parameters (i.e. 653 

SiMax, D, Kf, Ks, TlagF) may also influence model performance in both calibration and validation. 5) The 654 

computational cost of the HSC is more expensive than HBV, and similar to TOPMODEL, due to the cost of 655 
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preprocessed topographic analysis. But once the Su-As curve is completed, the computation cost is quite 656 

comparable with HBV.  657 

7 Summary and conclusions  658 

In this study, we developed a simple and calibration-free hydrological module (HAND-based Storage 659 

Capacity curve, HSC) based on a relatively new topographic index (HAND), which is not only an excellent 660 

physically-based indictor for the hydraulic gradient, but also represents the spatial distribution of root 661 

zone storage capacity supported by large-sample ecological observations. Based on HAND spatial 662 

distribution pattern, the soil moisture (Su) - saturated area (As) relation for each catchment was derived, 663 

which was used to estimate the As of specific rainfall event based on continuous calculation of Su. 664 

Subsequently, based on the Su-As relation, the HSC module was developed. Then, applying the mass curve 665 

technique (MCT) approach, we estimated the root zone storage capacity (SuMax) from observable hydro-666 

climatological and vegetation data, and coupled it with HSC to create the calibration-free HSC-MCT 667 

module. The HBV and TOPMODEL were used as two benchmarks to test the performance of HSC and HSC-668 

MCT on both hydrograph simulation and ability to reproduce the contributing area, which was measured 669 

for different hydrometeorological conditions in the Bruntland Burn catchment in Scotland. Subsequently, 670 

323 MOPEX catchments in the US were used as a large-sample hydrological study to further validate the 671 

effectiveness of our proposed runoff generation modules.   672 

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to 673 

reproduce the observed hydrograph. Comparing the estimated contributing area of TOPMODEL with the 674 

HSC module, we found that HSC module performed better to reproduce saturated area variation, in terms 675 

of the correlation coefficient and spatial patterns. This likely indicates that HAND maybe a better indicator 676 

to distinguish hydrological similarity than TWI.  677 

For the 323 MOPEX catchments, HSC improved the averaged validation value of IKGE from 0.62 (HBV) and 678 

0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in 679 

not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC 680 

outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better 681 

performance. Interestingly, we found that the HSC module showed better performance in the catchments 682 

with gentle topography, less forest cover, and larger aridity index. Not surprisingly, the IKGE of HSC-MCT 683 

model was slightly reduced to 0.59, due to the non-calibrated SuMax, but still comparably well performed 684 

as HBV (0.62) and TOPMODEL (0.61). This illustrates the robustness of both the HSC approach to derive 685 
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the spatial distribution of the root zone storage capacity (β) and the efficiency of the MCT method to 686 

estimate the root zone storage capacity (SuMax).  687 
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 994 

 995 

Table 1. The parameters of the models, and their prior ranges for calibration. (*SuMax is a parameter in HBV, 996 

TOPMODEL and the HSC model, but HSC-MCT model does not have SuMax as a free parameter; ** β is a parameter in 997 

HBV model, but not in TOPMODEL, HSC and HSC-MCT models) 998 

Parameter Explanation  Prior range for calibration 

SiMax (mm) Maximum interception capacity 2 

SuMax (mm) * The root zone storage capacity (10, 1000) 

β (-)** The shape of the storage capacity curve (0.01, 5)  

Ce (-) Soil moisture threshold for reduction of evaporation (0.1, 1) 

D (-) Splitter to fast and slow response reservoirs (0, 1) 

TlagF (d) Lag time from rainfall to peak flow (0, 10) 

Kf (d) The fast recession coefficient (1, 20) 

Ks (d) The slow recession coefficient (20, 400) 

 999 
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 1000 

Table 2. The water balance and constitutive equations used in models. (Function (15)* is used in the HBV model, but 1001 

not used in the TOPMODEL, HSC and HSC-MCT models) 1002 

reservoirs Water balance equations Constitutive equations 
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 1003 

Table 3. Data source of the MOPEX catchments.  1004 

Data  Unit  Resources  Website Reference  

Daily precipitation  mm/d MOPEX http://www.nws.noaa.gov/oh

d/mopex/mo_datasets.htm 

(Duan et al., 2006) 

Daily maximum 

temperature  

oC MOPEX Same as above Same as above 
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http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm
http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm
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Daily minimum 

temperature 

oC MOPEX Same as above Same as above 

Daily runoff mm/d MOPEX Same as above Same as above 

Aridity index  - MOPEX Same as above Same as above 

DEM m USGS http://earthexplorer.usgs.gov/ - 

Slope  degree USGS Same as above - 

K factor of soil  - USGS http://water.usgs.gov/GIS/metad

ata/usgswrd/XML/muid.xml 

(Wolock, 1997; Gao et 

al., 2018) 

Percentage of forest 

cover 

% NLCD http://www.mrlc.gov/ (Homer et al., 2015; Gao 

et al., 2018) 

Stream density  Km/km2 Horizon 

Systems 

Corporation 

http://www.horizon-

systems.com/nhdplus/ 

- 

Depth to bedrock cm STATSGO http://www.soilinfo.psu.edu/ind

ex.cgi?soil_data&conus&data_co

v&dtb 

(Schwarz et al., 1995; 

Gao et al., 2018) 

 1005 

 1006 

Table 4. Impacts of MOPEX catchment characteristics on model performance (HSC, HBV, and TOPMODEL) 1007 

Catchment 

characteristics  

HSC > HBV HSC ≈ HBV HSC < HBV HSC > 

TOPMODEL 

HSC ≈ 

TOPMODEL 

HSC < 

TOPMODEL 

Averaged 

HAND (m) 37 71 - 27 69 193 

Averaged slope 

(degree) 4.0 5.7 - 3.6 5.6 13.5 

Averaged 

elevation (m) 454 395 - 469 393 740 

Averaged K-

factor (-) 0.28 0.29 - 0.29 0.29 0.25 

Forest 

proportion (%) 22 43 - 14 43 68 

Aridity index (-) 1.1 0.9 - 1.3 0.9 0.8 

Stream density 

(-) 0.72 0.81 - 0.77 0.80 0.83 
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Averaged 

depth to rock 

(cm)  192 219 - 210 215 333 

 1008 

 1009 

Figure 1. The variation of plant rooting depths along a hillslope profile, showing the impact of HAND 1010 

(Height Above the Nearest Drainage) on rooting depth. (Taken from Fan et al., 2017 by permission of PNAS) 1011 

 1012 

Figure 2. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the representative 1013 

hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows the relationship 1014 
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between HAND bands and their corresponded area fraction; c) shows the relationship between storage capacity-1015 

area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly increases with 1016 

HAND values.  1017 

 1018 

 1019 

 1020 

Figure 3. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (Su) 1021 

and saturated area (As) in different soil moisture conditions. In d), 20 different Su-As conditions are plotted, which 1022 

allow us to estimate As from Su.  1023 

 1024 
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 1025 

Figure 4. The procedures estimating runoff generation by the HSC model and its two hypotheses.  1026 

 1027 

 1028 

Figure 5. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL, HSC, 1029 

and HSC -MCT). HBV-type has SuMax and beta two free parameters; TOPMODEL and HSC models have SuMax as one 1030 
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free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and 1031 

make fair comparison, the interception storage capacity (SiMax) was fixed as 2mm.  1032 

 1033 

 1034 

 1035 

Figure 6. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM) 1036 

of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the 1037 

height above the nearest drainage (HAND) map of the Bruntland Burn catchment.  1038 

 1039 

 1040 
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 1041 

Figure 7. The measured saturated areas and the simulated contributing areas (black) by TOPMODEL and HSC models.  1042 

 1043 

 1044 
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 1045 

Figure 8. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure). 1046 

The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).  1047 

 1048 

 1049 

Figure 9. a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated 1050 

hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line); b) the 1051 

comparison of the observed saturated area of 7 days (black dots) and simulated relative soil moistures, i.e. HBV (blue 1052 

line), TOPMODEL (green line and dots), HSC (red line and dots).  1053 
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 1054 

 1055 

 1056 

Figure 10. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and HSC 1057 

models.  1058 

 1059 

 1060 

 1061 

 1062 

Figure 11. The Height Above the Nearest Drainage (HAND) map of the CONUS.  1063 
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 1064 

  1065 

 1066 

Figure 12. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area 1067 

fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the Su-As curves of the HSC 1068 

model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.  1069 

  1070 

 1071 

Figure 13. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models 1072 

 1073 
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 1074 

Figure 14. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV 1075 

and TOPMODEL, for the 323 MOPEX catchments.  1076 


