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Abstract

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land
surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel
and simple topography-driven runoff generation parameterization — the HAND-based Storage Capacity
curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify
hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module
in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve
Technique (MCT) to estimate root zone storage capacity (Sumax), We developed a calibration-free runoff
generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for
comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked
against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-
mapped saturation area extent. We found that HSC, HBV and TOPMODEL all perform well to reproduce

the hydrograph, but the HSC module performs better in reproducing saturated area variation, in terms of
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correlation coefficient and spatial pattern. The HSC and HSC-MCT modules were subsequently tested for
323 MOPEX catchments in the US, with diverse climate, soil, vegetation and geological characteristics. In
comparison with HBV and TOPMODEL, the HSC performs better in both calibration and validation,
particularly in the catchments with gentle topography, less forest cover and arid climate. Despite having
no calibrated parameters, the HSC-MCT module performed comparably well with calibrated modules,
highlighting the robustness of the HSC parameterization to describe the spatial distribution of the root
zone storage capacity and the efficiency of the MCT method to estimate Sumax. This novel and calibration-
free runoff generation module helps to improve the Prediction in Ungauged Basins and has great potential

to be generalized at the global scale.

1 Introduction

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge
in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust
runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers.
Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins
(PUB) (Sivapalan et al., 2003; Bloschl et al., 2013; Hrachowitz et al., 2013), it is not uncommon that models
become increasingly complicated in order to capture the details of hydrological processes shown by
empirical studies (McDonnell, 2007; Sivapalan, 2009; Yu et al., 2014). More detailed process
conceptualization normally demands higher data requirements than our standard climatological and
hydrological networks can provide, leading to more calibrated parameters and a probable increase in

model uncertainty (Sivapalan, 2009).

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation.
It is a property emerging at larger scales, describing the temporal dynamics of how spatially
heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm
runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Bl6schl, 2004;
Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and
van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including
but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld
and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and

McDonnell, 2007), land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel et al.,
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2014), the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al., 2011; McMillan et
al., 2014; Nippgen et al., 2015).

In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of
topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven
and Freer, 2001) uses topographic wetness index (TWI) to distinguish hydrologic similarity; and SHE
(Abbott et al. 1986) and tRIBS (lvanov et al. 2004; Vivoni et al. 2005) use partial differential equations to
describe the water movement based on pressure gradients obtained by topography; and the
Representative Elementary Watershed (REW) approach divides catchment into a number of REWs to
build balance and constitutive equations for hydrological simulation (Reggiani et al., 1999; Zhang and
Savenije, 2005; Tian et al., 2008). As the relevant model parameters such as local topographic slope and
hydraulic conductivity can, in spite of several unresolved issues for example relating to the differences in
the observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), be obtained from direct

observations, they could in principle be applied without calibration.

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional
relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional
relationships require parameters that are effective on the modelling scale and that can largely not be
directly determined with small-scale field observations (cf. Beven, 1995), thus traditionally determined
by calibration. However, frequently the number of observed variables for model calibration is, if
available at all, limited to time series of stream flow. The absence of more variables to constrain models
results in such models being ill-posed inverse problems. Equifinality in parameterization and in the
choice of parameters then results in considerable model uncertainty (e.g. Beven, 1993, 2006). To limit
this problem and to also allow predictions in the vast majority of ungauged catchments, it is therefore
desirable to find ways to directly infer effective model parameters at the modelling scale from readily

available data (Hrachowitz et al., 2013).

The component that is central for establishing connectivity in most top-down models is the soil moisture
routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and
partitions water into evaporative fluxes, groundwater recharge and fast lateral storm flow generating
runoff (Gao et al., 2018a; Shao et al., 2018). The latter of which is critical from the aspect of connectivity.
In majority regions, Hortonian overland flow (HOF, i.e. infiltration excess overland flow) is of minor
importance(Dunne and Black, 1970; Sklash and Farvolden, 1979; Beven, 2004; Burt and McDonnell,

2015), even in arid regions where often most locally generated HOF is re-infiltrated while flowing on
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hillslopes (Liu et al., 2012) and never reaches the stream channel network. Thus the term saturation
excess flow (SEF) can represent, depending on the model and the area of application, different
processes, such as saturation overland flow, preferential flow, flow through shallow, high permeability
soil layers or combinations thereof. The interplay between water volumes that are stored and those that
are released laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down
models described by functions between water stored in the unsaturated root zone (“soil moisture”) and
the areal proportion of heterogeneous, local storage thresholds that are exceeded and thus
“connected” (Zhao et al., 1980). In other words, in those parts of a catchment where the storage
threshold is exceeded will generate lateral flows, and can alternatively be interpreted as runoff
coefficient (e.g. Ponce and Hawkins, 1996; Perrin and Andreassian, 2001; Fenicia et al., 2007; Bergstrom
and Lindstrom, 2015). Thus the idea goes back to the variable contributing area concept, assuming that
only partial areas of a catchment, where soils are saturated and thus storage thresholds are exceeded,
contribute to runoff (Hewlett, 1961; Dunne and Black, 1970; Hewlett and Troendle, 1975). Although
originally developed for catchments dominated by saturation overland flow, the extension of the
concept to subsurface connectivity, posing that surface and subsurface connectivity are “two sides of
the same coin” (McDonnell, 2013), proved highly valuable for models such as Xinanjiang (Zhao et al.,
1980), HBV (Bergstréom and Forsman, 1973; Bergstrom and Lindstrém, 2015), SCS-CN (Ponce and
Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) and GR4J (Perrin and Andreassian et al.,
2001).

Among these models, connectivity is formulated in a general form as Ce=f(Su(t),Sumax,B), Where Cg is the
runoff coefficient, i.e. the proportion of the catchment generating runoff, Sy(t) is the catchment water
content in the unsaturated root zone at any time t, Sumax iS @ parameter representing the total storage
capacity in the unsaturated root zone and B is a shape parameter, representing the spatial distribution
of heterogeneous storage capacities in the unsaturated root zone. The parameters of these functions
are typically calibrated. In spite of being the core component of soil moisture routines in many top-down
models, little effort was previously invested to find ways to determine the parameters at the catchment-
scale directly from available data. An important step towards understanding and quantifying
connectivity pattern directly based on observations was recently achieved by intensive experimental
work in the Tenderfoot Creek catchments in Montana, US. In their work Jencso et al. (2009) were able to
show that connectivity of individual hillslopes in their headwater catchments is highly related to their
respective upslope accumulated areas. Using this close relationship, Smith et al. (2013) successfully

developed a simple top-down model with very limited need for calibration, emphasizing the value of
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“enforcing field-based limits on model parameters” (Smith et al., 2016). Based on hydrological landscape
analysis, FLEX-Topo model (Savenije, 2010) can dramatically reduce the need for calibration (Gharari et
al., 2014), and hold considerable potential for spatial model transferability without the need for
parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016). In a recent development, several
studies suggest that Suvax can be robustly and directly inferred from long term water balance data, by
the Mass Curve Technique (MCT) (Gao et al., 2014; de Boer-Euser et al., 2016; Nijzink et al., 2016). The
MCT is an engineering method for reservoir design, in which the reservoir size is estimated as a function
of accumulated inflow and human water demand. The MCT treats the root zone as a reservoir, and
estimates catchment-scale Sumax from measurable hydrometeorological data, without the need for
further calibration. This leaves shape parameter B as the only free calibration parameter for soil
moisture routines of that form. Topography is often the dominant driver of water movement caused by
prevailing hydraulic gradients. More crucially, topography usually provides an integrating indicator for
hydrological behavior, since topography is usually closely related with other landscape elements, such as
soil vegetation climate and even geology (Seibert et al., 2007; Savenije, 2010; Rempe and Dietrich, 2014;
Gao et al., 2014b; Maxwell and Condon, 2016; Gomes, 2016). The Height Above the Nearest Drainage
(HAND; Rennd et al., 2008; Nobre et al., 2011; Gharari et al., 2011), which can be computed from readily
available digital elevation models (DEM), could potentially provide first order estimates of groundwater
depth, as there is some experimental evidence that with increasing HAND, groundwater depths
similarly increase (e.g. Haria and Shand, 2004; Martin et al., 2004; Molenat et al., 2005, 2008; Shand et
al., 2005; Condon and Maxwell, 2015; Maxwell and Condon, 2016). HAND can be interpreted as a proxy
of the hydraulic head and is thus potentially more hydrologically informative than the topographic
elevation above sea level (Nobre et al., 2011). Compared with the TWI in TOPMODEL, HAND is an
explicit measure of a physical feature linking terrain to water related potential energy for local drainage
(Nobre et al., 2011). More interestingly, topographic structure emerges as a powerful force determining
rooting depth under a given climate or within a biome (Figure 1), revealed by a global synthesis of 2,200
root observations of >1000 species (Fan et al., 2017). This leads us to think from ecological perspective
to use the topographic information as an indicator for root zone spatial distribution without calibrating
the B, and coupling it with the MCT method to estimate the Sumax, €ventually create a calibration-free

runoff generation module.

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial
distribution of storage capacities and therefore can be used to develop a new runoff generation module

(HAND-based Storage Capacity curve, i.e. HSC); (2) the distribution of storage capacities determined by

5
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HAND contains different information than the topographic wetness index; (3) the HSC together with water
balance-based estimates of Sumax (MCT method) allow the formulation of calibration-free
parameterizations of soil moisture routines in top-down models directly based on observations. All these
hypotheses will be tested firstly in a small data-rich experimental catchment (the Bruntland Burn
catchment in Scotland), and then apply the model to a wide range of larger MOPEX catchments (Model

Parameter Estimation Experiment).

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e.
HSC and HSC-MCT, and two benchmark models (HBV, TOPMODEL). This section also includes the
description of other modules (i.e. interception, evaporation and routing) in rainfall-runoff modelling, and
the methods for model evaluation, calibration and validation. The Dataset section reviews the empirically-
based knowledge of the Bruntland Burn catchment in Scotland and the hydrometerological and
topographic datasets of MOPEX catchments in the US for model comparison. The Results section presents
the model comparison results. The Discussion section interprets the relation between rainfall-runoff
processes and topography, catchment heterogeneity and simple model, and the implications and
limitations of our proposed modules. The conclusions are briefly reviewed in the Summary and

Conclusions section.

2 Methods

Based on our perceptual model that saturation excess flow (SEF) is the dominant runoff generation
mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module.
Subsequently, estimating the parameter of root zone storage capacity (Sumax) by the MCT method without
calibration, the HSC-MCT was developed. In order to assess the performance of our proposed modules,
two widely-used runoff generation modules, i.e. HBV power function and TOPMODEL module, were set
as benchmarks. Other modules, i.e. interception, evaporation and routing, are kept with identical
structure and parameterization for the four rainfall-runoff models (HBVY, TOPMODEL, HSC, HSC-MCT,
whose names are from their runoff generation modules), to independently diagnose the difference among

runoff generation modules (Clark et al., 2008; 2010).

2.1 Two benchmark modules

HBV power function
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The HBV runoff generation module applies an empirical power function to estimate the nonlinear
relationship between the runoff coefficient and soil moisture (Bergstrom and Forsman, 1973; Bergstrom

and Lindstrom, 2015). The function is written as:

A=) n
uMax

Where A (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall
event; S, (mm) represents the averaged root zone soil moisture; Sumax (Mm) is the averaged root zone
storage capacity of the studied catchment; B (-) is the parameter determining the shape of the power
function. The prior range of B can be from 0.1 to 5. The S, - A has a linear relation while B equals to 1. And
the shape becomes convex while the B is less than 1, and the shape turns to concave while the B is larger
than 1. In most situations, Sumax and B are two free parameters, cannot be directly measured at the

catchment scale, and need to be calibrated based on observed rainfall-runoff data.
TOPMODEL module

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at
catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby,
1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff
generation potential. More specifically, the areas with larger TWI values tend to be saturated first and
contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate

runoff. The equations are written as follow:

D, =D+ S e (I — ) (2)

A :Z&_i; while D. <0 (4)

Where D; (mm) is the local storage deficit below saturation at specific location (i); D (mm) is the averaged

water deficit of the entire catchment (Equation 2), which equals to (Sumax - Su), as shown in Equation 3. ltwi

is the local hw value. |y, is the averaged TWI of the entire catchment. Equation 2 means in a certain soil

moisture deficit condition for the entire catchment (D), the soil moisture deficit of a specific location (Dj),

is determined by the catchment topography (/rw and frwi), and the root zone storage capacity (Sumax).
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Therefore, the areas with D; less than zero are the saturated areas (As j), equal to the contributing areas.
The integration of the A ; areas (As), as presented in Equation 4, is the runoff contributing area, which

equals to the runoff coefficient of that rainfall event.

Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area
(As) from the estimated relative soil moisture (Su/Sumax), and then map it back to the original TWI map,
which makes it possible to test the simulated contributing area by field measurement. It is worth
mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one,

which combines the saturated and unsaturated soil components.

2.2 HSC module

In the HSC module, we assume 1) primarily saturation excess flow as the dominant runoff generation
mechanism; 2) the local root zone storage capacity has a positive and linear relationship with HAND, from
which we can derive the spatial distribution of the root zone storage capacity; 3) rainfall firstly feeds local

soil moisture deficit, and no runoff can be generated before local soil moisture being saturated.

Figure 2 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a
real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage
capacity, based on topographic analysis and the second assumption as mentioned in the preceding

paragraph. Figure 3 shows the approach to derive the S;-As relation, which are detailed as follows.

I.  Generate HAND map. The HAND map, which represents the relative vertical distance to the
nearest river channel, can be generated from DEM (Gharari et al., 2011). The stream initiation
threshold area is a crucial parameter, determining the perennial river channel network
(Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and significantly impacting the HAND
values. In this study, the start area was chosen as 40ha for the BB catchment to maintain a close
correspondence with observed stream network. And for the MOPEX catchments, the stream
initiation area threshold is set as 500 grid cells (4.05 km?), which fills in the range of stream
initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). HAND
maps were then calculated from the elevation of each raster cell above nearest grid cell flagged
as stream cell following the flow direction (Gharari et al., 2011).

1. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in
ascending order. Secondly, the sorted HAND values were evenly divided into n bands (e.g. 20

bands in this study), to make sure each HAND band has similar area. The averaged HAND value of
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each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and
then plot the normalized HAND distribution curve (Figure 2b).

Il. Distribute Symax to each HAND band (Sumax_i). As assumed, the normalized storage capacity of each
HAND band (Sumax_i) increases with HAND value (Figure 2c). Based on this assumption, the
unsaturated root zone storage capacity (Sumax) can be distributed to each HAND band as Sumax_i
(Figure 3a). It is worth noting that Sumax Needs to be calibrated in the HSC module, but free of
calibration in the HSC-MCT module.

V. Derive the S, - A curve. With the number of s saturated HAND bands (Figure 3a-c), the soil
moisture (S,) can be obtained by Equation 5; and saturated area proportion (As) can be obtained

by Equation 6.

1

— s
==Xz 8 g —
Su n [ 1SuMax i + SuMax s(n S)] (5)

As = (6)

s
n
Where Sumax_s is the maximum Sumax i Of all the saturated HAND bands. Subsequently, the As - S,

curve can be derived, and shown in Figure 3d.

The SEF mechanism assumes that runoff is only generated from saturation areas, therefore the proportion
of saturation area is equal to the runoff coefficient of that rainfall-runoff event. Based on the S;-A; curve
in Figure 3d, generated runoff can be calculated from root zone moisture (S,). The HSC module also allows
us to map out the fluctuation of saturated areas by the simulated catchment average soil moisture. For
each time step, the module can generate the simulated root zone moisture for the entire basin (S,). Based
on the S,-A; relationship (Figure 3d), we can map S, back to the saturated area proportion (As) and then
visualize it in the original HAND map. Based on this conceptual model, we developed the computer

program and created a procedural module. The technical roadmap can be found in Figure 4.

2.3 HSC-MCT module

The Sumax is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4lJ), which
determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that
Sumax represents the adaption of ecosystems to local climate. Ecosystems may design their Symax based on
the precipitation pattern and their water demand. The storage is neither too small to be mortal in dry
seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we can
estimate the Sumax Without calibration, by the MCT method, from climatological and vegetation

information. More specifically, the average annual plant water demand in the dry season (Sg) is
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determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal
NDVI. Subsequently, based on the annual Sk, the Gumbel distribution (Gumbel, 1935), frequently used for
estimating hydrological extremes, was used to standardize the frequency of drought occurrence. Sgaoy, i.€.
the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for
Sumax due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly,
1994), and the fact that Sgaoy has the best fit with Sumax . The Sraoy of the MOPEX catchments can be found

in the map of (Gao et al., 2014a).

Eventually, with the MCT approach to estimate Symax and the HSC curve to represent the root zone storage
capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters.
It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived S.-As relation,
and their distinction lays in the methods to obtain Suymax. So far, the HBV power function module has 2 free
parameters (Sumax, B). While the TOPMODEL and the HSC both have one free parameter (Sumax). Ultimately

the HSC-MCT has no free parameter.

2.4 Interception, evaporation and routing modules

Except for the runoff generation module in the root zone reservoir (Sur), we need to consider other
processes, including interception (Sir) before the Sur module, evaporation from the Syz and the response
routine (Srr and Ssg) after runoff generation from Sur (Figure 5). Precipitation is firstly intercepted by
vegetation canopies. In this study, the interception was estimated by a threshold parameter (Sivax), set to
2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9)
(de Groen and Savenije, 2006). For the Sur reservoir, we can either use the HBV beta-function (Equation
12), the runoff generation module of TOPMODEL (Equation 2-4) or the HSC module (Section 2.3) to
partition precipitation into generated runoff (R,) and infiltration. The actual evaporation (E.) from the soil
equals to the potential evaporation (Ep), if Su/Sumax is above a threshold (Ce), where S, is the soil moisture
and Sumax is the catchment averaged storage capacity. And E, linearly reduces with S,/Sumax, While Su/Sumax
is below C. (Equation 13). The E, can be calculated by the Hargreaves equation (Hargreaves and Samani,
1985), with maximum and minimum daily temperature as input. The generated runoff (Ry) is further split
into two fluxes, including the flux to the fast response reservoir (Rf) and the flux to the slow response
reservoir (Rs), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is
estimated by a convolution delay function, with a delay time of Ti,gr. Subsequently, the fluxes into two
different response reservoirs (Srr and Ssg) were released by two linear equations between discharge and

storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from

10
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groundwater reservoir. The two discharges (Qr and Qs) generated the simulated streamflow (Qm). The
model parameters are shown in Table 1, while the equations are given in Table 2. More detailed
description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining
that the only difference among the benchmark HBV type, TOPMODEL type, HSC, and HSC-MCT models is
their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in TOPMODEL

and HSC model, and 5 in the HSC-MCT model.

2.5 Model evaluation, calibration, validation and models comparison

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a
more robust approach to quantifying model performance with different criteria than a single one. The
Kling-Gupta efficiency (Gupta et al., 2009) (/kee) was used as the criteria to evaluate model performance

and as an objective function for calibration. The equation is written as:

e =1—/(r 1% + (@ —2)% + (£ -1)? (7)

Where r is the linear correlation coefficient between simulation and observation; @ (¢ =c,, /o,) is a

measure of relative variability in the simulated and observed values, where on, is the standard deviation
of simulated streamflow, and o, is the standard deviation of observed streamflow; € is the ratio between
the average value of simulated and observed data. And the /e (/kee Of the logarithmic flows) (Fenicia et

al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation.

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for
the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were
assumed to be the behavioral parameter sets and can equally represent model performance. The
averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result
of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number
of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the
number of initial samples was set to 210 and a total number of 50000 model iterations for all the
catchment runs. For each catchment, the first half period of data was used for calibration, and the other

half was used to do validation.

In module comparison, we defined three categories: if the difference of ke of model A and model B in

validation is less than 0.1, model A and B are regarded as “equally well”. If the lkse of model A is larger

11
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than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the /e of

model A is less than model B in validation by -0.1 or less, model B is regarded as outperforming model A.

3 Dataset

3.1 The Bruntland Burn catchment

The 3.2 km? Bruntland Burn catchment (Figure 6), located in north-eastern Scotland, was used as a
benchmark study to test the model’s performance based on a rich data base of hydrological
measurements. The Bruntland Burn is a typical upland catchment in North West Europe (e.g. Birkel et al.,
2010), namely a combination of steep and rolling hillslopes and over-widened valley bottoms due to the
glacial legacy of this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift
deposits (e.g. till) containing a large amount of stored water superimposed on a relatively impermeable
granitic solid geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas,
which remain saturated throughout most of the year with a dominant near-surface runoff generation
mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream
network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy
hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes
do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water
movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough
grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months
(May-August) generally being the driest (Ali et al.,, 2013). Snow makes up less than 10% of annual
precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and
annual discharge around 659 mm. The daily precipitation, potential evaporation, and discharge data range
from January 1 in 2008 to September 30 in 2014. The calibration period is from January 1, 2008 to
December 31, 2010, and the data from January 1, 2011 to September 30, 2014 is used as validation.

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 6).
There are 7 saturation area maps (Figure 7) (May 2, July 2, August 4, September 3, October 1, November
26, in 2008, and January 21, in 2009), measured directly by the “squishy boot” method and field mapping
by global positioning system (GPS), to delineate the boundary of saturation areas connected to the stream
network (Birkel et al., 2010; Ali et al., 2013). These saturation area maps revealed a dynamic behavior of
expanding and contracting areas connected to the stream network that were used as a benchmark test

for the HSC module.
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3.2 MOPEX catchments

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al.,
2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The
longest time series range from 1948 to 2003. 323 catchments were used in this study (see the name list
in Sl), with areas between 67 and 10,329 km?, and excluding the catchments with data records <30 years,
impacted by snowmelt or with extreme arid climate (aridity index E,/P > 2). In order to analyze the impacts
of catchment characteristics on model performance, excluding hydrometeorology data, we also collected
the datasets of topography, depth to rock, soil texture, land use, and stream density (Table 3). These
characteristics help us to understand in which catchments the HSC performs better or worse than the

benchmark models.
Hydrometeorology

The dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily

streamflow. The daily streamflow was used to calibrate the free parameters and validate the models.
Topography

The Digital Elevation Model (DEM) of the CONUS in 90m resolution was download from the Earth Explorer

of United States Geological Survey (USGS, http://earthexplorer.usgs.gov/). The HAND and TWI map can

be generated from DEM. The averaged elevation and HAND are used to as two catchment characteristics.
Soil texture

In this study, soil texture is synthetically represented by the K factor, since the K factor is a lumped soil
erodibility factor which represents the soil profile reaction to soil detachment (Renard et al., 2011).
Generally, the soils (high in clay and sand) have low K values, and soils with high silt content have larger K
values. The averaged K factor for each catchment was calculated from soil survey information available

from USGS (Wolock, 1997).
Land use

Land use data was obtained from National Land Cover Database (NLCD, http://www.mrlc.gov/nlcd.php).
Forest plays an essential role in hydrological processes (Gao et al., 2018a), especially for the runoff
generation (Brooks et al., 2010). Forest area proportion was utilized as an integrated indictor to represent

the impact of vegetation cover on hydrological processes.
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Stream density

Stream density (km/km?) is the total length of all the streams and rivers in a drainage basin divided by the
total area of the drainage basin. Stream density data was obtained from Horizon Systems Corporation

(http://www.horizon-systems.com/nhdplus/).

Geology

Bedrock is a relative impermeable layer, as the lower boundary of subsurface stormflow in the catchments
where soil depth is shallow (Tromp-van Meerveld & McDonnell). The depth to bedrock, as an integrated
geologic indicator, was accessed from STATSGO (State Soil Geographic,

http://www.soilinfo.psu.edu/index.cgi?soil data&conus&data cov&dtb) (Schwarz & Alexander, 1995).

The averaged depth to bedrock for each catchment was calculated for further analysis.

4 Results of the Bruntland Burn

4.1 Topography analysis

The generated HAND map, derived also from the DEM, is shown in Figure 6, with HAND values ranging
from Om to 234m. Based on the HAND map, we can derive the S.-As curve (Figure 8) by analyzing the
HAND map with the method in Section 2.3. The TWI map of the BB (Figure 6) was generated from its DEM.
Overall, the TWI map, ranging from -0.4 to 23.4, mainly differentiates the valley bottom areas with the
highest TWI values from the steeper slopes. This is probably caused by the fine resolution of the DEM map
in 2 m, as previous research found that the sensitivity of TWI to DEM resolution (Sgrensen and Seibert,
2007). From the TWI map, the frequency distribution function and the accumulative frequency

distribution function can be derived (Figure 8), with one unit of TWI as interval.

4.2 Model performance

It is found that all the three models (HBV, TOPMODEL, and HSC) can perform well in reproducing the
observed hydrograph (Figure 9). The Ikge of the three models are all around 0.66 in calibration, which is
largely in line with other studies from the BB (Birkel et al, 2010; 2014). And the /s, are 0.76,0.72 and 0.74
for HSC, HBV and TOPMODEL respectively in calibration. While in validation, ke of the three models are
also around 0.66, while kg are 0.75, 0.70 and 0.65 for the three models. Since the measured rainfall-
runoff time series only lasts from 2008 to 2014, which is too short to estimate the Srao, (Proxy for Sumax)
by MCT approach (which needs long-term hydro-meteorological observation data,) the HSC-MCT model

was not applied to this catchment.
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Figure 8 shows the calibrated power curve by HBV (averaged beta=0.98) with the S,-A. curve obtained
from the HSC module. We found the two curves are largely comparable, especially while the relative soil
moisture is low. This result demonstrates that for the BB catchment with glacial drift deposits and
combined terrain of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve
can essentially be derived from the S,-As curve of HSC module merely by topographic information without

calibration.

The normalized relative soil moisture of the three model simulations are presented in Figure 9. Their
temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL

has larger variation, compared with HBV and HSC (Figure 9).

4.3 Contributing area simulation

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are
shown in Figure 7, 9, 10. We found although both modules overestimated the saturated areas, they can
capture the temporal variation. For example, the smallest saturated area both observed and simulated
occurred on July-02-2008, and the largest saturated area both occurred on January-21-2009. Comparing
the estimated contributing area of TOPMODEL with the HSC module, we found the results of the HSC
correlates better (R?=0.60, /kse=-3.0) with the observed saturated areas than TOPMODEL (R?=0.50, /xge=-
3.4) (Figure 10). For spatial patterns, the HSC contributing area is located close to the river network and
reflects the spatial pattern of observed saturated area. While TOPMODEL results are more scattered,
probably due to the sensitivity of TWI to DEM resolution (Figure 7). The HSC is more discriminating in

terms of less frequently giving an unrealistic 100% saturation and retaining unsaturated upper hillslopes.

5 Results from the MOPEX catchments

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold
height of 100m (recommended by Esri). The TWI map of the CONUS is produced (Figure S1). Based on the
TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments with their catchment
boundaries. And then the TWI frequency distribution and the accumulated frequency distribution of the
323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were derived based on the 323 TWI

maps.
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In Figure 11, it is shown that the regions with large HAND values are located in Rocky Mountains and
Appalachian Mountains, while the Great Plains has smaller HAND values. The Great Basin, especially in
the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest drainage,
despite a high elevation above sea level. From the CONUS HAND map, we clipped the HAND maps for the
323 MOPEX catchments with their catchment boundaries. We then plot their HAND-area curves, following
the procedures of | and Il in Section 2.2. Figure 12a shows the normalized HAND profiles of the 323

catchments.

Based on the HAND profiles and the Step Il in Section 2.2, we derived the normalized storage capacity
distribution for all catchments (Figure 12b). Subsequently, the root zone moisture and saturated area
relationship (As-Su) can be plotted by the method in Step IV of Section 2.2. Lastly, reversing the curve of
As-S, to Sy-As relation (Figure 12c), the latter one can be implemented to simulate runoff generation by
soil moisture. Figure 12c interestingly shows that in some catchments, there is almost no threshold
behavior between rainfall and runoff generation, where the catchments are covered by large areas with
low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly
and generate runoff without a precipitation—discharge threshold relationship characteristic of areas with
higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished
between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to

rainfall is almost instantaneous.

5.2 Model performance

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data
(Figure 13) is comparable with the previous model comparison experiments, conducted with four rainfall-
runoff models and four land surface parameterization schemes (Duan et al., 2006; Kollat et al., 2012; Ye
et al., 2014). The median value of /kee of the HBV type model is 0.61 for calibration in the 323 catchments
(Figure 13), and averaged /et in calibration is 0.62. In validation, the median and averaged values of ke
are kept the same as calibration. The comparable performance of models in calibration and validation
demonstrates the robustness of benchmark models and the parameter optimization algorithm (i.e.
MOSCEM-UA). The TOPMODEL improves the median value of /kee from 0.61 (HBV) to 0.67 in calibration,
and from 0.61 (HBV) to 0.67 in validation. But the averaged values of Ikge for TOPMODEL are slightly
decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving the
HAND topographic information without calibrating the B parameter, improves the median value of /kse to

0.68 for calibration and 0.67 for validation. The averaged values of /kse in both calibration and validation
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are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore, Figure 13
demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median and
averaged values were improved by the HSC module, but also the 25" and 75" percentiles and the lower
whisker end, all have been improved. The performance gains on baseflow (/ks.) have been investigated
and shown in the supplementary figure S3. These results indicate the HSC module improved model

performance to reproduce hydrograph for both peak flow (/kge) and baseflow (/keL).

Additionally, for HSC-MCT model, the median /kge value is improved from 0.61 (HBV) to 0.65 in calibration,
and from 0.61 (HBV) to 0.64 in validation, but not as well performed as TOPMODEL (0.67 for calibration
and validation). For the averaged Iee values, they were slightly reduced from 0.62 (HBV) and 0.61
(TOPMODEL) to 0.59 for calibration and validation. Although the HSC-MCT did not perform as well as the
HSC module, considering there is no free parameters to calibrate, the median /kee value of 0.64 (HBV is
0.61) and averaged Ikee of 0.59 (TOPMODEL is 0.61) are quite acceptable. In addition, the 25™ and 75
percentiles and the lower whisker end of the HSC-MCT model are all improved compared to the HBV
model. Moreover, the largely comparable results between the HSC and the HSC-MCT modules
demonstrate the feasibility of the MCT method to obtain the Sumax parameter and the potential for HSC-

MCT to be implemented in prediction of ungauged basins.

Figure 14 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark models.

I”

We found that the HSC performs “equally well” as HBV (the difference of It in validation ranges -0.1 ~
0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the
improvement of ke in validation is larger than 0.1). In not a single catchment did the calibrated HBV
outperform the HSC. Comparing the HSC model with TOPMODEL, we found in 91% of the catchments that
the two models have approximately equal performance. In 8% of the catchments, the HSC model
outperformed TOPMODEL. Only in 1% of the catchments (two in the Appalachian Mountains and one in

the Rocky Mountains in California), TOPMODEL performed better.

In order to further explore the impact of catchment characteristics on model performance, we used
topography (averaged HAND, averaged slope, and averaged elevation), soil (K-factor), land cover (forest
area proportion), climate (aridity index), stream density, and geology (depth to rock) information to test
the impact of catchment features on model performance. Table 4 clearly shows that compared with HBV,
the 39 catchments with better performance have lower HAND values (37m), more gentle slopes (4.0
degree), and smaller forest area (22%); while the elevation, K-factor, aridity index, stream density and

depth to rock are almost similar. Also, in the catchments where HSC outperformed TOPMODEL, the
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catchments have smaller HAND (27m), more gentle slopes (3.6 degree), moderate elevation (469 m), less
forest proportion (14%), and more arid climate (aridity index is 1.3). TOPMODEL performs better in only
three catchments with larger HAND (193m), steeper slopes (13.5 degree), higher elevation (740 m), more
humid climate (aridity index is 0.8), and larger depth to rock (333 cm). In summary, the HSC showed better

performance in catchments with gentle topography and more arid climate.

Without calibration of Sumax, as expected, the performance of HSC-MCT module slightly deteriorates
(Figure 13). In comparison with HBV, the outperformed percentage reduced from 12% (HSC) to 4% (HSC-
MCT), the approximately equal-well simulated catchments dropped from 88% to 79%, and the inferior
performance increased from 0% to 17%. Also, in comparison with TOPMODEL, the better performance
dropped from 8% (HSC) to 7% (HSC-MCT), the approximately equal catchments reduced from 91% to 72%,
and the inferior performance increased from 1% to 21%. The inferiority of the HSC-MCT model is probably
caused by the uncertainty of the MCT method for different ecosystems which have different survival
strategies and use different return periods to bridge critical drought periods. By using ecosystem

dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).

To further explore the reason for the better performance of the HSC approach, we selected the 08171000
catchment in Texas (Figure 14), in which both the HSC module and the HSC-MCT module outperformed
the two benchmark modules to reproduce the observed hydrograph (Figure S4). The HBV model
dramatically underestimated the peak flows, with /e as 0.54, while TOPMODEL significantly
overestimated the peak flows, with /e as 0.30. The HSC-MCT model improved the /kse to 0.71, and the
HSC model further enhanced /gt to 0.74.

Since the modules of interception, evaporation and routing are identical for the four models, the runoff
generation modules are the key to understand the difference in model performance. Figure S5 shows the
HBV B curve and the S;-As curve of the HSC model, as well the TWI frequency distribution. We found that
with a given Su/Sumax, the HBV B function generates less contributing area than the HSC model, which
explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep
accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment
area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that
even with low soil moisture content (Su/Sumax), the contributing area by TOPMODEL is relatively large,

leading to the sharply increased peak flows for all rainfall events.
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6 Discussion

6.1 Rainfall-runoff processes and topography

We applied a novel approach to derive the relationship between soil moisture storage and the saturated
area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher
HAND values, due to the larger storage capacity in higher HAND locations. The outperformance of the HSC
over the benchmark HBV and TOPMODEL in gentle sloping catchments indicates that the HSC module
likely has a higher realism than the calibrated HBV beta-function and the TWI of TOPMODEL in these
regions. Very interestingly, Fan et al., (2017) presented an ecological observation in global scale, and
revealed the systematic variation of rooting depth along HAND (Fig.1, in Fan et al., 2017). Since rooting
depth can be translated to root zone storage capacity through combination with soil plant-available water
(Wang-Erlandsson et al., 2016). This large sample dataset, from ecological perspective, provides a strong
support for the assumption of the HSC model on gentle slopes, i.e. the increase of root zone storage
capacity with HAND. More interestingly, on excessively drained uplands, rooting depth does not follow
the same pattern, with shallow depth and limited to rain infiltration (Fig.1, in Fan et al., 2017). This could
explain the inferior performance of HSC model to TOPMODEL in three MOPEX catchments with
excessively drained uplands (larger HAND, steeper slope, higher elevation, and deeper depth to rock),
where Hortonian overland flow is likely the dominant mechanism, and the HSC assumption likely does not
work well. This indicates that comparing with TWI, the HAND is closer to catchment realism distinguishing
hydrological similarity in gentle topography catchments. The HSC module assumes SEF as the dominant
mechanism. But since in a real catchment different runoff generating processes may act simultaneously
in different environments (McDonnell, 2013; Hrachowitz and Clark, 2017). Such SEF dominated
catchments, or parts thereof, are typically characterized by a subdued relief and thus gently sloping. In
steeper catchments, where the groundwater table is deeper and thus more additional water can be stored

in the soil, another conceptual parametrisation would be appropriate.

The FLEX-Topo model (Savenije, 2010) also uses HAND as a topographic index to distinguish between
landscape-related runoff processes and has both similarity and differences with the HSC model. The
results of the HSC model illustrate that the riparian areas are more prone to be saturated, which is
consistent with the concept of the FLEX-Topo model. Another important similarity of the two models is
their parallel model structure. In both models it is assumed that the upslope area has larger storage
capacity, therefore the upper land generates runoff less and later than the lower land. In other words, in

most cases, the local storage is saturated due to the local rainfall, instead of flow from upslope. The most
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obvious difference between the HSC and the FLEX-Topo is the approach towards discretization of a
catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. wetlands, hillslopes
and plateau. This discretization method requires threshold values to classify landscapes, i.e. threshold
values of HAND and slope, which leads to fixed and time-independent proportions of landscapes. The HSC
model does not require landscape classification, which reduced the subjectivity in discretization and
restricted the model complexity, as well as simultaneously allowing the fluctuation of contributing areas

(termed as wetlands in FLEX-Topo).

6.2 Catchment heterogeneity and simple models

Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of
landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often
consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots,
soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and
McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of
runoff processes, and hydrological and land surface modelers are developing more and more complicated
models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no
compelling evidence to support the outperformance of sophisticated “physically-based” models in terms
of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in

rainfall-runoff simulation (Beven, 1989; Orth et al., 2015).

But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts
(Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not
require complex laws (Chase, 1992; Passalacqua et al., 2015). Parsimonious models (e.g. Perrin et al.,
2003), with empirical curve shapes, likely result in good model performance. Parameter identifiability in
calibration is one of the reasons. However, the physical rationale of these parsimonious models is still
largely unknown lacking a physical explanation to interpret these empirical curves described by

mathematical functions (e.g. Equation 3 in Perrin et al., 2003).

The benefits of the new HSC module are two-fold. From a technical point of view, the HSC allows us to
make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual
hydrological models. Furthermore, the HSC module, from a scientific point of view, provides us with a new
perspective on the linkage between the spatial distribution patterns of root zone storage capacity (long-

term ecosystem evolution) with associated runoff generation (event scale rainfall-runoff generation).
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Asking questions of “why” rather than “what” likely leads to more useful insights and a new way forward
(McDonnell et al., 2007). The HSC module provides us with a rationale from an ecological perspective to
understand the linkage and mechanism between large-sample hillslope ecological observations and the curve
of root zone storage capacity distribution (Figure 1, 2, 3). Catchment is a geomorphological and even an
ecological system whose parts are related to each other probably due to catchment self-organization and
evolution (Sivapalan and Bl6schl, 2015; Savenije and Hrachowitz, 2017). This encourages the hope that
simplified concepts may be found adequate to describe and model the operation of the basin runoff
generation process. It is clear that topography, with fractal characteristic (Rodriguez-lturbe and Rinaldo,
1997), is often the dominant driver of runoff, as well as being a good integrated indicator for vegetation
cover (Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone evaporation and transpiration deficits
(Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), and even geology (Rempe and Dietrich,
2014; Gomes, 2016). Therefore, we argue that increasingly detailed topographic information is an
excellent integrated indicator allowing modelers to continue systematically represent heterogeneities and
simultaneously reduce model complexity. The model structure and parameterization of both HSC and
TOPMODEL are simple, but not over simplified, as they capture likely the most dominant factor controlling
runoff generation, i.e. the spatial heterogeneity of storage capacity. Hence, this study also sheds light on
the possibility of moving beyond heterogeneity and process complexity (McDonnell et al., 2007), to
simplify them into a succinct and a priori curve by taking advantage of catchment self-organization
probably caused by co-evolution or the principle of maximum entropy production (Kleidon and Lorenz,

2004).

6.3 Implications and limitation

The calibration-free HSC-MCT runoff generation module enhances our ability to predict runoff in
ungauged basins. PUB is probably not a major issue in the developed world, with abundant of
comprehensive measurements in many places, but for the developing world it requires prediction with
sparse data and fragmentary knowledge. Topographic information with high spatial resolution is freely
available globally, allowing us to implement the HSC model in global scale studies. In addition, thanks to
the recent development, testing, and validation of remote sensing evaporation products in large spatial
scale (e.g. Anderson et al., 2011; Hu and lJia, 2015), the Sumax €stimation has become possible without in
situ hydro-meteorological measurements (Wang-Erlandsson et al.,, 2016). These widely-accessible

datasets make the global-scale implementation of HSC-MCT module promising.
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Although the new modules perform well in the BB and the MOPEX catchments, we do not intend to

IH

propose “a model fits all”. The assumption of HSC, to some extent, is supported by large-sample ecological
field observation (Fan et al., 2017), but it never means the A:-S, curve of HSC can perfectly fit the other
existing curves (e.g. HBV and TOPMODEL). Unify all model approaches into one framework is the objective
of several pioneer works (e.g. Clark, et al., 2010; Fenicia et al., 2011), but out of the scope of this study.
Moreover, while estimating the runoff coefficient by the As-S, relation, rainfall in the early time may cause
the increase of S,/Sumax and runoff coefficient (Moore, 1985; Wang, 2018). Therefore, neglecting this
influence factor, HBV (Equation 1), TOPMODEL (Equation 2-4) and HSC (Equation 5-6) theoretically

underestimate the runoff coefficient, which needs to be further investigated.

Finally, we should not ignore the limitations of the new module, although it has better performance and
modelling consistency. 1) The threshold area for the initiating a stream was set as a constant value for the
entire CONUS, but the variation of this value in different climate, geology and landscape classes
(Montgomery and Dietrich, 1989; Helmlinger et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to
be future investigated. 2) The discrepancy between observed and simulated saturation area needs to be
further investigated, by utilizing more advanced field measurement and simultaneously refining the
model assumption. To our understanding, there are two interpretations. Firstly, the overestimation of the
HSC model is possibly because two runoff generation mechanisms — SOF and the SSF occur at the same
time. However, the saturated area observed by the “squishy boot” method (Ali et al., 2013), probably only
distinguished the areas where SOF occurred. Subsurface stormflow, also contributing to runoff, cannot be
observed by the “squishy boot” method. Thus, this mismatch between simulation and observation
probably leads to this saturated area overestimation. The second interpretation might be the different
definition of “saturation”. The observed saturated areas are places where 100% of soil pore volume is
filled by water. But the modelled saturation areas are located where soil moisture is above field capacity,
and not necessarily 100% filled with water, which probably also results in the overestimation of saturated
areas. Interestingly, in theory the observed saturated area should be within the simulated contributing
area, due to the fact that the saturated soil moisture is always larger than field capacity. From this point
of view, the observed saturated area is smaller and within the contributing area simulated by HSC, but
TOPMODEL missed this important feature. 4) Only the runoff generation module is calibration free, but
the interception and response routines still rely on calibration. Although we kept the interception and
response routine modules the same for the four models, the variation of other calibrated parameters (i.e.
Simax, D, Ki, Ks, Tiage) may also influence model performance in both calibration and validation. 5) The

computational cost of the HSC is more expensive than HBV, and similar to TOPMODEL, due to the cost of
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preprocessed topographic analysis. But once the S,-A; curve is completed, the computation cost is quite

comparable with HBV.

7 Summary and conclusions

In this study, we developed a simple and calibration-free hydrological module (HAND-based Storage
Capacity curve, HSC) based on a relatively new topographic index (HAND), which is not only an excellent
physically-based indictor for the hydraulic gradient, but also represents the spatial distribution of root
zone storage capacity supported by large-sample ecological observations. Based on HAND spatial
distribution pattern, the soil moisture (S,) - saturated area (As) relation for each catchment was derived,
which was used to estimate the A; of specific rainfall event based on continuous calculation of S,.
Subsequently, based on the S.-A; relation, the HSC module was developed. Then, applying the mass curve
technique (MCT) approach, we estimated the root zone storage capacity (Sumax) from observable hydro-
climatological and vegetation data, and coupled it with HSC to create the calibration-free HSC-MCT
module. The HBV and TOPMODEL were used as two benchmarks to test the performance of HSC and HSC-
MCT on both hydrograph simulation and ability to reproduce the contributing area, which was measured
for different hydrometeorological conditions in the Bruntland Burn catchment in Scotland. Subsequently,
323 MOPEX catchments in the US were used as a large-sample hydrological study to further validate the

effectiveness of our proposed runoff generation modules.

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to
reproduce the observed hydrograph. Comparing the estimated contributing area of TOPMODEL with the
HSC module, we found that HSC module performed better to reproduce saturated area variation, in terms
of the correlation coefficient and spatial patterns. This likely indicates that HAND maybe a better indicator

to distinguish hydrological similarity than TWI.

For the 323 MOPEX catchments, HSC improved the averaged validation value of /kge from 0.62 (HBV) and
0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in
not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC
outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better
performance. Interestingly, we found that the HSC module showed better performance in the catchments
with gentle topography, less forest cover, and larger aridity index. Not surprisingly, the lkse of HSC-MCT
model was slightly reduced to 0.59, due to the non-calibrated Sumax, but still comparably well performed

as HBV (0.62) and TOPMODEL (0.61). This illustrates the robustness of both the HSC approach to derive
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the spatial distribution of the root zone storage capacity (B) and the efficiency of the MCT method to

estimate the root zone storage capacity (Sumax)-
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Table 1. The parameters of the models, and their prior ranges for calibration. ("Sumax is a parameter in HBV,
TOPMODEL and the HSC model, but HSC-MCT model does not have Sumax as a free parameter; ™ B is a parameter in

HBV model, but not in TOPMODEL, HSC and HSC-MCT models)

Parameter Explanation Prior range for calibration
Sivax (mm) Maximum interception capacity 2

Sumax (mm)* The root zone storage capacity (10, 1000)

B(-)" The shape of the storage capacity curve (0.01,5)

Ce (-) Soil moisture threshold for reduction of evaporation (0.1, 1)

D (-) Splitter to fast and slow response reservoirs (0, 1)

Tiagr (d) Lag time from rainfall to peak flow (0, 10)

Kr (d) The fast recession coefficient (1, 20)

Ks (d) The slow recession coefficient (20, 400)
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Table 2. The water balance and constitutive equations used in models. (Function (15)" is used in the HBV model, but

not used in the TOPMODEL, HSC and HSC-MCT models)

reservoirs Water balance equations Constitutive equations
Int ti - ;
nterception E:P—Ei—Pe(S) c_ Ep,Si>09
reservoir d r 0:S. =0 ©)
P _ 0; S, < Sy (10)
) P; S = Simax
u d B
nsaturate d Su — Pe _ Ea _ Ru (11) RU SU .
reservoir d - = (12)
F;; SuMax
Ea
=—=—(13)
Ep - Ei CeSuMax
Splitter and R, =R,D (17); R =R,(1-D) (14)

Lag function

Fast reservoir ds

L=R —-Q (17
g Qe

Slow reservoir ds
dts =R, -Q, (19)

TI lagf

R, ()= Zcf (i)-R, (t—1+1) (15

Tlagf

¢, ()=i/> u (16)
u=1

Qi =S, /K, (18)

Q, =S, /K, (20)

Table 3. Data source of the MOPEX catchments.

Data Unit Resources Website Reference

Daily precipitation mm/d MOPEX http://www.nws.noaa.gov/oh  (Duan et al., 2006)
d/mopex/mo_datasets.htm

Daily maximum  °C MOPEX Same as above Same as above

temperature
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http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm
http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm

1005
1006

1007

Daily minimum
temperature

Daily runoff

Aridity index

DEM

Slope

K factor of soil

Percentage of forest

cover

Stream density

Depth to bedrock

°C

mm/d

degree

%

Km/km?

cm

MOPEX

MOPEX
MOPEX
USGS
USGS
USGS

NLCD

Horizon
Systems
Corporation

STATSGO

Same as above

Same as above

Same as above
http://earthexplorer.usgs.gov/
Same as above
http://water.usgs.gov/GIS/metad
ata/usgswrd/XML/muid.xml

http://www.mrlc.gov/

http://www.horizon-

systems.com/nhdplus/

http://www.soilinfo.psu.edu/ind
ex.cgi?soil_data&conus&data_co

v&dtb

Same as above

Same as above

Same as above

(Wolock, 1997; Gao
al., 2018)

et

(Homer et al., 2015; Gao

etal., 2018)

(Schwarz et al.,

Gao et al., 2018)

1995;

Table 4. Impacts of MOPEX catchment characteristics on model performance (HSC, HBV, and TOPMODEL)

Catchment HSC > HBV HSC ~ HBV HSC < HBV HSC > HSC ~ HSC <
characteristics TOPMODEL TOPMODEL TOPMODEL
Averaged

HAND (m) 37 71 27 69 193
Averaged slope

(degree) 4.0 5.7 3.6 5.6 13.5
Averaged

elevation (m) 454 395 469 393 740
Averaged K-

factor (-) 0.28 0.29 0.29 0.29 0.25

Forest

proportion (%) 22 43 14 43 68

Aridity index (-) 1.1 0.9 1.3 0.9 0.8

Stream density

(-) 0.72 0.81 0.77 0.80 0.83
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Averaged
depth to rock

(cm) 192 219 - 210 215 333
1008
Land surface
Infiltration depth
Capillary rise
Water table
1. Complete 2. Seasonal 3. Water 4. Seasonal 5. Permanent
reliance on rain switching not limiting  waterlogging waterlogging
1009

1010 Figure 1. The variation of plant rooting depths along a hillslope profile, showing the impact of HAND
1011 (Height Above the Nearest Drainage) on rooting depth. (Taken from Fan et al., 2017 by permission of PNAS)
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1012

1013 Figure 2. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the representative

1014 hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows the relationship
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1019

1020

1021
1022
1023

1024

between HAND bands and their corresponded area fraction; c) shows the relationship between storage capacity-

area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly increases with

HAND values.
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Figure 3. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (Su)

and saturated area (As) in different soil moisture conditions. In d), 20 different Su-As conditions are plotted, which

allow us to estimate As from Su.
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DEM map
HAND map

‘ HAND — area fraction ‘

Assumption: storage capacity linearly
increases with HAND

‘ storage capacity — area fraction

‘ catchment root zone moisture — saturated area ‘

Assumption: saturation excess flow is the
dominant runoff generation mechanism

‘ catchment root zone moisture — runoff generation area ‘

1025

1026 Figure 4. The procedures estimating runoff generation by the HSC model and its two hypotheses.
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1028

1029 Figure 5. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL, HSC,
1030 and HSC -MCT). HBV-type has Sumax and beta two free parameters; TOPMODEL and HSC models have Sumax as one
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1031 free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and

1032 make fair comparison, the interception storage capacity (Sivax) was fixed as 2mm.
1033

1034

gauge station R

Bruntland catchment
a

DEM (m)

. 539

250

>

HAND (m)

304
-

0

1035

1036 Figure 6. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM)
1037 of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the

1038 height above the nearest drainage (HAND) map of the Bruntland Burn catchment.
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Figure 7. The measured saturated areas and the simulated contributing areas (black) by TOPMODEL and HSC models.
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Figure 8. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure).

The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).
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Figure 9. a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated
hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line); b) the
comparison of the observed saturated area of 7 days (black dots) and simulated relative soil moistures, i.e. HBV (blue

line), TOPMODEL (green line and dots), HSC (red line and dots).
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Figure 10. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and HSC

models.
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Figure 11. The Height Above the Nearest Drainage (HAND) map of the CONUS.
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1067 Figure 12. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area
1068 fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the Su-As curves of the HSC

1069 model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.
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1072 Figure 13. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models
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1075 Figure 14. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV

1076 and TOPMODEL, for the 323 MOPEX catchments.
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