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This paper presents a very interesting work to develop a simple topography-driven and calibration-free 1 
runoff generation module. The module works for saturation excess runoff generation mechanism, which 2 
prevails in most humid/semi-humid areas and is demonstrated by some experts to operate in some arid 3 
areas also. The module was rigorously compared against the corresponding models in HBV and 4 
TOPMODEL. The experiments in both data-rich experimental watersheds and MOPEX catchments 5 
support the superiority of the new module (called HSC and HSC-MCT). The authors also discuss the deep 6 
reason of why type question (why can HSC outperforms calibrated-type module) in the context of 7 
ecological evolution theory. The proposed method has a wide implication for hydrological and ecological 8 
research. 9 

We thank the Editor’s positive comments.  10 

 11 
Some minor comments are listed below for authors’ reference: 12 
1. P5L125, one or two sentences should add to explain MCT concisely. This term is not a popular one in 13 
hydrological literature. No further explanation will hinder the reader’s understanding. 14 

More explanation of MCT is added. (L158-161) 15 

 16 
2. P8L214, the term of subsurface flow. Quite a few different terms have been used for the flow in soil 17 
media. The authors can refer to Markus Weiler and Jeffery MacDonnell (in Encyclopedia of Hydrological 18 
Sciences. Edited by M G Anderson.). In my mind, the term subsurface flow could refer to all kinds of flow 19 
types occurring in soil media, including soil matrix flow, preferential flow, or others. I understand the 20 
authors mean preferential type flow by subsurface flow here. 21 

This sentence is modified (L247-248). And we add more interpretation in the discussion. (L585-590) 22 

 23 
3. P16L440, ‘interestingly’ is not suitable here, because HAND by its definition should not depend on 24 
elevation. 25 
Changed. (L477-479) 26 

 27 

 28 

 29 

 30 
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Abstract  46 

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land 47 

surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel 48 

and simple topography-driven runoff generation parameterization – the HAND-based Storage Capacity 49 

curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify 50 

hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module 51 

in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve 52 

Technique (MCT) to estimate root zone storage capacity (SuMax), we developed a calibration-free runoff 53 

generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for 54 

comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked 55 

against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-56 

mapped saturation area extent. We found that HSC, HBV and TOPMODEL all perform well to reproduce 57 

the hydrograph, but the HSC module performs better in reproducing saturated area variation, in terms of 58 
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correlation coefficient and spatial pattern. The HSC and HSC-MCT modules were subsequently tested for 59 

323 MOPEX catchments in the US, with diverse climate, soil, vegetation and geological characteristics. In 60 

comparison with HBV and TOPMODEL, the HSC performs better in both calibration and validation, 61 

particularly in the catchments with gentle topography, less forest cover and arid climate. Despite having 62 

no calibrated parameters, the HSC-MCT module performed comparably well with calibrated modules, 63 

highlighting the robustness of the HSC parameterization to describe the spatial distribution of the root 64 

zone storage capacity and the efficiency of the MCT method to estimate SuMax. This novel and calibration-65 

free runoff generation module helps to improve the Prediction in Ungauged Basins and has great potential 66 

to be generalized at the global scale.   67 

 68 

1 Introduction  69 

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge 70 

in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust 71 

runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers. 72 

Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins 73 

(PUB) (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013), it is not uncommon that models 74 

become increasingly complicated in order to capture the details of hydrological processes shown by 75 

empirical studies (McDonnell, 2007; Sivapalan, 2009; Yu et al., 2014). More detailed process 76 

conceptualization normally demands higher data requirements than our standard climatological and 77 

hydrological networks can provide, leading to more calibrated parameters and a probable increase in 78 

model uncertainty (Sivapalan, 2009).  79 

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation. 80 

It is a property emerging at larger scales, describing the temporal dynamics of how spatially 81 

heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm 82 

runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Blöschl, 2004; 83 

Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and 84 

van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including 85 

but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld 86 

and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and 87 

McDonnell, 2007), land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel et al., 88 
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2014), the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al., 2011; McMillan et 89 

al., 2014; Nippgen et al., 2015). 90 

In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of 91 

topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven 92 

and Freer, 2001) uses topographic wetness index (TWI) to distinguish hydrologic similarity; and SHE 93 

(Abbott et al. 1986) and tRIBS (Ivanov et al. 2004; Vivoni et al. 2005) use partial differential equations to 94 

describe the water movement based on pressure gradients obtained by topography; and the 95 

Representative Elementary Watershed (REW) approach divides catchment into a number of REWs to 96 

build balance and constitutive equations for hydrological simulation (Reggiani et al., 1999; Zhang and 97 

Savenije, 2005; Tian et al., 2008). As the relevant model parameters such as local topographic slope and 98 

hydraulic conductivity can, in spite of several unresolved issues for example relating to the differences in 99 

the observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), be obtained from direct 100 

observations, they could in principle be applied without calibration.  101 

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional 102 

relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional 103 

relationships require parameters that are effective on the modelling scale and that can largely not be 104 

directly determined with small-scale field observations (cf. Beven, 1995), thus traditionally determined 105 

by calibration. However, frequently the number of observed variables for model calibration is, if 106 

available at all, limited to time series of stream flow. The absence of more variables to constrain models 107 

results in such models being ill-posed inverse problems. Equifinality in parameterization and in the 108 

choice of parameters then results in considerable model uncertainty (e.g. Beven, 1993, 2006). To limit 109 

this problem and to also allow predictions in the vast majority of ungauged catchments, it is therefore 110 

desirable to find ways to directly infer effective model parameters at the modelling scale from readily 111 

available data (Hrachowitz et al., 2013).  112 

The component that is central for establishing connectivity in most top-down models is the soil moisture 113 

routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and 114 

partitions water into evaporative fluxes, groundwater recharge and fast lateral storm flow generating 115 

runoff (Gao et al., 2018a; Shao et al., 2018). The latter of which is critical from the aspect of connectivity. 116 

In majority regions, Hortonian overland flow (HOF, i.e. infiltration excess overland flow) is of minor 117 

importance(Dunne and Black, 1970; Sklash and Farvolden, 1979; Beven, 2004; Burt and McDonnell, 118 

2015), even in arid regions where often most locally generated HOF is re-infiltrated while flowing on 119 
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hillslopes (Liu et al., 2012) and never reaches the stream channel network. Thus the term saturation 120 

excess flow (SEF) can represent, depending on the model and the area of application, different 121 

processes, such as saturation overland flow, preferential flow, flow through shallow, high permeability 122 

soil layers or combinations thereof. The interplay between water volumes that are stored and those that 123 

are released laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down 124 

models described by functions between water stored in the unsaturated root zone (“soil moisture”) and 125 

the areal proportion of heterogeneous, local storage thresholds that are exceeded and thus 126 

“connected” (Zhao et al., 1980). In other words, in those parts of a catchment where the storage 127 

threshold is exceeded will generate lateral flows, and can alternatively be interpreted as runoff 128 

coefficient (e.g. Ponce and Hawkins, 1996; Perrin and Andreassian, 2001; Fenicia et al., 2007; Bergström 129 

and Lindström, 2015). Thus the idea goes back to the variable contributing area concept, assuming that 130 

only partial areas of a catchment, where soils are saturated and thus storage thresholds are exceeded, 131 

contribute to runoff (Hewlett, 1961; Dunne and Black, 1970; Hewlett and Troendle, 1975). Although 132 

originally developed for catchments dominated by saturation overland flow, the extension of the 133 

concept to subsurface connectivity, posing that surface and subsurface connectivity are “two sides of 134 

the same coin” (McDonnell, 2013), proved highly valuable for models such as Xinanjiang (Zhao et al., 135 

1980), HBV (Bergström and Forsman, 1973; Bergström and Lindström, 2015), SCS-CN (Ponce and 136 

Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) and GR4J (Perrin and Andreassian et al., 137 

2001).  138 

Among these models, connectivity is formulated in a general form as CR=f(SU(t),SuMax,β), where CR is the 139 

runoff coefficient, i.e. the proportion of the catchment generating runoff, SU(t) is the catchment water 140 

content in the unsaturated root zone at any time t, SuMax is a parameter representing the total storage 141 

capacity in the unsaturated root zone and β is a shape parameter, representing the spatial distribution 142 

of heterogeneous storage capacities in the unsaturated root zone. The parameters of these functions 143 

are typically calibrated. In spite of being the core component of soil moisture routines in many top-down 144 

models, little effort was previously invested to find ways to determine the parameters at the catchment-145 

scale directly from available data. An important step towards understanding and quantifying 146 

connectivity pattern directly based on observations was recently achieved by intensive experimental 147 

work in the Tenderfoot Creek catchments in Montana, US. In their work Jencso et al. (2009) were able to 148 

show that connectivity of individual hillslopes in their headwater catchments is highly related to their 149 

respective upslope accumulated areas. Using this close relationship, Smith et al. (2013) successfully 150 

developed a simple top-down model with very limited need for calibration, emphasizing the value of 151 
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“enforcing field-based limits on model parameters” (Smith et al., 2016). Based on hydrological landscape 152 

analysis, FLEX-Topo model (Savenije, 2010) can dramatically reduce the need for calibration (Gharari et 153 

al., 2014), and hold considerable potential for spatial model transferability without the need for 154 

parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016). In a recent development, several 155 

studies suggest that SuMax can be robustly and directly inferred from long term water balance data, by 156 

the Mass Curve Technique (MCT), without the need for further calibration (Gao et al., 2014; de Boer-157 

Euser et al., 2016; Nijzink et al., 2016). The MCT, that is an engineering method for reservoir design, in 158 

which the reservoir size is estimated as a function of accumulated inflow and human water demand. The 159 

MCT treats the root zone as a reservoir, and estimates catchment-scale SuMax from measurable 160 

hydrometeorological data, without the need for further calibration. This leaves shape parameter β as 161 

the only free calibration parameter for soil moisture routines of that form. Topography is often the 162 

dominant driver of water movement caused by prevailing hydraulic gradients. More crucially, 163 

topography usually provides an integrating indicator for hydrological behavior, since topography is 164 

usually closely related with other landscape elements, such as soil vegetation climate and even geology 165 

(Seibert et al., 2007; Savenije, 2010; Rempe and Dietrich, 2014; Gao et al., 2014b; Maxwell and Condon, 166 

2016; Gomes, 2016). The Height Above the Nearest Drainage (HAND; Rennó et al., 2008; Nobre et al., 167 

2011; Gharari et al., 2011), which can be computed from readily available digital elevation models 168 

(DEM), could potentially provide first order estimates of groundwater depth , as there is some 169 

experimental evidence that with increasing HAND, groundwater depths similarly increase (e.g. Haria and 170 

Shand, 2004; Martin et al., 2004;  Molenat et al., 2005, 2008; Shand et al., 2005; Condon and Maxwell, 171 

2015; Maxwell and Condon, 2016). HAND can be interpreted as a proxy of the hydraulic head and is thus 172 

potentially more hydrologically informative than the topographic elevation above sea level (Nobre et al., 173 

2011). Compared with the TWI in TOPMODEL, HAND is an explicit measure of a physical feature linking 174 

terrain to water related potential energy for local drainage (Nobre et al., 2011). More interestingly, 175 

topographic structure emerges as a powerful force determining rooting depth under a given climate or 176 

within a biome (Figure 1), revealed by a global synthesis of 2,200 root observations of >1000 species 177 

(Fan et al., 2017). This leads us to think from ecological perspective to use the topographic information 178 

as an indicator for root zone spatial distribution without calibrating the β, and coupling it with the MCT 179 

method to estimate the SuMax, eventually create a calibration-free runoff generation module. 180 

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial 181 

distribution of storage capacities and therefore can be used to develop a new runoff generation module 182 

(HAND-based Storage Capacity curve, i.e. HSC); (2) the distribution of storage capacities determined by 183 
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HAND contains different information than the topographic wetness index; (3) the HSC together with water 184 

balance-based estimates of SuMax (MCT method) allow the formulation of calibration-free 185 

parameterizations of soil moisture routines in top-down models directly based on observations. All these 186 

hypotheses will be tested firstly in a small data-rich experimental catchment (the Bruntland Burn 187 

catchment in Scotland), and then apply the model to a wide range of larger MOPEX catchments (Model 188 

Parameter Estimation Experiment). 189 

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e. 190 

HSC and HSC-MCT, and two benchmark models (HBV, TOPMODEL). This section also includes the 191 

description of other modules (i.e. interception, evaporation and routing) in rainfall-runoff modelling, and 192 

the methods for model evaluation, calibration and validation. The Dataset section reviews the empirically-193 

based knowledge of the Bruntland Burn catchment in Scotland and the hydrometerological and 194 

topographic datasets of MOPEX catchments in the US for model comparison. The Results section presents 195 

the model comparison results. The Discussion section interprets the relation between rainfall-runoff 196 

processes and topography, catchment heterogeneity and simple model, and the implications and 197 

limitations of our proposed modules. The conclusions are briefly reviewed in the Summary and 198 

Conclusions section.  199 

2 Methods 200 

Based on our perceptual model that saturation excess flow (SEF) is the dominant runoff generation 201 

mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module. 202 

Subsequently, estimating the parameter of root zone storage capacity (SuMax) by the MCT method without 203 

calibration, the HSC-MCT was developed. In order to assess the performance of our proposed modules, 204 

two widely-used runoff generation modules, i.e. HBV power function and TOPMODEL module, were set 205 

as benchmarks. Other modules, i.e. interception, evaporation and routing, are kept with identical 206 

structure and parameterization for the four rainfall-runoff models (HBV, TOPMODEL, HSC, HSC-MCT, 207 

whose names are from their runoff generation modules), to independently diagnose the difference among 208 

runoff generation modules (Clark et al., 2008; 2010).  209 

2.1 Two benchmark modules 210 

HBV power function  211 
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The HBV runoff generation module applies an empirical power function to estimate the nonlinear 212 

relationship between the runoff coefficient and soil moisture (Bergström and Forsman, 1973; Bergström 213 

and Lindström, 2015). The function is written as:  214 

  ( )u
s

uMax

S
A

S

        (1) 215 

Where As (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall 216 

event; Su (mm) represents the averaged root zone soil moisture; SuMax (mm) is the averaged root zone 217 

storage capacity of the studied catchment; β (-) is the parameter determining the shape of the power 218 

function. The prior range of β can be from 0.1 to 5. The Su - As has a linear relation while β equals to 1. And 219 

the shape becomes convex while the β is less than 1, and the shape turns to concave while the β is larger 220 

than 1. In most situations, SuMax and β are two free parameters, cannot be directly measured at the 221 

catchment scale, and need to be calibrated based on observed rainfall-runoff data.   222 

TOPMODEL module 223 

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at 224 

catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby, 225 

1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff 226 

generation potential. More specifically, the areas with larger TWI values tend to be saturated first and 227 

contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate 228 

runoff. The equations are written as follow: 229 

( )
ii uMax TW TWD D S I I         (2) 230 

  uMax uD S S        (3) 231 

 _ ;    while  0s s i i
A A D        (4) 232 

Where Di (mm) is the local storage deficit below saturation at specific location (i); �̅� (mm) is the averaged 233 

water deficit of the entire catchment (Equation 2), which equals to (SuMax - Su), as shown in Equation 3. ITWi 234 

is the local ITW value. TWI is the averaged TWI of the entire catchment. Equation 2 means in a certain soil 235 

moisture deficit condition for the entire catchment (�̅�), the soil moisture deficit of a specific location (Di), 236 

is determined by the catchment topography (ITW and ITWi), and the root zone storage capacity (SuMax). 237 
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Therefore, the areas with Di less than zero are the saturated areas (As_i), equal to the contributing areas. 238 

The integration of the As_i areas (As), as presented in Equation 4, is the runoff contributing area, which 239 

equals to the runoff coefficient of that rainfall event.  240 

Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area 241 

(As) from the estimated relative soil moisture (Su/SuMax), and then map it back to the original TWI map, 242 

which makes it possible to test the simulated contributing area by field measurement. It is worth 243 

mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one, 244 

which combines the saturated and unsaturated soil components. 245 

2.2 HSC module 246 

In the HSC module, we assume 1) primarily saturation excess flow as the dominant runoff generation 247 

mechanismSEF is the dominant runoff generation mechanism, while surface overland flow (SOF) and 248 

subsurface flow (SSF) cannot be distinguished; 2) the local root zone storage capacity has a positive and 249 

linear relationship with HAND, from which we can derive the spatial distribution of the root zone storage 250 

capacity; 3) rainfall firstly feeds local soil moisture deficit, and no runoff can be generated before local soil 251 

moisture being saturated.  252 

Figure 2 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a 253 

real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage 254 

capacity, based on topographic analysis and the second assumption as mentioned in the preceding 255 

paragraph. Figure 3 shows the approach to derive the Su-As relation, which are detailed as follows.  256 

I. Generate HAND map. The HAND map, which represents the relative vertical distance to the 257 

nearest river channel, can be generated from DEM (Gharari et al., 2011). The stream initiation 258 

threshold area is a crucial parameter, determining the perennial river channel network 259 

(Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and significantly impacting the HAND 260 

values. In this study, the start area was chosen as 40ha for the BB catchment to maintain a close 261 

correspondence with observed stream network. And for the MOPEX catchments, the stream 262 

initiation area threshold is set as 500 grid cells (4.05 km2), which fills in the range of stream 263 

initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). HAND 264 

maps were then calculated from the elevation of each raster cell above nearest grid cell flagged 265 

as stream cell following the flow direction (Gharari et al., 2011).  266 
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II. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in 267 

ascending order. Secondly, the sorted HAND values were evenly divided into n bands (e.g. 20 268 

bands in this study), to make sure each HAND band has similar area. The averaged HAND value of 269 

each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and 270 

then plot the normalized HAND distribution curve (Figure 2b).  271 

III. Distribute SuMax to each HAND band (SuMax_i). As assumed, the normalized storage capacity of each 272 

HAND band (SuMax_i) increases with HAND value (Figure 2c). Based on this assumption, the 273 

unsaturated root zone storage capacity (SuMax) can be distributed to each HAND band as SuMax_i 274 

(Figure 3a). It is worth noting that SuMax needs to be calibrated in the HSC module, but free of 275 

calibration in the HSC-MCT module.  276 

IV. Derive the Su - As curve. With the number of s saturated HAND bands (Figure 3a-c), the soil 277 

moisture (Su) can be obtained by Equation 5; and saturated area proportion (As) can be obtained 278 

by Equation 6. 279 

𝑆u =
1

𝑛
[∑ 𝑆uMax_i

𝑠
𝑖=1 + 𝑆uMax_s(𝑛 − 𝑠)]      (5) 280 

𝐴s =
𝑠

𝑛
       (6) 281 

Where SuMax_s is the maximum SuMax_i of all the saturated HAND bands. Subsequently, the As - Su 282 

curve can be derived, and shown in Figure 3d.  283 

The SEF mechanism assumes that runoff is only generated from saturation areas, therefore the proportion 284 

of saturation area is equal to the runoff coefficient of that rainfall-runoff event. Based on the Su-As curve 285 

in Figure 3d, generated runoff can be calculated from root zone moisture (Su). The HSC module also allows 286 

us to map out the fluctuation of saturated areas by the simulated catchment average soil moisture. For 287 

each time step, the module can generate the simulated root zone moisture for the entire basin (Su). Based 288 

on the Su-As relationship (Figure 3d), we can map Su back to the saturated area proportion (As) and then 289 

visualize it in the original HAND map. Based on this conceptual model, we developed the computer 290 

program and created a procedural module. The technical roadmap can be found in Figure 4.  291 

2.3 HSC-MCT module  292 

The SuMax is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4J), which 293 

determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that 294 

SuMax represents the adaption of ecosystems to local climate. Ecosystems may design their SuMax based on 295 

the precipitation pattern and their water demand. The storage is neither too small to be mortal in dry 296 
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seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we can 297 

estimate the SuMax without calibration, by the MCT method, from climatological and vegetation 298 

information. More specifically, the average annual plant water demand in the dry season (SR) is 299 

determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal 300 

NDVI. Subsequently, based on the annual SR, the Gumbel distribution (Gumbel, 1935), frequently used for 301 

estimating hydrological extremes, was used to standardize the frequency of drought occurrence. SR20y, i.e. 302 

the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for 303 

SuMax due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly, 304 

1994), and the fact that SR20y has the best fit with SuMax . The SR20y of the MOPEX catchments can be found 305 

in the map of (Gao et al., 2014a).  306 

Eventually, with the MCT approach to estimate SuMax and the HSC curve to represent the root zone storage 307 

capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters. 308 

It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived Su-As relation, 309 

and their distinction lays in the methods to obtain SuMax. So far, the HBV power function module has 2 free 310 

parameters (SuMax, β). While the TOPMODEL and the HSC both have one free parameter (SuMax). Ultimately 311 

the HSC-MCT has no free parameter.  312 

2.4 Interception, evaporation and routing modules 313 

Except for the runoff generation module in the root zone reservoir (SUR), we need to consider other 314 

processes, including interception (SIR) before the SUR module, evaporation from the SUR and the response 315 

routine (SFR and SSR) after runoff generation from SUR (Figure 5). Precipitation is firstly intercepted by 316 

vegetation canopies. In this study, the interception was estimated by a threshold parameter (SiMax), set to 317 

2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9) 318 

(de Groen and Savenije, 2006). For the SUR reservoir, we can either use the HBV beta-function (Equation 319 

12), the runoff generation module of TOPMODEL (Equation 2-4) or the HSC module (Section 2.3) to 320 

partition precipitation into generated runoff (Ru) and infiltration. The actual evaporation (Ea) from the soil 321 

equals to the potential evaporation (Ep), if Su/SuMax is above a threshold (Ce), where Su is the soil moisture 322 

and SuMax is the catchment averaged storage capacity. And Ea linearly reduces with Su/SuMax, while Su/SuMax 323 

is below Ce (Equation 13). The Ep can be calculated by the Hargreaves equation (Hargreaves and Samani, 324 

1985), with maximum and minimum daily temperature as input. The generated runoff (Ru) is further split 325 

into two fluxes, including the flux to the fast response reservoir (Rf) and the flux to the slow response 326 

reservoir (Rs), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is 327 
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estimated by a convolution delay function, with a delay time of TlagF. Subsequently, the fluxes into two 328 

different response reservoirs (SFR and SSR) were released by two linear equations between discharge and 329 

storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from 330 

groundwater reservoir. The two discharges (Qf and Qs) generated the simulated streamflow (Qm). The 331 

model parameters are shown in Table 1, while the equations are given in Table 2. More detailed 332 

description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining 333 

that the only difference among the benchmark HBV type, TOPMODEL type, HSC, and HSC-MCT models is 334 

their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in TOPMODEL 335 

and HSC model, and 5 in the HSC-MCT model. 336 

2.5 Model evaluation, calibration, validation and models comparison 337 

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a 338 

more robust approach to quantifying model performance with different criteria than a single one. The 339 

Kling-Gupta efficiency (Gupta et al., 2009) (IKGE) was used as the criteria to evaluate model performance 340 

and as an objective function for calibration. The equation is written as: 341 

 
2 2 2

KGE 1 ( 1) ( 1) ( 1)I r          (7) 342 

Where r is the linear correlation coefficient between simulation and observation; 𝛼 (
m o/   ) is a 343 

measure of relative variability in the simulated and observed values, where σm is the standard deviation 344 

of simulated streamflow, and σo is the standard deviation of observed streamflow; ε is the ratio between 345 

the average value of simulated and observed data. And the IKGL (IKGE of the logarithmic flows) (Fenicia et 346 

al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation.  347 

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for 348 

the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were 349 

assumed to be the behavioral parameter sets and can equally represent model performance. The 350 

averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result 351 

of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number 352 

of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the 353 

number of initial samples was set to 210 and a total number of 50000 model iterations for all the 354 

catchment runs. For each catchment, the first half period of data was used for calibration, and the other 355 

half was used to do validation.  356 
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In module comparison, we defined three categories: if the difference of IKGE of model A and model B in 357 

validation is less than 0.1, model A and B are regarded as “equally well”. If the IKGE of model A is larger 358 

than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the IKGE of 359 

model A is less than model B in validation by -0.1 or less, model B is regarded as outperforming model A. 360 

3 Dataset 361 

3.1 The Bruntland Burn catchment  362 

The 3.2 km2 Bruntland Burn catchment (Figure 6), located in north-eastern Scotland, was used as a 363 

benchmark study to test the modelsmodel’s performance based on a rich data base of hydrological 364 

measurements. The Bruntland Burn is a typical upland catchment in North West Europe (e.g. Birkel et al., 365 

2010), namely a combination of steep and rolling hillslopes and over-widened valley bottoms due to the 366 

glacial legacy of this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift 367 

deposits (e.g. till) containing a large amount of stored water superimposed on a relatively impermeable 368 

granitic solid geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas, 369 

which remain saturated throughout most of the year with a dominant near-surface runoff generation 370 

mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream 371 

network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy 372 

hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes 373 

do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water 374 

movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough 375 

grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months 376 

(May-August) generally being the driest (Ali et al., 2013). Snow makes up less than 10% of annual 377 

precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and 378 

annual discharge around 659 mm. The daily precipitation, potential evaporation, and discharge data range 379 

from January 1 in 2008 to September 30 in 2014. The calibration period is from January 1, 2008 to 380 

December 31, 2010, and the data from January 1, 2011 to September 30, 2014 is used as validation.  381 

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 6). 382 

There are 7 saturation area maps (Figure 7) (May 2, July 2, August 4, September 3, October 1, November 383 

26, in 2008, and January 21, in 2009), measured directly by the “squishy boot” method and field mapping 384 

by global positioning system (GPS), to delineate the boundary of saturation areas connected to the stream 385 

network (Birkel et al., 2010; Ali et al., 2013). These saturation area maps revealed a dynamic behavior of 386 
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expanding and contracting areas connected to the stream network that were used as a benchmark test 387 

for the HSC module. 388 

3.2 MOPEX catchments  389 

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al., 390 

2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The 391 

longest time series range from 1948 to 2003. 323 catchments were used in this study (see the name list 392 

in SI), with areas between 67 and 10,329 km2, and excluding the catchments with data records <30 years, 393 

impacted by snowmelt or with extreme arid climate (aridity index Ep/P > 2). In order to analyze the impacts 394 

of catchment characteristics on model performance, excluding hydrometeorology data, we also collected 395 

the datasets of topography, depth to rock, soil texture, land use, and stream density (Table 3). These 396 

characteristics help us to understand in which catchments the HSC performs better or worse than the 397 

benchmark models.  398 

Hydrometeorology 399 

The dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily 400 

streamflow. The daily streamflow was used to calibrate the free parameters, andparameters and validate 401 

the models.  402 

Topography  403 

The Digital Elevation Model (DEM) of the CONUS in 90m resolution was download from the Earth Explorer 404 

of United States Geological Survey (USGS, http://earthexplorer.usgs.gov/). The HAND and TWI map can 405 

be generated from DEM. The averaged elevation and HAND are used to as two catchment characteristics.  406 

Soil texture  407 

In this study, soil texture is synthetically represented by the K factor, since the K factor is a lumped soil 408 

erodibility factor which represents the soil profile reaction to soil detachment (Renard et al., 2011). 409 

Generally, the soils (high in clay and sand) have low K values, and soils with high silt content have larger K 410 

values. The averaged K factor for each catchment was calculated from soil survey information available 411 

from USGS (Wolock, 1997). 412 

Land use 413 

http://earthexplorer.usgs.gov/
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Land use data was obtained from National Land Cover Database (NLCD, http://www.mrlc.gov/nlcd.php). 414 

Forest plays an essential role in hydrological processes (Gao et al., 2018a), especially for the runoff 415 

generation (Brooks et al., 2010). Forest area proportion was utilized as an integrated indictor to represent 416 

the impact of vegetation cover on hydrological processes.  417 

Stream density 418 

Stream density (km/km2) is the total length of all the streams and rivers in a drainage basin divided by the 419 

total area of the drainage basin. Stream density data was obtained from Horizon Systems Corporation 420 

(http://www.horizon-systems.com/nhdplus/). 421 

Geology  422 

Bedrock is a relative impermeable layer, as the lower boundary of subsurface stormflow in the catchments 423 

where soil depth is shallow (Tromp-van Meerveld & McDonnell). The depth to bedrock, as an integrated 424 

geologic indicator, was accessed from STATSGO (State Soil Geographic, 425 

http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb) (Schwarz & Alexander, 1995). 426 

The averaged depth to bedrock for each catchment was calculated for further analysis.  427 

4 Results of the Bruntland Burn 428 

4.1 Topography analysis 429 

The generated HAND map, derived also from the DEM, is shown in Figure 6, with HAND values ranging 430 

from 0m to 234m. Based on the HAND map, we can derive the Su-As curve (Figure 8) by analyzing the 431 

HAND map with the method in Section 2.3. The TWI map of the BB (Figure 6) was generated from its DEM. 432 

Overall, the TWI map, ranging from -0.4 to 23.4, mainly differentiates the valley bottom areas with the 433 

highest TWI values from the steeper slopes. This is probably caused by the fine resolution of the DEM map 434 

in 2 m, as previous research found that the sensitivity of TWI to DEM resolution (Sørensen and Seibert, 435 

2007). From the TWI map, the frequency distribution function and the accumulative frequency 436 

distribution function can be derived (Figure 8), with one unit of TWI as interval.   437 

4.2 Model performance 438 

It is found that all the three models (HBV, TOPMODEL, and HSC) can perform well in reproducing the 439 

observed hydrograph (Figure 9). The IKGE of the three models are all around 0.66 in calibration, which is 440 

largely in line with other studies from the BB (Birkel et al, 2010; 2014). And the IKGL are 0.76, 0.72 and 0.74 441 

for HSC, HBV and TOPMODEL respectively in calibration. While in validation, IKGE of the three models are 442 

http://www.horizon-systems.com/nhdplus/
http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb
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also around 0.66, while IKGL are 0.75, 0.70 and 0.65 for the three models. Since the measured rainfall-443 

runoff time series only lasts from 2008 to 2014, which is too short to estimate the SR20y (proxy for SuMax) 444 

by MCT approach (which needs long-term hydro-meteorological observation data,) the HSC-MCT model 445 

was not applied to this catchment.  446 

Figure 8 shows the calibrated power curve by HBV (averaged beta=0.98) with the Su-As curve obtained 447 

from the HSC module. We found the two curves are largely comparable, especially while the relative soil 448 

moisture is low. This result demonstrates that for the BB catchment with glacial drift deposits and 449 

combined terrain of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve 450 

can essentially be derived from the Su-As curve of HSC module merely by topographic information without 451 

calibration.  452 

The normalized relative soil moisture of the three model simulations are presented in Figure 9. Their 453 

temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL 454 

has larger variation, compared with HBV and HSC (Figure 9).  455 

4.3 Contributing area simulation 456 

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are 457 

shown in Figure 7, 9, 10. We found although both modules overestimated the saturated areas, they can 458 

capture the temporal variation. For example, the smallest saturated area both observed and simulated 459 

occurred on July-02-2008, and the largest saturated area both occurred on January-21-2009. Comparing 460 

the estimated contributing area of TOPMODEL with the HSC module, we found the results of the HSC 461 

correlates better (R2=0.60, IKGE=-3.0) with the observed saturated areas than TOPMODEL (R2=0.50, IKGE=-462 

3.4) (Figure 10). For spatial patterns, the HSC contributing area is located close to the river network, 463 

andnetwork and reflects the spatial pattern of observed saturated area. While TOPMODEL results are 464 

more scattered, probably due to the sensitivity of TWI to DEM resolution (Figure 7). The HSC is more 465 

discriminating in terms of less frequently giving an unrealistic 100% saturation, andsaturation and 466 

retaining unsaturated upper hillslopes.  467 

5 Results from the MOPEX catchments  468 

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments  469 

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold 470 

height of 100m (recommended by Esri). The TWI map of the CONUS is produced (Figure S1). Based on the 471 
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TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments with their catchment 472 

boundaries. And then the TWI frequency distribution and the accumulated frequency distribution of the 473 

323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were derived based on the 323 TWI 474 

maps. 475 

In Figure 11, it is shown that the regions with large HAND values are located in Rocky Mountains and 476 

Appalachian Mountains, while the Great Plains has smaller HAND values. Interestingly, t The Great Basin, 477 

especially in the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest 478 

drainage, although theirdespite a high elevations above seas level are high. From the CONUS HAND map, 479 

we clipped the HAND maps for the 323 MOPEX catchments with their catchment boundaries. We then 480 

plot their HAND-area curves, following the procedures of I and II in Section 2.2. Figure 12a shows the 481 

normalized HAND profiles of the 323 catchments.  482 

Based on the HAND profiles and the Step III in Section 2.2, we derived the normalized storage capacity 483 

distribution for all catchments (Figure 12b). Subsequently, the root zone moisture and saturated area 484 

relationship (As-Su) can be plotted by the method in Step IV of Section 2.2. Lastly, reversing the curve of 485 

As-Su to Su-As relation (Figure 12c), the latter one can be implemented to simulate runoff generation by 486 

soil moisture. Figure 12c interestingly shows that in some catchments, there is almost no threshold 487 

behavior between rainfall and runoff generation, where the catchments are covered by large areas with 488 

low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly 489 

and generate runoff without a precipitation–discharge threshold relationship characteristic of areas with 490 

higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished 491 

between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to 492 

rainfall is almost instantaneous.  493 

5.2 Model performance 494 

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data 495 

(Figure 13) is comparable with the previous model comparison experiments, conducted with four rainfall-496 

runoff models and four land surface parameterization schemes (Duan et al., 2006; Kollat et al., 2012; Ye 497 

et al., 2014). The median value of IKGE of the HBV type model is 0.61 for calibration in the 323 catchments 498 

(Figure 13), and averaged IKGE in calibration is 0.62. In validation, the median and averaged values of IKGE 499 

are kept the same as calibration. The comparable performance of models in calibration and validation 500 

demonstrates the robustness of benchmark models and the parameter optimization algorithm (i.e. 501 

MOSCEM-UA). The TOPMODEL improves the median value of IKGE from 0.61 (HBV) to 0.67 in calibration, 502 
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and from 0.61 (HBV) to 0.67 in validation. But the averaged values of IKGE for TOPMODEL are slightly 503 

decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving the 504 

HAND topographic information without calibrating the β parameter, improves the median value of IKGE to 505 

0.68 for calibration and 0.67 for validation. The averaged values of IKGE in both calibration and validation 506 

are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore, Figure 13 507 

demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median and 508 

averaged values were improved by the HSC module, but also the 25th and 75th percentiles and the lower 509 

whisker end, all have been improved. The performance gains on baseflow (IKGL) have been investigated 510 

and shown in the supplementary figure S3. These results indicate the HSC module improved model 511 

performance to reproduce hydrograph for both peak flow (IKGE) and baseflow (IKGL).  512 

Additionally, for HSC-MCT model, the median IKGE value is improved from 0.61 (HBV) to 0.65 in calibration, 513 

and from 0.61 (HBV) to 0.64 in validation, but not as well performed as TOPMODEL (0.67 for calibration 514 

and validation). For the averaged IKGE values, they were slightly reduced from 0.62 (HBV) and 0.61 515 

(TOPMODEL) to 0.59 for calibration and validation. Although the HSC-MCT did not perform as well as the 516 

HSC module, considering there is no free parameters to calibrate, the median IKGE value of 0.64 (HBV is 517 

0.61) and averaged IKGE of 0.59 (TOPMODEL is 0.61) are quite acceptable. In addition, the 25th and 75th 518 

percentiles and the lower whisker end of the HSC-MCT model are all improved compared to the HBV 519 

model. Moreover, the largely comparable results between the HSC and the HSC-MCT modules 520 

demonstrate the feasibility of the MCT method to obtain the SuMax parameter and the potential for HSC-521 

MCT to be implemented in prediction of ungauged basins.  522 

Figure 14 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark models. 523 

We found that the HSC performs “equally well” as HBV (the difference of IKGE in validation ranges -0.1 ~ 524 

0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the 525 

improvement of IKGE in validation is larger than 0.1). In not a single catchment did the calibrated HBV 526 

outperform the HSC. Comparing the HSC model with TOPMODEL, we found in 91% of the catchments that 527 

the two models have approximately equal performance. In 8% of the catchments, the HSC model 528 

outperformed TOPMODEL. Only in 1% of the catchments (two in the Appalachian Mountains and one in 529 

the Rocky Mountains in California), TOPMODEL performed better. 530 

In order to further explore the impact of catchment characteristics on model performance, we used 531 

topography (averaged HAND, averaged slope, and averaged elevation), soil (K-factor), land cover (forest 532 

area proportion), climate (aridity index), stream density, and geology (depth to rock) information to test 533 
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the impact of catchment features on model performance. Table 4 clearly shows that compared with HBV, 534 

the 39 catchments with better performance have lower HAND values (37m), more gentle slopes (4.0 535 

degree), and smaller forest area (22%); while the elevation, K-factor, aridity index, stream density and 536 

depth to rock are almost similar. Also, in the catchments where HSC outperformed TOPMODEL, the 537 

catchments have smaller HAND (27m), more gentle slopes (3.6 degree), moderate elevation (469 m), less 538 

forest proportion (14%), and more arid climate (aridity index is 1.3). TOPMODEL performs better in only 539 

three catchments with larger HAND (193m), steeper slopes (13.5 degree), higher elevation (740 m), more 540 

humid climate (aridity index is 0.8), and larger depth to rock (333 cm). In summary, the HSC showed better 541 

performance in catchments with gentle topography and more arid climate.  542 

Without calibration of SuMax, as expected, the performance of HSC-MCT module slightly deteriorates 543 

(Figure 13). In comparison with HBV, the outperformed percentage reduced from 12% (HSC) to 4% (HSC-544 

MCT), the approximately equal-well simulated catchments dropped from 88% to 79%, and the inferior 545 

performance increased from 0% to 17%. Also, in comparison with TOPMODEL, the better performance 546 

dropped from 8% (HSC) to 7% (HSC-MCT), the approximately equal catchments reduced from 91% to 72%, 547 

and the inferior performance increased from 1% to 21%. The inferiority of the HSC-MCT model is probably 548 

caused by the uncertainty of the MCT method for different ecosystems which have different survival 549 

strategies and use different return periods to bridge critical drought periods. By using ecosystem 550 

dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).  551 

To further explore the reason for the better performance of the HSC approach, we selected the 08171000 552 

catchment in Texas (Figure 14), in which both the HSC module and the HSC-MCT module outperformed 553 

the two benchmark modules to reproduce the observed hydrograph (Figure S4). The HBV model 554 

dramatically underestimated the peak flows, with IKGE as 0.54, while TOPMODEL significantly 555 

overestimated the peak flows, with IKGE as 0.30. The HSC-MCT model improved the IKGE to 0.71, and the 556 

HSC model further enhanced IKGE to 0.74.   557 

Since the modules of interception, evaporation and routing are identical for the four models, the runoff 558 

generation modules are the key to understand the difference in model performance. Figure S5 shows the 559 

HBV β curve and the Su-As curve of the HSC model, as well the TWI frequency distribution. We found that 560 

with a given Su/SuMax, the HBV β function generates less contributing area than the HSC model, which 561 

explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep 562 

accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment 563 

area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that 564 
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even with low soil moisture content (Su/SuMax), the contributing area by TOPMODEL is relatively large, 565 

leading to the sharply increased peak flows for all rainfall events.  566 

6 Discussion 567 

6.1 Rainfall-runoff processes and topography  568 

We applied a novel approach to derive the relationship between soil moisture storage and the saturated 569 

area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher 570 

HAND values, due to the larger storage capacity in higher HAND locations. The outperformance of the HSC 571 

over the benchmark HBV and TOPMODEL in gentle sloping catchments indicates that the HSC module 572 

likely has a higher realism than the calibrated HBV beta-function and the TWI of TOPMODEL in these 573 

regions. Very interestingly, Fan et al., (2017) presented an ecological observation in global scale, and 574 

revealed the systematic variation of rooting depth along HAND (Fig.1, in Fan et al., 2017). Since rooting 575 

depth can be translated to root zone storage capacity through combination with soil plant-available water 576 

(Wang-Erlandsson et al., 2016). This large sample dataset, from ecological perspective, provides a strong 577 

support for the assumption of the HSC model on gentle slopes, i.e. the increase of root zone storage 578 

capacity with HAND. More interestingly, on excessively drained uplands, rooting depth does not follow 579 

the same pattern, with shallow depth and limited to rain infiltration (Fig.1, in Fan et al., 2017). This could 580 

explain the inferior performance of HSC model to TOPMODEL in three MOPEX catchments with 581 

excessively drained uplands (larger HAND, steeper slope, higher elevation, and deeper depth to rock), 582 

where Hortonian overland flow is likely the dominant mechanism, and the HSC assumption likely does not 583 

work well. This indicates that comparing with TWI, the HAND is closer to catchment realism distinguishing 584 

hydrological similarity in gentle topography catchments. The HSC module assumes SEF as the dominant 585 

mechanism. But since in a real catchment different runoff generating processes may act simultaneously 586 

in different environments (McDonnell, 2013; Hrachowitz and Clark, 2017). Such SEF dominated 587 

catchments, or parts thereof, are typically characterized by a subdued relief and thus gently sloping. In 588 

steeper catchments, where the groundwater table is deeper and thus more additional water can be stored 589 

in the soil, another conceptual parametrisation would be appropriate. 590 

The FLEX-Topo model (Savenije, 2010) also uses HAND as a topographic index to distinguish between 591 

landscape-related runoff processes, andprocesses and has both similarity and differences with the HSC 592 

model. The results of the HSC model illustrate that the riparian areas are more prone to be saturated, 593 

which is consistent with the concept of the FLEX-Topo model. Another important similarity of the two 594 
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models is their parallel model structure. In both models it is assumed that the upslope area has larger 595 

storage capacity, therefore the upper land generates runoff less and later than the lower land. In other 596 

words, in most cases, the local storage is saturated due to the local rainfall, instead of flow from upslope. 597 

The most obvious difference between the HSC and the FLEX-Topo is the approach towards discretization 598 

of a catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. wetlands, 599 

hillslopes and plateau. This discretization method requires threshold values to classify landscapes, i.e. 600 

threshold values of HAND and slope, which leads to fixed and time-independent proportions of landscapes. 601 

The HSC model does not require landscape classification, which reduced the subjectivity in discretization 602 

and restricted the model complexity, as well as simultaneously allowing the fluctuation of contributing 603 

areas (termed as wetlands in FLEX-Topo).  604 

6.2 Catchment heterogeneity and simple models 605 

Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of 606 

landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often 607 

consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots, 608 

soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and 609 

McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of 610 

runoff processes, and hydrological and land surface modelers are developing more and more complicated 611 

models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no 612 

compelling evidence to support the outperformance of sophisticated “physically-based” models in terms 613 

of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in 614 

rainfall-runoff simulation (Beven, 1989; Orth et al., 2015). 615 

But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts 616 

(Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not 617 

require complex laws (Chase, 1992; Passalacqua et al., 2015). Parsimonious models (e.g. Perrin et al., 618 

2003), with empirical curve shapes, likely result in good model performance. Parameter identifiability in 619 

calibration is one of the reasons. However, the physical rationale of these parsimonious models is still 620 

largely unknown lacking a physical explanation to interpret these empirical curves described by 621 

mathematical functions (e.g. Equation 3 in Perrin et al., 2003).  622 

The benefits of the new HSC module are two-fold. From a technical point of view, the HSC allows us to 623 

make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual 624 

hydrological models. Furthermore, the HSC module, from a scientific point of view, provides us with a new 625 
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perspective on the linkage between the spatial distribution patterns of root zone storage capacity (long-626 

term ecosystem evolution) with associated runoff generation (event scale rainfall-runoff generation).  627 

Asking questions of “why” rather than “what” likely leads to more useful insights and a new way forward 628 

(McDonnell et al., 2007). The HSC module provides us with a rationale from an ecological perspective to 629 

understand the linkage and mechanism between large-sample hillslope ecological observations and the curve 630 

of root zone storage capacity distribution (Figure 1, 2, 3). Catchment is a geomorphological and even an 631 

ecological system whose parts are related to each other probably due to catchment self-organization and 632 

evolution (Sivapalan and Blöschl, 2015; Savenije and Hrachowitz, 2017). This encourages the hope that 633 

simplified concepts may be found adequate to describe and model the operation of the basin runoff 634 

generation process. It is clear that topography, with fractal characteristic (Rodriguez-Iturbe and Rinaldo, 635 

1997), is often the dominant driver of runoff, as well as being a good integrated indicator for vegetation 636 

cover (Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone evaporation and transpiration deficits 637 

(Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), and even geology (Rempe and Dietrich, 638 

2014; Gomes, 2016). Therefore, we argue that increasingly detailed topographic information is an 639 

excellent integrated indicator allowing modelers to continue systematically represent heterogeneities and 640 

simultaneously reduce model complexity. The model structure and parameterization of both HSC and 641 

TOPMODEL are simple, but not over simplified, as they capture likely the most dominant factor controlling 642 

runoff generation, i.e. the spatial heterogeneity of storage capacity. Hence, this study also sheds light on 643 

the possibility of moving beyond heterogeneity and process complexity (McDonnell et al., 2007), to 644 

simplify them into a succinct and a priori curve by taking advantage of catchment self-organization 645 

probably caused by co-evolution or the principle of maximum entropy production (Kleidon and Lorenz, 646 

2004).  647 

6.3 Implications and limitation  648 

The calibration-free HSC-MCT runoff generation module enhances our ability to predict runoff in 649 

ungauged basins. PUB is probably not a major issue in the developed world, with abundant of 650 

comprehensive measurements in many places, but for the developing world it requires prediction with 651 

sparse data and fragmentary knowledge. Topographic information with high spatial resolution is freely 652 

available globally, allowing us to implement the HSC model in global scale studies. In addition, thanks to 653 

the recent development, testing, and validation of remote sensing evaporation products in large spatial 654 

scale (e.g. Anderson et al., 2011; Hu and Jia, 2015), the SuMax estimation has become possible without in 655 



23 
 

situ hydro-meteorological measurements (Wang-Erlandsson et al., 2016). These widely-accessible 656 

datasets make the global-scale implementation of HSC-MCT module promising.  657 

Although the new modules perform well in the BB and the MOPEX catchments, we do not intend to 658 

propose “a model fits all”. The assumption of HSC, to some extent, is supported by large-sample ecological 659 

field observation (Fan et al., 2017), but it never means the As-Su curve of HSC can perfectly fit the other 660 

existing curves (e.g. HBV and TOPMODEL). Unify all model approaches into one framework is the objective 661 

of several pioneer works (e.g. Clark, et al., 2010; Fenicia et al., 2011), but out of the scope of this study. 662 

Moreover, while estimating the runoff coefficient by the As-Su relation, rainfall in the early time may cause 663 

the increase of Su/SuMax and runoff coefficient (Moore, 1985; Wang, 2018). Therefore, neglecting this 664 

influence factor, HBV (Equation 1), TOPMODEL (Equation 2-4) and HSC (Equation 5-6) theoretically 665 

underestimate the runoff coefficient, which needs to be further investigated. 666 

Finally, we should not ignore the limitations of the new module, although it has better performance and 667 

modelling consistency. 1) The threshold area for the initiating a stream was set as a constant value for the 668 

entire CONUS, but the variation of this value in different climate, geology and landscape classes 669 

(Montgomery and Dietrich, 1989; Helmlinger et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to 670 

be future investigated. 2) The discrepancy between observed and simulated saturation area needs to be 671 

further investigated, by utilizing more advanced field measurement and simultaneously refining the 672 

model assumption. To our understanding, there are two interpretations. Firstly, the overestimation of the 673 

HSC model is possibly because two runoff generation mechanisms – SOF and the SSF occur at the same 674 

time. However, the saturated area observed by the “squishy boot” method (Ali et al., 2013), probably only 675 

distinguished the areas where SOF occurred. Subsurface stormflow, also contributing to runoff, cannot be 676 

observed by the “squishy boot” method. Thus, this mismatch between simulation and observation 677 

probably leads to this saturated area overestimation. The second interpretation might be the different 678 

definition of “saturation”. The observed saturated areas are places where 100% of soil pore volume is 679 

filled by water. But the modelled saturation areas are located where soil moisture is above field capacity, 680 

and not necessarily 100% filled with water, which probably also results in the overestimation of saturated 681 

areas. Interestingly, in theory the observed saturated area should be within the simulated contributing 682 

area, due to the fact that the saturated soil moisture is always larger than field capacity. From this point 683 

of view, the observed saturated area is smaller and within the contributing area simulated by HSC, but 684 

TOPMODEL missed this important feature. 4) Only the runoff generation module is calibration free, but 685 

the interception and response routines still rely on calibration. Although we kept the interception and 686 
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response routine modules the same for the four models, the variation of other calibrated parameters (i.e. 687 

SiMax, D, Kf, Ks, TlagF) may also influence model performance in both calibration and validation. 5) The 688 

computational cost of the HSC is more expensive than HBV, and similar to TOPMODEL, due to the cost of 689 

preprocessed topographic analysis. But once the Su-As curve is completed, the computation cost is quite 690 

comparable with HBV.  691 

7 Summary and conclusions  692 

In this study, we developed a simple and calibration-free hydrological module (HAND-based Storage 693 

Capacity curve, HSC) based on a relatively new topographic index (HAND), which is not only an excellent 694 

physically-based indictor for the hydraulic gradient, but also represents the spatial distribution of root 695 

zone storage capacity supported by large-sample ecological observations. Based on HAND spatial 696 

distribution pattern, the soil moisture (Su) - saturated area (As) relation for each catchment was derived, 697 

which was used to estimate the As of specific rainfall event based on continuous calculation of Su. 698 

Subsequently, based on the Su-As relation, the HSC module was developed. Then, applying the mass curve 699 

technique (MCT) approach, we estimated the root zone storage capacity (SuMax) from observable hydro-700 

climatological and vegetation data, and coupled it with HSC to create the calibration-free HSC-MCT 701 

module. The HBV and TOPMODEL were used as two benchmarks to test the performance of HSC and HSC-702 

MCT on both hydrograph simulation and ability to reproduce the contributing area, which was measured 703 

for different hydrometeorological conditions in the Bruntland Burn catchment in Scotland. Subsequently, 704 

323 MOPEX catchments in the US were used as a large-sample hydrological study to further validate the 705 

effectiveness of our proposed runoff generation modules.   706 

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to 707 

reproduce the observed hydrograph. Comparing the estimated contributing area of TOPMODEL with the 708 

HSC module, we found that HSC module performed better to reproduce saturated area variation, in terms 709 

of the correlation coefficient and spatial patterns. This likely indicates that HAND maybe a better indicator 710 

to distinguish hydrological similarity than TWI.  711 

For the 323 MOPEX catchments, HSC improved the averaged validation value of IKGE from 0.62 (HBV) and 712 

0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in 713 

not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC 714 

outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better 715 

performance. Interestingly, we found that the HSC module showed better performance in the catchments 716 
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with gentle topography, less forest cover, and larger aridity index. Not surprisingly, the IKGE of HSC-MCT 717 

model was slightly reduced to 0.59, due to the non-calibrated SuMax, but still comparably well performed 718 

as HBV (0.62) and TOPMODEL (0.61). This illustrates the robustness of both the HSC approach to derive 719 

the spatial distribution of the root zone storage capacity (β) and the efficiency of the MCT method to 720 

estimate the root zone storage capacity (SuMax).  721 
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 1028 

 1029 

Table 1. The parameters of the models, and their prior ranges for calibration. (*SuMax is a parameter in HBV, 1030 

TOPMODEL and the HSC model, but HSC-MCT model does not have SuMax as a free parameter; ** β is a parameter in 1031 

HBV model, but not in TOPMODEL, HSC and HSC-MCT models) 1032 

Parameter Explanation  Prior range for calibration 

SiMax (mm) Maximum interception capacity 2 

SuMax (mm) * The root zone storage capacity (10, 1000) 

β (-)** The shape of the storage capacity curve (0.01, 5)  

Ce (-) Soil moisture threshold for reduction of evaporation (0.1, 1) 

D (-) Splitter to fast and slow response reservoirs (0, 1) 

TlagF (d) Lag time from rainfall to peak flow (0, 10) 

Kf (d) The fast recession coefficient (1, 20) 

Ks (d) The slow recession coefficient (20, 400) 

 1033 
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 1034 

Table 2. The water balance and constitutive equations used in models. (Function (15)* is used in the HBV model, but 1035 

not used in the TOPMODEL, HSC and HSC-MCT models) 1036 

reservoirs Water balance equations Constitutive equations 

Interception  

reservoir 

d

d

i
i e

S
P E P

t
   (8) 

(9) 

0;      

;    

i iMax

e

i iMax

S S
P

P S S


 



 (10) 

Unsaturated 

 reservoir 

u
e a u

d

d

S
P E R

t
    (11) u u

e uMax

R S

P S


 

  
 

 (12)* 

(13) 

Splitter and  

Lag function 

 (17); (14) 

(15) 

(16) 

Fast reservoir 
f

f f

d

d

S
R Q

t
   (17) 

(18) 

Slow reservoir 
(19) 

(20) 

 1037 

Table 3. Data source of the MOPEX catchments.  1038 

Data  Unit  Resources  Website Reference  

Daily precipitation  mm/d MOPEX http://www.nws.noaa.gov/oh

d/mopex/mo_datasets.htm 

(Duan et al., 2006) 

Daily maximum 

temperature  

oC MOPEX Same as above Same as above 
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http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm
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Daily minimum 

temperature 

oC MOPEX Same as above Same as above 

Daily runoff mm/d MOPEX Same as above Same as above 

Aridity index  - MOPEX Same as above Same as above 

DEM m USGS http://earthexplorer.usgs.gov/ - 

Slope  degree USGS Same as above - 

K factor of soil  - USGS http://water.usgs.gov/GIS/metad

ata/usgswrd/XML/muid.xml 

(Wolock, 1997; Gao et 

al., 2018) 

Percentage of forest 

cover 

% NLCD http://www.mrlc.gov/ (Homer et al., 2015; Gao 

et al., 2018) 

Stream density  Km/km2 Horizon 

Systems 

Corporation 

http://www.horizon-

systems.com/nhdplus/ 

- 

Depth to bedrock cm STATSGO http://www.soilinfo.psu.edu/ind

ex.cgi?soil_data&conus&data_co

v&dtb 

(Schwarz et al., 1995; 

Gao et al., 2018) 
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 1040 

Table 4. Impacts of MOPEX catchment characteristics on model performance (HSC, HBV, and TOPMODEL) 1041 

Catchment 

characteristics  

HSC > HBV HSC ≈ HBV HSC < HBV HSC > 

TOPMODEL 

HSC ≈ 

TOPMODEL 

HSC < 

TOPMODEL 

Averaged 

HAND (m) 37 71 - 27 69 193 

Averaged slope 

(degree) 4.0 5.7 - 3.6 5.6 13.5 

Averaged 

elevation (m) 454 395 - 469 393 740 

Averaged K-

factor (-) 0.28 0.29 - 0.29 0.29 0.25 

Forest 

proportion (%) 22 43 - 14 43 68 

Aridity index (-) 1.1 0.9 - 1.3 0.9 0.8 

Stream density 

(-) 0.72 0.81 - 0.77 0.80 0.83 
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Averaged 

depth to rock 

(cm)  192 219 - 210 215 333 

 1042 

 1043 

Figure 1. The variation of plant rooting depths along a hillslope profile, showing the impact of HAND 1044 

(Height Above the Nearest Drainage) on rooting depth. (Taken from Fan et al., 2017 by permission of PNAS) 1045 

 1046 

Figure 2. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the representative 1047 

hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows the relationship 1048 



40 
 

between HAND bands and their corresponded area fraction; c) shows the relationship between storage capacity-1049 

area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly increases with 1050 

HAND values.  1051 

 1052 

 1053 

 1054 

Figure 3. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (Su) 1055 

and saturated area (As) in different soil moisture conditions. In d), 20 different Su-As conditions are plotted, which 1056 

allow us to estimate As from Su.  1057 

 1058 
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 1059 

Figure 4. The procedures estimating runoff generation by the HSC model and its two hypotheses.  1060 

 1061 

 1062 

Figure 5. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL, HSC, 1063 

and HSC -MCT). HBV-type has SuMax and beta two free parameters; TOPMODEL and HSC models have SuMax as one 1064 
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free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and 1065 

make fair comparison, the interception storage capacity (SiMax) was fixed as 2mm.  1066 

 1067 

 1068 

 1069 

Figure 6. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM) 1070 

of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the 1071 

height above the nearest drainage (HAND) map of the Bruntland Burn catchment.  1072 

 1073 

 1074 
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 1075 

Figure 7. The measured saturated areas and the simulated contributing areas (black) by TOPMODEL and HSC models.  1076 

 1077 

 1078 
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 1079 

Figure 8. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure). 1080 

The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).  1081 

 1082 

 1083 

Figure 9. a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated 1084 

hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line); b) the 1085 

comparison of the observed saturated area of 7 days (black dots) and simulated relative soil moistures, i.e. HBV (blue 1086 

line), TOPMODEL (green line and dots), HSC (red line and dots).  1087 
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 1088 

 1089 

 1090 

Figure 10. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and HSC 1091 

models.  1092 

 1093 

 1094 

 1095 

 1096 

Figure 11. The Height Above the Nearest Drainage (HAND) map of the CONUS.  1097 
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 1098 

  1099 

 1100 

Figure 12. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area 1101 

fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the Su-As curves of the HSC 1102 

model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.  1103 

  1104 

 1105 

Figure 13. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models 1106 

 1107 
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 1108 

Figure 14. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV 1109 

and TOPMODEL, for the 323 MOPEX catchments.  1110 


