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Dear Editor, 1 

 2 

Thank you very much for your time and efforts regarding our manuscript. We highly appreciate 3 

the constructive comments from three reviewers that offer us the opportunity to clarify some 4 

concerns and further improve our manuscript.  5 

Please find enclosed our detailed point-by-point responses to all the comments, as well as the 6 

uploaded revised version of our manuscript. The comments are black, our response in blue. For 7 

easy review, we have also used the "Track Changes" function in the revised manuscript to make 8 

our revisions more easily visible. The modifications are mainly threefold:  9 

1. The motivation was emphasized by adding Figure 1 taken from Fan et al., PNAS 2017, 10 

showing the increase of rooting depth with the increase of HAND in most parts of hillslope. 11 

The HSC module provides a rational from an ecological perspective to understand the linkage 12 

between large-sample hillslope ecological observations and the curve of root zone storage 13 

capacity distribution (Figure 1, 2, 3) 14 

2. The impact of catchment characteristics on HSC model performance was analyzed, including 15 

topography (averaged elevation, averaged HAND, averaged slope), geology (averaged depth 16 

to rock), soil texture (K factor), land use (forest cover proportion), and stream density. It was 17 

found that HSC performs better in the catchments with gentle topography, less forest cover 18 

and arid climate.  19 

3. The discussion was improved, on the model comparison between HSC and TOPMODEL in 20 

the Bruntland Burn catchment.  21 

We hope responses and revisions will satisfy all reviewers’ comments. Thanks again and we are 22 

looking forward to receiving your decision. 23 

 24 

Yours sincerely, 25 

Hongkai Gao on behalf of all the co-authors  26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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Anonymous Referee #1  35 

accepted as is 36 

 37 

Anonymous Referee #2 38 

I am appreciated that the authors add more explanations and discussions to improve the manuscript. 39 

However, the benefits from the application of the new runoff generation module are still not clear to 40 

me. The authors discussed the model uncertainty in the introduction section, while the results have not 41 

addressed this issue in their manuscript. The ability of the proposed module to improve the 42 

conceptualization of real catchment behaviors in the hydrological model is not convincing. Some of 43 

other concerns are listed as follow. 44 

Reply: We thank the Anonymous Referee #2 for his/her further comments and suggestions on the 45 

manuscript. Our detailed replies can be found below.  46 

 47 

1. The authors defined ‘calibration free’ as one of the major sell points of their work. However, the 48 

benefits from the reduced calibration work need to be further interpreted in the results. After the 49 

integration of the proposed runoff generation module, the hydrological model still needs calibration. 50 

The computation cost caused by the preparation of the HAND curves is even higher than the 51 

computation cost reduced by the smaller parameter space. For the practical application of hydrological 52 

modeling, running automatic calibration without any pre-calculation is more preferable, unless the 53 

authors can provide poofs for that the new runoff generation module is more close to the realism in the 54 

catchment. Figures 6-9 compared the simulated and observed saturated areas by various modules. 55 

However, I would say the HSC module has not shown higher performance than the Topmodel in Figures 56 

8-9. The Topmodel shows higher performance at low saturated areas (Fig. 9a). Figure 6 has not 57 

evaluated the distribution of saturated areas produced by the HBV model, which can be also set up at 58 

grid scale. Figure 7 does not make any sense, considering observation is missing. 59 

 60 

Motivation and rational of HSC 61 

For the motivation of this study, we added a figure (Figure 1), taken from Fan et al., 2017 (with 62 

permission from PNAS), showing the increase of rooting depth with the increase of HAND in most parts 63 

of hillslope, only except for the very high HAND hillslopes. Figure 1 is the result of thousands of 64 

ecological measurements at global scale, which illustrates that the assumption of HSC likely fits well with 65 

catchment realism supported by a large dataset of field observations. The HSC module provides a 66 

rational from an ecological perspective to understand the linkage and mechanism between large-sample 67 

hillslope ecological observations and the curve of root zone storage capacity distribution (Figure 1, 2, 3). 68 

The benefits of the new HSC module are two- fold. From a technical point of view, the HSC allows us to 69 

make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual 70 

hydrological models (e.g. HBV, Xinanjiang etc). But as the reviewer pointed out (which we also 71 

recognized) there are other modules with relatively parsimonious parameterizations (e.g. TOPMODEL 72 
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and GR4J), that can work well in terms of model performance. In contrast, the HSC module, 73 

furthermore, from a scientific point of view, provides us with a new perspective on the linkage between 74 

root zone storage capacity in both hillslopes and at catchment scales (long-term ecosystem evolution) 75 

with insights into runoff generation (event scale rainfall-runoff generation).  76 

Further asking questions of “why” rather than “what” likely leads to more useful insights and a new way 77 

forward (McDonnell et al., 2007). Catchments are geomorphological and even ecological systems whose 78 

parts are inter-related due to catchment self-organization and co-evolution (Sivapalan and Blöschl, 79 

2015; Savenije and Hrachowitz, 2017). 80 

Computational cost  81 

The computational cost of the HSC is more expensive than HBV, and similar to TOPMODEL, due to the 82 

cost of preprocessed topographic analysis. But once the Su-As curve is completed, the computational 83 

cost is quite comparable with HBV.  84 

Interpretation of Figure 6 85 

For Figure 6 (now Figure 7 in the revised manuscript), we may politely disagree with the Anonymous 86 

Reviewer 2. The HBV cannot generate the distribution of saturated areas at catchment scale. Since HBV 87 

only calculates the runoff coefficient of certain rainfall events in a lumped way. It cannot map out the 88 

saturated area variation. We think it is still worthwhile to compare the contributing area simulated by 89 

the new HSC module and the TOPMODEL, since TOPMODEL is a benchmark in this study. Also, it might 90 

be interesting to show the simulated contributing area compared to the observed saturated area, 91 

despite that they are not exactly the same. In theory, the observed saturated area should be within the 92 

simulated contributing area, due to the fact that the saturated soil moisture is always larger than field 93 

capacity. From this point of view, we show that the observed saturated area is almost always within the 94 

contributing area simulated by HSC, but TOPMODEL missed this important feature (July 2 and 95 

September 2 in 2008) supporting our statement that HSC performed better in reproducing saturated 96 

area variation.  97 

We rephrased the discussion on model comparison between HSC and TOPMODEL. More details can be 98 

found in Line 427-430, 666-668 in the revised manuscript (clear version hereinafter). 99 

 100 

2. The comparable or better performance produced by the model coupled with the proposed 101 

runoff generation module may be caused by either the application of the new runoff generation module 102 

or the calibration run with less parameters. The automatic calibration algorithm could produce higher 103 

performance when the calibration parameter space is reduced. This need to be further analyzed. 104 

New module or less parameter? 105 

This is indeed a very good point. Parsimonious models (e.g. the GR4J, ref. Perrin et al., 2003), with 106 

empirical curves similar to the HSC, likely result in good model performance. Parameter identifiability in 107 

calibration is one of the reasons. However, the rationale of most models is still largely unknown, and 108 

lack of the physically explanation to interpret these empirical curves described by mathematical 109 

functions (e.g. Equation 3 in Perrin et al., 2003). (Line 576-580). 110 
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 111 

3. The motivation of this sturdy is not clear enough. With the proposed module, more calculation 112 

work is needed and produced the same or bit better model performance. The model uncertainty has not 113 

been analyzed, and the transferability of the runoff generation module has not been investigated in this 114 

study. 115 

In general, limitations in the current work certainly prevented more scientific contributions from this 116 

study. The authors should pay more efforts to make their motivation and results more convincing. 117 

Motivation  118 

The motivation can be found in our reply to the first comment and with all due respect the Reviewer 119 

does seem to miss the main point, which we tried to further emphasize in the revised manuscript: Since 120 

the HSC is an a priori module, which we do not calibrate, the module can be perfectly “transferred” to 121 

other catchments without calibration. Hence, the large sample application!  122 

 123 

 124 

Anonymous Referee #3 125 

I would like to thank the authors for their revision, particularly improving discussion section. For some of 126 

my comments, however, I do not see a clear response: 127 

1) I’m still not convinced by the use of BB basin to support the conclusion that the new model 128 

(HSC) outperforms the TOPMODEL (“We found that the HSC performed better in reproducing the spatio- 129 

temporal pattern of the observed saturated areas in the BB compared to TOPMODEL”). The Figures 6 130 

and 8 clearly indicate that both models are significantly overestimating what is considered as ground 131 

truth here (observed pattern of saturated area). I do not understand well the argument that the values 132 

are not directly comparable. If so, why to compare them? This part is not well linked with the validation 133 

of the new approach in its current form. 134 

Thank you for your comment, which we tried to clarify in our revised manuscript. We have rephrased 135 

the statements in Section 4.3 and Line 640-644.  136 

Section 4.3:  137 

Comparing the estimated contributing area of TOPMODEL with the HSC module, we found the results of 138 

the HSC correlates better (R2=0.60, IKGE=-3.0) with the observed saturated areas than TOPMODEL 139 

(R2=0.50, IKGE=-3.4) (Figure 10). For spatial patterns, the HSC contributing area is located close to the 140 

river network, and reflects the spatial pattern of observed saturated area. While TOPMODEL results are 141 

more scattered, probably due to the sensitivity of TWI to DEM resolution (Figure 7). The HSC is more 142 

discriminating in terms of less frequently giving an unrealistic 100% catchment saturation retaining parts 143 

of the unsaturated upper hillslopes.  144 

Line 640-644: 145 

Interestingly, in theory the observed saturated area should be within the simulated contributing area, 146 

due to the fact that the saturated soil moisture is always larger than field capacity. From this point of 147 



5 
 

view, the observed saturated area is smaller and within the contributing area simulated by HSC, but 148 

TOPMODEL missed this important feature. 149 

 150 

2) In some places of section 5, it will be interesting to see more specific interpretation of the 151 

results. E.g. for statement “Figure 11c interestingly shows that in some catchments, there is almost no 152 

threshold…” it will interesting to see some more specific generalisation for which catchments it applies. 153 

Or “…where the HSC model performed better are mostly located in the Great Plains, with modest 154 

sloping (4.0 degree)…” Does it apply/relate to all catchments with slope 4degree or even less (“HSC 155 

outperformed catchments have flat terrain (2.3 degree) with moderate averaged HAND value (26m)”? 156 

Some more evaluations (or more specific formulations) allowing some more specific generalisation of 157 

results will be interesting here. Where one can expect the new model is better/worser than 158 

TOPMODEL/HBV in other regions – outside US?  159 

This is an excellent question, thank you, which helped us to improve the presentation of this work. We 160 

did a systematic analysis between model performance and catchment characteristics included in the 161 

revised manuscript. See Line 494-505, and the new Table 3 and Table 4.  162 

 163 

3) Figure 6 legend is still confusing for me. Would it be possible to make all three 164 

columns/methods of maps just with binary colours (is/is not saturated)? 165 

Thank you. This was changed in the revised manuscript.  166 

 167 

4) Please add the new references to the list. 168 

Done.  169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 
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Abstract  195 

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land 196 

surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel 197 

and simple topography-driven runoff generation parameterization – the HAND-based Storage Capacity 198 

curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify 199 

hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module 200 

in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve 201 

Technique (MCT) to estimate root zone storage capacity (SuMax), we developed a calibration-free runoff 202 

generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for 203 

comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked 204 

against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-205 

mapped saturation area extent. We found that the HSC, HBV and TOPMODEL all perform welled better in 206 

to reproducing reproduce the the spatio-temporal pattern of the observed saturated areas in the 207 

BBhydrograph, but the HSC module performs better into reproducinge saturated area variation, in terms 208 
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of correlation coefficient and spatial patterns compared to TOPMODEL. The HSC and HSC-MCT modules 209 

were subsequently tested for 323 MOPEX catchments in the US, with diverse climate, soil, vegetation and 210 

geological characteristics. Comparing with HBV and TOPMODELIn comparison with HBV and TOPMODEL, 211 

the HSC performs better in both calibration and validation, particularlyespecially in the catchments with 212 

gentle topography, less forest cover and arid climate. Despite having no calibrated parameters, the HSC-213 

MCT module performed comparably well with calibrated modules, highlighting the robustness of the HSC 214 

parameterization to describe the spatial distribution of the root zone storage capacity and the efficiency 215 

of the MCT method to estimate SuMax. Moreover, the HSC module facilitated visualization of the saturated 216 

area, which has the potential to be used for broader hydrological, ecological, climatological, 217 

geomorphological, and biogeochemical studies. This novel and calibration-free runoff generation module 218 

helps to improveparameterization will benefit the PrdictionPrediction oin Ungauged Basins, and has great 219 

potential to be generalized at theto global scale.   220 

 221 

1 Introduction  222 

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge 223 

in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust 224 

runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers. 225 

Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins 226 

(PUB) (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013), it is not uncommon that models 227 

become increasingly complicated in order to capture the details of hydrological processes shown by 228 

empirical studies (McDonnell, 2007; Sivapalan, 2009; Yu et al., 2014). More detailed process 229 

conceptualization normally demands higher data requirements than our standard climatological and 230 

hydrological networks can provide, leading to more calibrated parameters and a probable increase in 231 

model uncertainty (Sivapalan, 2009).  232 

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation. 233 

It is a property emerging at larger scales, describing the temporal dynamics of how spatially 234 

heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm 235 

runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Blöschl, 2004; 236 

Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and 237 

van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including 238 
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but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld 239 

and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and 240 

McDonnell, 2007), and land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel 241 

et al., 2014), but also by the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al., 242 

2011; McMillan et al., 2014; Nippgen et al., 2015). 243 

In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of 244 

topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven 245 

and Freer, 2001) uses topographic wetness index (TWI) to distinguish hydrologic similarity; and SHE 246 

(Abbott et al. 1986) and tRIBS (Ivanov et al. 2004; Vivoni et al. 2005) use partial differential equations to 247 

describe the water movement based on pressure gradients obtained by topography; and the 248 

Representative Elementary Watershed (REW) approach divides catchment into a number of REWs to 249 

build balance and constitutive equations for hydrological simulation (Reggiani et al., 1999; Zhang and 250 

Savenije, 2005; Tian et al., 2008). As the relevant model parameters such as local topographic slope and 251 

hydraulic conductivity can, in spite of several unresolved issues for example relating to the differences in 252 

the observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), be obtained from direct 253 

observations, they could in principle be applied without calibration.  254 

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional 255 

relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional 256 

relationships require parameters that are effective on the modelling scale and that can largely not be 257 

directly determined with small-scale field observations (cf. Beven, 1995), thus traditionally determined 258 

by calibration. However, frequently the number of observed variables for model calibration is, if 259 

available at all, limited to time series of stream flow. The absence of more variables to constrain models 260 

results in such models being ill-posed inverse problems. Equifinality in parameterization and in the 261 

choice of parameters then results in considerable model uncertainty (e.g. Beven, 1993, 2006). To limit 262 

this problem and to also allow predictions in the vast majority of ungauged catchments, it is therefore 263 

desirable to find ways to directly infer effective model parameters at the modelling scale from readily 264 

available data (Hrachowitz et al., 2013).  265 

The component that is central for establishing connectivity in most top-down models is the soil moisture 266 

routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and 267 

partitions water into evaporative fluxes, groundwater recharge and fast lateral storm flow generating 268 

runoff (Gao et al., 2018a; Shao et al., 2018). The latter of which is critical from the aspect of connectivity. 269 
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In majority regions, Hortonian overland flow (HOF, i.e. infiltration excess overland flow) is of minor 270 

importance(Dunne and Black, 1970; Sklash and Farvolden, 1979; Beven, 2004; Burt and McDonnell, 271 

2015), even in arid regions where often most locally generated HOF is re-infiltrated while flowing on 272 

hillslopes (Liu et al., 2012) and never reaches the stream channel network. Thus the term saturation 273 

excess flow (SEF) can represent, depending on the model and the area of application, different 274 

processes, such as saturation overland flow, preferential flow, flow through shallow, high permeability 275 

soil layers or combinations thereof. The interplay between water volumes that are stored and those that 276 

are released laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down 277 

models described by functions between water stored in the unsaturated root zone (“soil moisture”) and 278 

the areal proportion of heterogeneous, local storage thresholds that are exceeded and thus 279 

“connected” (Zhao et al., 1980). In other words, in those parts of a catchment where the storage 280 

threshold is exceeded will generate lateral flows, and can alternatively be interpreted as runoff 281 

coefficient (e.g. Ponce and Hawkins, 1996; Perrin and Andreassian, 2001; Fenicia et al., 2007; Bergström 282 

and Lindström, 2015). Thus the idea goes back to the variable contributing area concept, assuming that 283 

only partial areas of a catchment, where soils are saturated and thus storage thresholds are exceeded, 284 

contribute to runoff (Hewlett, 1961; Dunne and Black, 1970; Hewlett and Troendle, 1975). Although 285 

originally developed for catchments dominated by saturation overland flow, the extension of the 286 

concept to subsurface connectivity, posing that surface and subsurface connectivity are “two sides of 287 

the same coin” (McDonnell, 2013), proved highly valuable for models such as Xinanjiang (Zhao et al., 288 

1980), HBV (Bergström and Forsman, 1973; Bergström and Lindström, 2015), SCS-CN (Ponce and 289 

Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) and GR4J (Perrin and Andreassian et al., 290 

2001).  291 

Among these models, connectivity is formulated in a general form as CR=f(SU(t),SuMax,β), where CR is the 292 

runoff coefficient, i.e. the proportion of the catchment generating runoff, SU(t) is the catchment water 293 

content in the unsaturated root zone at any time t, SuMax is a parameter representing the total storage 294 

capacity in the unsaturated root zone and β is a shape parameter, representing the spatial distribution 295 

of heterogeneous storage capacities in the unsaturated root zone. The parameters of these functions 296 

are typically calibrated. In spite of being the core component of soil moisture routines in many top-down 297 

models, little effort was previously invested to find ways to determine the parameters at the catchment-298 

scale directly from available data. An important step towards understanding and quantifying 299 

connectivity pattern directly based on observations was recently achieved by intensive experimental 300 

work in the Tenderfoot Creek catchments in Montana, US. In their work Jencso et al. (2009) were able to 301 
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show that connectivity of individual hillslopes in their headwater catchments is highly related to their 302 

respective upslope accumulated areas. Using this close relationship, Smith et al. (2013) successfully 303 

developed a simple top-down model with very limited need for calibration, emphasizing the value of 304 

“enforcing field-based limits on model parameters” (Smith et al., 2016). Based on hydrological landscape 305 

analysis, FLEX-Topo model (Savenije, 2010) can dramatically reduce the need for calibration (Gharari et 306 

al., 2014), and hold considerable potential for spatial model transferability without the need for 307 

parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016). In a recent development, several 308 

studies suggest that SuMax can be robustly and directly inferred long term water balance data, by the 309 

Mass Curve Technique (MCT), without the need for further calibration (Gao et al., 2014; de Boer-Euser 310 

et al., 2016; Nijzink et al., 2016). This leaves shape parameter β as the only free calibration parameter 311 

for soil moisture routines of that form. Topography is often the dominant driver of water movement 312 

caused by prevailing hydraulic gradients. More crucially, topography usually provides an integrating 313 

indicator for hydrological behavior, since topography is usually closely related with other landscape 314 

elements, such as soil vegetation climate and even geology (Seibert et al., 2007; Savenije, 2010; Rempe 315 

and Dietrich, 2014; Gao et al., 2014b; Maxwell and Condon, 2016; Gomes, 2016). The Height Above the 316 

Nearest Drainage (HAND; Rennó et al., 2008; Nobre et al., 2011; Gharari et al., 2011), which can be 317 

computed from readily available digital elevation models (DEM), could potentially provide first order 318 

estimates of groundwater depth , as there is some experimental evidence that with increasing HAND, 319 

groundwater depths similarly increase (e.g. Haria and Shand, 2004; Martin et al., 2004;  Molenat et al., 320 

2005, 2008; Shand et al., 2005; Condon and Maxwell, 2015; Maxwell and Condon, 2016). HAND can be 321 

interpreted as a proxy of the hydraulic head and is thus potentially more hydrologically informative than 322 

the topographic elevation above sea level (Nobre et al., 2011). Compared with the TWI in TOPMODEL, 323 

HAND is an explicit measure of a physical feature linking terrain to water related potential energy for 324 

local drainage (Nobre et al., 2011). More interestingly, topographic structure emerges as a powerful 325 

force determining rooting depth under a given climate or within a biome (Figure 1), revealed by a global 326 

synthesis of 2,200 root observations of >1000 species ecological observations in global scale (Fan et al., 327 

2017). This leads us to think from ecological perspective to use the topographic information as an 328 

indicator for root zone spatial distribution without calibrating the β, and coupling it with the MCT 329 

method to estimate the SuMax, eventually create a calibration-free runoff generation module. 330 

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial 331 

distribution of storage capacities and therefore can be used to develop a new runoff generation module 332 

(HAND-based Storage Capacity curve, i.e. HSC); (2) the distribution of storage capacities determined by 333 
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HAND contains different information than the topographic wetness index; (3) the HSC together with water 334 

balance-based estimates of SuMax (MCT method) allow the formulation of calibration-free 335 

parameterizations of soil moisture routines in top-down models directly based on observations. All these 336 

hypotheses will be tested firstly in a small data-rich experimental catchment (the Bruntland Burn 337 

catchment in Scotland), and then apply the model to a wide range of larger MOPEX catchments (Model 338 

Parameter Estimation Experiment). 339 

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e. 340 

HSC and HSC-MCT, and two benchmark models (HBV, TOPMODEL). This section also includes the 341 

description of other modules (i.e. interception, evaporation and routing) in rainfall-runoff modelling, and 342 

the methods for model evaluation, calibration and validation. The Dataset section reviews the empirically-343 

based knowledge of the Bruntland Burn catchment in Scotland and the hydrometerological and 344 

topographic datasets of MOPEX catchments in the US for model comparison. The Results section presents 345 

the model comparison results. The Discussion section interprets the relation between rainfall-runoff 346 

processes and topography, catchment heterogeneity and simple model, and the implications and 347 

limitations of our proposed modules. The conclusions are briefly reviewed in the Summary and 348 

Conclusions section.  349 

2 Methods 350 

Based on our perceptual model that saturation excess flow (SEF) is the dominant runoff generation 351 

mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module. 352 

Subsequently, estimating the parameter of root zone storage capacity (SuMax) by the MCT method without 353 

calibration, the HSC-MCT was developed. In order to assess the performance of our proposed modules, 354 

two widely-used runoff generation modules, i.e. HBV power function and TOPMODEL module, were set 355 

as benchmarks. Other modules, i.e. interception, evaporation and routing, are kept with identical 356 

structure and parameterization for the four rainfall-runoff models (HBV, TOPMODEL, HSC, HSC-MCT, 357 

whose names are from their runoff generation modules), to independently diagnose the difference among 358 

runoff generation modules (Clark et al., 2008; 2010).  359 

2.1 Two benchmark modules 360 

HBV power function  361 
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The HBV runoff generation module applies an empirical power function to estimate the nonlinear 362 

relationship between the runoff coefficient and soil moisture (Bergström and Forsman, 1973; Bergström 363 

and Lindström, 2015). The function is written as:  364 

  ( )u
s

uMax

S
A

S

        (1) 365 

Where As (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall 366 

event; Su (mm) represents the averaged root zone soil moisture; SuMax (mm) is the averaged root zone 367 

storage capacity of the studied catchment; β (-) is the parameter determining the shape of the power 368 

function. The prior range of β can be from 0.1 to 5. The Su - As has a linear relation while β equals to 1. And 369 

the shape becomes convex while the β is less than 1, and the shape turns to concave while the β is larger 370 

than 1. In most situations, SuMax and β are two free parameters, cannot be directly measured at the 371 

catchment scale, and need to be calibrated based on observed rainfall-runoff data.   372 

TOPMODEL module 373 

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at 374 

catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby, 375 

1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff 376 

generation potential. More specifically, the areas with larger TWI values tend to be saturated first and 377 

contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate 378 

runoff. The equations are written as follow: 379 

( )
ii uMax TW TWD D S I I         (2) 380 

  uMax uD S S        (3) 381 

 _ ;    while  0s s i i
A A D        (4) 382 

Where Di (mm) is the local storage deficit below saturation at specific location (i); 𝐷̅ (mm) is the averaged 383 

water deficit of the entire catchment (Equation 2), which equals to (SuMax - Su), as shown in Equation 3. ITWi 384 

is the local ITW value. TWI is the averaged TWI of the entire catchment. Equation 2 means in a certain soil 385 

moisture deficit condition for the entire catchment (𝐷̅), the soil moisture deficit of a specific location (Di), 386 

is determined by the catchment topography (ITW and ITWi), and the root zone storage capacity (SuMax). 387 
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Therefore, the areas with Di less than zero are the saturated areas (As_i), equal to the contributing areas. 388 

The integration of the As_i areas (As), as presented in Equation 4, is the runoff contributing area, which 389 

equals to the runoff coefficient of that rainfall event.  390 

Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area 391 

(As) from the estimated relative soil moisture (Su/SuMax), and then map it back to the original TWI map, 392 

which makes it possible to test the simulated contributing area by field measurement. It is worth 393 

mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one, 394 

which combines the saturated and unsaturated soil components. 395 

2.2 HSC module 396 

In the HSC module, we assume 1) SEF is the dominant runoff generation mechanism, while surface 397 

overland flow (SOF) and subsurface flow (SSF) cannot be distinguished; 2) the local root zone storage 398 

capacity has a positive and linear relationship with HAND, from which we can derive the spatial 399 

distribution of the root zone storage capacity; 3) rainfall firstly feeds local soil moisture deficit, and no 400 

runoff can be generated before local soil moisture being saturated.  401 

Figure 21 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a 402 

real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage 403 

capacity, based on topographic analysis and the second assumption as mentioned in the preceding 404 

paragraph. Figure 32 shows the approach to derive the Su-As relation, which are detailed as follows.  405 

I. Generate HAND map. The HAND map, which represents the relative vertical distance to the 406 

nearest river channel, can be generated from DEM (Gharari et al., 2011). The stream initiation 407 

threshold area is a crucial parameter, determining the perennial river channel network 408 

(Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and significantly impacting the HAND 409 

values. In this study, the start area was chosen as 40ha for the BB catchment to maintain a close 410 

correspondence with observed stream network. And for the MOPEX catchments, the stream 411 

initiation area threshold is set as 500 grid cells (4.05 km2), which fills in the range of stream 412 

initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). HAND 413 

maps were then calculated from the elevation of each raster cell above nearest grid cell flagged 414 

as stream cell following the flow direction (Gharari et al., 2011).  415 

II. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in 416 

ascending order. Secondly, the sorted HAND values were evenly divided into n bands (e.g. 20 417 
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bands in this study), to make sure each HAND band has similar area. The averaged HAND value of 418 

each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and 419 

then plot the normalized HAND distribution curve (Figure 21b).  420 

III. Distribute SuMax to each HAND band (SuMax_i). As assumed, the normalized storage capacity of each 421 

HAND band (SuMax_i) increases with HAND value (Figure 21c). Based on this assumption, the 422 

unsaturated root zone storage capacity (SuMax) can be distributed to each HAND band as SuMax_i 423 

(Figure 32a). It is worth noting that SuMax needs to be calibrated in the HSC module, but free of 424 

calibration in the HSC-MCT module.  425 

IV. Derive the Su - As curve. With the number of s saturated HAND bands (Figure 32a-c), the soil 426 

moisture (Su) can be obtained by Equation 5; and saturated area proportion (As) can be obtained 427 

by Equation 6. 428 

𝑆u =
1

𝑛
[∑ 𝑆uMax_i

𝑠
𝑖=1 + 𝑆uMax_s(𝑛 − 𝑠)]      (5) 429 

𝐴s =
𝑠

𝑛
       (6) 430 

Where SuMax_s is the maximum SuMax_i of all the saturated HAND bands. Subsequently, the As - Su 431 

curve can be derived, and shown in Figure 32d.  432 

The SEF mechanism assumes that runoff is only generated from saturation areas, therefore the proportion 433 

of saturation area is equal to the runoff coefficient of that rainfall-runoff event. Based on the Su-As curve 434 

in Figure 2d3d, generated runoff can be calculated from root zone moisture (Su). The HSC module also 435 

allows us to map out the fluctuation of saturated areas by the simulated catchment average soil moisture. 436 

For each time step, the module can generate the simulated root zone moisture for the entire basin (Su). 437 

Based on the Su-As relationship (Figure 2d3d), we can map Su back to the saturated area proportion (As) 438 

and then visualize it in the original HAND map. Based on this conceptual model, we developed the 439 

computer program and created a procedural module. The technical roadmap can be found in Figure 34.  440 

2.3 HSC-MCT module  441 

The SuMax is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4J), which 442 

determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that 443 

SuMax represents the adaption of ecosystems to local climate. Ecosystems may design their SuMax based on 444 

the precipitation pattern and their water demand. The storage is neither too small to be mortal in dry 445 

seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we can 446 

estimate the SuMax without calibration, by the MCT method, from climatological and vegetation 447 
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information. More specifically, the average annual plant water demand in the dry season (SR) is 448 

determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal 449 

NDVI. Subsequently, based on the annual SR, the Gumbel distribution (Gumbel, 1935), frequently used for 450 

estimating hydrological extremes, was used to standardize the frequency of drought occurrence. SR20y, i.e. 451 

the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for 452 

SuMax due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly, 453 

1994), and the fact that SR20y has the best fit with SuMax . The SR20y of the MOPEX catchments can be found 454 

in the map of (Gao et al., 2014a).  455 

Eventually, with the MCT approach to estimate SuMax and the HSC curve to represent the root zone storage 456 

capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters. 457 

It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived Su-As relation, 458 

and their distinction lays in the methods to obtain SuMax. So far, the HBV power function module has 2 free 459 

parameters (SuMax, β). While the TOPMODEL and the HSC both have one free parameter (SuMax). Ultimately 460 

the HSC-MCT has no free parameter.  461 

2.4 Interception, evaporation and routing modules 462 

Except for the runoff generation module in the root zone reservoir (SUR), we need to consider other 463 

processes, including interception (SIR) before the SUR module, evaporation from the SUR and the response 464 

routine (SFR and SSR) after runoff generation from SUR (Figure 45). Precipitation is firstly intercepted by 465 

vegetation canopies. In this study, the interception was estimated by a threshold parameter (SiMax), set to 466 

2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9) 467 

(de Groen and Savenije, 2006). For the SUR reservoir, we can either use the HBV beta-function (Equation 468 

12), the runoff generation module of TOPMODEL (Equation 2-4) or the HSC module (Section 2.3) to 469 

partition precipitation into generated runoff (Ru) and infiltration. The actual evaporation (Ea) from the soil 470 

equals to the potential evaporation (Ep), if Su/SuMax is above a threshold (Ce), where Su is the soil moisture 471 

and SuMax is the catchment averaged storage capacity. And Ea linearly reduces with Su/SuMax, while Su/SuMax 472 

is below Ce (Equation 13). The Ep can be calculated by the Hargreaves equation (Hargreaves and Samani, 473 

1985), with maximum and minimum daily temperature as input. The generated runoff (Ru) is further split 474 

into two fluxes, including the flux to the fast response reservoir (Rf) and the flux to the slow response 475 

reservoir (Rs), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is 476 

estimated by a convolution delay function, with a delay time of TlagF. Subsequently, the fluxes into two 477 

different response reservoirs (SFR and SSR) were released by two linear equations between discharge and 478 
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storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from 479 

groundwater reservoir. The two discharges (Qf and Qs) generated the simulated streamflow (Qm). The 480 

model parameters are shown in Table 1, while the equations are given in Table 2. More detailed 481 

description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining 482 

that the only difference among the benchmark HBV type, TOPMODEL type, the HSC, and the HSC-MCT 483 

models is their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in 484 

TOPMODEL and HSC model, and 5 in the HSC-MCT model. 485 

2.5 Model evaluation, calibration, validation and models comparison 486 

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a 487 

more robust approach to quantifying model performance with different criteria than a single one. The 488 

Kling-Gupta efficiency (Gupta et al., 2009) (IKGE) was used as the criteria to evaluate model performance 489 

and as an objective function for calibration. The equation is written as: 490 

 
2 2 2

KGE 1 ( 1) ( 1) ( 1)I r          (7) 491 

Where r is the linear correlation coefficient between simulation and observation; 𝛼 (
m o/   ) is a 492 

measure of relative variability in the simulated and observed values, where σm is the standard deviation 493 

of simulated streamflow, and σo is the standard deviation of observed streamflow; ε is the ratio between 494 

the average value of simulated and observed data. And the IKGL (IKGE of the logarithmic flows) (Fenicia et 495 

al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation.  496 

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for 497 

the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were 498 

assumed to be the behavioral parameter sets and can equally represent model performance. The 499 

averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result 500 

of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number 501 

of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the 502 

number of initial samples was set to 210 and a total number of 50000 model iterations for all the 503 

catchment runs. For each catchment, the first half period of data was used for calibration, and the other 504 

half was used to do validation.  505 

In module comparison, we defined three categories: if the difference of IKGE of model A and model B in 506 

validation is less than 0.1, model A and B are regarded as “equally well”. If the IKGE of model A is larger 507 
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than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the IKGE of 508 

model A is less than model B in validation by -0.1 or less, model B is regarded to as outperforming model 509 

A. 510 

3 Dataset 511 

3.1 The Bruntland Burn catchment  512 

The 3.2 km2 Bruntland Burn catchment (Figure 56), located in north-eastern Scotland, was used as a 513 

benchmark study to test the models performance based on a rich data base of hydrological measurements. 514 

The Bruntland Burn is a typical upland catchment in North West Europe (e.g. Birkel et al., 2010), namely 515 

a combination of steep and rolling hillslopes and over-widened valley bottoms due to the glacial legacy of 516 

this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift deposits (e.g. till) 517 

containing a large amount of stored water superimposed on a relatively impermeable granitic solid 518 

geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas, which 519 

remain saturated throughout most of the year with a dominant near-surface runoff generation 520 

mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream 521 

network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy 522 

hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes 523 

do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water 524 

movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough 525 

grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months 526 

(May-August) generally being the driest (Ali et al., 2013). Snow makes up less than 10% of annual 527 

precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and 528 

annual discharge around 659 mm. The daily precipitation, potential evaporation, and discharge data range 529 

from January 1 in 2008 to September 30 in 2014. The data calibration period is from January 1, 2008 to 530 

December 31, 2010 is used as calibration, and the data from January 1, 2011 to September 30, 2014 is 531 

used as validation.  532 

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 56). 533 

There are 7 saturation area maps (Figure 67) (May 2, July 2, August 4, September 3, October 1, November 534 

26, in 2008, and January 21, in 2009), measured directly by the “squishy boot” method and field mapping 535 

by global positioning system (GPS), to delineate the boundary of saturation areas connected to the stream 536 

network (Birkel et al., 2010; Ali et al., 2013). These saturation area maps revealed a dynamic behavior of 537 
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expanding and contracting areas connected to the stream network that were used as a benchmark test 538 

for the HSC module. 539 

3.2 MOPEX dataset catchments  540 

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al., 541 

2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The 542 

longest time series range from 1948 to 2003. 323 catchments were used in this study (see the name list 543 

in SI), with areas between 67 and 10,329 km2, and excluding the catchments with data records <30 years, 544 

impacted by snowmelt or with extreme arid climate (aridity index Ep/P > 2). In order to analyzesee the 545 

impacts of catchment characteristics on model performance, except forexcluding hydrometeorology data, 546 

we also collected the datasets of topography, depth to rock, soil texture, land use, and stream density 547 

(Table 3). These characteristics help us to understand in which catchments the HSC performs better or 548 

worse than the benchmark models.  549 

Hydrometeorology data 550 

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al., 551 

2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The 552 

dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily 553 

streamflow. The longest time series range from 1948 to 2003. 323 catchments were used in this study 554 

(see the name list in SI), with areas between 67 and 10,329 km2, and excluding the catchments with data 555 

records <30 years, impacted by snowmelt or with extreme arid climate (aridity index Ep/P > 2). The daily 556 

streamflow was used to calibrate the free parameters, and validate the models.  557 

Topography data  558 

The Digital Elevation Model (DEM) of the CONUS in 90m resolution was download from the Earth Explorer 559 

of United States Geological Survey (USGS, http://earthexplorer.usgs.gov/). The HAND and TWI map can 560 

be generated from DEM. The averaged elevation and HAND are used to as two catchment characteristics.  561 

Soil texture  562 

Soil texture is complex. In this study, soil texture is synthetically represented by the K factor, since the K 563 

factor is a lumped soil erodibility factor which represents the soil profile reaction to soil detachment 564 

(Renard et al., 2011). Generally, the soils (high in clay and sand) have low K values, and soils with high silt 565 

http://earthexplorer.usgs.gov/
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content have larger K values. The averaged K factor for each catchment was calculated from soil survey 566 

information available from USGS (Wolock, 1997). 567 

Land use 568 

Land use data was obtained from National Land Cover Database (NLCD, http://www.mrlc.gov/nlcd.php). 569 

Forest plays an essential role in hydrological processes (Gao et al., 2018a), especially for the runoff 570 

generation (Brooks et al., 2010). Forest area proportion was utilized as an integrated indictor to represent 571 

the impact of vegetation cover on hydrological processes.  572 

Stream density 573 

Stream density (km/km2) is the total length of all the streams and rivers in a drainage basin divided by the 574 

total area of the drainage basin. Stream density data was obtained from Horizon Systems Corporation 575 

(http://www.horizon-systems.com/nhdplus/). 576 

Geology  577 

Bedrock is a relative impermeable layer, as the lower boundary of subsurface stormflow in the catchments 578 

where soil depth is shallow (Tromp-van Meerveld & McDonnell). The depth to bedrock, as an integrated 579 

geologic indicator, was accessed from STATSGO (State Soil Geographic, 580 

http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb) (Schwarz & Alexander, 1995). 581 

The averaged depth to bedrock for each catchment was calculated for further analysisbyusing the and 582 

used for further analysis.  583 

4 Results of the Bruntland Burn 584 

4.1 Topography analysis 585 

The generated HAND map, derived also from the DEM, is shown in Figure 56, with HAND values ranging 586 

from 0m to 234m. Based on the HAND map, we can derive the Su-As curve (Figure 78) by analyzing the 587 

HAND map with the method in Section 2.3. The TWI map of the BB (Figure 56) was generated from its 588 

DEM. Overall, the TWI map, ranging from -0.4 to 23.4, mainly differentiates the valley bottom areas with 589 

the highest TWI values from the steeper slopes. This is probably caused by the fine resolution of the DEM 590 

map in 2 m, since as previous research found that the sensitivity of TWI to DEM resolution (Sørensen and 591 

Seibert, 2007). From the TWI map, the frequency distribution function and the accumulative frequency 592 

distribution function can be derived (Figure 78), with one unit of TWI as interval.   593 

http://www.horizon-systems.com/nhdplus/
http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb
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4.2 Model performance 594 

It is found that all the three models (HBV, TOPMODEL, and HSC) can perform well into reproducinge the 595 

observed hydrograph (Figure 89). The IKGE of the three models are all around 0.66 in calibration, which is 596 

largely in line with other studies from the BB (Birkel et al, 2010; 2014). And the IKGL are 0.76, 0.72 and 0.74 597 

for HSC, HBV and TOPMODEL respectively in calibration. While in validation, IKGE of the three models are 598 

also around 0.66, while IKGL are 0.75, 0.70 and 0.65 for the three models. Since the measured rainfall-599 

runoff time series only lasts from 2008 to 2014, which is too short to estimate the SR20y (proxy for SuMax) 600 

by MCT approach (which needs long-term hydro-meteorological observation data,) the HSC-MCT model 601 

was not applied to theis catchment.  602 

Figure 8 shows the calibrated power curve by HBV (averaged beta=0.98) with the Su-As curve obtained 603 

from the HSC module. We found the two curves are largely comparable, especially while the relative soil 604 

moisture is low. This result demonstrates that for the BB catchment with glacial drift deposits and 605 

combined terrain of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve 606 

can essentially be derived from the Su-As curve of HSC module merely by topographic information without 607 

calibration.  608 

The normalized relative soil moisture of the three model simulations are presented in Figure 89. Their 609 

temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL 610 

has a larger variation, compared with HBV and HSC (Figure 89).  611 

Figure 7 shows the calibrated power curve from HBV (averaged beta=0.98) with the Su-As curve obtained 612 

from the HSC module. We found the two curves are largely comparable, especially while the relative soil 613 

moisture is low. This result demonstrates that for the BB with glacial drift deposits and combined terrain 614 

of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve can essentially be 615 

derived from the Su-As curve of HSC module merely by topographic information without calibration.  616 

4.3 Contributing area simulation 617 

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are 618 

shown in Figure 67, 98, 109. We found although both modules overestimated the contributing saturated 619 

areas, they can capture the temporal variation. For example, the smallest saturated area both observed 620 

and simulated occurred on July-02-2008, and the largest saturated area both occurred on January-21-621 

2009. Comparing the estimated contributing area of TOPMODEL with the HSC module, we found the 622 

results of the HSC correlates better (R2=0.60, IKGE=-3.0) with the observed saturated areas than TOPMODEL 623 
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(R2=0.50, IKGE=-3.4) (Figure 910). For spatial patterns, the HSC saturatedcontributing area simulated by 624 

HSC module is located nearclose to the river channel network, and reflects the spatial pattern of observed 625 

saturated area. ButWhile TOPMODEL results are more scattered, probably due to the sensitvitiysensitivity 626 

of TWI to DEM resolutionthe results of the HSC module are also more closely comparable with the 627 

observed saturated areas than TOPMODEL (Figure 67). TAnd the HSC is more discriminating in terms of 628 

less frequently giving an unrealistic 100% catchment saturation, and retaining parts of the unsaturated 629 

upper hillslopes. Based on these results benchmarking the HSC module with observed saturated area 630 

maps, we proceeded to test HSC for a wide range of climatically and geomorphologically different 631 

catchments across the US. 632 

5 Results from the MOPEX catchments  633 

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments  634 

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold 635 

height of 100m (recommended by Esri). The TWI map of the CONUS is produced (Figure S1). Based on the 636 

TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments with their catchment 637 

boundaries. And then the TWI frequency distribution and the accumulated frequency distribution of the 638 

323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were derived based on the 323 TWI 639 

maps. 640 

In Figure 1011, it is shown that the regions with large HAND values are located in Rocky Mountains and 641 

Appalachian Mountains, while the Great Plains hashas smaller HAND values. Interestingly, the Great Basin, 642 

especially in the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest 643 

drainage, although their elevations above seas level are high. From the CONUS HAND map, we clipped the 644 

HAND maps for the 323 MOPEX catchments with their catchment boundaries. We then plot their HAND-645 

area curves, following the procedures of I and II in Section 2.2. Figure 11a 12a shows the normalized HAND 646 

profiles of the 323 catchments.  647 

Based on the HAND profiles and the Step III in Section 2.2, we derived the normalized storage capacity 648 

distribution for all catchments (Figure 11b12b). Subsequently, the root zone moisture and saturated area 649 

relationship (As-Su) can be plotted by the method in Step IV of Section 2.2. Lastly, reversing the curve of 650 

As-Su to Su-As relation (Figure 11c12c), the latter one can be implemented to simulate runoff generation 651 

by soil moisture. Figure 11c 12c interestingly shows that in some catchments, there is almost no threshold 652 

behavior between rainfall and runoff generation, where the catchments are covered by large areas with 653 
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low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly 654 

and generate runoff without a precipitation–discharge threshold relationship characteristic of areas with 655 

higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished 656 

between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to 657 

rainfall is almost instantaneous.  658 

5.2 Model performance 659 

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data 660 

(Figure 1213) is comparable with the previous model comparison experiments, conducted with four 661 

rainfall-runoff models and four land surface parameterization schemes (Duan et al., 2006; Kollat et al., 662 

2012; Ye et al., 2014). The median value of IKGE of the HBV type model is 0.61 for calibration in the 323 663 

catchments (Figure 1213), and averaged IKGE in calibration is 0.62. In validation, the median and averaged 664 

values of IKGE are kept the same as calibration. The comparable performance of models in calibration and 665 

validation demonstrates the robustness of benchmark models and the parameter optimization algorithm 666 

(i.e. MOSCEM-UA). The TOPMODEL improves the median value of IKGE from 0.61 (HBV) to 0.67 in 667 

calibration, and from 0.61 (HBV) to 0.67 in validation. But the averaged values of IKGE for TOPMODEL are 668 

slightly decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving 669 

the HAND topographic information without calibrating the β parameter, improves the median value of 670 

IKGE to 0.68 for calibration and 0.67 for validation. The averaged values of IKGE in both calibration and 671 

validation are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore, 672 

Figure 12 13 demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median 673 

and averaged values were improved by the HSC module, but also the 25th and 75th percentiles and the 674 

lower whisker end, all have been improved. The performance gains on baseflow (IKGL) have been 675 

investigated and shown in the supplementary figure S3. These results indicate the HSC module improved 676 

model performance to reproduce hydrograph for both peak flow (IKGE) and baseflow (IKGL).  677 

Additionally, for HSC-MCT model, the median IKGE value is improved from 0.61 (HBV) to 0.65 in calibration, 678 

and from 0.61 (HBV) to 0.64 in validation, but not as well performed as TOPMODEL (0.67 for calibration 679 

and validation). For the averaged IKGE values, they were slightly reduced from 0.62 (HBV) and 0.61 680 

(TOPMODEL) to 0.59 for calibration and validation. Although the HSC-MCT did not perform as well as the 681 

HSC module, considering there is no free parameters to calibrate, the median IKGE value of 0.64 (HBV is 682 

0.61) and averaged IKGE of 0.59 (TOPMODEL is 0.61) are quite acceptable. In addition, the 25th and 75th 683 

percentiles and the lower whisker end of the HSC-MCT model are all improved compared to the HBV 684 
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model. Moreover, the largely comparable results between the HSC and the HSC-MCT modules 685 

demonstrate the feasibility of the MCT method to obtain the SuMax parameter and the potential for HSC-686 

MCT to be implemented in prediction of ungauged basins.  687 

Figure 13 14 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark 688 

models. We found that the HSC performs “equally well” as HBV (the difference of IKGE in validation ranges 689 

-0.1 ~ 0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the 690 

improvement of IKGE in validation is larger than 0.1). In not a single catchment did the calibrated HBV 691 

outperform the HSC. Comparing the HSC model with TOPMODEL, we found in 91% of the catchments that 692 

the two models have approximately equal performance. In 8% of the catchments, the HSC model 693 

outperformed TOPMODEL. Only in 1% of the catchments (two in the Appalachian Mountains and one in 694 

the Rocky Mountains in California), TOPMODEL performed better. 695 

In order to further explore the impact of catchment characteristics on model performance, we used 696 

topography (averaged HAND, averaged slope, and averaged elevation), soil (K-factor), land cover (forest 697 

area proportion), climate (aridity index), stream density, and geology (depth to rock) information to 698 

testsee the impact of catchment features on model performance. Table 4 clearly shows that compared 699 

with HBV, the 39 catchments with better performance have loweress HAND values (37m), more gentle 700 

slopes (4.0 degree), and smaller forest area (22%); while the elevation, K-factor, aridity index, stream 701 

density and depth to rock are almost similar. Also, in the catchments where HSC outperformed 702 

TOPMODEL, the catchments have smaller HAND (27m), more gentle slopes (3.6 degree), moderate 703 

elevation (469 m), less forest proportion (14%), and more arid climatearea (aridity index is 1.3). 704 

TOPMODEL performs better in only three catchments with larger HAND (193m), steeper slopes (13.5 705 

degree), higher elevation (740 m), more humid climate (aridity index is 0.8), and larger depth to rock (333 706 

cm). In summary,Summarily, the HSC showedhas better performance in the catchments with gentle 707 

topography and more arid climate.  708 

From the spatial comparison, we found that the catchments, where the HSC model performed better are 709 

mostly located in the Great Plains, with modest sloping (4.0 degree), while the other catchments have 710 

average slope of 8.1 degree. Comparing the HSC model with TOPMODEL, we found in 91% of the 711 

catchments that the two models have approximately equal performance. In 8% of the catchments, the 712 

HSC model outperformed TOPMODEL. Only in 1% of the catchments (two in Appalachian Mountain and 713 

one in the Rocky Mountain in California), TOPMODEL performed better. From spatial analysis, we found 714 

the HSC outperformed catchments have flat terrain (2.3 degree) with moderate averaged HAND value 715 
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(26m), while the TOPMODEL outperformed catchments have steep hillslope (19 degree) with large 716 

averaged HAND value (154m).  717 

Without calibration of SuMax, as expected, the performance of HSC-MCT module slightly deteriorates 718 

(Figure 1213). In comparison with HBV, the outperformed percentage ance reduced from 12% (HSC) to 4% 719 

(HSC-MCT), the approximately equal-well simulated catchments dropped from 88% to 79%, and the 720 

inferior performance increased from 0% to 17%. Also, in comparison with TOPMODEL, the better 721 

performance dropped from 8% (HSC model) to 7% (HSC-MCT model), the approximately equal catchments 722 

reduced from 91% to 72%, and the inferior performance increased from 1% to 21%. The inferiority of the 723 

HSC-MCT model is probably caused by the uncertainty of the MCT method for different ecosystems which 724 

have different survival strategies and use different return periods to bridge critical drought periods. By 725 

using ecosystem dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).  726 

 727 

To further explore the reason for the better performance of the HSC approach, we selected the 08171000 728 

catchment in Texas (Figure 1314), in which both the HSC module and the HSC-MCT module outperformed 729 

the two benchmark modules to reproduce the observed hydrograph (Figure S4). The HBV model 730 

dramatically underestimated the peak flows, with IKGE as 0.54, while TOPMODEL significantly 731 

overestimated the peak flows, with IKGE as 0.30. The HSC-MCT model improved the IKGE to 0.71, and the 732 

HSC model further enhanced IKGE to 0.74.   733 

Since the modules of interception, evaporation and routing are identical for the four models, the runoff 734 

generation modules are the key to understand the difference in model performance. Figure S5 shows the 735 

HBV β curve and the Su-As curve of the HSC model, as well the TWI frequency distribution. We found that 736 

with a given Su/SuMax, the HBV β function generates less contributing area than the HSC model, which 737 

explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep 738 

accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment 739 

area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that 740 

even with low soil moisture content (Su/SuMax), the contributing area by TOPMODEL is relatively large, 741 

leading to the sharply increased peak flows for all rainfall events.  742 
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6 Discussion 743 

6.1 Rainfall-runoff processes and topography  744 

We applied a novel approach to derive the relationship between soil moisture storage and the saturated 745 

area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher 746 

HAND values, due to the larger storage capacity in higher HAND locations. The outperformance of the HSC 747 

model over the benchmark HBV and TOPMODEL in modestly gentle sloping catchments indicates that that 748 

the HSC module likely has a higher realism than the calibrated HBV beta-function of the HBV model and 749 

the TWI of TOPMODEL in these regions. Very interestingly, Fan et al., (2017) presented an ecological 750 

observation in global synthesis of 2,200 root observations of >1000 speciesscale, and revealed the 751 

systematic variation of rooting depth along HAND (Fig.1, in Fan et al., 2017). Since rooting depth can be 752 

translated to root zone storage capacity through combination with soil plant-available water (Wang-753 

Erlandsson et al., 2016). This large sample dataset, from ecological perspective, provides a strong support 754 

for the assumption of the HSC model on modest gentle slopes, i.e. the increase of root zone storage 755 

capacity with HAND. More interestingly, on excessively drained uplands, rooting depth does not follow 756 

the same pattern, with shallow depth and limited to rain infiltration (Fig.1, in Fan et al., 2017). This could 757 

explain the inferior performance of HSC model to TOPMODEL in three MOPEX catchments (averaged 758 

HAND is 154 m) with excessively drained uplands (larger HAND, steeper slope, higher elevation, and 759 

deeper depth to rock), where Hortonian overland flow is likely the dominant mechanism, and the HSC 760 

assumption likely does not work well. This likely indicates that comparing with TWI, the HAND is closer to 761 

catchment realism to distinguishing hydrological similarity in gentle topography catchments. 762 

 763 

The FLEX-Topo model (Savenije, 2010) also uses HAND information as a topographic index to distinguish 764 

between landscape-related runoff processes, and has both similarity and differences with the HSC model. 765 

The results of the HSC model illustrate that the riparian areas are more prone to be saturated, which is 766 

consistent with the concept of the FLEX-Topo model. Another important similarity of the two models is 767 

their parallel model structure. In both models it is assumed that the upslope area has larger storage 768 

capacity, therefore the upper land generates runoff less and later than the lower land. In other words, in 769 

most cases, the local storage is saturated due to the local rainfall, instead of flow from upslope. The most 770 

obvious difference between the HSC and the FLEX-Topo is the approach towards discretization of a 771 

catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. wetlands, hillslopes 772 
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and plateau. This discretization method requires threshold values to classify landscapes, i.e. threshold 773 

values of HAND and slope, which leads to fixed and time-independent proportions of landscapes. The HSC 774 

model does not require landscape classification, which reduced the subjectivity in discretization and 775 

restricted the model complexity, as well as simultaneously allowing the fluctuation of saturated 776 

contributing areas (termed as wetlands in FLEX-Topo).  777 

Except for topography, it is also interesting to test the impact of climate, geological, vegetation, and flow 778 

characteristics on model efficiency. Gao et al., (2018) have conducted a study with the MOPEX dataset to 779 

test the impact of various catchment characteristics on the shape of the beta function, and found that the 780 

topographic information has the most significant impact on the shape of beta function. Therefore, we 781 

merely investigated the impact of topography on beta function and model efficiency in this study.  782 

6.2 Catchment heterogeneity and simple models 783 

Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of 784 

landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often 785 

consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots, 786 

soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and 787 

McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of 788 

runoff processes, and hydrological and land surface modelers are developing more and more complicated 789 

models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no 790 

compelling evidence to support the outperformance of sophisticated “physically-based” models in terms 791 

of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in 792 

rainfall-runoff simulation (Beven, 1989; Orth et al., 2015).  793 

 794 

But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts 795 

(Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not 796 

require complex laws (Chase, 1992; Passalacqua et al., 2015). P. Very parsimonious models (e.g. Perrin et 797 

al., 2003), with empirical curve shapes, likely results in good model performance., the reduction of Lless 798 

running space forParameter identifiability in calibration is probably one of the reasons admittedly. 799 

However,But the physical rationale of these parsimonious models it is still largely unknownn about the 800 

reasonrational of good performance these parsimonious models, and lacking aof the physically 801 
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explanation to interpret these empirical curves described by matchmaticmathematical functions (e.g. 802 

Equation XX3 in Perrin et al., 2003).  803 

The benefits of the new HSC module are two-fold. From a technical point of view, the HSC allows us to 804 

make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual 805 

hydrological models. Furthermore, the HSC module, from a scientific point of view, provides us with a new 806 

perspective on the linkage between the spatial distribution patterns of root zone storage capacity (long-807 

term ecosystem evolution) with associated runoff generation (event scale rainfall-runoff generation). the 808 

edsthe the -a Andwith sat with associated  809 

Asking questions of “why” rather than “what” likely leads to more useful insights and a new way forward 810 

(McDonnell et al., 2007). The HSC module givesprovides us with an explanationrationale from an ecological 811 

perspective to understand the linkage and mechanism between large-sample hillslope ecological observations 812 

and the curve of root zone storage capacity distribution (Figure 1, 2, 3). Catchment is a geomorphological and 813 

even an ecological system whose parts are related to each other probably due to catchment self-814 

organization and evolution (Sivapalan and Blöschl, 2015; Savenije and Hrachowitz, 2017). This encourages 815 

the hope that simplified concepts may be found adequate to describe and model the operation of the 816 

basin runoff generation process. It is clear that topography, with fractal characteristic (Rodriguez-Iturbe 817 

and Rinaldo, 1997), is often the dominant driver of runoff, as well as being a good integrated indicator for 818 

vegetation cover (Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone evaporation and 819 

transpiration deficits (Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), and even geology 820 

(Rempe and Dietrich, 2014; Gomes, 2016). Therefore, we argue that increasingly detailed topographic 821 

information is an excellent integrated indicator allowing modelers to continue systematically represent 822 

heterogeneities and simultaneously reduce model complexity. The model structure and parameterization 823 

of both HSC and TOPMODEL are simple, but not over simplified, as they capture probably likely the most 824 

dominant factor controlling runoff generation, i.e. the spatial heterogeneity of storage capacity. Hence, 825 

this study also sheds light on the possibility of moving beyond heterogeneity and process complexity 826 

(McDonnell et al., 2007), to simplify them into a succinct and a priori curve by taking advantage of 827 

catchment self-organization probably caused by co-evolution or the principle of maximum entropy 828 

production (Kleidon and Lorenz, 2004).  829 

6.3 Implications and limitation  830 

The calibration-free HSC-MCT runoff generation model module may enhances our ability to predict runoff 831 

in ungauged basins. Hydrological models still depend largely on observational data to feed statistical 832 
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analysis and calibrate the free parameters. ThisPUB is probably not a major issue in the developed world, 833 

with abundant of comprehensive measurements in many places, but for the developing world it requires 834 

prediction with sparse data and fragmentary knowledge. Topographic information with high spatial 835 

resolution is freely available globally, allowing us to implement the HSC model in global scale studies. In 836 

addition, thanks to the recent development, testing, and validation of remote sensing evaporation 837 

products in large spatial scale (e.g. Anderson et al., 2011; Hu and Jia, 2015), the SuMax estimation has 838 

become possible without in situ hydro-meteorological measurements (Wang-Erlandsson et al., 2016). 839 

These widely-accessible datasets make the global-scale implementation of HSC-MCT module promising.  840 

Although the new modules perform well in the BB and the MOPEX catchments, we do not intend to 841 

propose “a model fits all”. It is valuable to further test, to what extent the new concept (HAND is 842 

proportional to storage capacity) reflects different geomorphological and geological processes. Also tThe 843 

assumption of HSC, to some extent, is supported by large-sample ecological field observation (Fan et al., 844 

2017), but it never means the As-Su curve of HSC can perfectly fit the other existing modules curves (e.g. 845 

HBV and TOPMODEL). Unify all model approaches into one framework is the objective of several pioneer 846 

works (e.g. Clark, et al., 2010; Fenicia et al., 2011), but out of the scope of this study. Moreover, while 847 

estimating the runoff coefficient by the As-Su relation, rainfall in the early time may cause the increase of 848 

Su/SuMax and runoff coefficient (Moore, 1985; Wang, 2018). Therefore neglecting this influence factor, HBV 849 

module (Equation 1), TOPMODEL (Equation 2-4) and HSC module (Equation 5-6) theoretically 850 

underestimate the runoff coefficient, which needs to be further investigated. 851 

Finally, we should not ignore the limitations of the new module, although it has better performance and 852 

modelling consistency. 1) The threshold area for the initiating a stream was set as a constant value for the 853 

entire CONUS, but the variation of this value in different climate, geology and landscape classes 854 

(Montgomery and Dietrich, 1989; Helmlinger et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to 855 

be future investigated. 2) The discrepancy between observed and simulated saturation area needs to be 856 

further investigated, by utilizing more advanced field measurement and simultaneously refining the 857 

model assumption. To our understanding, there are two interpretations. Firstly, the overestimation of the 858 

HSC model is possibly because two runoff generation mechanisms – SOF and the SSF occur at the same 859 

time. However, the saturated area observed by the “squishy boot” method (Ali et al., 2013), probably only 860 

distinguished the areas where SOF occurred. Subsurface stormflow,, also contributinges to runoff but 861 

without surface runoff, cannot be observed by the “squishy boot” method. Thus, this mismatch between 862 

simulation and observation probably leads to this saturated area overestimation. The second 863 
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interpretation might be the different definition of “saturation”. The observed saturated areas are places 864 

where 100% of soil pore volume is filled by water. But the modelled saturation areas are located where 865 

soil moisture is above field capacity, and not necessarily 100% filled with water, which probably also 866 

results in the overestimation of saturated areas. Interestingly, in theory the observed saturated area 867 

shouldall be within the simulated contributing area, due to the fact that the saturated soil moisture is 868 

always larger than field capacity. From this point of view, the observed saturated area is smaller and within 869 

the contributing area boundary simulated by HSC, but TOPMODEL missed this important feature. 3) 4) 870 

Only the runoff generation module is calibration free, but the interception and response routines are still 871 

relyied on calibration. Although we kept the interception and response routine modules the same for the 872 

four models, the variation of other calibrated parameters (i.e. SiMax, D, Kf, Ks, TlagF) may also influence model 873 

performance in both calibration and validation. 45) The computational cost of the HSC and MCT is much 874 

more expensive than the HBV, and similar toas TOPMODEL, due to the cost of preprocessed topographic 875 

analysistwo benchmark models, especially comparing with HBV, because of the calculation of SuMax by the 876 

MCT method, and the topographic analysis of the HSC module. But once the Su-As curve is completed, the 877 

computation cost is quite comparable with HBV.  878 

7 Summary and conclusions  879 

In this study, we developed a simple and calibration-free hydrological module (HAND-based Storage 880 

Capacity curve, HSC) based on a relative new topographic index (HAND), which is not only an excellent 881 

physically-based indictor of for the hydrologic similarity and a physically-based index linking terrain with 882 

hydraulic gradient  at the hillslope and catchment scales, but also represents the spatial distribution 883 

pattern of root zone storage capacity supported by large-sample ecological observations. We assumed 884 

that the local storage capacity is closely linked to HAND. Based on this assumption and the HAND spatial 885 

distribution pattern, the soil moisture (Su) - saturated area (As) relation for each catchment was derived, 886 

which was used to estimate the As of specific rainfall event based on continuous calculation of Su. 887 

Subsequently, based on the Su-As relation, the  HAND-based Storage Capacity curve (HSC) module was 888 

developed. Then, applying the mass curve technique (MCT) approach, we estimated the root zone storage 889 

capacity (SuMax) from observable hydro-climatological and vegetation data, and coupled it with HSC to 890 

create the calibration-free HSC-MCT module, in which the SuMax was obtained by MCT, and the Su-As 891 

relation was obtained by HSC. The HBV beta-function and TWI-based TOPMODEL were used as two 892 

benchmarks to test the performance of HSC and HSC-MCT on both hydrograph simulation and ability to 893 

reproduce the contributing area, which was measured for different hydrometeorological conditions in the 894 
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Bruntland Burn catchment in Scotland. Subsequently, 323 MOPEX catchments in the US were used as a 895 

large- sample hydrological study to further validate the effectiveness of our proposed runoff generation 896 

modules.   897 

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to 898 

reproduce the observed hydrograph. Interestingly, the Su-As curves of HSC and HBV are largely comparable, 899 

which illustrates the HSC curve can likely be used as a proxy for the HBV beta-function. Comparing the 900 

estimated contributing area of TOPMODEL with the HSC module, we found that  the results of the HSC 901 

module performeds better to reproduce saturated area variation, in terms of the correlation coefficient 902 

correlateand spatial patterns. better (R2=0.60) with the observed saturated areas compared to 903 

TOPMODEL (R2=0.50). This likely indicates that HAND maybe a better indicator to distinguish hydrological 904 

similarity than TWI.  905 

For the 323 MOPEX catchments, HSC improved the averaged validation value of IKGE from 0.62 (HBV) and 906 

0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in 907 

not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC 908 

outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better 909 

performance. Interestingly, we found that the HSC module hasshowed better performance in the 910 

catchments with gentle topography, less forest cover, and a larger aridity index. Not surprisingly, the IKGE 911 

of HSC-MCT model was slightly reduced to 0.59, due to the non-calibrated SuMax, but still comparably well 912 

performed as HBV (0.62) and TOPMODEL (0.61). This illustrates the robustness of both the HSC approach 913 

to derive the spatial distribution of the root zone storage capacity (β) and the efficiency of the MCT 914 

method to estimate the root zone storage capacity (SuMax).  915 
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 1227 

 1228 

Table 1. The parameters of the models, and their prior ranges for calibration. (*SuMax is a parameter in HBV, 1229 

TOPMODEL and the HSC model, but HSC-MCT model does not have SuMax as a free parameter; ** β is a parameter in 1230 

HBV model, but not in TOPMODEL, HSC and HSC-MCT models) 1231 

Parameter Explanation  Prior range for calibration 

SiMax (mm) Maximum interception capacity 2 

SuMax (mm) * The root zone storage capacity (10, 1000) 

β (-)** The shape of the storage capacity curve (0.01, 5)  

Ce (-) Soil moisture threshold for reduction of evaporation (0.1, 1) 

D (-) Splitter to fast and slow response reservoirs (0, 1) 

TlagF (d) Lag time from rainfall to peak flow (0, 10) 

Kf (d) The fast recession coefficient (1, 20) 

Ks (d) The slow recession coefficient (20, 400) 

 1232 

 1233 

Table 2. The water balance and constitutive equations used in models. (Function (15)* is used in the HBV model, but 1234 

not used in the TOPMODEL, HSC and HSC-MCT models) 1235 

reservoirs Water balance equations Constitutive equations 
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Lag function 
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Table 3. Data source of the MOPEX catchments.  1237 

Data  Unit  Resources  Website Reference  

Daily precipitation  mm/d MOPEX http://www.nws.noaa.gov/oh

d/mopex/mo_datasets.htm 

(Duan et al., 2006) 

Daily maximum 

temperature  

oC MOPEX Same as above Same as above 

Daily minimum 

temperature 

oC MOPEX Same as above Same as above 

Daily runoff mm/d MOPEX Same as above Same as above 

Aridity index  - MOPEX Same as above Same as above 

DEM m USGS http://earthexplorer.usgs.gov/ - 

Slope  degree USGS Same as above - 

K factor of soil  - USGS http://water.usgs.gov/GIS/metad

ata/usgswrd/XML/muid.xml 

(Wolock, 1997; Gao et 

al., 2018) 

Percentage of forest 

cover 

% NLCD http://www.mrlc.gov/ (Homer et al., 2015; Gao 

et al., 2018) 

Stream density  Km/km2 Horizon 
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Corporation 

http://www.horizon-

systems.com/nhdplus/ 
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Depth to bedrock cm STATSGO http://www.soilinfo.psu.edu/ind

ex.cgi?soil_data&conus&data_co

v&dtb 

(Schwarz et al., 1995; 

Gao et al., 2018) 
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Table 4. Impacts of MOPEX catchment characteristics on model performance (HSC, HBV, and TOPMODEL) 1240 

Catchment 

characteristics  

HSC > HBV HSC ≈ HBV HSC < HBV HSC > 

TOPMODEL 

HSC ≈ 

TOPMODEL 

HSC < 

TOPMODEL 

Averaged 

HAND (m) 37 71 - 27 69 193 

Averaged slope 

(degree) 4.0 5.7 - 3.6 5.6 13.5 

Averaged 

elevation (m) 454 395 - 469 393 740 

Averaged K-

factor (-) 0.28 0.29 - 0.29 0.29 0.25 

Forest 

proportion (%) 22 43 - 14 43 68 

Aridity index (-) 1.1 0.9 - 1.3 0.9 0.8 

Stream density 

(-) 0.72 0.81 - 0.77 0.80 0.83 

Averaged 

depth to rock 

(cm)  192 219 - 210 215 333 
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 1242 

Figure 1. The variation of plant rooting depths along a hillslope profile, showing the impact of HAND 1243 

(Height Above the Nearest Drainage) on rooting depth. (Taken from Fan et al., 2017 by permission of PNAS) 1244 

 1245 

Figure 21. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the 1246 

representative hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows 1247 

the relationship between HAND bands and their corresponded area fraction; c) shows the relationship between 1248 

storage capacity-area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly 1249 

increases with HAND values.  1250 
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 1252 

 1253 

Figure 23. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (Su) 1254 

and saturated area (As) in different soil moisture conditions. In d), 20 different Su-As conditions are plotted, which 1255 

allow us to estimate As from Su.  1256 
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 1258 

Figure 34. The procedures estimating runoff generation by the HSC model and its two hypotheses.  1259 

 1260 

 1261 

Figure 45. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL, 1262 

HSC, and HSC -MCT). HBV-type has SuMax and beta two free parameters; TOPMODEL and HSC models have SuMax as 1263 



48 
 

one free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and 1264 

make fair comparison, the interception storage capacity (SiMax) was fixed as 2mm.  1265 

 1266 

 1267 

 1268 

Figure 56. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM) 1269 

of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the 1270 

height above the nearest drainage (HAND) map of the Bruntland Burn catchment.  1271 
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 1274 

Figure 67. The measured saturated areas and the simulated contributing areas (black) by TOPMODEL and HSC 1275 

models.  1276 

 1277 

 1278 
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 1279 

Figure 78. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure). 1280 

The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).  1281 

 1282 

 1283 

Figure 98. a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated 1284 

hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line); b) the 1285 

comparison of the observed saturated area of 7 days (black dots) and simulated relative soil moistures, i.e. HBV (blue 1286 

line), TOPMODEL (green line and dots), HSC (red line and dots).  1287 
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 1289 

 1290 

Figure 109. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and 1291 

HSC models.  1292 
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 1295 

 1296 

Figure 101. The Height Above the Nearest Drainage (HAND) map of the CONUS.  1297 
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 1298 

  1299 

 1300 

Figure 112. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area 1301 

fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the Su-As curves of the HSC 1302 

model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.  1303 

  1304 

 1305 

Figure 123. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models 1306 

 1307 
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 1308 

Figure 134. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV 1309 

and TOPMODEL, for the 323 MOPEX catchments.  1310 


