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Dear Editor,

Thank you very much for your time and efforts regarding our manuscript. We highly appreciate
the constructive comments from three reviewers that offer us the opportunity to clarify some
concerns and further improve our manuscript.

Please find enclosed our detailed point-by-point responses to all the comments, as well as the
uploaded revised version of our manuscript. The comments are black, our response in blue. For
easy review, we have also used the "Track Changes" function in the revised manuscript to make
our revisions more easily visible. The modifications are mainly threefold:

1.

The motivation was emphasized by adding Figure 1 taken from Fan et al., PNAS 2017,
showing the increase of rooting depth with the increase of HAND in most parts of hillslope.
The HSC module provides a rational from an ecological perspective to understand the linkage
between large-sample hillslope ecological observations and the curve of root zone storage
capacity distribution (Figure 1, 2, 3)

The impact of catchment characteristics on HSC model performance was analyzed, including
topography (averaged elevation, averaged HAND, averaged slope), geology (averaged depth
to rock), soil texture (K factor), land use (forest cover proportion), and stream density. It was
found that HSC performs better in the catchments with gentle topography, less forest cover
and arid climate.

The discussion was improved, on the model comparison between HSC and TOPMODEL in
the Bruntland Burn catchment.

We hope responses and revisions will satisfy all reviewers’ comments. Thanks again and we are
looking forward to receiving your decision.

Yours sincerely,

Hongkai Gao on behalf of all the co-authors
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Anonymous Referee #1

accepted as is

Anonymous Referee #2

| am appreciated that the authors add more explanations and discussions to improve the manuscript.
However, the benefits from the application of the new runoff generation module are still not clear to
me. The authors discussed the model uncertainty in the introduction section, while the results have not
addressed this issue in their manuscript. The ability of the proposed module to improve the
conceptualization of real catchment behaviors in the hydrological model is not convincing. Some of
other concerns are listed as follow.

Reply: We thank the Anonymous Referee #2 for his/her further comments and suggestions on the
manuscript. Our detailed replies can be found below.

1. The authors defined ‘calibration free’ as one of the major sell points of their work. However, the
benefits from the reduced calibration work need to be further interpreted in the results. After the
integration of the proposed runoff generation module, the hydrological model still needs calibration.
The computation cost caused by the preparation of the HAND curves is even higher than the
computation cost reduced by the smaller parameter space. For the practical application of hydrological
modeling, running automatic calibration without any pre-calculation is more preferable, unless the
authors can provide poofs for that the new runoff generation module is more close to the realism in the
catchment. Figures 6-9 compared the simulated and observed saturated areas by various modules.
However, | would say the HSC module has not shown higher performance than the Topmodel in Figures
8-9. The Topmodel shows higher performance at low saturated areas (Fig. 9a). Figure 6 has not
evaluated the distribution of saturated areas produced by the HBV model, which can be also set up at
grid scale. Figure 7 does not make any sense, considering observation is missing.

Motivation and rational of HSC

For the motivation of this study, we added a figure (Figure 1), taken from Fan et al., 2017 (with
permission from PNAS), showing the increase of rooting depth with the increase of HAND in most parts
of hillslope, only except for the very high HAND hillslopes. Figure 1 is the result of thousands of
ecological measurements at global scale, which illustrates that the assumption of HSC likely fits well with
catchment realism supported by a large dataset of field observations. The HSC module provides a
rational from an ecological perspective to understand the linkage and mechanism between large-sample
hillslope ecological observations and the curve of root zone storage capacity distribution (Figure 1, 2, 3).

The benefits of the new HSC module are two- fold. From a technical point of view, the HSC allows us to
make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual
hydrological models (e.g. HBV, Xinanjiang etc). But as the reviewer pointed out (which we also
recognized) there are other modules with relatively parsimonious parameterizations (e.g. TOPMODEL
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and GR4J), that can work well in terms of model performance. In contrast, the HSC module,
furthermore, from a scientific point of view, provides us with a new perspective on the linkage between
root zone storage capacity in both hillslopes and at catchment scales (long-term ecosystem evolution)
with insights into runoff generation (event scale rainfall-runoff generation).

Further asking questions of “why” rather than “what” likely leads to more useful insights and a new way
forward (McDonnell et al., 2007). Catchments are geomorphological and even ecological systems whose
parts are inter-related due to catchment self-organization and co-evolution (Sivapalan and Bldschl,
2015; Savenije and Hrachowitz, 2017).

Computational cost

The computational cost of the HSC is more expensive than HBV, and similar to TOPMODEL, due to the
cost of preprocessed topographic analysis. But once the Su-As curve is completed, the computational
cost is quite comparable with HBV.

Interpretation of Figure 6

For Figure 6 (now Figure 7 in the revised manuscript), we may politely disagree with the Anonymous
Reviewer 2. The HBV cannot generate the distribution of saturated areas at catchment scale. Since HBV
only calculates the runoff coefficient of certain rainfall events in a lumped way. It cannot map out the
saturated area variation. We think it is still worthwhile to compare the contributing area simulated by
the new HSC module and the TOPMODEL, since TOPMODEL is a benchmark in this study. Also, it might
be interesting to show the simulated contributing area compared to the observed saturated area,
despite that they are not exactly the same. In theory, the observed saturated area should be within the
simulated contributing area, due to the fact that the saturated soil moisture is always larger than field
capacity. From this point of view, we show that the observed saturated area is almost always within the
contributing area simulated by HSC, but TOPMODEL missed this important feature (July 2 and
September 2 in 2008) supporting our statement that HSC performed better in reproducing saturated
area variation.

We rephrased the discussion on model comparison between HSC and TOPMODEL. More details can be
found in Line 427-430, 666-668 in the revised manuscript (clear version hereinafter).

2. The comparable or better performance produced by the model coupled with the proposed
runoff generation module may be caused by either the application of the new runoff generation module
or the calibration run with less parameters. The automatic calibration algorithm could produce higher
performance when the calibration parameter space is reduced. This need to be further analyzed.

New module or less parameter?

This is indeed a very good point. Parsimonious models (e.g. the GR4J, ref. Perrin et al., 2003), with
empirical curves similar to the HSC, likely result in good model performance. Parameter identifiability in
calibration is one of the reasons. However, the rationale of most models is still largely unknown, and
lack of the physically explanation to interpret these empirical curves described by mathematical
functions (e.g. Equation 3 in Perrin et al., 2003). (Line 576-580).
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3. The motivation of this sturdy is not clear enough. With the proposed module, more calculation
work is needed and produced the same or bit better model performance. The model uncertainty has not
been analyzed, and the transferability of the runoff generation module has not been investigated in this
study.

In general, limitations in the current work certainly prevented more scientific contributions from this
study. The authors should pay more efforts to make their motivation and results more convincing.

Motivation

The motivation can be found in our reply to the first comment and with all due respect the Reviewer
does seem to miss the main point, which we tried to further emphasize in the revised manuscript: Since
the HSC is an a priori module, which we do not calibrate, the module can be perfectly “transferred” to
other catchments without calibration. Hence, the large sample application!

Anonymous Referee #3

| would like to thank the authors for their revision, particularly improving discussion section. For some of
my comments, however, | do not see a clear response:

1) I’'m still not convinced by the use of BB basin to support the conclusion that the new model
(HSC) outperforms the TOPMODEL (“We found that the HSC performed better in reproducing the spatio-
temporal pattern of the observed saturated areas in the BB compared to TOPMODEL"). The Figures 6
and 8 clearly indicate that both models are significantly overestimating what is considered as ground
truth here (observed pattern of saturated area). | do not understand well the argument that the values
are not directly comparable. If so, why to compare them? This part is not well linked with the validation
of the new approach in its current form.

Thank you for your comment, which we tried to clarify in our revised manuscript. We have rephrased
the statements in Section 4.3 and Line 640-644.

Section 4.3:

Comparing the estimated contributing area of TOPMODEL with the HSC module, we found the results of
the HSC correlates better (R2=0.60, IKGE=-3.0) with the observed saturated areas than TOPMODEL
(R2=0.50, IKGE=-3.4) (Figure 10). For spatial patterns, the HSC contributing area is located close to the
river network, and reflects the spatial pattern of observed saturated area. While TOPMODEL results are
more scattered, probably due to the sensitivity of TWI to DEM resolution (Figure 7). The HSC is more
discriminating in terms of less frequently giving an unrealistic 100% catchment saturation retaining parts
of the unsaturated upper hillslopes.

Line 640-644:

Interestingly, in theory the observed saturated area should be within the simulated contributing area,
due to the fact that the saturated soil moisture is always larger than field capacity. From this point of
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view, the observed saturated area is smaller and within the contributing area simulated by HSC, but
TOPMODEL missed this important feature.

2) In some places of section 5, it will be interesting to see more specific interpretation of the
results. E.g. for statement “Figure 11c interestingly shows that in some catchments, there is almost no
threshold...” it will interesting to see some more specific generalisation for which catchments it applies.
Or “...where the HSC model performed better are mostly located in the Great Plains, with modest
sloping (4.0 degree)...” Does it apply/relate to all catchments with slope 4degree or even less (“HSC
outperformed catchments have flat terrain (2.3 degree) with moderate averaged HAND value (26m)”?
Some more evaluations (or more specific formulations) allowing some more specific generalisation of
results will be interesting here. Where one can expect the new model is better/worser than
TOPMODEL/HBV in other regions — outside US?

This is an excellent question, thank you, which helped us to improve the presentation of this work. We
did a systematic analysis between model performance and catchment characteristics included in the
revised manuscript. See Line 494-505, and the new Table 3 and Table 4.

3) Figure 6 legend is still confusing for me. Would it be possible to make all three
columns/methods of maps just with binary colours (is/is not saturated)?

Thank you. This was changed in the revised manuscript.

4) Please add the new references to the list.

Done.
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Abstract

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land
surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel
and simple topography-driven runoff generation parameterization — the HAND-based Storage Capacity
curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify
hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module
in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve
Technique (MCT) to estimate root zone storage capacity (Sumax), We developed a calibration-free runoff
generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for
comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked
against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-
mapped saturation area extent. We found that £he-HSC, HBV and TOPMODEL all perform welled-better in
t0 resredusingreproduce fhe-ssotie-fermperalpatiern—eftheebserredsaturated areasin—the

BBhydrograph, but the HSC module performs better inte reproducinge saturated area variation, in terms
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of correlation coefficient and spatial patterns-eempared-teFOPMODEL. The HSC and HSC-MCT modules

were subsequently tested for 323 MOPEX catchments in the US, with diverse climate, soil, vegetation and

geological characteristics. Comparing-with-HB\V-and-TORMODBELIN comparison with HBV and TOPMODEL,
the HSC performs better in both calibration and validation, particularlyespecially in the catchments with

gentle topography, less forest cover and arid climate. Despite having no calibrated parameters, the HSC-

MCT module performed comparably well with calibrated modules, highlighting the robustness of the HSC
parameterization to describe the spatial distribution of the root zone storage capacity and the efficiency

of the MCT method to estimate Symax. Mereover-the HSCmodule facilitatedvisualization-of the saturated

geomorphological,-and-biegeochemicalstudies-This novel and calibration-free runoff generation module

helps to improveparameterization-willbenefit the PrdictionPrediction ein Ungauged Basins; and has great

potential to be generalized at thete global scale.

1 Introduction

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge
in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust
runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers.
Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins
(PUB) (Sivapalan et al., 2003; Bloschl et al., 2013; Hrachowitz et al., 2013), it is not uncommon that models
become increasingly complicated in order to capture the details of hydrological processes shown by

empirical studies (McDonnell, 2007; Sivapalan, 2009; Yu et al., 2014). More detailed process

conceptualization normally demands higher data requirements than our standard climatological and
hydrological networks can provide, leading to more calibrated parameters and a probable increase in

model uncertainty (Sivapalan, 2009).

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation.
It is a property emerging at larger scales, describing the temporal dynamics of how spatially
heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm
runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Bl6schl, 2004;
Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and

van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including
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but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld
and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and
McDonnell, 2007), and-land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel
et al., 2014), but-alse-by-the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al.,
2011; McMillan et al., 2014; Nippgen et al., 2015).

In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of
topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven
and Freer, 2001) uses topographic wetness index (TWI) to distinguish hydrologic similarity; and SHE
(Abbott et al. 1986) and tRIBS (lvanov et al. 2004; Vivoni et al. 2005) use partial differential equations to
describe the water movement based on pressure gradients obtained by topography; and the
Representative Elementary Watershed (REW) approach divides catchment into a number of REWs to
build balance and constitutive equations for hydrological simulation (Reggiani et al., 1999; Zhang and
Savenije, 2005; Tian et al., 2008). As the relevant model parameters such as local topographic slope and
hydraulic conductivity can, in spite of several unresolved issues for example relating to the differences in
the observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), be obtained from direct

observations, they could in principle be applied without calibration.

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional
relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional
relationships require parameters that are effective on the modelling scale and that can largely not be
directly determined with small-scale field observations (cf. Beven, 1995), thus traditionally determined
by calibration. However, frequently the number of observed variables for model calibration is, if
available at all, limited to time series of stream flow. The absence of more variables to constrain models
results in such models being ill-posed inverse problems. Equifinality in parameterization and in the
choice of parameters then results in considerable model uncertainty (e.g. Beven, 1993, 2006). To limit
this problem and to also allow predictions in the vast majority of ungauged catchments, it is therefore
desirable to find ways to directly infer effective model parameters at the modelling scale from readily

available data (Hrachowitz et al., 2013).

The component that is central for establishing connectivity in most top-down models is the soil moisture
routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and
partitions water into evaporative fluxes, groundwater recharge and fast lateral storm flow generating

runoff (Gao et al., 2018a; Shao et al., 2018). The latter of which is critical from the aspect of connectivity.
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In majority regions, Hortonian overland flow (HOF, i.e. infiltration excess overland flow) is of minor
importance(Dunne and Black, 1970; Sklash and Farvolden, 1979; Beven, 2004; Burt and McDonnell,
2015), even in arid regions where often most locally generated HOF is re-infiltrated while flowing on
hillslopes (Liu et al., 2012) and never reaches the stream channel network. Thus the term saturation
excess flow (SEF) can represent, depending on the model and the area of application, different
processes, such as saturation overland flow, preferential flow, flow through shallow, high permeability
soil layers or combinations thereof. The interplay between water volumes that are stored and those that
are released laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down
models described by functions between water stored in the unsaturated root zone (“soil moisture”) and
the areal proportion of heterogeneous, local storage thresholds that are exceeded and thus
“connected” (Zhao et al., 1980). In other words, in those parts of a catchment where the storage
threshold is exceeded will generate lateral flows, and can alternatively be interpreted as runoff
coefficient (e.g. Ponce and Hawkins, 1996; Perrin and Andreassian, 2001; Fenicia et al., 2007; Bergstrom
and Lindstrom, 2015). Thus the idea goes back to the variable contributing area concept, assuming that
only partial areas of a catchment, where soils are saturated and thus storage thresholds are exceeded,
contribute to runoff (Hewlett, 1961; Dunne and Black, 1970; Hewlett and Troendle, 1975). Although
originally developed for catchments dominated by saturation overland flow, the extension of the
concept to subsurface connectivity, posing that surface and subsurface connectivity are “two sides of
the same coin” (McDonnell, 2013), proved highly valuable for models such as Xinanjiang (Zhao et al.,
1980), HBV (Bergstrém and Forsman, 1973; Bergstrom and Lindstrém, 2015), SCS-CN (Ponce and
Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) and GR4J (Perrin and Andreassian et al.,
2001).

Among these models, connectivity is formulated in a general form as Cg=f(Su(t),Sumax,B), Where Cg is the
runoff coefficient, i.e. the proportion of the catchment generating runoff, Sy(t) is the catchment water
content in the unsaturated root zone at any time t, Sumax iS @ parameter representing the total storage
capacity in the unsaturated root zone and B is a shape parameter, representing the spatial distribution
of heterogeneous storage capacities in the unsaturated root zone. The parameters of these functions
are typically calibrated. In spite of being the core component of soil moisture routines in many top-down
models, little effort was previously invested to find ways to determine the parameters at the catchment-
scale directly from available data. An important step towards understanding and quantifying
connectivity pattern directly based on observations was recently achieved by intensive experimental

work in the Tenderfoot Creek catchments in Montana, US. In their work Jencso et al. (2009) were able to

9
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show that connectivity of individual hillslopes in their headwater catchments is highly related to their
respective upslope accumulated areas. Using this close relationship, Smith et al. (2013) successfully
developed a simple top-down model with very limited need for calibration, emphasizing the value of
“enforcing field-based limits on model parameters” (Smith et al., 2016). Based on hydrological landscape
analysis, FLEX-Topo model (Savenije, 2010) can dramatically reduce the need for calibration (Gharari et
al., 2014), and hold considerable potential for spatial model transferability without the need for
parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016). In a recent development, several
studies suggest that Suuvqax can be robustly and directly inferred long term water balance data, by the
Mass Curve Technique (MCT), without the need for further calibration (Gao et al., 2014; de Boer-Euser
et al., 2016; Nijzink et al., 2016). This leaves shape parameter B as the only free calibration parameter
for soil moisture routines of that form. Topography is often the dominant driver of water movement
caused by prevailing hydraulic gradients. More crucially, topography usually provides an integrating
indicator for hydrological behavior, since topography is usually closely related with other landscape
elements, such as soil vegetation climate and even geology (Seibert et al., 2007; Savenije, 2010; Rempe
and Dietrich, 2014; Gao et al., 2014b; Maxwell and Condon, 2016; Gomes, 2016). The Height Above the
Nearest Drainage (HAND; Rennd et al., 2008; Nobre et al., 2011; Gharari et al., 2011), which can be
computed from readily available digital elevation models (DEM), could potentially provide first order
estimates of groundwater depth , as there is some experimental evidence that with increasing HAND,
groundwater depths similarly increase (e.g. Haria and Shand, 2004; Martin et al., 2004; Molenat et al.,
2005, 2008; Shand et al., 2005; Condon and Maxwell, 2015; Maxwell and Condon, 2016). HAND can be
interpreted as a proxy of the hydraulic head and is thus potentially more hydrologically informative than
the topographic elevation above sea level (Nobre et al., 2011). Compared with the TWI in TOPMODEL,
HAND is an explicit measure of a physical feature linking terrain to water related potential energy for
local drainage (Nobre et al., 2011). More interestingly, topographic structure emerges as a powerful
force determining rooting depth under a given climate or within a biome_(Figure 1), revealed by a global
synthesis of 2,200 root observations of >1000 species ecelogical-observations-nglobalseale-(Fan et al.,

2017). This leads us to think from ecological perspective to use the topographic information as an

indicator for root zone spatial distribution without calibrating the B, and coupling it with the MCT

method to estimate the Suvax, €ventually create a calibration-free runoff generation module.

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial
distribution of storage capacities and therefore can be used to develop a new runoff generation module

(HAND-based Storage Capacity curve, i.e. HSC); (2) the distribution of storage capacities determined by

10
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HAND contains different information than the topographic wetness index; (3) the HSC together with water
balance-based estimates of Sumax (MCT method) allow the formulation of calibration-free
parameterizations of soil moisture routines in top-down models directly based on observations. All these
hypotheses will be tested firstly in a small data-rich experimental catchment (the Bruntland Burn
catchment in Scotland), and then apply the model to a wide range of larger MOPEX catchments (Model

Parameter Estimation Experiment).

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e.
HSC and HSC-MCT, and two benchmark models (HBV, TOPMODEL). This section also includes the
description of other modules (i.e. interception, evaporation and routing) in rainfall-runoff modelling, and
the methods for model evaluation, calibration and validation. The Dataset section reviews the empirically-
based knowledge of the Bruntland Burn catchment in Scotland and the hydrometerological and
topographic datasets of MOPEX catchments in the US for model comparison. The Results section presents
the model comparison results. The Discussion section interprets the relation between rainfall-runoff
processes and topography, catchment heterogeneity and simple model, and the implications and
limitations of our proposed modules. The conclusions are briefly reviewed in the Summary and

Conclusions section.

2 Methods

Based on our perceptual model that saturation excess flow (SEF) is the dominant runoff generation
mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module.
Subsequently, estimating the parameter of root zone storage capacity (Sumax) by the MCT method without
calibration, the HSC-MCT was developed. In order to assess the performance of our proposed modules,
two widely-used runoff generation modules, i.e. HBV power function and TOPMODEL module, were set
as benchmarks. Other modules, i.e. interception, evaporation and routing, are kept with identical
structure and parameterization for the four rainfall-runoff models (HBVY, TOPMODEL, HSC, HSC-MCT,
whose names are from their runoff generation modules), to independently diagnose the difference among

runoff generation modules (Clark et al., 2008; 2010).

2.1 Two benchmark modules

HBV power function

11
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The HBV runoff generation module applies an empirical power function to estimate the nonlinear
relationship between the runoff coefficient and soil moisture (Bergstrom and Forsman, 1973; Bergstrom

and Lindstrom, 2015). The function is written as:

A=) n
uMax

Where A (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall
event; S, (mm) represents the averaged root zone soil moisture; Sumax (Mm) is the averaged root zone
storage capacity of the studied catchment; B (-) is the parameter determining the shape of the power
function. The prior range of B can be from 0.1 to 5. The S, - A has a linear relation while B equals to 1. And
the shape becomes convex while the B is less than 1, and the shape turns to concave while the B is larger
than 1. In most situations, Sumax and B are two free parameters, cannot be directly measured at the

catchment scale, and need to be calibrated based on observed rainfall-runoff data.
TOPMODEL module

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at
catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby,
1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff
generation potential. More specifically, the areas with larger TWI values tend to be saturated first and
contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate

runoff. The equations are written as follow:

D, = D+ S e (I = ) (2)

A=A while D. <0 (4)

Where Di (mm) is the local storage deficit below saturation at specific location (i); D (mm) is the averaged

water deficit of the entire catchment (Equation 2), which equals to (Sumax - Su), as shown in Equation 3. Irwi

is the local Irw value. |7, is the averaged TWI of the entire catchment. Equation 2 means in a certain soil

moisture deficit condition for the entire catchment (D), the soil moisture deficit of a specific location (Dj),

is determined by the catchment topography (w and /rwi), and the root zone storage capacity (Sumax).

12
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Therefore, the areas with D; less than zero are the saturated areas (As j), equal to the contributing areas.
The integration of the A ; areas (As), as presented in Equation 4, is the runoff contributing area, which

equals to the runoff coefficient of that rainfall event.

Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area
(As) from the estimated relative soil moisture (Su/Sumax), and then map it back to the original TWI map,
which makes it possible to test the simulated contributing area by field measurement. It is worth
mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one,

which combines the saturated and unsaturated soil components.

2.2 HSC module

In the HSC module, we assume 1) SEF is the dominant runoff generation mechanism, while surface
overland flow (SOF) and subsurface flow (SSF) cannot be distinguished; 2) the local root zone storage
capacity has a positive and linear relationship with HAND, from which we can derive the spatial
distribution of the root zone storage capacity; 3) rainfall firstly feeds local soil moisture deficit, and no

runoff can be generated before local soil moisture being saturated.

Figure 21 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a
real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage
capacity, based on topographic analysis and the second assumption as mentioned in the preceding

paragraph. Figure 32 shows the approach to derive the S,-A; relation, which are detailed as follows.

I.  Generate HAND map. The HAND map, which represents the relative vertical distance to the
nearest river channel, can be generated from DEM (Gharari et al., 2011). The stream initiation
threshold area is a crucial parameter, determining the perennial river channel network
(Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and significantly impacting the HAND
values. In this study, the start area was chosen as 40ha for the BB catchment to maintain a close
correspondence with observed stream network. And for the MOPEX catchments, the stream
initiation area threshold is set as 500 grid cells (4.05 km?), which fills in the range of stream
initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). HAND
maps were then calculated from the elevation of each raster cell above nearest grid cell flagged
as stream cell following the flow direction (Gharari et al., 2011).

1. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in

ascending order. Secondly, the sorted HAND values were evenly divided into n bands (e.g. 20

13
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bands in this study), to make sure each HAND band has similar area. The averaged HAND value of
each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and
then plot the normalized HAND distribution curve (Figure 21b).

Il. Distribute Sumax to each HAND band (Sumax_i). As assumed, the normalized storage capacity of each
HAND band (Sumax_i) increases with HAND value (Figure 24c). Based on this assumption, the
unsaturated root zone storage capacity (Sumax) can be distributed to each HAND band as Sumax_i
(Figure 32a). It is worth noting that Sumax Needs to be calibrated in the HSC module, but free of
calibration in the HSC-MCT module.

V. Derive the S, - A, curve. With the number of s saturated HAND bands (Figure 32a-c), the soil
moisture (S,) can be obtained by Equation 5; and saturated area proportion (As) can be obtained

by Equation 6.

1

Su = ;[ L$=1 SuMax_i + SuMax_s(n — s)] (5)

As = (6)

s
n
Where Sumax_s is the maximum Sumax i Of all the saturated HAND bands. Subsequently, the As - S,

curve can be derived, and shown in Figure 32d.

The SEF mechanism assumes that runoff is only generated from saturation areas, therefore the proportion
of saturation area is equal to the runoff coefficient of that rainfall-runoff event. Based on the S;-A; curve
in Figure 2d3d, generated runoff can be calculated from root zone moisture (Su). The HSC module also
allows us to map out the fluctuation of saturated areas by the simulated catchment average soil moisture.
For each time step, the module can generate the simulated root zone moisture for the entire basin (S.).
Based on the S,-A; relationship (Figure 2d3d), we can map S, back to the saturated area proportion (As)
and then visualize it in the original HAND map. Based on this conceptual model, we developed the

computer program and created a procedural module. The technical roadmap can be found in Figure 34.

2.3 HSC-MCT module

The Sumax is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4lJ), which
determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that
Sumax represents the adaption of ecosystems to local climate. Ecosystems may design their Symax based on
the precipitation pattern and their water demand. The storage is neither too small to be mortal in dry
seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we can

estimate the Sumax Without calibration, by the MCT method, from climatological and vegetation
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information. More specifically, the average annual plant water demand in the dry season (Sg) is
determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal
NDVI. Subsequently, based on the annual Sk, the Gumbel distribution (Gumbel, 1935), frequently used for
estimating hydrological extremes, was used to standardize the frequency of drought occurrence. Sgaoy, i.€.
the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for
Sumax due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly,
1994), and the fact that Sgaoy has the best fit with Sumax . The Sraoy of the MOPEX catchments can be found

in the map of (Gao et al., 2014a).

Eventually, with the MCT approach to estimate Symax and the HSC curve to represent the root zone storage
capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters.
It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived S.-As relation,
and their distinction lays in the methods to obtain Suymax. So far, the HBV power function module has 2 free
parameters (Sumax, B). While the TOPMODEL and the HSC both have one free parameter (Sumax). Ultimately

the HSC-MCT has no free parameter.

2.4 Interception, evaporation and routing modules

Except for the runoff generation module in the root zone reservoir (Sur), we need to consider other
processes, including interception (Sir) before the Sur module, evaporation from the Syr and the response
routine (Ser and Ssg) after runoff generation from Sugr (Figure 45). Precipitation is firstly intercepted by
vegetation canopies. In this study, the interception was estimated by a threshold parameter (Sivax), set to
2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9)
(de Groen and Savenije, 2006). For the Sur reservoir, we can either use the HBV beta-function (Equation
12), the runoff generation module of TOPMODEL (Equation 2-4) or the HSC module (Section 2.3) to
partition precipitation into generated runoff (Ru) and infiltration. The actual evaporation (E,) from the soil
equals to the potential evaporation (Ep), if Su/Sumax is above a threshold (Ce), where S, is the soil moisture
and Sumax is the catchment averaged storage capacity. And E, linearly reduces with S,/Sumax, While Su/Sumax
is below C. (Equation 13). The E, can be calculated by the Hargreaves equation (Hargreaves and Samani,
1985), with maximum and minimum daily temperature as input. The generated runoff (Ry) is further split
into two fluxes, including the flux to the fast response reservoir (Rf) and the flux to the slow response
reservoir (Rs), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is
estimated by a convolution delay function, with a delay time of Ti,gr. Subsequently, the fluxes into two

different response reservoirs (Srr and Ssg) were released by two linear equations between discharge and
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storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from
groundwater reservoir. The two discharges (Qr and Qs) generated the simulated streamflow (Qm). The
model parameters are shown in Table 1, while the equations are given in Table 2. More detailed
description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining
that the only difference among the benchmark HBV type, TOPMODEL type, the-HSC, and the-HSC-MCT
models is their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in

TOPMODEL and HSC model, and 5 in the HSC-MCT model.

2.5 Model evaluation, calibration, validation and models comparison

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a
more robust approach to quantifying model performance with different criteria than a single one. The
Kling-Gupta efficiency (Gupta et al., 2009) (/kee) was used as the criteria to evaluate model performance

and as an objective function for calibration. The equation is written as:

liee =1-(r =D% + (@ =17 + (¢ -1)? (7)

Where r is the linear correlation coefficient between simulation and observation; @ (e =0o,, /c,) is a

measure of relative variability in the simulated and observed values, where o, is the standard deviation
of simulated streamflow, and o, is the standard deviation of observed streamflow; € is the ratio between
the average value of simulated and observed data. And the ke (/kee Of the logarithmic flows) (Fenicia et

al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation.

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for
the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were
assumed to be the behavioral parameter sets and can equally represent model performance. The
averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result
of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number
of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the
number of initial samples was set to 210 and a total number of 50000 model iterations for all the
catchment runs. For each catchment, the first half period of data was used for calibration, and the other

half was used to do validation.

In module comparison, we defined three categories: if the difference of ikee of model A and model B in

validation is less than 0.1, model A and B are regarded as “equally well”. If the Ikse of model A is larger
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than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the /e of
model A is less than model B in validation by -0.1 or less, model B is regarded te-as outperforming model

A

3 Dataset

3.1 The Bruntland Burn catchment

The 3.2 km? Bruntland Burn catchment (Figure 56), located in north-eastern Scotland, was used as a
benchmark study to test the models performance based on a rich data base of hydrological measurements.
The Bruntland Burn is a typical upland catchment in North West Europe (e.g. Birkel et al., 2010), namely
a combination of steep and rolling hillslopes and over-widened valley bottoms due to the glacial legacy of
this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift deposits (e.g. till)
containing a large amount of stored water superimposed on a relatively impermeable granitic solid
geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas, which
remain saturated throughout most of the year with a dominant near-surface runoff generation
mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream
network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy
hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes
do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water
movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough
grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months
(May-August) generally being the driest (Ali et al.,, 2013). Snow makes up less than 10% of annual
precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and
annual discharge around 659 mm. The daily precipitation, potential evaporation, and discharge data range

from January 1 in 2008 to September 30 in 2014. The data-calibration period is from January 1, 2008 to

December 31, 2010-is—used-as-calibration, and the data from January 1, 2011 to September 30, 2014 is

used as validation.

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 56).
There are 7 saturation area maps (Figure 67) (May 2, July 2, August 4, September 3, October 1, November
26, in 2008, and January 21, in 2009), measured directly by the “squishy boot” method and field mapping

by global positioning system (GPS), to delineate the boundary of saturation areas connected to the stream

network (Birkel et al., 2010; Ali et al., 2013). These saturation area maps revealed a dynamic behavior of
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expanding and contracting areas connected to the stream network that were used as a benchmark test

for the HSC module.

3.2 MOPEX dataset-catchments

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al.
2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The

longest time series range from 1948 to 2003. 323 catchments were used in this study (see the name list

in SlI), with areas between 67 and 10,329 km?, and excluding the catchments with data records <30 years,
impacted by snowmelt or with extreme arid climate (aridity index E,/P > 2). In order to analyzesee the

impacts of catchment characteristics on model performance, exceptforexcluding hydrometeorology data,

we also collected the datasets of topography, depth to rock, soil texture, land use, and stream density

(Table 3). These characteristics help us to understand in which catchments the HSC performs better or

worse than the benchmark models.

Hydrometeorology-data

dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily

streamflow.

A Y S H con 67 10 220 | 2
--------- cozpalict o O il cmooe bosyuo o el 257 ==

streamflow was used to calibrate the free parameters, and validate the models.

Topography-data

The Digital Elevation Model (DEM) of the CONUS in 90m resolution was download from the Earth Explorer

of United States Geological Survey (USGS, http://earthexplorer.usgs.gov/). The HAND and TWI map can

be generated from DEM. The averaged elevation and HAND are used to as two catchment characteristics.

Soil texture

Sei-texture-iscomplex—In this study, soil texture is synthetically represented by the K factor, since the K

factor is a lumped soil erodibility factor which represents the soil profile reaction to soil detachment

(Renard et al., 2011). Generally, the soils (high in clay and sand) have low K values, and soils with high silt
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content have larger K values. The averaged K factor for each catchment was calculated from soil survey

information available from USGS (Wolock, 1997).

Land use

Land use data was obtained from National Land Cover Database (NLCD, http://www.mrlc.gov/nlcd.php).

Forest plays an essential role in hydrological processes (Gao et al., 2018a), especially for the runoff

generation (Brooks et al., 2010). Forest area proportion was utilized as an integrated indictor to represent

the impact of vegetation cover on hydrological processes.

Stream density

Stream density (km/km?) is the total length of all the streams and rivers in a drainage basin divided by the

total area of the drainage basin. Stream density data was obtained from Horizon Systems Corporation

(http://www.horizon-systems.com/nhdplus/).

Geology

Bedrockiis a relative impermeable layer, as the lower boundary of subsurface stormflow in the catchments

where soil depth is shallow (Tromp-van Meerveld & McDonnell). The depth to bedrock, as an integrated

geologic indicator, was accessed from STATSGO (State Soil Geographic,

http://www.soilinfo.psu.edu/index.cgi?soil data&conus&data cov&dtb) (Schwarz & Alexander, 1995).

The averaged depth to bedrock for each catchment was calculated for further analysisbyusingthe and
ysed-forfurtheranalysis.

4 Results of the Bruntland Burn

4.1 Topography analysis

The generated HAND map, derived also from the DEM, is shown in Figure 56, with HAND values ranging
from Om to 234m. Based on the HAND map, we can derive the S;-As curve (Figure 78) by analyzing the
HAND map with the method in Section 2.3. The TWI map of the BB (Figure 56) was generated from its
DEM. Overall, the TWI map, ranging from -0.4 to 23.4, mainly differentiates the valley bottom areas with
the highest TWI values from the steeper slopes. This is probably caused by the fine resolution of the DEM
map in 2 m, siree-as previous research found that the sensitivity of TWI to DEM resolution (Sgrensen and
Seibert, 2007). From the TWI map, the frequency distribution function and the accumulative frequency

distribution function can be derived (Figure #8), with one unit of TWI as interval.

19


http://www.horizon-systems.com/nhdplus/
http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&dtb

594
595
596
597
598
599
600
601
602

603
604
605
606
607
608

609
610
611

612
613
614
615
616

617
618
619
620
621
622
623

4.2 Model performance

It is found that all the three models (HBV, TOPMODEL, and HSC) can perform well inte reproducinge the
observed hydrograph (Figure 89). The Ikge of the three models are all around 0.66 in calibration, which is
largely in line with other studies from the BB (Birkel et al, 2010; 2014). And the /s are 0.76, 0.72 and 0.74
for HSC, HBV and TOPMODEL respectively in calibration. While in validation, /e of the three models are
also around 0.66, while ks are 0.75, 0.70 and 0.65 for the three models. Since the measured rainfall-
runoff time series only lasts from 2008 to 2014, which is too short to estimate the Srao, (proxy for Sumax)
by MCT approach (which needs long-term hydro-meteorological observation data,) the HSC-MCT model

was not applied to theis catchment.

Figure 8 shows the calibrated power curve by HBV (averaged beta=0.98) with the S,-As curve obtained

from the HSC module. We found the two curves are largely comparable, especially while the relative soil

moisture is low. This result demonstrates that for the BB catchment with glacial drift deposits and

combined terrain of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve

can essentially be derived from the S.-As curve of HSC module merely by topographic information without

calibration.

The normalized relative soil moisture of the three model simulations are presented in Figure 89. Their

temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL

has a-larger variation, compared with HBV and HSC (Figure 89).

4.3 Contributing area simulation

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are
shown in Figure 67, 98, 109. We found although both modules overestimated the eentributing-saturated
areas, they can capture the temporal variation. For example, the smallest saturated area both observed
and simulated occurred on July-02-2008, and the largest saturated area both occurred on January-21-
2009. Comparing the estimated contributing area of TOPMODEL with the HSC module, we found the

results of the HSC correlates better (R?=0.60, /kse=-3.0) with the observed saturated areas than TOPMODEL
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(R?=0.50, Ikse=-3.4) (Figure 910). For spatial patterns, the HSC saturatedcontributing area-simulated-by

HSCmodule is located nearclose to the river-channel network, and reflects the spatial pattern of observed

saturated area. ButWhile TOPMODEL results are more scattered, probably due to the sensitvitiysensitivity

of TWI to DEM resolutionthe
ebserved-saturated-areas-thanTFOPMODEL (Figure 67). TAnrd-the HSC is more discriminating in terms of

less frequently giving an unrealistic 100% eatehment-saturation, and retaining parts-ofthe-unsaturated

upper hillslopes.

5 Results from the MOPEX catchments

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold
height of 100m (recommended by Esri). The TWI map of the CONUS is produced (Figure S1). Based on the
TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments with their catchment
boundaries. And then the TWI frequency distribution and the accumulated frequency distribution of the
323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were derived based on the 323 TWI

maps.

In Figure 4011, it is shown that the regions with large HAND values are located in Rocky Mountains and
Appalachian Mountains, while the Great Plains hashas smaller HAND values. Interestingly, the Great Basin,
especially in the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest
drainage, although their elevations above seas level are high. From the CONUS HAND map, we clipped the
HAND maps for the 323 MOPEX catchments with their catchment boundaries. We then plot their HAND-
area curves, following the procedures of | and Il in Section 2.2. Figure 34a-12a shows the normalized HAND

profiles of the 323 catchments.

Based on the HAND profiles and the Step Ill in Section 2.2, we derived the normalized storage capacity
distribution for all catchments (Figure 33812b). Subsequently, the root zone moisture and saturated area
relationship (As-Su) can be plotted by the method in Step IV of Section 2.2. Lastly, reversing the curve of
As-S, to S,-As relation (Figure 31el2c), the latter one can be implemented to simulate runoff generation
by soil moisture. Figure 31e-12c interestingly shows that in some catchments, there is almost no threshold

behavior between rainfall and runoff generation, where the catchments are covered by large areas with
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low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly
and generate runoff without a precipitation—discharge threshold relationship characteristic of areas with
higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished
between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to

rainfall is almost instantaneous.

5.2 Model performance

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data
(Figure 4213) is comparable with the previous model comparison experiments, conducted with four
rainfall-runoff models and four land surface parameterization schemes (Duan et al., 2006; Kollat et al.,
2012; Ye et al., 2014). The median value of Ik of the HBV type model is 0.61 for calibration in the 323
catchments (Figure 4213), and averaged /gt in calibration is 0.62. In validation, the median and averaged
values of Ikt are kept the same as calibration. The comparable performance of models in calibration and
validation demonstrates the robustness of benchmark models and the parameter optimization algorithm
(i.e. MOSCEM-UA). The TOPMODEL improves the median value of I from 0.61 (HBV) to 0.67 in
calibration, and from 0.61 (HBV) to 0.67 in validation. But the averaged values of ke for TOPMODEL are
slightly decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving
the HAND topographic information without calibrating the B parameter, improves the median value of
Ikee to 0.68 for calibration and 0.67 for validation. The averaged values of Ige in both calibration and
validation are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore,
Figure £2-13 demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median
and averaged values were improved by the HSC module, but also the 25" and 75" percentiles and the
lower whisker end, all have been improved. The performance gains on baseflow (/) have been
investigated and shown in the supplementary figure S3. These results indicate the HSC module improved

model performance to reproduce hydrograph for both peak flow (/kee) and baseflow (/keL).

Additionally, for HSC-MCT model, the median lkge value is improved from 0.61 (HBV) to 0.65 in calibration,
and from 0.61 (HBV) to 0.64 in validation, but not as well performed as TOPMODEL (0.67 for calibration
and validation). For the averaged /e values, they were slightly reduced from 0.62 (HBV) and 0.61
(TOPMODEL) to 0.59 for calibration and validation. Although the HSC-MCT did not perform as well as the
HSC module, considering there is no free parameters to calibrate, the median /kce value of 0.64 (HBV is
0.61) and averaged lxee of 0.59 (TOPMODEL is 0.61) are quite acceptable. In addition, the 25" and 75"

percentiles and the lower whisker end of the HSC-MCT model are all improved compared to the HBV
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model. Moreover, the largely comparable results between the HSC and the HSC-MCT modules
demonstrate the feasibility of the MCT method to obtain the Symax parameter and the potential for HSC-

MCT to be implemented in prediction of ungauged basins.

Figure 43-14 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark

Ill

models. We found that the HSC performs “equally well” as HBV (the difference of /e in validation ranges
-0.1~0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the

improvement of It in validation is larger than 0.1). In not a single catchment did the calibrated HBV

outperform the HSC. Comparing the HSC model with TOPMODEL, we found in 91% of the catchments that
the two models have approximately equal performance. In 8% of the catchments, the HSC model
outperformed TOPMODEL. Only in 1% of the catchments (two in the Appalachian Mountains and one in
the Rocky Mountains in California), TOPMODEL performed better.

In order to further explore the impact of catchment characteristics on model performance, we used

topography (averaged HAND, averaged slope, and averaged elevation), soil (K-factor), land cover (forest

area proportion), climate (aridity index), stream density, and geology (depth to rock) information to

testsee the impact of catchment features on model performance. Table 4 clearly shows that compared

with HBV, the 39 catchments with better performance have loweress HAND values (37m), more gentle

slopes (4.0 degree), and smaller forest area (22%); while the elevation, K-factor, aridity index, stream

density and depth to rock are almost similar. Also, in the catchments where HSC outperformed

TOPMODEL, the catchments have smaller HAND (27m), more gentle slopes (3.6 degree), moderate

elevation (469 m), less forest proportion (14%), and more arid climatearea (aridity index is 1.3).

TOPMODEL performs better in only three catchments with larger HAND (193m), steeper slopes (13.5

degree), higher elevation (740 m), more humid climate (aridity index is 0.8), and larger depth to rock (333

cm). In summary,Summarihs the HSC showedhas better performance in—the catchments with gentle

topography and more arid climate.
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Without calibration of Sumax, as expected, the performance of HSC-MCT module slightly deteriorates

(Figure 3213). In comparison with HBV, the outperformed percentage anee-reduced from 12% (HSC) to 4%
(HSC-MCT), the approximately equal-well simulated catchments dropped from 88% to 79%, and the
inferior performance increased from 0% to 17%. Also, in comparison with TOPMODEL, the better
performance dropped from 8% (HSCredel) to 7% (HSC-MCT-medel), the approximately equal catchments
reduced from 91% to 72%, and the inferior performance increased from 1% to 21%. The inferiority of the
HSC-MCT model is probably caused by the uncertainty of the MCT method for different ecosystems which
have different survival strategies and use different return periods to bridge critical drought periods. By

using ecosystem dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).

To further explore the reason for the better performance of the HSC approach, we selected the 08171000
catchment in Texas (Figure 4314), in which both the HSC module and the HSC-MCT module outperformed
the two benchmark modules to reproduce the observed hydrograph (Figure S4). The HBV model
dramatically underestimated the peak flows, with ke as 0.54, while TOPMODEL significantly
overestimated the peak flows, with /kge as 0.30. The HSC-MCT model improved the /kge to 0.71, and the

HSC model further enhanced /kge to 0.74.

Since the modules of interception, evaporation and routing are identical for the four models, the runoff
generation modules are the key to understand the difference in model performance. Figure S5 shows the
HBV B curve and the S;-As curve of the HSC model, as well the TWI frequency distribution. We found that
with a given S,/Sumax, the HBV B function generates less contributing area than the HSC model, which
explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep
accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment
area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that
even with low soil moisture content (Su/Sumax), the contributing area by TOPMODEL is relatively large,

leading to the sharply increased peak flows for all rainfall events.
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6 Discussion

6.1 Rainfall-runoff processes and topography

We applied a novel approach to derive the relationship between soil moisture storage and the saturated
area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher
HAND values, due to the larger storage capacity in higher HAND locations. The outperformance of the HSC
modelover the benchmark HBV and TOPMODEL in medesth-gentle sloping catchments indicates that that
the HSC module likely has a higher realism than the calibrated HBV beta-function-efthe-HBV-+medel and
the TWI of TOPMODEL in these regions. Very interestingly, Fan et al., (2017) presented an_ecological
observation in global synthesis—ef2200—+roet-observations—of>1000-speciesscale, and revealed the
systematic variation of rooting depth along HAND (Fig.1, in Fan et al., 2017). Since rooting depth can be
translated to root zone storage capacity through combination with soil plant-available water (Wang-
Erlandsson et al., 2016). This large sample dataset, from ecological perspective, provides a strong support
for the assumption of the HSC model on medest-gentle slopes, i.e. the increase of root zone storage
capacity with HAND. More interestingly, on excessively drained uplands, rooting depth does not follow
the same pattern, with shallow depth and limited to rain infiltration (Fig.1, in Fan et al., 2017). This could
explain the inferior performance of HSC model to TOPMODEL in three MOPEX catchments {averaged
HAND-is—154-m}-with excessively drained uplands_(larger HAND, steeper slope, higher elevation, and

deeper depth to rock), where Hortonian overland flow is likely the dominant mechanism, and the HSC

assumption likely does not work well. This-ikely indicates that comparing with TWI, the HAND is closer to

catchment realism-te distinguishing hydrological similarity in gentle topography catchments.

The FLEX-Topo model (Savenije, 2010) also uses HAND infermation-as a topographic index to distinguish
between landscape-related runoff processes, and has both similarity and differences with the HSC model.
The results of the HSC model illustrate that the riparian areas are more prone to be saturated, which is
consistent with the concept of the FLEX-Topo model. Another important similarity of the two models is
their parallel model structure. In both models it is assumed that the upslope area has larger storage
capacity, therefore the upper land generates runoff less and later than the lower land. In other words, in
most cases, the local storage is saturated due to the local rainfall, instead of flow from upslope. The most
obvious difference between the HSC and the FLEX-Topo is the approach towards discretization of a

catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. wetlands, hillslopes
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and plateau. This discretization method requires threshold values to classify landscapes, i.e. threshold
values of HAND and slope, which leads to fixed and time-independent proportions of landscapes. The HSC
model does not require landscape classification, which reduced the subjectivity in discretization and

restricted the model complexity, as well as simultaneously allowing the fluctuation of saturated

contributing areas (termed as wetlands in FLEX-Topo).

6.2 Catchment heterogeneity and simple models

Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of
landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often
consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots,
soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and
McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of
runoff processes, and hydrological and land surface modelers are developing more and more complicated
models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no
compelling evidence to support the outperformance of sophisticated “physically-based” models in terms
of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in

rainfall-runoff simulation (Beven, 1989; Orth et al., 2015).

But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts
(Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not

require complex laws (Chase, 1992; Passalacqua et al., 2015). P-eryparsimonious models (e.g. Perrin et

al., 2003), with empirical curve shapes, likely results in good model performance.; thereduction-of-Lless
runningspace—forParameter identifiability in calibration is—grebably one of the reasons—admittedly.

However,But the physical rationale of these parsimonious models itis still largely unknowna—-abeutthe
—and lacking aef the—physically
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explanation to interpret these empirical curves described by matehmatiemathematical functions (e.g.

Equation XX3 in Perrin et al., 2003).

The benefits of the new HSC module are two-fold. From a technical point of view, the HSC allows us to

make Prediction in Ungauged Basins without calibrating the beta parameter in many conceptual

hydrological models. Furthermore, the HSC module, from a scientific point of view, provides us with a new

perspective on the linkage between the spatial distribution patterns of root zone storage capacity (long-

term ecosystem evolution) with associated runoff generation (event scale rainfall-runoff generation). the

cthe t] A 41 il ited

Asking questions of “why” rather than “what” likely leads to more useful insights and a new way forward

(McDonnell et al., 2007). The HSC module givesprovides us with an explanationrationale from an ecological

perspective to understand the linkage and mechanism between large-sample hillslope ecological observations

and the curve of root zone storage capacity distribution (Figure 1, 2, 3). Catchment is a geomorphological and

even an ecological system whose parts are related to each other probably due to catchment self-
organization and evolution (Sivapalan and Bldschl, 2015; Savenije and Hrachowitz, 2017). This encourages
the hope that simplified concepts may be found adequate to describe and model the operation of the
basin runoff generation process. It is clear that topography, with fractal characteristic (Rodriguez-lturbe
and Rinaldo, 1997), is often the dominant driver of runoff, as well as being a good integrated indicator for
vegetation cover (Gao et al.,, 2014b), rooting depth (Fan et al.,, 2017), root zone evaporation and
transpiration deficits (Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), and even geology
(Rempe and Dietrich, 2014; Gomes, 2016). Therefore, we argue that increasingly detailed topographic
information is an excellent integrated indicator allowing modelers to continue systematically represent
heterogeneities and simultaneously reduce model complexity. The model structure and parameterization
of both HSC and TOPMODEL are simple, but not over simplified, as they capture prebably-likely the most
dominant factor controlling runoff generation, i.e. the spatial heterogeneity of storage capacity. Hence,
this study also sheds light on the possibility of moving beyond heterogeneity and process complexity
(McDonnell et al., 2007), to simplify them into a succinct and a priori curve by taking advantage of
catchment self-organization probably caused by co-evolution or the principle of maximum entropy

production (Kleidon and Lorenz, 2004).

6.3 Implications and limitation

The calibration-free HSC-MCT runoff generation medelmodule may-enhances our ability to predict runoff

in ungauged basins.
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analysisand-calibrate-the-free parameters—ThisPUB is probably not a major issue in the developed world,

with abundant of comprehensive measurements in many places, but for the developing world it requires
prediction with sparse data and fragmentary knowledge. Topographic information with high spatial
resolution is freely available globally, allowing us to implement the HSC model in global scale studies. In
addition, thanks to the recent development, testing, and validation of remote sensing evaporation
products in large spatial scale (e.g. Anderson et al., 2011; Hu and Jia, 2015), the Sumax estimation has
become possible without in situ hydro-meteorological measurements (Wang-Erlandsson et al., 2016).

These widely-accessible datasets make the global-scale implementation of HSC-MCT module promising.

Although the new modules perform well in the BB and the MOPEX catchments, we do not intend to

propose “a model fits all”. His—valuabletofurthertestto-what-extent-the new concept{HANDis
The

assumption of HSC, to some extent, is supported by large-sample ecological field observation (Fan et al.,
2017), but it never means the As-S, curve of HSC can perfectly fit the other existing medules-curves (e.g.
HBV and TOPMODEL). Unify all model approaches into one framework is the objective of several pioneer
works (e.g. Clark, et al., 2010; Fenicia et al., 2011), but out of the scope of this study. Moreover, while
estimating the runoff coefficient by the As-S, relation, rainfall in the early time may cause the increase of
Su/Sumax and runoff coefficient (Moore, 1985; Wang, 2018). Therefore neglecting this influence factor, HBV
module—(Equation 1), TOPMODEL (Equation 2-4) and HSC medule—(Equation 5-6) theoretically

underestimate the runoff coefficient, which needs to be further investigated.

Finally, we should not ignore the limitations of the new module, although it has better performance and
modelling consistency. 1) The threshold area for the initiating a stream was set as a constant value for the
entire CONUS, but the variation of this value in different climate, geology and landscape classes
(Montgomery and Dietrich, 1989; Helmlinger et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to
be future investigated. 2) The discrepancy between observed and simulated saturation area needs to be
further investigated, by utilizing more advanced field measurement and simultaneously refining the
model assumption. To our understanding, there are two interpretations. Firstly, the overestimation of the
HSC model is possibly because two runoff generation mechanisms — SOF and the SSF occur at the same
time. However, the saturated area observed by the “squishy boot” method (Ali et al., 2013), probably only
distinguished the areas where SOF occurred. Subsurface stormflow;, also contributinges to runoff-but
witheutsurfaceruneff, cannot be observed by the “squishy boot” method. Thus, this mismatch between

simulation and observation probably leads to this saturated area overestimation. The second
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interpretation might be the different definition of “saturation”. The observed saturated areas are places
where 100% of soil pore volume is filled by water. But the modelled saturation areas are located where
soil moisture is above field capacity, and not necessarily 100% filled with water, which probably also

results in the overestimation of saturated areas. Interestingly, in theory the observed saturated area

shouldall be within the simulated contributing area, due to the fact that the saturated soil moisture is

always larger than field capacity. From this point of view, the observed saturated area is smaller and within

the contributing area beundary-simulated by HSC, but TOPMODEL missed this important feature.-3} 4)

Only the runoff generation module is calibration free, but the interception and response routines are-still
relyied on calibration. Although we kept the interception and response routine modules the same for the
four models, the variation of other calibrated parameters (i.e. Simax, D, K, Ks, Tiage) may also influence model
performance in both calibration and validation. 45) The computational cost of the HSC and-MCT-is much

more expensive than the-HBV, and similar toas TOPMODEL, due to the cost of preprocessed topographic
HMa*—by—t—he

analysistw

computation cost is quite comparable with HBV.

7 Summary and conclusions

In this study, we developed a simple and calibration-free hydrological module (HAND-based Storage

Capacity curve, HSC) based on a relative new topographic index (HAND), which is not only an excellent

physically-based indictor ef-for the hy

hydraulic gradient—at-the-hilslope—and-catchmentseales, but also represents the spatial distribution
pattern of root zone storage capacity supported by large-sample ecological observations. We-assumed

thatthe local-storage capacityis-closely-linked-to- HAND-Based on thisassumption-and-the-HAND spatial

distribution pattern, the soil moisture (S,) - saturated area (A;) relation for each catchment was derived,

which was used to estimate the A of specific rainfall event based on continuous calculation of S,.
Subsequently, based on the S.-As relation, the -HAND-based-Sterage-Capacity-eurve{HSC} module was
developed. Then, applying the mass curve technique (MCT) approach, we estimated the root zone storage
capacity (Sumax) from observable hydro-climatological and vegetation data, and coupled it with HSC to
create the calibration-free HSC-MCT module—in—which-the-Siva—was—ebtained-by-MCET—and-the-S.A.
relation—was—obtainedby—HSE. The HBV beta-funection—and FPAH-based-TOPMODEL were used as two
benchmarks to test the performance of HSC and HSC-MCT on both hydrograph simulation and ability to

reproduce the contributing area, which was measured for different hydrometeorological conditions in the
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Bruntland Burn catchment in Scotland. Subsequently, 323 MOPEX catchments in the US were used as a
large--sample hydrological study to further validate the effectiveness of our proposed runoff generation

modules.

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to
reproduce the observed hydrograph. taterestinghytheS,-A.curvesof HSCand-HBV-are-largely-comparable;

spieh-hostpates the L rve-can-Hikely-beused-asaproxyforthe HBV beta-function—Comparing the

estimated contributing area of TOPMODEL with the HSC module, we found that -the-results-efthe-HSC

module performeds better to reproduce saturated area variation, in terms of the correlation coefficient

correlateand spatial patterns.—better—{R?*=0.60)}—with—the—observed—saturated—areas—compared—to
TOPMOBEL{R?*=0-50) This likely indicates that HAND maybe a better indicator to distinguish hydrological

similarity than TWI.

For the 323 MOPEX catchments, HSC improved the averaged validation value of /kge from 0.62 (HBV) and
0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in
not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC
outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better

performance. Interestingly, we found that the HSC module kasshowed better performance in the

catchments with gentle topography, less forest cover, and a-larger aridity index. Not surprisingly, the /kee

of HSC-MCT model was slightly reduced to 0.59, due to the non-calibrated Sumax, but still comparably well
performed as HBV (0.62) and TOPMODEL (0.61). This illustrates the robustness of both the HSC approach
to derive the spatial distribution of the root zone storage capacity (B) and the efficiency of the MCT

method to estimate the root zone storage capacity (Sumax).
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Table 1. The parameters of the models, and their prior ranges for calibration. ("Sumax is a parameter in HBV,

TOPMODEL and the HSC model, but HSC-MCT model does not have Sumax as a free parameter; ™ B is a parameter in

HBV model, but not in TOPMODEL, HSC and HSC-MCT models)

Parameter Explanation Prior range for calibration
Sivax (Mm) Maximum interception capacity 2

Sumax (Mmm)~ The root zone storage capacity (10, 1000)

B ()" The shape of the storage capacity curve (0.01, 5)

Ce (-) Soil moisture threshold for reduction of evaporation (0.1, 1)

D(-) Splitter to fast and slow response reservoirs (0, 1)

Tiagr (d) Lag time from rainfall to peak flow (0, 10)

Kr (d) The fast recession coefficient (1, 20)

Ks (d) The slow recession coefficient (20, 400)

Table 2. The water balance and constitutive equations used in models. (Function (15)" is used in the HBV model, but

not used in the TOPMODEL, HSC and HSC-MCT models)

reservoirs Water balance equations Constitutive equations
Interception ds. .
P —=P-E-R) g _JEnS>0
reservoir i .
0;S, =0
> :{0; Si < SiMax (10)
P, S = Simax
Unsaturated ds B
L =P, —E,-R, (11) R, S, .
reservoir dt - = (12)
e SuMax
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237

Splitter and

Lag function

Fast reservoir d Sf
dt
Slow reservoir d SS

dt

- Rf _Qf (17)

=R, -Q, (19)

Ea — SU
E,~E C.S

e~ uMax

(13)

R, =R,D (17); R, =R,(1-D) (14)

Tlagf

R, ()= Zcf (i)-R, (t—1+1) (15

Tlagf

¢ (i)=i/> u(6)
u=1

Q, =S, /K, (18)

Q, =S, /K, (20)

Table 3. Data source of the MOPEX catchments.

Data Unit Resources Website Reference
Daily precipitation mm/d MOPEX http://www.nws.noaa.gov/oh  (Duan et al., 2006)
d/mopex/mo_datasets.htm
Daily maximum  °C MOPEX Same as above Same as above
temperature
Daily minimum °C MOPEX Same as above Same as above
temperature
Daily runoff mm/d MOPEX Same as above Same as above
Aridity index - MOPEX Same as above Same as above
DEM m USGS http://earthexplorer.usgs.gov/ -
Slope degree USGS Same as above -
K factor of soil - USGS http://water.usgs.gov/GIS/metad (Wolock, 1997; Gao et
ata/usgswrd/XML/muid.xml al., 2018)
Percentage of forest % NLCD http://www.mrlc.gov/ (Homer et al., 2015; Gao
cover et al., 2018)
Stream density Km/km? Horizon http://www.horizon- -
Systems systems.com/nhdplus/

Corporation
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Depth to bedrock cm STATSGO http://www.soilinfo.psu.edu/ind  (Schwarz et al., 1995;

ex.cgi?soil data&conus&data co Gao etal., 2018)
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1240 Table 4. Impacts of MOPEX catchment characteristics on model performance (HSC, HBV, and TOPMODEL)
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1242

1243 Figure 1. The variation of plant rooting depths along a hillslope profile, showing the impact of HAND

1244 (Height Above the Nearest Drainage) on rooting depth. (Taken from Fan et al., 2017 by permission of PNAS)
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1245

]1246 Figure 21. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the
1247 representative hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows
1248 the relationship between HAND bands and their corresponded area fraction; c) shows the relationship between
1249 storage capacity-area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly

1250 increases with HAND values.
1251
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Figure 23. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (Su)

and saturated area (As) in different soil moisture conditions. In d), 20 different Su-As conditions are plotted, which

allow us to estimate As from Su.
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DEM map
HAND map

‘ HAND — area fraction ‘

Assumption: storage capacity linearly
increases with HAND

‘ storage capacity — area fraction

‘ catchment root zone moisture — saturated area ‘

Assumption: saturation excess flow is the
dominant runoff generation mechanism

‘ catchment root zone moisture — runoff generation area ‘

1258

]‘259 Figure 34. The procedures estimating runoff generation by the HSC model and its two hypotheses.
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]1262 Figure 45. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL,
1263 HSC, and HSC -MCT). HBV-type has Sumax and beta two free parameters; TOPMODEL and HSC models have Sumax as
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1272

one free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and

make fair comparison, the interception storage capacity (Sivax) was fixed as 2mm.
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Figure 56. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM)

of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the

height above the nearest drainage (HAND) map of the Bruntland Burn catchment.
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Figure 67. The measured saturated areas and the simulated contributing areas (black) by TOPMODEL and HSC

models.
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Figure 78. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure).

The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).
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Figure 98. a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated
hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line); b) the
comparison of the observed saturated area of 7 days (black dots) and simulated relative soil moistures, i.e. HBV (blue

line), TOPMODEL (green line and dots), HSC (red line and dots).
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]1291 Figure 109. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and
1292 HSC models.
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]‘297 Figure 181. The Height Above the Nearest Drainage (HAND) map of the CONUS.
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]1301 Figure 112. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area
1302 fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the Su-As curves of the HSC

1303 model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.
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]‘306 Figure 123. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models
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Comparision of HSC and Topmodel performance
Comparision of HSC and HBV performance b) - R d Top HSC (19%)
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1308

]{309 Figure 134. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV
1310 and TOPMODEL, for the 323 MOPEX catchments.
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