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Replies to Anonymous Referee #1 

This paper proposes a new method to estimate the spatial distribution of soil water storage capacity 

in catchments based on DEM and long-term water balance data. The shape parameter of the 

distribution is estimated based on HAND values derived from DEM. The average storage capacity over 

a catchment is estimated, by the MCT method, from climatological and vegetation data (i.e., long-

term precipitation, runoff and seasonal NDVI). This method is evaluated in an experimental 

catchment and MOPEX catchments. This paper provides a novel method to estimate the spatial 

distribution of soil water storage capacity, which is an important feature for catchment hydrology but 

is usually not available. I have some comments for the authors to consider before the publication. 

 

Reply: We thank the Anonymous Reviewer #1 for recognising the innovation and the importance of this 

paper. We also appreciate all his/her constructive comments, which are valuable to improve the quality 

of this manuscript. For the detailed comments, please find our responses in below. 

 

Comments: 

1. As shown in Figure 2, saturated area and runoff coefficient is dependent on the initial soil moisture 
condition (𝑆u/SuMax). However, within a time step (daily in this paper), rainfall in the early time 
causes the increases of 𝑆u/SuMax and runoff coefficient. Therefore, the runoff coefficient during a 
day is also affected by rainfall, and runoff coefficient is a function of 𝑆u/SuMax, 𝛽, and SuMax/Pe (Moore, 
1985; Wang, 2018). Given the values of 𝑆u/SuMax and 𝛽, equation 12 in Table 2 underestimates Ru/Pe 
in a day, and this underestimation increases with increasing rainfall depth. Similarly for HSC module, 
if 𝐴𝑠 is determined by 𝑆u/SuMax at the beginning of a day, the effect of Pe on runoff coefficient is not 
considered. 
 

Reply: The influence of SuMax/Pe on runoff coefficient estimation (Moore, 1985; Wang, 2018) has 

been discussed in the second paragraph of Section 6.3.  

 

2. For HSC and HSC-MCT modules: the relationship 𝐴𝑠=𝑓(𝑆𝑢/𝑆𝑢Max) is obtained from the HAND values 
(Figure 2d). This relationship can be obtained by fitting a distribution function to the CDF of 
normalized HAND values (e.g., Figure 2b). For example, if the distribution used in Xinanjiang 
(Zhao, 1992) and VIC (Wood et al., 1992) is applied, the CDF of storage capacity is: 

 
The mean value of storage capacity is: 

 
Substituting 𝐶𝑚 from equation (2) into equation (1), we obtain 
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c/SuMax is the normalized HAND values (HAND values divided by its average) in Figure 2b. The 

value of 𝛽 is estimated by fitting the distribution. Then the relationship 𝐴𝑠=𝑓(𝑆𝑢/𝑆𝑢Max) is 

obtained: 

 

The curve for 𝐴𝑠~𝑆𝑢/𝑆𝑢Max is concave since 𝛽/(𝛽+1)<1. 𝐴𝑠~𝑆𝑢/𝑆𝑢Max for HBV is concave or convex. 

The distribution corresponding to the SCS curve number method is another alternative (Wang, 

2018), and the CDF is written as: 

 

Where 𝑎 is the shape parameter. The 𝐴𝑠~𝑆𝑢/𝑆𝑢Max relation for equation (5) is: 

 

Where  It is interesting to test the goodness-of-fit of these two 

distributions (equations 3 and 5) to the empirical 𝐴𝑠~𝑆𝑢/𝑆𝑢Max from the HAND-based values. 

Reply: In the manuscript, we have compared the model performance of HSC and HSC-MCT with HBV 

and TOPMODEL (as benchmarks), and found that the HSC module performed better in both 

calibration and validation. HBV is a good benchmark, because it has a relatively straightforward way 

of representing the runoff threshold in the root zone, albeit by calibration. TOPMODEL is also a good 

benchmark, because it uses a topographical index to define the runoff threshold. In our approach, 

the spatial distribution of the HAND values is used to derive the spatial distribution of the runoff 

(connectivity) thresholds, but from another topographical perspective than TOPMODEL. We agree 

that it would be interesting to test the goodness-of-fit of the Cumulative Distribution Function (CDF) 

of HSC with not only the HBV, but also the Xinanjiang, GR4J and SCS models. However it might be 

worthwhile to clarify that the intention of this study is to propose a new runoff generation module 

(HSC), which is, to some extent, supported by large-sample ecological field observation, and free of 

calibration, rather than comparing the CDF of HSC with other existing modules. More details can be 

found in the second paragraph of Section 6.3.  

 

3. Line 167: I guess that “SEF” represents “saturation excess flow”. But spell out “SEF” which is not 
defined before. Same for SOF and SFF. 
Reply: The full names of the SEF, and SOF have be clearly defined. 
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4. It may be good to add a map to show the spatial distribution of 𝑆�𝑢�.  

Reply: The SuMax for each MOPEX catchment in the HSC-MCT module was obtained in our previous study 
(Gao et al., 2014). We used the amount of root zone storage capacity, which ecosystems need to 
overcome drought periods (dry spells) with 20 years return period (SR20y), as a proxy for SuMax. The details 
of the method to derive the SR20y can be found in Gao et al., 2014. 

 
5. For figures with subplots, it is better to add “(a)” and “(b)”, e.g., Figure 7 and Figure 8.  

Reply: Done 
 
6. In the comparison of Figure 7a, is it possible to convert the distribution of TWI information to 𝐴�𝑠�~�

𝑆�𝑢�/𝑆�𝑢�Max and add it to Figure 7a?  

Reply: It is a good suggestion to put the TOPMODEL and HBV curves together, and compare their 

shape. But it is a difficult task, due to the different model assumption and concept. And to our best 

knowledge, we haven’t found similar studies that systematically compare the TOPMODEL curves 

with HBV curves, which might indicate that this is not an easy task to be performed within a short 

time. Furthermore, in this study we just wanted to compare the model performance of HSC with 

HBV and TOPMODEL, rather than to unify all model approaches (see Section 6.3).  

 
7. In Figure S4 (catchment 08171000), the calibrated 𝛽� for HBV is about 1.8. 𝛽�=1.35 is very close to the 

curve of HSC. But it seems that the performance of HSC is better than HBV (lines 500-501 and Figure 
S3). Since 𝛽� of HBV is calibrated, why is the calibrated value of 𝛽� not around 1.35? Is this due to the 
effect of other calibrated parameters? Discussion on this may be helpful. 
Reply: The effect of other calibrated parameters on model calibration and efficiency has be discussed in 
the third paragraph of Section 6.3. 

 
8. This comment is related to the previous one. For the comparison between HSC and HSC-MCT, is the 

calibrated SuMax for HSC similar to the estimated SuMax by MCT method? How about the other calibrated 
parameters (e.g., 𝐷�, 𝐾�𝑓�, 𝐾�𝑠�, 𝑇�𝑙�agF) among the models (HBV, TOPMODEL HSC, and HSC-MCT)? 

Reply: The comparison of the calibrated SuMax and the estimated SuMax by MCT can be found in Gao et 

al., 2014. For the other calibrated parameters, their effect on model performance will be discussed 

in the revised manuscript. It is worth noting that all models use the same model structure and prior 

range of remaining parameters (i.e. interception and response modules) to exclude the impact of 

other processes, and guarantee that the comparison of runoff generation modules is fair (see 

Section 2.4 and the third paragraph of Section 6.3). 

 

References: 

Moore, R. J. (1985), The probability-distributed principle and runoff production at point and basin scales, 

Hydrol. Sci. J., 30, 273-297. 

Wang, D.: A new probability density function for spatial distribution of soil water storage capacity leads 

to SCS curve number method, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-32, in 

review, 2018. 
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Gao H, Hrachowitz M, Schymanski SJ, Fenicia F, Sriwongsitanon N, Savenije HHG. 2014. Climate controls 

how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters 41 

(22): 7916–7923 DOI: 10.1002/2014gl061668 
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Replies to Anonymous Referee #2 

This study proposed the HAND-based storage capacity curve (HSC) for runoff generation 

parameterization in hydrological models. I like the idea to provide parameter reduced modules for 

hydrological modeling, considering the significant uncertainty in parameter calibration. However, the 

benefits for reducing parameter uncertainty by the HSC module were not illustrated by the current 

results. The authors claimed that the HSC/HSC-MCT module possess higher robustness and bear the 

potential to be implemented in prediction of ungauged basins, which however are not convincing 

from the current results. The benefits of the HSC/HSC-MCT modules need to be further discussed.  

Reply: We thank the Anonymous Referee #2 for the very constructive and detailed comments. For the 

benefits of HSC/HSC-MCT modules, we have added the results of model validation in the BB catchment 

(first paragraph of Section 4.2), and the model performance evaluated by IKGL in the MOPEX catchments 

(first paragraph of Section 5.2). Moreover, the limitations of the two modules are also discussed in 

Section 6.3. Please find our point-by-point responses to your comments in below.  

 

First, the HSC module obviously overestimated the saturated area fraction in the Bruntland Burn (BB) 

basin. The improvement for the correlation from 0.5 (TOPMODEL) to 0.6 (HSC) is rather small, which 

does not make any sense for illustrating the reduced deviations between the observed and simulated 

saturated area fractions. The model performance in validation period were not evaluated in the BB 

basin. Although the HSC module gained performance improvements on high flows in both calibration 

and validation periods in many MOPEX basins, the performance gains on low flows were not 

investigated. Moreover, the non-parameter HSC-MCT module produced much lower performance 

than the HSC module in many MOPEX cases. The gains for the HSC module should be attributed to the 

parameter calibration procedure, and potentially demonstrated the failure of the MCT module for 

many MOPEX cases.  

Reply:  

Overestimation of the saturated area. The overestimation of the saturated area is most likely caused by 

the different definitions of saturated areas used in field measurements (saturated soils connected to the 

stream network as detected by the “squishy boots method”) and in hydrological models (areas with 

potential for water accumulation across the catchment). The discussion and interpretation of the 

overestimation of the saturated area fraction in the BB basin are described in the third paragraph of 

Section 6.3. And we have further clarified the method to obtain experimental data in the second 

paragraph of Section 3.1. 

Model validation in BB basin. We now have added the model performance for a validation period (2009-

2014) and evaluated the models in the BB (see the first paragraph of Section 4.2).  

Model performance on low flow. The performance gains on low flow (IKGL) have been investigated and 

are shown in the supplementary figure S3. The results of IKGL illustrate that our proposed modules (HSC 

and HSC-MCT) also performed better in low flow simulation.  

  

Second, it is not fair to call the proposed modules are calibration-free. The HSC module also implied 

two parameters for the model application. The stream initiation threshold area was not included for 
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the model calibration, but was tested to calculate the HAND values. I guess this threshold area should 

be tested in calculation experiments to prepare the model results using the HSC modules. The effects 

of this parameter on the performance of the HSC modules were not investigated in the results. 

Including this parameter in the calibration procedure would most likely to improve the model 

performance. Moreover, model calibration procedures are required to determine the remaining 

parameter values in Table 1 for both the applications of HSC and HSC-MCT modules. The benefits to 

reduce parameter uncertainty by excluding one-two parameters by the HSC and HSC-MCT modules 

were not clear. Considering the preparation of HAND values using DEM dataset in the HSC and HSC-

MCT modules, the computational cost should be much higher than the calibrated modules in HBV and 

TOPMODEL. 

Reply: 

Calibration-free. We may politely insist that the HSC-MCT is a calibration-free runoff generation module. 

We agree that the threshold area for stream initiation is important while generating HAND maps. But 

the threshold area can be determined based on observation rather than calibration, although the 

threshold area varies in different climate, geology and landscape classes. The limitation of the fixed 

threshold area has been discussed in the third paragraph of Section 6.3.  

MCT method. MCT is an approach to estimate the SuMax by measurable input. But since we fixed this 

parameter as SR20y (the amount of root zone storage capacity, which ecosystems need to bridge 

droughts with 20 years return period), which may also vary in different ecosystems. Improving the MCT 

to allow more flexible estimation for different ecosystems will be promising to improve model 

performance, which is discussed in the first paragraph of Section 6.3.  

Computational cost. The discussion on the computational cost has been added in the revised manuscript 

(see the third paragraph of Section 6.3). 

 

Some other major concerns on the results are listed as follow.  

1. Figure 6, why not show the saturated area fraction simulated by the HBV module? Is the HBV 

module spatially discretized for the model application?  

Reply: The saturated area fraction simulated by HBV is presented in Figure 8b. But the HBV cannot 

explicitly generate the spatial discretization of saturation areas.  

 

2. Figure 7, why was the beta value of 0.98 used for the HBV module? Was this beta value derived 

from the model calibration? Have you tried other beta values for the comparison between HBV and 

HSC modules? Why not show this curve for the TOPMODEL module? What is your purpose to show 

the frequency of TWI? Could you also show the frequency of HAND?  

Reply: Yes, the beta value of 0.98 is the averaged calibrated value of beta. Please note that the intention 

of the HSC module is to propose a new runoff generation module, which is, to some extent, supported 

by large-sample ecological field observation, and free of calibration, rather than fitting the CDF of HSC 

with other existing curves/modules (see the second paragraph of Section 6.3). The purpose to show the 

TWI frequency of TOPMODEL is to demonstrate the curve that we used to estimate runoff in 
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TOPMODEL. The HSC curve in Figure 7 is derived from the spatial distribution of HAND, therefore the 

HAND distribution curve is not shown in this figure.  

 

3. Figure 8, the label for soil moisture was missed. It is very difficult to find the observed soil moisture 

(or you don’t have?). Can you label (a-b) for the two subplots? For the second and fourth events, the 

TOPMODEL matched the observed saturated area fractions very well. How to explain this? Please 

refine the caption, which is very difficult to understand.  

Reply: We don’t have the observed soil moisture data, but we have the data of observed saturated area 

proportion. Label a-b have been added in Figure 8, and the caption of Figure 8 has also been refined. 

TOPMODEL does perform better in the second and the fourth events, but generally HSC performs better 

than TOPMODEL (evaluated by R2 and IKGE) (Section 4.3). 

 

4. Figure 9, as I suggested before, a correlation coefficient does not make any sense to illustrate the 

deviations between the observed and simulated saturated area fractions, given that only seven 

observation events. Could you use some other metrics to compare the bias or deviation errors 

between the observed and simulated saturated area fractions?  

Reply: Thank you for the suggestion to use a different criteria to evaluate model performance to 

reproduce saturation areas. IKGE might be a better metric to evaluate model performance on saturated 

area fraction estimation. Evaluated by IKGE, HSC also performs better than the TOPMODEL, although both 

HSC and TOPMODEL do not perform well (-3.0 for HSC, and -3.4 for TOPMODEL). The reasons for the 

unsatisfactory results are discussed in the third paragraph of Section 6.3. 

 

5. Figures 10-11, what do you intend to say from these figures?  

Reply: We intended to present the procedures to derive the HSC curves for the MOPEX catchments, 

which we believe are helpful for readers to understand how the HSC module works.  

 

6. Figure 12, I suggest to compare the values for IKGL as well. The models were calibrated on both 

IKGL and IKGE, there should be strong trade-off between these two objective functions. That means 

the HSC module possibly sacrificed the performance for low flows (IKGL) to improve the performance 

for high flows (IKGE). The evaluated modules mainly differed on the calculation of soil storage 

capacity, which has significant effect on the generation of low flows. In my opinion, performance for 

low flows should also be an important indicator for the validity of the runoff generation assumptions.  

Reply: The results of IKGL have been incorporated into the revised manuscript (Figure S3, and the first 

paragraph of Section 5.2). 

 

Minor concerns:  

1. I suggest to remove “Calibration-free” from the title. HSC module needs to be calibrated, and the 

HSC-MCT module performed poorly in many MOPEX cases.  
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Reply: We may politely insist that the HSC-MCT module is calibration-free and performs equally well or 

better as a calibrated model. There are two reasons. Firstly, as we clarified in the above, HSC is directly 

derived from the HAND distribution in a DEM, without any calibration. Secondly, HSC-MCT performs 

comparably well with HBV. Since the median IKGE value of HSC-MCT is 0.65, which is a better 

performance compared to HBV (0.61). And the averaged IKGE value of HSC-MCT is 0.59, which is 

comparable to 0.62 (HBV). The models’ performance on IKGL have similar results. So, it is fair to say the 

model performance of the calibration-free HSC-MCT and HBV are comparable. 

 

2. Lines 30-33, I am not convinced to agree with this from the current results. What do you mean 

“facilitated effective visualization of the saturated area”? Is it important?  

Reply: This sentence has been rephrased. 

 

3. Introduction is too long from my taste. It is very difficult to get the motivations of this study from 

this section. I would suggest to refine it.  

Reply: We have tremendously refined and shortened the introduction. 

 

4. Lines 213-214, remove “Hydrological: : : inevitable”. Line 217, what do you mean “HAND contours 

are parallel in runoff generation”? Is that possible derived from the DEM?  

Reply: This have been rephrased. 

 

5. Line 227, could you please add more details for the calculation of HAND values?  

Reply: This has been rephrased. And more details about the calculation of HAND can be found in Rennó 

et al., 2008; Gharari et al., 2011. 

 

6. Line 314, how did you define the pareto-frontier? Did you use the Euclidean distance or threshold 

values?  

Reply: The Pareto frontier is defined by Euclidean distance. Please refer to Vrugt et al., 2003. 

 

7. Section 3.1, could you please add some details on the climatic and hydrological data in the BB 

basin? Any ground gauged stations do you have there?  

Reply: Yes, we have added more but brief details on the climatic and hydrological data in the BB 

catchment. 

 

8. Also in section 3.1, could you introduce the spatial interpolation of the field mapping of the 

saturated areas?  
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Reply: The saturation maps are not interpolated. They are generated directly by field mapping, and 

global positioning system (GPS) was used to delineate the boundary of saturation areas using the 

“squishy boot method” (Ali et al., 2014; Birkel et al., 2010). We have clarified this in the methods of the 

revised manuscript.   

 

9. Line 369-374, move to the methodology section.  

Reply: We have revised as suggested. 

 

10. Lines 415-420, move to the methodology section.  

Reply: We have revised as suggested. 

 

11. Lines 455-456, ‘dramatically improved’ may be not fair. ‘simultaneously maintaining model 

robustness and consistency’ is also not convinced by the results.  

Reply: We have revised as suggested.  

 

12. Lines 491-496, it is not fair to only discuss the cases where HSC/HSC-MCT outperformed the 

benchmark modules. Why not discuss the reasons for the cases where HSC/HSC-MCT produced lower 

performance?  

Reply: The results and the reasons for the cases where HSC/HSC-MCT produced lower performance have 

be described in the end of third and four paragraphs of Section 5.2, and the end of the first paragraph of 

Section 6.1. 

 

13. Discussion is also too much. It is difficult to get the main messages from the long text. Maybe 

remove lines 508-522, and lines 539-556.  

Reply: We have revised as suggested. 

 

14. Lines 646-647, maybe it is not so important to say as one of the conclusions here.  

Reply: We have revised as suggested. 

 

15. There are many sentence started with ‘And’, this is very strange (kind of grammatical error). 

Reply: We have revised the content thoroughly as suggested. 

 

References:  
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Renno, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., and Waterloo, M. J.: 

HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in 

Amazonia, Remote Sens. Environ., 112, 3469–3481, doi:10.1016/j.rse.2008.03.018, 2008. 

Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. H. G.: Hydrological landscape classification: 

investigating the performance of HAND based landscape classifications in a central European meso-scale 

catchment, Hydrol. Earth Syst. Sci., 15, 275–3291, doi:10.5194/hess-15-3275-2011, 2011 
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doi:10.1029/2002wr001746, 2003. 
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Replies to Anonymous Referee #3 

General comments 

This study presents a new concept for runoff generation description in conceptual hydrologic models. 

The new approach is based on HAND (height above nearest drainage) information derived from digital 

elevation model. The methodology is tested for two cases: (1) small experimental catchment in 

Scotland; (b) MOPEX dataset in the US. Results are compared against observed saturation patterns (in 

case 1) and discharge observations (both cases), as well against simulations of two other conceptual 

hydrologic models. The authors conclude that the new concept compares well with other two 

calibrated models and allows to describe spatial distribution of the root zone storage capacity. 

Overall the topic is interesting and within the scope of HESS. However I fully agree with referee #2 

that manuscript will benefit from some strengthening of the take home message, i.e. by providing 

more thorough and additional process based evaluation of results. I missed some more thorough 

process based interpretation of the reasons for similarity/differences in saturated area patterns for 

case 1 (catchment in Scotland). It seems to me that the differences between observed and simulated 

saturated area patterns are quite large and does not support well the interpretation that the new 

concept is better than the other approaches (yes, it is a little bit better than the models but for some 

days quite far from the observations and not convincing well the benefits of the proposed approach). 

The results for case 2 (MOPEX dataset) present mostly a statistical comparison of efficiency numbers 

(average, median), but does not tell much about the seasonal, geological, vegetation, climate and flow 

characteristics impacts on the efficiency evaluation. Some classification of catchments according e.g. 

similar TWI or HAND based indices, runoff regime indices, etc. and subsequent separate analysis of 

results for such groups will allow to more clearly indicate the role of different physiographic 

conditions on the results. I’m not sure to what extent can be the presented example for one 

catchment generalised for the other catchments, so some more assessment will be useful here. For 

example the results indicate that the new concept is better for mild sloped catchments, so a figure 

showing the results for all such catchments compared to the others will be interesting. Along the 

same line, similar evaluation for different geological/vegetation/climate groups of catchments with 

some process based interpretation of results will shed more light about what new and different 

information is obtained in the new HAND based storage capacity estimates compared to TWI 

(research question 2). (I’m missing a clear answer here - the maps are quite difficult to read, 

particularly for people which are not experts on the local situation). The discussion of the results is in 

some parts too vague and not linked well with the results (e.g. section 6.2). On the other hand there 

are much more MOPEX based studies and some of them indicate better model performance (e.g. for 

HBV model, e.g. Kollat et al, 2012, https://doi.org/10.1029/2011WR011534) than found here. So, 

some more thorough link with existing MOPEX studies will be thus suggested. 

 

Replies:  

We thank Anonymous Referee #3 for all his/her constructive comments and useful suggestions. For the 

benefits of HSC/HSC-MCT modules, we have added the results of model validation in the BB catchment 

(first paragraph of Section 4.2), and the model performance evaluated by IKGL in the MOPEX catchments 
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(first paragraph of Section 5.2). Moreover, the limitations of the two modules are also discussed in 

Section 6.3. Please find our point-by-point responses to your comments in below.  

1. Overestimation of the saturated area. The overestimation of the saturated area is most likely caused 
by the different definitions of saturated areas used in field measurements (saturated soils connected 
to the stream network as detected by the “squishy boots method”) and in hydrological models (areas 
with potential for water accumulation across the catchment). The discussion and interpretation of the 
overestimation of the saturated area fraction in the BB basin are described in the third paragraph of 
Section 6.3. And we have further clarify the method to obtain experimental data in the second 
paragraph of Section 3.1. 

2. Testing the impact of seasonal, geological, vegetation, climate and flow characteristics on model 
efficiency. Actually, we have conducted a study with the MOPEX data to test the impact of vegetation, 
climate, geology, topography, and other catchment characteristics on the shape of the beta function, 
and found that the topographic information has the most significant impact on the shape of beta 
function (Gao et al., 2018). It is found that the topographic information has the most significant impact 
on the shape of beta function. Therefore, we merely investigated the impact of topography on beta 
function and model efficiency in this study (see the last paragraph in Section 6.1).  

3. The discussion has been revised to be better linked with the results.  
4. We compared the HBV model performance in MOPEX catchments with other studies (e.g. Ye et al., 

2014). We will also refer to Kollat et al. (2012) in the revised manuscript.  
 

Specific comments 

1) Abstract: Please consider to be more specific about how much better the HSC concept is in 

reproducing the spatio-temporal pattern of the observed saturation areas, as well as in comparison 

with calibration and validation efficiencies of other conceptual models. 

Reply: We have rephrased the last sentence in the Abstract. 

 

2) Figure 1 and associated text. I wonder to what extent the new concept (HAND is proportional to 

storage capacity) reflects different geomorphological and geological processes? In which geological 

conditions one can apply the concept? 

Reply: Topography, with fractal characteristic, is often the dominant driver of runoff, as well as being a 

good integrated indicator for vegetation cover, rooting depth, root zone evaporation and transpiration 

deficits, soil properties, and even geology. But quantifying to what extent the HSC concept reflects 

different geomorphological and geological processes is still a challenge (Rempe and Dietrich, 2014; 

Gomes, 2016), which needs further investigation. Please see the second paragraph of Section 6.3.  

 

3) Figure 6. The colour legends are very confusing. It will be easier to have the same legend for all 

maps. 

Reply: I have replot Figure 6, to make sure they have the same legend for all maps. 
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4) It will be interesting to provide, as a supplement, a list of used catchments with the results. 

Reply: A list of the used catchments has been added as SI material. 

 

References: 

Gao, H., Duan, Z., Cai, H. (2018) Understand the impacts of landscape features on the shape of storage 

capacity curve and its influence on flood, Hydrology Research, 49(1): 90-106. 

Ye A, Duan Q, Yuan X, Wood EF, Schaake J. 2014. Hydrologic post-processing of MOPEX streamflow 

simulations. Journal of Hydrology 508: 147–156 DOI: 10.1016/j.jhydrol.2013.10.055 

Kollat, J. B., P. M. Reed, and T. Wagener. "When are multiobjective calibration trade‐offs in hydrologic 

models meaningful?." Water Resources Research 48.3(2012):3520. 

Rempe, D. M., and W. E. Dietrich (2014), A bottom-up control on fresh-bedrock topography under 

landscapes, Proc. Natl. Acad. Sci. U. S. A., 111(18), 6576–6581, doi:10.1073/pnas.1404763111. 

Gomes GJC, Vrugt JA, Vargas EA. 2016. Toward improved prediction of the bedrock depth underneath 

hillslopes: Bayesian inference of the bottom-up control hypothesis using high-resolution topographic 

data. Water Resources Research 52 (4): 3085–3112  
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Abstract  15 

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land 16 

surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel 17 

and simple topography-driven runoff generation parameterization – the HAND-based Storage Capacity 18 

curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify 19 

hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module 20 

in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve 21 

Technique (MCT) to estimate root zone storage capacity (SuMax), we developed a calibration-free runoff 22 

generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for 23 

comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked 24 

against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-25 

mapped saturation area extent. We found that the HSC performed better in reproducing the spatio-26 

temporal pattern of the observed saturated areas in the BB compared to TOPMODEL. The HSC and HSC-27 

MCT modules were subsequently tested for 323 MOPEX catchments in the US, with diverse climate, soil, 28 
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vegetation and geological characteristics. Comparing with HBV and TOPMODEL, the HSC performs better 1 

in both calibration and validation. Despite having no calibrated parameters, the HSC-MCT module 2 

performed comparably well with calibrated modules, highlighting the robustness of the HSC 3 

parameterization to describe the spatial distribution of the root zone storage capacity and the efficiency 4 

of the MCT method to estimate SuMax. Moreover, the HSC-MCT module facilitated effective visualization 5 

of the saturated area, which has the potential to be used for broader hydrological, ecological, 6 

climatological, geomorphological, and biogeochemical studies.  7 

 8 

1 Introduction  9 

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge 10 

in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust 11 

runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers. 12 

Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins 13 

(PUB) (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013Hrachowitz et al., 2013), it is not 14 

uncommon that models become increasingly complicated in order to capture the details of hydrological 15 

processes shown by empirical studies (McDonnell, 2007; Sivapalan, 2009). More detailed process 16 

conceptualization normally demands higher data requirements than our standard climatological and 17 

hydrological networks can provide, leading to more calibrated parameters and a probable increase in 18 

model uncertainty (Sivapalan, 2009).  19 

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation. 20 

It is a property emerging at larger scales, describing the temporal dynamics of how spatially 21 

heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm 22 

runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Blöschl, 2004; 23 

Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and 24 

van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including 25 

but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld 26 

and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and 27 

McDonnell, 2007) and land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel 28 

et al., 2014) but also by the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al., 29 

2011; McMillan et al., 2014; Nippgen et al., 2015). 30 
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In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of 1 

topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven 2 

and Freer, 2001) uses the topographic Topographic information wWetness iIndex (TWI) to distinguish 3 

hydrologic similarity; and SHE (Abbott et al. 1986) and tRIBS (Ivanov et al. 2004; Vivoni et al. 2005) use 4 

partial differential equations to describe the water movement based on pressure gradients obtained by 5 

topography; and the Representative Elementary Watershed (REW) approach divides catchment into a 6 

number of REWs to build balance and constitutive equations for hydrological simulation (Reggiani et al., 7 

1999; Zhang and Savenije, 2005; Tian et al., 2008). As the relevant model parameters such as local 8 

topographic slope and hydraulic conductivity can, in spite of several unresolved issues for example 9 

relating to the differences in the observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), 10 

be obtained from direct observations, they could in principle be applied without calibration.  11 

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional 12 

relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional 13 

relationships require parameters that are effective on the modelling scale and that can largely not be 14 

directly determined with small-scale field observations (cf. Beven, 1995), thus . Parameters in these 15 

models are therefore traditionally determined by calibration. However, frequently the number of 16 

observed variables for model calibration is, if available at all, limited to time series of stream flow. The 17 

absence of more variables to constrain models results in such models being ill-posed inverse problems. 18 

Equifinality in parameterization and in the choice of parameters then results in considerable model 19 

uncertainty (e.g. Beven, 1993, 2006). To limit this problem and to also allow predictions in the vast 20 

majority of ungauged catchments worldwide that remain ungauged, it is therefore desirable to find 21 

ways to directly infer effective model parameters at the modelling scale from readily available data 22 

(Hrachowitz et al., 2013).  23 

The component that is central for establishing connectivity in most top-down models is the soil moisture 24 

routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and 25 

partitions water into evaporative fluxes, groundwater recharge and fast lateral, storm flow generating 26 

runoff. The latter of which is critical from the aspect of connectivity. In majoritymost regions, where 27 

Hortonian overland flow (HOF, i.e. infiltration excess overland flow) is of minor importance (Dunne and 28 

Black, 1970; Sklash and Farvolden, 1979; Beven, 2004; Burt and McDonnell, 2015),, even in arid regions 29 

where often most locally generated HOF is re-infiltrated while flowing on hillslopes (Liu et al., 2012) and 30 

never reaches the stream channel network. Thus, the term saturation excess flow (SEF)fast lateral flows 31 
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can represent, depending on the model and the area of application, different processes, such as 1 

saturation overland flow, preferential flow, flow through shallow, high permeability soil layers or 2 

combinations thereof. The interplay between water volumes that are stored and those that are released 3 

laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down models 4 

described by functions between water stored in the unsaturated root zone (“soil moisture”) and the 5 

areal proportion of heterogeneous, local storage thresholds that are exceeded and thus “connected” 6 

(Zhao et al., 1980). In other words, in those parts of a catchment where the storage threshold is 7 

exceeded, no more additional water can be stored and additional water input in these parts of the 8 

catchment will generate fast, lateral flows. This areal proportion of the catchment where thresholds are 9 

exceed, and can alternatively be interpreted as runoff coefficient (e.g. Ponce and Hawkins, 1996; Perrin 10 

and Andreassian, 2001; Fenicia et al., 2007; Bergström and Lindström, 2015). Thus Tthe idea goes back 11 

to the variable contributing area concept, assuming that only partial areas of a catchment, where soils 12 

are saturated and thus storage thresholds are exceeded, contribute to runoff (Hewlett, 1961; Dunne and 13 

Black, 1970; Hewlett and Troendle, 1975). Although originally developed for catchments dominated by 14 

saturation overland flow, the extension of the concept to subsurface connectivity, posing that surface 15 

and subsurface connectivity are “two sides of the same coin” (McDonnell, 2013), proved highly valuable 16 

for models such as Xinanjiang (Zhao et al., 1980), HBV (Bergström and Forsman, 1973; Bergström and 17 

Lindström, 2015), SCS-CN (Ponce and Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) or 18 

and GR4J (Perrin and Andreassian et al., 2001), applied  in other regions, too.  19 

In many top-down models, such as Xinanjiang or HBVAmong these models, connectivity is formulated in 20 

a general form as CR=f(SU(t),SuMax,β), where CR is the runoff coefficient, i.e. the proportion of the 21 

catchment generating runoff, SU(t) is the catchment water content in the unsaturated root zone at any 22 

time t, SuMax is a scale parameter representing the total storage capacity in the unsaturated root zone 23 

and β is a shape parameter, representing the spatial distribution of heterogeneous storage capacities in 24 

the unsaturated root zone. In a recent development, several studies suggest that SuMax can be robustly 25 

and directly inferred long term water balance data, by the Mass Curve Technique (MCT), without the 26 

need for further calibration (Gao et al., 2014; de Boer-Euser et al., 2016; Nijzink et al., 2016). This leaves 27 

shape parameter β as only free calibration parameter for soil moisture routines of that form. 28 

The parameters of these storage excess distribution functions are typically calibrated. In spite of being 29 

the core component of soil moisture routines in many top-down models, little effort was previously 30 

invested to find ways to determine the shape of the functions describing the spatial heterogeneity of 31 
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storage thresholds and thus connectivity patternparameters at the catchment-scale directly from 1 

available data. An important step towards understanding and quantifying connectivity pattern directly 2 

based on observations was recently achieved by intensive experimental work in the Tenderfoot Creek 3 

catchments in Montana, US. In their work Jencso et al. (2009) were able to show that connectivity of 4 

individual hillslopes in their headwater catchments is highly related to their respective upslope 5 

accumulated areas. Using this close relationship, Smith et al. (2013) successfully developed a simple top-6 

down model with very limited need for calibration, emphasizing the value of “enforcing field-based 7 

limits on model parameters” (Smith et al., 2016). Based on hydrological landscape analysis, the FLEX-8 

Topo model (Savenije, 2010) can dramatically reduce the need for calibration (Gharari et al., 2014)., and 9 

The model has also shown to hold considerable potential for spatial model transferability without the 10 

need for parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016). Savenije (2010) suggested that 11 

as topographical features are frequently linked to distinct hydrological functional traits, they may 12 

potentially be used to construct a conceptual catchment model based on a perceptual model of 13 

hydrological units. Gharari et al., 2014 found that by imposing semi-quantitative relational constraints, 14 

the FLEX-Topo model can dramatically reduce the need for calibration. The model has also shown to 15 

hold considerable potential for spatial model transferability without the need for parameter re-16 

calibration (Gao et al., 2014a; H. Gao et al., 2016). In a recent developmentRecently, several studies 17 

suggest that SuMax can be robustly and directly inferred from long- term water balance data using, by the 18 

Mass Curve Technique (MCT), without the need for further calibration (Gao et al., 2014; de Boer-Euser 19 

et al., 2016; Nijzink et al., 2016). This leaves the shape parameter β as the only free calibration 20 

parameter for soil moisture routines of that form. 21 

In many top-down models, such as Xinanjiang or HBV, connectivity is formulated in a general form as 22 

CR=f(SU(t),SuMax,β), where CR is the runoff coefficient, i.e. the proportion of the catchment generating 23 

runoff, SU(t) is the catchment water content in the unsaturated root zone at any time t, SuMax is a scale 24 

parameter representing the total storage capacity in the unsaturated root zone and β is a shape 25 

parameter, representing the spatial distribution of heterogeneous storage capacities in the unsaturated 26 

root zone. In a recent development, several studies suggest that SuMax can be robustly and directly 27 

inferred long term water balance data, by the Mass Curve Technique (MCT), without the need for 28 

further calibration (Gao et al., 2014; de Boer-Euser et al., 2016; Nijzink et al., 2016). This leaves shape 29 

parameter β as only free calibration parameter for soil moisture routines of that form. 30 
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Topography is often the dominant driver of water movement caused by prevailing hydraulic gradients. 1 

More crucially, topography usually provides an integrating indicator for hydrological behavior, since 2 

topography is usually closely related with other landscape elements, such as soil vegetation climate and 3 

even geology (Seibert et al., 2007; Savenije, 2010; Rempe and Dietrich, 2014; Gao et al., 2014b; Maxwell 4 

and Condon, 2016; Gomes, 2016). The Height Above the Nearest Drainage (HAND; Rennó et al., 2008; 5 

Nobre et al., 2011; Gharari et al., 2011), which can be computed from readily available digital elevation 6 

models (DEM), could potentially provide first order estimates of groundwater depth , as there is some 7 

experimental evidence that with increasing HAND, groundwater depths similarly increase (e.g. Haria and 8 

Shand, 2004; Martin et al., 2004;  Molenat et al., 2005, 2008; Shand et al., 2005; Condon and Maxwell, 9 

2015; Maxwell and Condon, 2016). HAND can be interpreted as a proxy of the hydraulic head and is thus 10 

potentially more hydrologically informative than the topographic elevation above sea level (Nobre et al., 11 

2011). Compared with the Topographic Wetness Index (TWI) in TOPMODEL, HAND is an explicit measure 12 

of a physical feature linking terrain to water relative relatedto the potential energy for local drainage 13 

(Nobre et al., 2011). More interestingly, topographic structure emerges as a powerful force determining 14 

rooting depth under a given climate or within a biome, revealed by ecological observations in global 15 

scale (Fan et al., 2017). This leads us to think from ecological perspective to use the topographic 16 

information as an indicator for root zone spatial distribution without calibrating the β, and coupling it 17 

with the MCT method to estimate the SuMax, eventually create a calibration-free runoff generation 18 

module. 19 

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial 20 

distribution of storage capacities (β) and therefore can be used to develop a new runoff generation 21 

module (HAND-based Storage Capacity curve, i.e. HSC); (2) the distribution of storage capacities 22 

determined by HAND contains different information than the topographic wetness index; (3) the 23 

estimates of βHSC together with water balance-based estimates of SuMax (MCT method) allow the 24 

formulation of calibration-free parameterizations of soil moisture routines in top-down models directly 25 

based on observations. All these hypotheses will be tested firstly in a small data-rich experimental 26 

catchment (the Bruntland Burn catchment in Scotland), and then apply the model to a wide range of larger 27 

MOPEX catchments (MOPEX, Model Parameter Estimation Experiment). 28 

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e. 29 

HSC (HAND-based Storage Capacity curve) and HSC-MCT, and two benchmark models (HBV, TOPMODEL). 30 

This section also includes the description of other modules (i.e. interception, evaporation and routing) in 31 
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rainfall-runoff modelling, and the methods for model evaluation, calibration and validation. The Dataset 1 

section reviews the empirically-based knowledge of the Bruntland Burn catchment in Scotland and the 2 

hydrometerological and topographic datasets of MOPEX catchments in the US for model comparison. The 3 

Results section presents the model comparison results. The Discussion section interprets the relation 4 

between rainfall-runoff processes and topography, catchment heterogeneity and simple model, and the 5 

implications and limitations of our proposed modules. The conclusions are briefly reviewed in the 6 

Summary and Conclusions section.  7 

2 Methods 8 

Based on our perceptual model that saturation excess flow (SEF) is the dominant runoff generation 9 

mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module. 10 

Subsequently, estimating the parameter of root zone storage capacity (SuMax) by the Mass Curve 11 

Techniques (MCT method) without calibration, the HSC-MCT was developed. In order to assess the 12 

performance of our proposed modules, two widely-used runoff generation modules, i.e. HBV power 13 

function and TOPMODEL module, were set as benchmarks. Other modules, i.e. interception, evaporation 14 

and routing, are kept with identical structure and parameterization for the four rainfall-runoff models 15 

(HBV, TOPMODEL, HSC, HSC-MCT, whose names are from their runoff generation modules), to 16 

independently diagnose the difference among runoff generation modules (Clark et al., 2008; 2010).  17 

2.1 Two benchmark modules 18 

HBV power function  19 

The HBV runoff generation module applies an empirical power function to estimate the nonlinear 20 

relationship between the runoff coefficient and soil moisture (Bergström and Forsman, 1973; Bergström 21 

and Lindström, 2015). The function is written as:  22 

  ( )u
s

uMax

S
A

S

        (1) 23 

Where As (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall 24 

event; Su (mm) represents the averaged root zone soil moisture; SuMax (mm) is the averaged root zone 25 

storage capacity of the studied catchment; β (-) is the parameter determining the shape of the power 26 

function. The prior range of β can be from 0.1 to 5. The Su - As has a linear relation while β equals to 1. And 27 

the shape becomes convex while the β is less than 1, and the shape turns to concave while the β is larger 28 
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than 1. In most situations, SuMax and β are two free parameters, cannot be directly measured at the 1 

catchment scale, and need to be calibrated based on observed rainfall-runoff data.   2 

TOPMODEL module 3 

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at 4 

catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby, 5 

1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff 6 

generation potential. More specifically, the areas with larger TWI values tend to be saturated first and 7 

contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate 8 

runoff. The equations are written as follow: 9 

( )
ii uMax TW TWD D S I I         (2) 10 

  uMax uD S S        (3) 11 

 _ ;    while  0s s i i
A A D        (4) 12 

Where Di (mm) is the local storage deficit below saturation at specific location (i); 𝐷̅ (mm) is the averaged 13 

water deficit of the entire catchment (Equation 2), which equals to (SuMax - Su), as shown in Equation 3. ITWi 14 

is the local ITW value. TWI is the averaged TWI of the entire catchment. Equation 2 means in a certain soil 15 

moisture deficit condition for the entire catchment (𝐷̅), the soil moisture deficit of a specific location (Di), 16 

is determined by the catchment topography (ITW and ITWi), and the root zone storage capacity (SuMax). 17 

Therefore, the areas with Di less than zero are the saturated areas (As_i), equal to the contributing areas. 18 

The integration of the As_i areas (As), as presented in Equation 4, is the runoff contributing area, which 19 

equals to the runoff coefficient of that rainfall event.  20 

Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area 21 

(As) from the estimated relative soil moisture (Su/SuMax), and then map it back to the original TWI map, 22 

which makes it possible to test the simulated contributing area by field measurement. It is worth 23 

mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one, 24 

which combines the saturated and unsaturated soil components. 25 
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2.2 HSC module 1 

Hydrological models are human constructs that simplify the larger reality of hydrological processes 2 

(Savenije, 2009), and assumptions are inevitable (Neuweiler and Helmig, 2017). In the HSC modulethis 3 

study, we assume 1) SEF is the dominant runoff generation mechanism, while surface overland flow (SOF) 4 

and subsurface flow (SSF) cannot be distinguished; 2) the local root zone storage capacity has a positive 5 

and linear relationship with HAND, from which we can derive the spatial distribution of the root zone 6 

storage capacity; 3) HAND contours are parallel to each other in runoff generation. We believe that rainfall 7 

firstly feeds local soil moisture deficit, and no runoff can be generated before local soil moisture areas 8 

being subsequently saturated and water moving downslope. And after being saturated and connected 9 

with the channel network, either the cascade or parallel model structure does not impact on runoff 10 

generation. So this parallel model structure not only simplifies our simulation, it is also very likely closer 11 

to reality (Savenije, 2010). 12 

Figure 1 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a 13 

real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage 14 

capacity, based on topographic analysis and the second assumption as mentioned in the preceding 15 

paragraph. Figure 2 shows the approach to derive the Su-As relation, which are detailed as follows.  16 

I. Generate HAND map. The HAND map of study catchment, which represents the relative vertical 17 

distance to the nearest river channel, can be generated from a Digital Elevation Model ( DEM) 18 

(Gharari et al., 2011). The stream initiation threshold area is a crucial parameter, determining the 19 

perennial river channel network (Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and 20 

significantly impacting the HAND values. In this study, the startthreshold area was chosen as 40ha 21 

for the BB catchment to maintain a close correspondence with the observed stream network. And 22 

Ffor the MOPEX catchments, the stream initiation area threshold wais set as 500 grid cells (4.05 23 

km2), which faills in the range of previously reported stream initiation thresholds reported by 24 

others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). HAND maps were then calculated from 25 

the elevation of each raster cell above the nearest grid cell flagged as a stream cell following the 26 

flow direction (Gharari et al., 2011). The start area was chosen as 40ha to maintain a close 27 

correspondence with observed stream network.The HAND map (Figure 10) was also generated 28 

from the filled DEM, with the input of the flow direction and flow accumulation maps. Specifically, 29 

the perennial river network was obtained, based on the flow accumulation map, by setting the 30 

stream initiation area threshold of 500 grid cells (4.05 km2), which fills in the range of stream 31 
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initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 2009). In the 1 

end, HAND was then calculated from the elevation of each raster cell above nearest grid cell 2 

flagged as stream cell following the flow direction (Gharari et al., 2011). 3 

II. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in 4 

ascending order. Secondly, the sorted HAND values were evenly divided into n bands (e.g. 20 5 

bands in this study), to make sure each HAND band has similar area. The averaged HAND value of 6 

each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and 7 

then plot the normalized HAND distribution curve (Figure 1b).  8 

III. Distribute SuMax to each HAND band (SuMax_i). As assumed, the normalized storage capacity of each 9 

HAND band (SuMax_i) increases with HAND value (Figure 1c). Based on this assumption, the 10 

unsaturated root zone storage capacity (SuMax) can be distributed to each HAND band as SuMax_i 11 

(Figure 2a). It is worth noting that SuMax needs to be calibrated in the HSC module, but free of 12 

calibration in the HSC-MCT module.  13 

IV. Derive the Su - As curve. With the number of s saturated HAND bands (Figure 2a-c), the soil 14 

moisture (Su) can be obtained by Equation 5; and saturated area proportion (As) can be obtained 15 

by Equation 6. 16 

𝑆u =
1

𝑛
[∑ 𝑆uMax_i

𝑠
𝑖=1 + 𝑆uMax_s(𝑛 − 𝑠)]      (5) 17 

𝐴s =
𝑠

𝑛
       (6) 18 

Where SuMax_s  is the maximum SuMax_i of all the saturated HAND bands. Subsequently, the As - Su 19 

curve can be derived, and shown in Figure 2d.  20 

The SEF mechanism assumes that runoff is only generated from the saturationed areas generate runoff, 21 

therefore the proportion of saturation area is equal to the runoff coefficient of that rainfall-runoff event. 22 

Based on the Su-As curve in Figure 2d, generated runoff can be calculated from root zone moisture (Su). 23 

The HSC module also allows us to map out the fluctuation of saturated areas by the simulated catchment 24 

average soil moisture. For each time step, the module can generate the simulated root zone moisture for 25 

the entire basin (Su). Based on the Su-As relationship (Figure 2d), we can map Su back to the saturated area 26 

proportion (As) and then visualize it in the original HAND map. Based on this conceptual model, we 27 

developed the computer program and created a procedural module. The technical roadmap can be found 28 

in Figure 3.  29 
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2.3 HSC-MCT module  1 

The SuMax is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4J), which 2 

determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that 3 

SuMax represents the adaption of ecosystems to local climate. Ecosystems may design their SuMax based on 4 

the precipitation pattern and its their water demand. The storage is neither too small to avoid be mortality 5 

in dry seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we 6 

can estimate the SuMax without calibration, by the MCT method, from climatological and vegetation 7 

information. More specifically, the average annual plant water demand in the dry season (SR) is 8 

determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal 9 

NDVI. Subsequently, based on the annual SR, the Gumbel distribution (Gumbel, 1935), frequently used for 10 

estimating hydrological extremes, was used to standardize the frequency of drought occurrence. SR20y, i.e. 11 

the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for 12 

SuMax due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly, 13 

1994), and the fact that SR20y has the best fit with SuMax . The SR20y of the MOPEX catchments can be found 14 

in the map of ((Gao et al., (2014a).  15 

Eventually, with the MCT approach to estimate SuMax and the HSC curve to represent the root zone storage 16 

capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters. 17 

It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived Su-As relation, 18 

and their distinction lays in the methods to obtain SuMax. So far, the HBV power function module has 2 free 19 

parameters (SuMax, β). While the TOPMODEL and the HSC both have one free parameter (SuMax). Ultimately 20 

the HSC-MCT has no free parameter.  21 

2.4 Interception, evaporation and routing modules 22 

Except for the runoff generation module in the root zone reservoir (SUR), we need to consider other 23 

processes, including interception (SIR) before the SUR module, evaporation from the SUR and the response 24 

routine (SFR and SSR) after runoff generation from SUR (Figure 4). Precipitation is firstly intercepted by 25 

vegetation canopies. In this study, the interception was estimated by a threshold parameter (SiMax), set to 26 

2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9) 27 

(de Groen and Savenije, 2006). For the SUR reservoir, we can either use the HBV beta-function (Equation 28 

12), the runoff generation module of TOPMODEL (Equation 2-4) or the HSC module (Section 2.3) to 29 

partition precipitation into generated runoff (Ru) and infiltration. The actual evaporation (Ea) from the soil 30 

equals to the potential evaporation (Ep), if Su/SuMax is above a threshold (Ce), where Su is the soil moisture 31 
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and SuMax is the catchment averaged storage capacity. And Ea linearly reduces with Su/SuMax, while Su/SuMax 1 

is below Ce (Equation 13). The Ep can be calculated by the Hargreaves equation (Hargreaves and Samani, 2 

1985), with maximum and minimum daily temperature as input. The generated runoff (Ru) is further split 3 

into two fluxes, including the flux to the fast response reservoir (Rf) and the flux to the slow response 4 

reservoir (Rs), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is 5 

estimated by a convolution delay function, with a delay time of TlagF. Subsequently, the fluxes into two 6 

different response reservoirs (SFR and SSR) were released by two linear equations between discharge and 7 

storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from 8 

groundwater reservoir. The two discharges (Qf and Qs) generated the simulated streamflow (Qm). The 9 

model parameters are shown in Table 1, while the equations are given in Table 2. More detailed 10 

description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining 11 

that the only difference among the benchmark HBV type, TOPMODEL type, the HSC and the HSC-MCT 12 

models is their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in 13 

TOPMODEL and HSC model, and 5 in the HSC-MCT model. 14 

2.5 Model evaluation, calibration, validation and models comparison 15 

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a 16 

more robust approach to quantifying model performance with different criteria than a single one. The 17 

Kling-Gupta efficiency (Gupta et al., 2009) (IKGE) was used as the criteria to evaluate model performance 18 

and as an objective function for calibration. The equation is written as: 19 

 
2 2 2

KGE 1 ( 1) ( 1) ( 1)I r          (7) 20 

Where r is the linear correlation coefficient between simulation and observation; 𝛼 (
m o/   ) is a 21 

measure of relative variability in the simulated and observed values, where σm is the standard deviation 22 

of simulated streamflow, and σo is the standard deviation of observed streamflow; ε is the ratio between 23 

the average value of simulated and observed data. And the IKGL (IKGE of the logarithmic flows) (Fenicia et 24 

al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation. Since the 25 

response module, determined the baseflow simulation and IKGL, is kept the same for all four models, thus 26 

only the IKGE results are presented in the results. 27 

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for 28 

the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were 29 
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assumed to be the behavioral parameter sets and can equally represent model performance. The 1 

averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result 2 

of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number 3 

of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the 4 

number of initial samples was set to 210 and a total number of 50000 model iterations for all the 5 

catchment runs. For each catchment, the first half period of data was used for calibration, and the other 6 

half was used to do validation.  7 

In module comparison, we defined three categories: if the difference of IKGE of model A and model B in 8 

validation is less than 0.1, model A and B are regarded as “equally well”. If the IKGE of model A is larger 9 

than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the IKGE of 10 

model A is less than model B in validation by -0.1 or less, model B is regarded to outperform model A. 11 

3 Dataset 12 

3.1 The Bruntland Burn catchment  13 

The 3.2 km2 Bruntland Burn catchment (Figure 5), located in north-eastern Scotland, was used as a 14 

benchmark study to test the models performance based on a rich data base of hydrological measurements. 15 

The Bruntland Burn is a typical many upland catchments in North West Europe (e.g. Birkel et al., 2010), 16 

namely a combination of steep and rolling hillslopes and over-widened valley bottoms due to the glacial 17 

legacy of this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift deposits 18 

(e.g. till) containing a large amount of stored water superimposed on a relatively impermeable granitic 19 

solid geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas, which 20 

remain saturated throughout most of the year with a dominant near-surface runoff generation 21 

mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream 22 

network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy 23 

hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes 24 

do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water 25 

movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough 26 

grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months 27 

(May-August) generally being the driest (Ali et al., 2013). Snow makes up less than 10% of annual 28 

precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and 29 

annual discharge around 659 mm. The daily precipitation, potential evaporation, and discharge rangewas 30 



27 
 

measured from January 1 in 2008 to September 30 in 2014 from installed monitoring equipment (further 1 

details in Birkel et al., 2010). The data from January 1, 2008 to December 31, 2010 is used asfor model 2 

calibration, and the data from January 1, 2011 to September 30, 2014 is used as a model validation period.  3 

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 5). 4 

There are 7 saturation area maps (Figure 6) (May 2, July 2, August 4, September 3, October 1, November 5 

26, in 2008, and January 21, in 2009), measured directly by the “squishy boot” method and field mapping 6 

(Ali et al., 2013), bywith aand a global positioning system (GPS), was used to delineate the boundary of 7 

saturation areas (Birkel et al., 2010; Ali et al., 2013). These saturation area maps revealed a dynamic 8 

behavior of expanding and contracting areas connected to the stream network that were used as a 9 

benchmark test for the HSC module. 10 

3.2 MOPEX dataset  11 

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al., 12 

2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The 13 

dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily 14 

streamflow. The longest time series range from 1948 to 2003. 323 catchments were used in this study 15 

(see the name list in SI), with areas between 67 and 10,329 km2, and excluding the catchments with data 16 

records <30 years, impacted by snowmelt or with extreme arid climate (aridity index Ep/P > 2). The daily 17 

streamflow was used to calibrate the free parameters, and validate the models. The Digital Elevation 18 

Model (DEM) of the CONUS in 90m resolution was download from the Earth Explorer of United States 19 

Geological Survey (USGS, http://earthexplorer.usgs.gov/).  20 

4 Results of the Bruntland Burn 21 

4.1 Topography analysis 22 

The generated HAND map, derived also from the DEM, is shown in Figure 5, with HAND values ranging 23 

from 0m to 234m. Based on the HAND map, we can derive the Su-As curve (Figure 7) by analyzing the 24 

HAND map with the method described in Section 2.3. The TWI map of the BB (Figure 5) was generated 25 

from a 2m high-resolution LiDAR-derivedits DEM. Overall, the TWI map, ranging from -0.4 to 23.4, mainly 26 

differentiates the valley bottom areas with the highest TWI values from the steeper slopes. This distinction 27 

of landscape features is probably causedsupported by the fine resolution of the DEM map in 2 m, since 28 

previous research found the sensitivity of TWI to DEM resolution (Sørensen and Seibert, 2007). From the 29 



28 
 

TWI map, the frequency distribution function and the accumulative frequency distribution function can 1 

be derived (Figure 7), with one unit of TWI as interval.   2 

The generated HAND map, derived also from the DEM, is shown in Figure 5, with HAND values ranging 3 

from 0m to 234m. Since HAND is sensitive to the definition of the perennial channel, which is highly 4 

impacted by the stream initiation threshold area (Montgomery and Dietrich, 1989; Gharari et al., 2011; 5 

Hooshyar et al., 2016). The start area was chosen as 40ha to maintain a close correspondence with 6 

observed stream network. Based on the HAND map, we can derive the Su-As curve (Figure 7) by analyzing 7 

the HAND map with the method in Section 2.3.  8 

4.2 Model performance 9 

The observed and simulated hydrographs of three models (HBV, TOPMODEL, and HSC) in 2008 are shown 10 

in Figure 8. WeIt isWe found that all the three models (HBV, TOPMODEL, and HSC) can perform well to 11 

reproduce the observed hydrograph (Figure 8). The IKGE of the three models are all around 0.66 in 12 

calibration, which is largely in line with other studies from the BB (Birkel et al, 2010; 2014). TAnd the 13 

calibrated IKGL are 0.76, 0.72 and 0.74 for HSC, HBV and TOPMODEL, respectively in calibration. IWhile in 14 

validation, the IKGE of the three models are also aroundremains similarly around  0.66, while IKGL are slightly 15 

lower with 0.75, 0.70 and 0.65 for the three models. Since theWith measured rainfall-runoff time series 16 

only last from 2008 to 2014, which is too short to estimate the SR20y (proxy for SuMax) by MCT approach 17 

(which needs long-term hydro-meteorological observations data,), the HSC-MCT model was not applied 18 

to the BB catchment.  19 

The normalized relative soil moisture of the three model simulations are presented in Figure 8. Their 20 

temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL 21 

has a larger variation, compared with HBV and HSC (Figure 8).  22 

Figure 7 shows the calibrated power curve from HBV (averaged beta=0.98) with the Su-As curve obtained 23 

from the HSC module. We found the two curves are largely comparable, especially while the relative soil 24 

moisture is low. This result demonstrates that for the BB with glacial drift deposits and combined terrain 25 

of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve can essentially be 26 

derived from the Su-As curve of the HSC module merely by topographic information without calibration.  27 

4.3 Contributing area simulation 28 

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are 29 

shown in Figure 6, 8, 9. We found although both modules overestimated the contributing areas, they can 30 
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capture the temporal variation. For example, the smallest saturated area both observed and simulated 1 

occurred on July-02-2008, and the largest saturationed area both occurred on January-21-2009. 2 

Comparing the estimated contributing area of TOPMODEL with the HSC module, we found the results of 3 

the HSC to better correlates better (R2=0.60, IKGE=-3.0) with the observed saturationed areas than 4 

TOPMODEL (R2=0.50, IKGE=-3.4) (Figure 9). For spatial patterns, the results of the HSC module are also more 5 

closely comparable with the observed saturationed areas than TOPMODEL (Figure 6). Based on these 6 

results benchmarking the HSC module with observed saturationed area maps, we proceeded to test HSC 7 

for a wide range of climatically and geomorphologically different catchments across the US. 8 

5 Results from the MOPEX catchments  9 

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments  10 

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold 11 

height of 100m (recommended by Esri). The slope map, i.e. the steepest local slope, was generated by the 12 

filled DEM, and the flow direction map was also derived from the filled DEM using the D8 algorithm 13 

(O’Callaghan and Mark, 1984; Jenson and Domingue, 1988). Subsequently, the flow accumulation map 14 

could be generated from the flow direction map. The accumulated upslope area (A), obtained from the 15 

flow accumulation map, was then divided by an estimate of the contour length (L), which is related to the 16 

flow direction map, to provide the local upslope area draining through a certain point per unit contour 17 

length (a = A/L). With the definition of TWI as ln(a/tan β), the TWI map of the CONUS is produced (Figure 18 

S1). From Based on the TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments 19 

with their catchment boundaries. And then the TWI frequency distribution and the accumulated 20 

frequency distribution of the 323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were 21 

derived based on the 323 TWI maps. 22 

The HAND map (Figure 10) was also generated from the filled DEM, with the input of the flow direction 23 

and flow accumulation maps. Specifically, the perennial river network was obtained, based on the flow 24 

accumulation map, by setting the stream initiation area threshold of 500 grid cells (4.05 km2), which fills 25 

in the range of stream initiation thresholds reported by others (e.g. Colombo et al., 2007; Moussa, 2008, 26 

2009). In the end, HAND was then calculated from the elevation of each raster cell above nearest grid cell 27 

flagged as stream cell following the flow direction (Gharari et al., 2011). 28 

In Figure 10, it is shown that the regions with large HAND values are located in the Rocky Mountains and 29 

Appalachian Mountains, while the Great Plains has smaller HAND values. Interestingly, the Great Basin, 30 
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especially in the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest 1 

drainage, although their elevations above seas level are high. From the CONUS HAND map, we clipped the 2 

HAND maps for the 323 MOPEX catchments with their catchment boundaries. We then plot their HAND-3 

area curves, following the procedures of I and II-IV in Section 2.2. Figure 11a shows the normalized HAND 4 

profiles of the 323 catchments.  5 

Based on the HAND profiles and the Step V III in Section 2.2, we derived the normalized storage capacity 6 

distribution for all catchments (Figure 11b). Subsequently, the root zone moisture and saturated area 7 

relationship (As-Su) can be plotted by the method in Step VIV of Section 2.2. Lastly, reversing the curve of 8 

As-Su to Su-As relation (Figure 11c), the latter one can be implemented to simulate runoff generation by 9 

soil moisture. Figure 11c interestingly shows that in some catchments, there is almost no threshold 10 

behavior between rainfall and runoff generation, where the catchments are covered by large areas with 11 

low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly 12 

and generate runoff without a precipitation–discharge threshold relationship characteristic of areas with 13 

higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished 14 

between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to 15 

rainfall is almost instantaneous.  16 

5.2 Model performance 17 

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data 18 

(Figure 12) is comparable with the previous model comparison experiments, conducted with four rainfall-19 

runoff models and four land surface parameterization schemes (Duan et al., 2006; Kollat et al., 2012; Ye 20 

et al., 2014). The median value of IKGE of the HBV type model is 0.61 for calibration in the 323 catchments 21 

(Figure 12), and averaged IKGE in calibration is 0.62. In validation, the median and averaged values of IKGE 22 

are kept the same as calibration.  The comparable performance of models in calibration and validation 23 

demonstrates the robustness of benchmark models and the parameter optimization algorithm (i.e. 24 

MOSCEM-UA). The TOPMODEL improves the median value of IKGE from 0.61 (HBV) to 0.67 in calibration, 25 

and from 0.61 (HBV) to 0.67 in validation. But the averaged values of IKGE for TOPMODEL are slightly 26 

decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving the 27 

HAND topographic information without calibrating the β parameter, improves the median value of IKGE to 28 

0.68 for calibration and 0.67 for validation. The averaged values of IKGE in both calibration and validation 29 

are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore, Figure 12 30 

demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median and 31 
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averaged values were improved by the HSC module, but also the 25th and 75th percentiles and the lower 1 

whisker end, all have been dramatically improved. The performance gains on baseflow (IKGL) have been 2 

investigated and shown in the supplementary figure S3. These results indicate the HSC module improved 3 

the model performance to reproduce hydrograph for both peak flow (IKGE) and baseflow (IKGL), and 4 

simultaneously maintaining model robustness and consistency.  5 

Additionally, for the HSC-MCT model, the median IKGE value, the HSC-MCT leads to an is improvedment 6 

from 0.61 (HBV) to 0.65 in calibration, and from 0.61 (HBV) to 0.64 in validation, but not as well 7 

performedlower compared toas TOPMODEL (0.67 for calibration and validation). For the averaged IKGE 8 

values, they were slightly reduced from 0.62 (HBV) and 0.61 (TOPMODEL) to 0.59 for calibration and 9 

validation. Although the HSC-MCT did not perform as well as the HSC module, considering there is no free 10 

parameters to calibrate, the median IKGE value of 0.64 (HBV is 0.61) and averaged IKGE of 0.59 (TOPMODEL 11 

is 0.61) are quite acceptable. In addition, the 25th and 75th percentiles and the lower whisker end of the 12 

HSC-MCT model are all improved compared to the HBV model. Moreover, the largely comparable results 13 

between the HSC and the HSC-MCT modules demonstrate the feasibility of the MCT method to obtain the 14 

SuMax parameter and the potential for HSC-MCT to be implemented in prediction of ungauged basins (PUB, 15 

cf. Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013). Since the response routines 16 

determining the baseflow simulation of the four models are exactly the same, the results of IKGL as an 17 

indicator to evaluate baseflow are not presented. 18 

Figure 13 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark models. 19 

We found that the HSC performs “equally well” as HBV (the difference of IKGE in validation ranges -0.1 ~ 20 

0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the 21 

improvement of IKGE in validation is larger than 0.1). In not a single catchment did the calibrated HBV 22 

outperform the HSC. From the spatial comparison, we found that the catchments, where the HSC model 23 

performed better are mostly located in the Great Plains, with modest sloping (4.0 degree), while the other 24 

catchments have average slope of 8.1 degree. Comparing the HSC model with TOPMODEL, we found in 25 

91% of the catchments that the two models have approximately equal performance. In 8% of the 26 

catchments, the HSC model outperformed TOPMODEL. Only in 1% of the catchments (two in Appalachian 27 

Mountain and one in the Rocky Mountain in California), TOPMODEL performed better. From spatial 28 

analysis, we found the HSC outperformed catchments have flat terrain (2.3 degree) with moderate 29 

averaged HAND value (26m), while the TOPMODEL outperformed catchments have steep hillslope (19 30 

degree) with large averaged HAND value (154m).  31 
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Without calibration of SuMax, as expected, the performance of HSC-MCT module slightly deteriorates 1 

(Figure 12). In comparison with HBV, the outperformance reduced from 12% (HSC) to 4% (HSC-MCT), the 2 

approximately equal-well simulated catchments dropped from 88% to 79%, and the inferior performance 3 

increased from 0% to 17%. Also, in comparison with TOPMODEL, the better performance dropped from 4 

8% (HSC model) to 7% (HSC-MCT model), the approximately equal catchments reduced from 91% to 72%, 5 

and the inferior performance increased from 1% to 21%. The inferiority of the HSC-MCT model is probably 6 

caused by the uncertainty of the MCT method for different ecosystems which have different survival 7 

strategies and use different return periods to bridge critical drought periods. By using ecosystem 8 

dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).  9 

To further explore the reason for the better performance of the HSC approach, we selected the 08171000 10 

catchment in Texas (Figure 13), in which both the HSC module and the HSC-MCT module outperformed 11 

the two benchmark modules to reproduce the observed hydrograph (Figure S3S4). The HBV model 12 

dramatically underestimated the peak flows, with IKGE as 0.54, while TOPMODEL significantly 13 

overestimated the peak flows, with IKGE as 0.30. The HSC-MCT model improved the IKGE to 0.71, and the 14 

HSC model further enhanced IKGE to 0.74.   15 

Since the modules of interception, evaporation and routing are identical for the four models, the runoff 16 

generation modules are the key to understand the difference in model performance. Figure S4 S5 shows 17 

the HBV β curve and the Su-As curve of the HSC model, as well the TWI frequency distribution. We found 18 

that with a given Su/SuMax, the HBV β function generates less contributing area than the HSC model, which 19 

explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep 20 

accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment 21 

area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that 22 

even with low soil moisture content (Su/SuMax), the contributing area by TOPMODEL is relatively large, 23 

leading to the sharply increased peak flows for all rainfall events.  24 

6 Discussion 25 

6.1 Rainfall-runoff processes and topography  26 

In hillslope and catchment hydrology, the partitioning of precipitation into runoff and evaporation is a 27 

fundamental function in virtually all hydrological models. Bucket-type models (e.g. HBV and Xinanjiang), 28 

as one of the most widely used group of conceptual models, typically adopt two parameters to determine 29 

runoff generation. One is the root zone storage capacity (SuMax) and the other is the shape parameter (i.e. 30 
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β) determining the relation between root zone moisture and runoff generation. In long-term water 1 

balance studies, climate plays a key role in determining the storage capacity and the partition between 2 

evaporation and runoff (Budyko, 1971; Wang and Tang, 2014; Gao et al., 2014a). But for specific events, 3 

the key question is how antecedent soil moisture impacts runoff generation. Field studies support that in 4 

many mildly sloping catchments, SEF is the dominant runoff generation mechanism (Sklash and Farvolden, 5 

1979; Burt and McDonnell, 2015). Therefore, it is essential to determine the temporal variability of the 6 

saturated area (equal to the contributing area and the runoff coefficient of a specific rainfall-runoff event), 7 

to calculate runoff generation. Linking the runoff contributing area to topography is not a new insight in 8 

rainfall-runoff modelling. TOPMODEL is an elegant pioneering model allowing us to understand the 9 

interaction between topography and connectivity. In this study, the HSC module uses a relatively new 10 

topographic index (i.e. HAND) to identify hydrological similarity.  11 

We applied a novel approach to derive the relationship between soil moisture storage and the saturated 12 

area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher 13 

HAND values, due to the larger storage capacity in high HAND locations. The outperformance of the HSC 14 

model over the benchmark HBV and TOPMODEL in modestly sloping catchments indicates that the HSC 15 

module likely has a higher realism than the calibrated beta-function of the HBV model and the TWI of 16 

TOPMODEL in these regions. Very interestingly, Fan et al., (2017) presented a global synthesis of 2,200 17 

root observations of >1000 species, and revealed the systematic variation of rooting depth along HAND 18 

(Fig.1, in Fan et al., 2017). Since rooting depth can be translated to root zone storage capacity through 19 

combination with soil plant-available water (Wang-Erlandsson et al., 2016). This large sample dataset, 20 

from ecological perspective, provides a strong support for the assumption of the HSC model on modest 21 

slopes, i.e. the increase of root zone storage capacity with HAND. More interestingly, on excessively 22 

drained uplands, rooting depth does not follow the same rolepattern, with shallow depth and limited to 23 

rain infiltration (Fig.1, in Fan et al., 2017). This could explain the inferior performance of HSC model to 24 

TOPMODEL in three MOPEX catchments (averaged HAND is 154 m) with excessively drained uplands, 25 

where Hortonian overland flow is likely the dominant mechanism, and the HSC assumption likely does not 26 

work well.  27 

The FLEX-Topo model (Savenije, 2010) also uses HAND information as a topographic index to distinguish 28 

between landscape-related runoff processes, and has both similarity and differences with the HSC model. 29 

The results of the HSC model illustrate that the riparian areas are more prone to be saturated, which is 30 

consistent with the concept of the FLEX-Topo model. Another important similarity of the two models is 31 
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their parallel model structure. From our perspective, the parallel model structure is closer to reality. Since 1 

before saturation, rainfall is firstly infiltrated into local storage, and water moves vertically; only after a 2 

certain level of saturation, water starts to move laterally. But Iin both models it is assumed that the 3 

upslope area has larger storage capacity, therefore the upper land generates runoff less and later than 4 

the lower land. In other words, in most cases, the local storage is saturated due to the local rainfall, instead 5 

of flow from upslope. Therefore, the local storage is an essential feature, to estimate the saturated area 6 

and runoff generation, rather than the water coming from uphill.  7 

The most obvious difference between the HSC and the FLEX-Topo models is the approach towards 8 

discretization of a catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. 9 

wetlands, hillslopes and plateau. This discretization method requires threshold values to classify 10 

landscapes, i.e. threshold values of HAND and slope, which leads to fixed and time-independent 11 

proportions of landscapes. The HSC model does not require landscape classification, which reduced the 12 

subjectivity in discretization and restricted the model complexity, as well as simultaneously allowing the 13 

fluctuation of saturated areas (termed as wetlands in FLEX-Topo).  14 

Except for topography, it is also interesting to test the impact of climate, geological, vegetation, and flow 15 

characteristics on model efficiency. Gao et al., (2018) have conducted a study with the MOPEX dataset to 16 

test the impact of various catchment characteristics on the shape of the beta function, and found that the 17 

topographic information has the most significant impact on the shape of beta function. Therefore, we 18 

merely investigated the impact of topography on beta function and model efficiency in this study.  19 

6.2 Catchment heterogeneity and simple models 20 

Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of 21 

landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often 22 

consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots, 23 

soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and 24 

McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of 25 

runoff processes, and hydrological and land surface modelers are developing more and more complicated 26 

models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no 27 

compelling evidence to support the outperformance of sophisticated “physically-based” models in terms 28 

of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in 29 

rainfall-runoff simulation (Beven, 1989; Orth et al., 2015).  30 



35 
 

But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts 1 

(Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not 2 

require complex laws (Chase, 1992; Passalacqua et al., 2015). Asking questions of “why” rather than “what” 3 

likely leads to more useful insights and a new way forward (McDonnell et al., 2007). Catchment is a 4 

geomorphological and even an ecological system whose parts are related to each other probably due to 5 

catchment self-organization and evolution (Sivapalan and Blöschl, 2015; Savenije and Hrachowitz, 2017). 6 

This encourages the hope that simplified concepts may be found adequate to describe and model the 7 

operation of the basin runoff generation process. It is clear that topography, with fractal characteristic 8 

(Rodriguez-Iturbe and Rinaldo, 1997), is often the dominant driver of runoff, as well as being a good 9 

integrated indicator for vegetation cover (Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone 10 

evaporation and transpiration deficits (Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), 11 

and even geology (Rempe and Dietrich, 2014; Gomes, 2016). Therefore, we argue that increasingly 12 

detailed topographic information is an excellent integrated indicator allowing modelers to continue 13 

systematically represent heterogeneities and simultaneously reduce model complexity. The model 14 

structure and parametrizationparameterization of both HSC and TOPMODEL are simple, but not over 15 

simplified, as they capture probably the most dominant factor controlling runoff generation, i.e. the 16 

spatial heterogeneity of storage capacity. Hence, this study also sheds light on the possibility of moving 17 

beyond heterogeneity and process complexity (McDonnell et al., 2007), to simplify them into a succinct 18 

and a priori curve by taking advantage of catchment self-organization probably caused by co-evolution or 19 

the principle of maximum entropy production (Kleidon and Lorenz, 2004).  20 

6.3 Implications and limitation  21 

The calibration-free HSC-MCT runoff generation model may enhance our ability to predict runoff in 22 

ungauged basins (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013). Hydrological models 23 

still depend largely on observational data to feed statistical analysis and calibrate the free parameters. 24 

This is probably not a major issue in the developed world, with abundant of comprehensive 25 

measurements in many places, but for the developing world it requires prediction with sparse data and 26 

fragmentary knowledge. Topographic information with high spatial resolution is freely available globally, 27 

allowing us to implement the HSC model in global scale studies. In addition, thanks to the recent 28 

development, testing, and validation of remote sensing evaporation products in large spatial scale (e.g. 29 

Anderson et al., 2011; Hu and Jia, 2015), the SuMax estimation has become possible without in situ hydro-30 
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meteorological measurements (Wang-Erlandsson et al., 2016). These widely-accessible datasets make the 1 

global-scale implementation of HSC-MCT module promising.  2 

Although the new modules perform well in the BB and the MOPEX catchments, we do not intend to 3 

propose “a model fits all approach”. It is valuable to further test, to what extent the new concept (HAND 4 

is proportional to storage capacity) reflects different geomorphological and geological processes. Also the 5 

assumption of HSC, to some extent, is supported by large-sample ecological field observations (Fan et al., 6 

2017), but it never means that the As-Su curve of HSC can perfectly fit the other existing modules (e.g. HBV 7 

and TOPMODEL). Unify all model approaches into one framework is the objective of several pioneering 8 

works (e.g. Clark, et al., 2010; Fenicia et al., 2011), but out of the scope of this study. Moreover, while 9 

estimating the runoff coefficient by the As-Su relation, early rainfall in the early time may cause the 10 

increase of Su/SuMax and runoff coefficient (Moore, 1985; Wang, 2018). Therefore, neglecting this influence 11 

factor, the HBV module (Equation 1), TOPMODEL (Equation 2-4) and the HSC module (Equation 5-6) 12 

theoretically underestimate the runoff coefficient, which needs to be further investigationed. 13 

 14 

Finally, we should not ignore the limitations of the new moduleis model, although it has performs better 15 

performance and modelling consistencyis more consistent with reality. Firstly,1) the The threshold area 16 

for the stream initiationng a stream was set as a constant value for the entire CONUS, but the variation of 17 

this value in different climate, geology and landscape classes (Montgomery and Dietrich, 1989; Helmlinger 18 

et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to be future investigated. 2)Secondly, the The 19 

discrepancy between observed and simulated saturation area needs to be further investigated, by utilizing 20 

more advanced field measurements and simultaneously refining the model assumptions. To our 21 

understanding, there are twofour interpretations. Firstly, Tthe overestimation of the HSC model is possibly 22 

possible because of the two runoff generation mechanisms – SOF and the SSF occur at the same time. 23 

However, the saturated area observed by the “squishy boot” method (Ali et al., 2013), probably only 24 

distinguished the areas where SOF occursred. Subsurface stormflow, also contributes to runoff but 25 

without surface runoff, cannot be observed by the “squishy boot” method. Thus, this mismatch between 26 

simulation and observation probably leads to the overestimation of is saturationed areas overestimation. 27 

Another The second interpretation might be the different definition of “saturation”. The observed 28 

saturationed areas are places where 100% of soil pore volume is filled by water preferentially connected 29 

to the stream network in the flat valley bottom of the BB catchment (and less related to topography, Birkel 30 

et al., 2010). But the modelled saturation areas are located where soil moisture is above field capacity 31 
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throughout the catchment, and not necessarily 100% filled with water, which probably also results in the 1 

overestimation of saturationed areas. 3) Only the runoff generation module is calibration free, but the 2 

interception and response routines are still relyied on calibration. Although we kept the interception and 3 

response routine modules the same for the four models, the variation of other calibrated parameters (i.e. 4 

SiMax, D, Kf, Ks, TlagF) may also influence model performance in both calibration and validation. 4) The 5 

computational cost of the HSC and MCT is much more expensive than the two benchmark models, 6 

especially comparing with HBV, because of the calculation of SuMax by the MCT method, and the 7 

topographic analysis of the HSC module.  8 

7 Summary and conclusions  9 

In this study, we developed a simple and, calibration-free hydrological module based on a relative new 10 

topographic index (HAND information), which is an excellent indictor of hydrologic similarity and a 11 

physically-based index linking terrain with hydraulic gradient at the hillslope and catchment scales. We 12 

assumed that the local storage capacity is closely linked to HAND. Based on this assumption and the HAND 13 

spatial distribution pattern, the soil moisture (Su) - saturated area (As) relation for each catchment was 14 

derived, which was used to estimate the As of specific rainfall event based on continuous calculation of Su. 15 

Subsequently, based on the Su-As relation, the HAND-based Storage Capacity curve (HSC) module was 16 

developed. Then, applying the mass curve technique (MCT) approach (Gao et al., 2014a), we estimated 17 

the root zone storage capacity (SuMax) from observableed hydro-climatological and vegetation data, and 18 

coupled it with HSC to create the calibration-free HSC-MCT module, in which the SuMax was obtained by 19 

MCT, and the Su-As relation was obtained by HSC. The HBV beta-function and TWI-based TOPMODEL were 20 

used as two benchmarks modules to test the performance of HSC and HSC-MCT on both hydrograph 21 

simulation and ability to reproduce the contributing area, which was measured for different 22 

hydrometeorological conditions in the Bruntland Burn catchment in Scotland. Subsequently, 323 MOPEX 23 

catchments in the US were used as a large sample hydrological study to further validate the effectiveness 24 

of our proposed runoff generation modules.   25 

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to 26 

reproduce the observed hydrograph. Interestingly, the Su-As curves of HSC and HBV are largely comparable, 27 

which illustrates the HSC curve can likely be used as a proxy for the HBV beta-function. Comparing the 28 

estimated contributing area of TOPMODEL with the HSC module, we found that the results of the HSC 29 

module correlate better (R2=0.60) with the observed saturationed areas compared to TOPMODEL 30 
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(R2=0.50). This likely indicates that HAND maybe a better indicator to distinguish hydrological similarity 1 

than TWI.  2 

For the 323 MOPEX catchments, HSC improved the averaged validation value of IKGE from 0.62 (HBV) and 3 

0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in 4 

not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC 5 

outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better 6 

performance. Not surprisingly, the IKGE of HSC-MCT model was slightly reduced to 0.59, due to the non-7 

calibrated SuMax, but still comparably well performed as HBV (0.62) and TOPMODEL (0.61). This illustrates 8 

the robustness of both the HSC approach to derive the spatial distribution of the root zone storage 9 

capacity (β) and the efficiency of the MCT method to estimate the root zone storage capacity (SuMax). 10 

Moreover, the new module allows us to map out the saturated area, which has potential capability to be 11 

used for broader hydrological, ecological, climatological, geomorphological, and biogeochemical studies.  12 
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 11 

Table 1. The parameters of the models, and their prior ranges for calibration. (*SuMax is a parameter in HBV, 12 

TOPMODEL and the HSC model, but HSC-MCT model does not have SuMax as a free parameter; ** β is a parameter in 13 

HBV model, but not in TOPMODEL, HSC and HSC-MCT models) 14 

Parameter Explanation  Prior range for calibration 

SiMax (mm) Maximum interception capacity 2 

SuMax (mm) * The root zone storage capacity (10, 1000) 

β (-)** The shape of the storage capacity curve (0.01, 5)  

Ce (-) Soil moisture threshold for reduction of evaporation (0.1, 1) 

D (-) Splitter to fast and slow response reservoirs (0, 1) 

TlagF (d) Lag time from rainfall to peak flow (0, 10) 

Kf (d) The fast recession coefficient (1, 20) 

Ks (d) The slow recession coefficient (20, 400) 

 15 

 16 

Table 2. The water balance and constitutive equations used in models. (Function (15)* is used in the HBV model, but 17 

not used in the TOPMODEL, HSC and HSC-MCT models) 18 
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 1 

Figure 1. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the representative 2 

hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows the relationship 3 

between HAND bands and their corresponded area fraction; c) shows the relationship between storage capacity-4 

area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly increases with 5 

HAND values.  6 

 7 

 8 
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 1 

Figure 2. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (Su) 2 

and saturated area (As) in different soil moisture conditions. In d), 20 different Su-As conditions are plotted, which 3 

allow us to estimate As from Su.  4 

 5 

 6 

Figure 3. The procedures estimating runoff generation by the HSC model and its two hypotheses.  7 
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 1 

 2 

Figure 4. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL, HSC, 3 

and HSC -MCT). HBV-type has SuMax and beta two free parameters; TOPMODEL and HSC models have SuMax as one 4 

free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and 5 

make fair comparison, the interception storage capacity (SiMax) was fixed as 2mm.  6 

 7 

 8 
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 1 

Figure 5. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM) 2 

of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the 3 

height above the nearest drainage (HAND) map of the Bruntland Burn catchment.  4 

 5 
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 1 

Figure 6. The measured saturated areas and the simulated contributing areas by TOPMODEL and HSC models.  2 

 3 

 4 
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 2 

Figure 7. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure). 3 

The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).  4 
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 2 

Figure 8. a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated 3 

hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line); b). And the 4 

comparison of the observed saturated area of 7 days (black dots) and simulated relative soil moistures, i.e. HBV (blue 5 

line), TOPMODEL (green line and dots), HSC (red line and dots). And the observed saturated area of 7 days (black 6 

dots), and the correspondent simulated contributing area by TOPMODEL (green dots) and by HSC model (red dots).  7 

 8 

 9 
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 2 

Figure 9. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and HSC 3 

models.  4 

 5 

 6 

 7 
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 1 

Figure 10. The Height Above the Nearest Drainage (HAND) map of the CONUS.  2 

 3 

  4 

 5 

Figure 11. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area 6 

fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the Su-As curves of the HSC 7 

model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.  8 

  9 
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 1 

Figure 12. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models 2 

 3 

 4 

Figure 13. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV 5 

and TOPMODEL, for the 323 MOPEX catchments.  6 


