
Reply to the Reviewers’ Comments 

 

We would like to thank the Editor and the Referees for reviewing the revised version of our paper. 

We acknowledge that one reviewer suggests publication of our manuscript in the present form, 

while the second reviewer suggests rejection. 

 

While we appreciate the constructive approach adopted by the Editor, and felt very comfortable 

with the first round of the review process, we would like to kindly point out that we do feel 

uncomfortable with the second review round. The reason is that one new review (the report by 

Reviewer #2 in the second round) is not open and therefore the review process is not transparent as 

it should be (according to the journal’s policy). 

 

The problem is originated by the fact that a new reviewer was involved in the second review round 

(who did not respond to the invitation to review the paper in the first round). Therefore, his/her 

report in the second round is actually a first round review, which should be open and therefore 

publicly available. In fact, according to our understanding of the journal’s policy, the second review 

round aims to assess whether the criticism expressed in the public review was successfully 

addressed or not. New criticism by a new reviewer should not be expressed. In fact, the email we 

received after the publication of our paper in HESS-D reads as (cut and pasted text is reported 

between asterisks, with relevant text in red): 

 

**** 

----- Mensaje reenviado de editorial@copernicus.org ----- 

   Fecha: Tue,  3 Apr 2018 09:11:07 +0200 (CEST) 

      De: editorial@copernicus.org 

 Asunto: hess-2018-134 (author) - manuscript available for public review and discussion 

 

You are receiving the following email copy due to your co-authorship of the manuscript hess-2018-

134. The original message was sent to the contact author defined upon manuscript registration. 

Please contact us in case of any discrepancies with regard to the manuscript. 

 

Dear Theano Iliopoulou, 

We are pleased to inform you that your following manuscript has been posted as a discussion paper 

in HESSD, the scientific discussion forum of HESS: 

 

OMISSIS 

 

As soon as the open discussion phase is over, no more referee comments or short comments will be 

accepted. During the following final response phase, however, you will have the opportunity to post 

final author comments. Before submitting a revised version of your manuscript for publication in 

HESS, you are obliged to have answered all referee comments and relevant short comments in one 

or more author comments in the discussion forum of your paper. 

 

OMISSIS 

**** 

 

We decided to submit our paper to HESS because we appreciate the transparency of the open 

review process and we appreciate the opportunity of the public reply to the reviewer comments. If a 

new reviewer, and therefore a new report, is involved in the second round, the distinguishing 

feature of the open review system vanishes. This is particularly relevant in this case as we do not 

agree with the new concerns that were raised by the reviewer in the second review round and 

therefore we would like to have the opportunity to publicly reply. We are confident that the Editor 



will recognize that our reply below is providing interesting arguments that, therefore, deserve to be 

known by the community.  

 

Furthermore, we would like to stress that the audience would never know the real reason why the 

paper was not published if the review is not made open and our paper is finally rejected. This would 

be in contrast with the essential feature of the open review, namely, transparency.  

 

Finally, we would like to point out that the second-round policy that was adopted here may 

stimulate reviewers to skip the first review round to avoid open publication of their report, therefore 

annihilating the benefit of submitting papers to HESS.  

 

Therefore, we kindly ask the Editor that the review report by Reviewer #2, alongside with the 

present document which reports our replies, is published in the open discussion of the first review 

round. We believe that publication of reviews is important to keep the editorial process of HESS 

fully transparent. 

 

Here below we reply to the concerns of Reviewer #2. 

 

Reply to Reviewer #2 

 

In the following, the comments of the Reviewer are copied in italic.  

 

We first reply to the general comment of the Reviewer that reads as: 

 

In the author’s own words, the results are often ‘expected’ and the discussion section mostly 

‘confirms’ previous work and understanding of what is controlling catchment streamflow.  

 

First, we feel it is necessary to clarify that the results were mostly not “expected”. In fact, we use 

the term “expected” several times in the paper to highlight the conjectures that led us to design our 

experiment. In fact (lines and text refer to the revised version of the paper from the first round 

reviews):  

 

 at line 130 we write “We use the mean flow in the previous month as a robust proxy of 

‘storage’ in the catchment that is expected to reflect the state of the catchment, i.e., 

wetter/drier than usual”; 

 at line 156 we write “...as lakes and glaciers are expected to increase catchment storage thus 

affecting persistence”; 

 at line 173 we write “Geological features are expected to be linked to persistence 

properties...”; 

 at line 188 we write “We expect the presence of multi-collinearity among the explaining 

variables and therefore Principal Component….”; 

 at line 520 we write “The former result may be explained considering that increased 

evapotranspiration (higher temperature) is expected to dry out LFS flows….”; 

 at line 532 we write “However, in the glacier dominated regime of western Alpine and 

central Austrian catchments this is not expected to be [equivalent to “expected not to be”] a 

relevant driver of higher correlation”. 

 

In other cases, we highlight that the results were not “expected”. In fact: 

 

 at line 338 we write “…indicates that it is not a key determinant of correlation”; 

 at line 347 we write “The impact of lake area (Fig. S1a) on correlation for LFS and HFS is 

not significant but positive…”; 



 at line 374 we write “Therefore, a spatially consistent pattern does not clearly emerge...”; 

 at line 384 we write “Figure S2 in the Supplement shows that there is not a prevailing 

pattern in either case...”; 

 at line 408 we write “Presence of lake, glaciers, karstic and Flysch areas do not appear 

significantly effective at a 5 % significance level.”; 

 

Finally, only in some cases we indeed point out that the results confirmed our expectation and/or 

the outcome of previous studies. For instance: 

 

 at line 464 we write “As expected from Eq. (3) and (4), the variance of the updated 

(conditioned) distribution decreases while the mean value increases.”; 

 at line 479 we write “This result was expected since the LFS correlation refers to average 

flow while the HFS correlation is related to rapidly occurring events.” Please note that this 

sentence is relevant to our reply to comment #2 below. 

 

Indeed, when we found a potentially interesting result we tried to provide physically based 

reasoning, and/or review of the previous literature, to give further support to our findings, namely, 

to provide evidence that they are not merely due to “noise”. This is what a rigorous scientific 

approach requires, rather than a sign of “conspiracy” (see the unfortunate wording that is used by 

the Reviewer in his/her comment #2 that is copied below). 

 

Actually, we do see the fact that results confirm our previous conjectures as a positive outcome. 

When a deductive approach is used, the scientist first elaborates a conceptual reasoning to explain 

what is observed. In this case, we did observe that peak flows in the high flow season (HFS) are 

often preceded by high mean flows in the previous month. Therefore, in a previous work we 

decided to explore the correlation between the two random variables above (highlighted in bold) for 

two rivers only. The results confirmed our expectation. Therefore, the present contribution aims to 

(1) extend the analysis to the low flow in the LFS, (2) extend the analysis to several other rivers, 

and (3) explore the physical drivers of river memory. 

 

About the latter issue, we of course needed to select physically based metrics to explain correlation. 

We conjectured what physical properties (metrics) may determine correlation and therefore 

elaborated an expectation. We therefore designed the experiment precisely with the aim to confirm 

our conjecture. The Reviewer seems to imply that confirmation of conjectures (expectations) makes 

the results meaningless. We regret to report that we disagree. Rather, confirmation of expectations 

means that the experiment is well designed.  

 

1. 1. The following aspects of the methodology are unclear: For the HFS, the max daily 

discharge in the 3-month HFS is chosen. Is this value distinct from the max yearly discharge? 

In most cases, I suspect not. If the max discharge is in the second month of the HFS, does 

the lag-1 represent the correlation with the previous months mean discharge (also 

technically in the 3 month HFS), or with the last month before the onset of the HFS? If it is 

the latter, then the analysis is no longer technically a lag-1 analysis, and the study could be 

a big mix of lag-1, lag-2 and even lag-3 analyses that are all confused as representing a 

lag-1 value. Of course, it could be argued that you wish to be outside the HFS season for the 

correlation analysis, but what is the value of having inconsistent time periods in your lag 

analysis, especially given how sensitive the correlation will be to changing lag lengths? 

Moreover, what if a single catchment has max discharge always moving between the first 

and third month of the HFS over all the years of record? This will have a large impact on 

the ‘lag-1’ correlation even before any hydrological interpretations are involved. Some 

clarification on the mechanics of this analysis would really help. 

 



Strictly speaking, the Reviewer is right, but a mixed lag is not infrequent in hydrological analysis. 

As an example when we examine daily maximum discharges of consecutive years, we usually 

speak about the average time lag which is one year, but in fact this is mixed and varies between 1 

day (if the max values were observed in 1 Jan of one year and 31 Dec of the previous year) to 730 

days (if the max values were observed in 31 Dec of one year and 1 Jan of the previous year).  In our 

view the important thing is to clarify the terminology and the methodology, and consistently define 

the related random variables. This does not necessarily require that data are sampled at regular time 

step or that the time distance of consecutive high flow events is constant. 

 

In our case, we rigorously define in the paper the random variables which we consider. For instance, 

for the HFS they are: 

 

 Peak flow in the high flow season (with arbitrary but rigorously identified length); 

 Mean flow in the previous months. 

 

We also clearly define that we denote with lag-1 the correlation between the peak flow in the HFS 

and the average flow in the previous month, before the onset of HFS. In the same way we define 

lag-2 correlation and so on. We regret to report that we do not agree with the criticism of the 

Reviewer and therefore did not make any major change to the manuscript in this respect. However, 

we have added this further clarification in the revised manuscript: “In the case of HFS, a correlation 

is sought between the maximum daily flow occurring in the HFS period and the mean flow in the 

previous months, before the onset of HFS.” (Line 128-129). 

 

2. The authors do not consider how the design of their study may have conspired to control the 

reported results before referring to a myriad of hydrological explanations. The core issue is 

one of signal vs noise. The LFS lag analysis uses a correlation between mean values that 

are by definition weighted by the central tendency of the data being considered, whereas the 

HFS uses a correlation between a max value and a mean, which is by design a far noisier 

signal, and hence displays little to no correlation with other variable throughout the study. 

Can the authors image a scenario where this would not be an expected result? 

 

We fully agree with the Reviewer that correlation between monthly data is expected to be higher 

with respect to correlation between local variables like peak flow. This is precisely the reason why 

the correlation that we found between peak flow in high flow season and average flow in previous 

month is a relevant (and not expected) result. It implies timely predictability of the probability 

distribution of peak flows, which is a relevant finding.  

 

As for the low flows, we demonstrated that the correlation that we found is higher than the 

correlation computed for the whole set of monthly data. This means that focusing on the specific 

correlation of the monthly flow for the LSF season and the monthly flows of the previous months 

again allows us to improve predictability of low flows. Again, this is not an expected result. In both 

cases, we found that there is a specific signal that emerges above other signals and noise. Please 

note: it’s not just a question of signal versus noise, which highlights an oversimplified view of the 

inherent processes. It’s a matter of recognizing a specific signal – namely, correlation between 

previous monthly flows and LFS low flows and HFS peak flow – over other signals (monthly 

correlation, for instance, for the LFS) and random components. 

 

Turning to the physical explanation that we sought, we do not see the reason why the fact that the 

results were expected would downgrade their value (please see our reply to the Reviewer’s general 

comment above). Therefore we rebut the statement that we designed the experiment by “conspiring” 

(a very unfortunate term, as we already remarked) in order to obtain expected results.  Again, the 

experiment was based on our preliminary conjectures that are in turn based on conceptual and 



physical reasoning. The fact that the results confirm expectation is a confirmation that the 

experiment was well designed. For what reason should we investigate possible physical 

explanations that are not expected to be sound? 

 

Still, we would like to point out once again that many of the explanatory metrics we investigated 

turned out to be not effective on the correlation, such as, for instance, the presence of lakes and 

glaciers for the HFS, catchment elevation, flysch areas and so on. Therefore, not all of our results 

were expected. 

 

To mitigate the concern of the Reviewer, we changed the wording throughout the manuscript to 

avoid many repetitions of the term “expected”. We also made changes in the Discussion section to 

better highlight the purpose of the analysis and underline more some of the most important and less 

expected results. The relevant sentences of the revised manuscript (copied at the end of the present 

report) read: 

 

 At line 482: “We also aim to investigate physical drivers for correlation and quantify their 

relative impact on correlation magnitude.” 

 At line 486: “We found that increasing basin area and baseflow index are associated with 

increasing seasonal streamflow correlation, yet the latter has a stronger impact.” 

 At line 492: “Our results additionally point out that catchment storage induces mild positive 

correlation, not only for low discharges which are directly governed by base flow, but also 

for high flows, which is less anticipated.” 

 At line 509: “In fact, our finding that increased wetness has a negative impact on seasonal 

memory of both high and low flows, extends the above results to the seasonal scale and 

interestingly, to both types of extremes.” 

 At line 513: “We also confirm the role of lakes in determining higher catchment storage and 

therefore positive correlations for the LFS, which has only been reported for annual 

persistence in a few sites (Zhang et al., 2012).” 

 

 

3. Related to point 2, the authors use a suite of metrics, many of which (P, SR, BFI) have a 

natural correlation with HFS and LFS since they are either derived from the same data or 

help generate it. The HFS analysis produces such a noisy signal that no result can be found, 

and this is hardly a surprising result (as mentioned above). LFS is not as noisy, and so 

displays better correlations. The heart of the paper is then to say that the correlations are 

better with hydrological processes that will also natural reduced the noise, e.g. higher 

groundwater flow subsidies and snowmelt, and worse correlations with processes and 

drivers that have increased noise. Again, can the authors think of a situation where this 

would not be an expected result? 

 

First, we believe there is a misunderstanding here. We did find that correlation for the HFS season 

is relevant and helpful to improve predictability. Please see Section 4.2 and 7. Therefore there is 

indeed a signal that we discovered over what the Reviewer terms “noise”. Furthermore, we 

demonstrated that such correlation is explained by catchment area, precipitation and catchment 

storage in general. Therefore we regret to report that we cannot agree with the statement that “The 

heart of the paper is then to say that the correlations are better with hydrological processes that 

will also natural reduced the noise” (sic). The heart of our paper is stated in the last sentence of the 

abstract: “Our findings suggest that there is a traceable physical basis for river memory which in 

turn can be statistically assimilated into high- and low-flow frequency estimation to reduce 

uncertainty and improve predictions for technical purposes.” 

 



Furthermore, we do not understand the criticism by the Reviewer “natural correlation with HFS 

and LFS since they are either derived from the same data or help generate it”. For instance, we 

analyzed the correlation between rainfall and river flow. Would the fact that rainfall generates river 

flow make the analysis of their correlation meaningless? We regret to say that we cannot agree. 

 

4. Given these factors, it is unclear what processes or understanding can be revealed by such 

an analysis, since the study is producing most of the results by design, rather than by 

hydrological insight. In this sense the analysis in this manuscript obscures the actual 

hydrology, for example if you just plot actual baseflow on the maps in Figures 7 and 8 a 

clearer pattern of the hydrological controls on low flows would be revealed (or indeed 

baseflow against elevation, as documented by a lot of previous work). Surely, the LFS lag 

analysis only obscures these key hydrological drivers rather than making them clearer or 

easier to understand? I think this is also clearly shown in the discussion section, which is 

highly speculative about general processes and mostly confirms the results of previous 

workers rather than adding new understanding.  

 

We are glad that the Reviewer recognizes the value of previous studies that analyzed the correlation 

between baseflow and low flow, even if both baseflow and low flows are “derived from the same 

data”. We believe our contribution provides relevant new findings such as: 

 

 We confirmed by referring for the first time to a large set of basins that the peak flow 

probability distribution and the low flow probability distribution can be usefully updated in 

real time one or more months in advance through data assimilation. 

 The physical drivers of predictability of low flows and high flows are quantitatively 

identified for the first time for the chosen variables (please note that graphical depictions 

may provide a more immediately clear representation, as we all know, but do not allow a 

quantitative assessment unless a quantitative relationship is provided, as we did). 

 

 

5. I don’t see the value or utility of section 7, it is incredibly short and not at all mentioned 

in the discussion section, therefore its completely unclear what we have learnt from this 

exercise, or in what context it’s results should be considered. This asymmetry is 

considerable given it has more length devoted to describing the methodology than anything 

else in the paper (section 2.3). However, after reading it a couple of times I found this to be 

the most interesting part of the paper, since it asks an interesting question about how you 

would expect HFS or LFS to change based on obtaining the new average discharge for the 

previous month (an update). However, this seems to have already been published and 

discussed in detail by Aguilar et al (2017), so what is the utility of the very brief repetition of 

the same work on a single river in this study? Given the results and methodology are far 

closer to Aguilar et al. (2017) than the rest of the submitted manuscript, it seems entirely out 

of place and only confirms their previous work.  

 

We agree with the Reviewer that the application presented in Section 7 (which arguably is not 

“incredibly short”) whose theoretical basis is presented in section 2.3, is similar to what is 

presented by Aguilar et al. However, we refer here to a different river which has a higher memory 

with respect to the case studies previously analyzed and we also present a LFS application for the 

same river. Therefore we believe the case studied here is technically interesting. Sections 2.3 and 7 

are titled “Technical experiment: Real-time updating of the frequency distribution of high and low 

flows” and “Real-time updating of the frequency distribution of high and low flows for the Oise 

River”. They are meant to be a technical example. They do not present a scientific advance in the 

strict sense, but we believe they are an interesting addition to the paper. However, we may easily 

remove section 7 (and therefore section 2.3) if the Editor feels that they are redundant. 



 

Our replies to the minor comments of the Reviewer follows here below.  

 

 

Figure 10 c, no colour scale provided 

 

We do not understand the comment as in our vision there is colour scale. 

 

131: I don’t understand the basis of correlating LFS with the mean flow of the previous 

month on the expectation this is a robust proxy for storage. If you define the LFS as the 

month with the lowest flow, then by definition the previous months will have higher flow, so 

how will this be a robust proxy for storage? In fact, you will be correlating against months 

that could also be included in the definition of HFS, which we would not suggest are a good 

indicator of storage.  

 

Perhaps we missed the exact meaning of the comment, but in any case mass balance and energy 

balance apply to fluid mechanics and therefore river flow formation. Mass balance suggests that 

storage is related to river flow. The Reviewer, may refer to a simple conceptual model like the 

bucket model, where higher storage implies higher discharge and the river flow is clearly a proxy 

for storage. Besides, the Reviewer may feel free to use better proxies in his/her studies. 

 

154: “SR (m3 s–1 km–2) is computed as the mean daily flow of the river standardized by the 

size of its basin area. It may be an important physical driver as it is an indicator of the 

catchment’s wetness” – so this basically says that runoff can be considered as an indicator 

of how wet a catchment is. This is like saying rainfall can be considered an indicator of how 

much water is falling from the sky, hopefully the authors can see the silliness of such a 

statement without further explanation.  

 

We are negatively surprised by the offensive tone used by the anonymous Reviewer. We do not see 

the reason why specific runoff should not be related to catchment wetness or aridity. 

 

479: “This result was expected since the correlation refers to average flow while the HFS 

correlation is related to rapidly occurring events” See major points 2 -4, the design of the 

study is a major control on the results reported here rather than actual hydrological 

processes. 

 

We regret to confirm that we fully disagree with the idea that an experiment should not be designed 

according to physical basis and scientific reasoning. 

 

We respectfully submit a revised version of our paper. We regret to report that we do not agree with 

the criticism of the Reviewer and therefore did not make any major change to the manuscript in this 

respect, but only small clarifications (discussed above). We rely on the Editor assessment, in 

particular for the opportunity of keeping (or not) Section 7 and 2.3. 

 

With our best regards, 

Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, 

Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel and Alberto Montanari 
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Abstract 27 

The geophysical and hydrological processes governing river flow formation exhibit persistence 28 

at several timescales, which may manifest itself with the presence of positive seasonal 29 

correlation of streamflow at several different time lags. We investigate here how persistence 30 

propagates along subsequent seasons and affects low and high flows. We define the High Flow 31 

Season (HFS) and the Low Flow Season (LFS) as the three-month and the one-month periods 32 

which usually exhibit the higher and lower river flows, respectively. A dataset of 224 rivers from 33 

six European countries spanning more than 50 years of daily flow data is exploited. We compute 34 

the lagged seasonal correlation between selected river flow signatures, in HFS and LFS, and the 35 

average river flow in the antecedent months. Signatures are peak and average river flow for HFS 36 

and LFS, respectively. We investigate the links between seasonal streamflow correlation and 37 

various physiographic catchment characteristics and hydro-climatic properties. We find 38 

persistence to be more intense for LFS signatures than HFS. To exploit the seasonal correlation 39 

in the frequency estimation of high and low flows, we fit a bivariate Meta-Gaussian probability 40 

distribution to the selected flow signatures and average flow in the antecedent months in order to 41 

condition the distribution of high and low flows in the HFS and LFS, respectively, upon river 42 

flow observations in the previous months. The benefit of the suggested methodology is 43 

demonstrated by updating the frequency distribution of high and low flows one season in 44 

advance in a real-world case. Our findings suggest that there is a traceable physical basis for 45 

river memory which in turn can be statistically assimilated into high- and low-flow frequency 46 

estimation to reduce uncertainty and improve predictions for technical purposes.  47 

 48 

Keywords: seasonal streamflow correlation, river memory, persistence, real-time flow 49 

forecasting, floods, low flows, meta-Gaussian 50 
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1. Introduction 51 

Recent analyses for the Po River and the Danube River highlighted that catchments may exhibit significant 52 

correlation between peak river flows and average flows in the previous months (Aguilar et al., 2017). Such 53 

correlation is the result of the behaviours of the physical processes involved in the rainfall-runoff 54 

transformation that may induce memory in river flows at several different time scales. The presence of 55 

long-term persistence in streamflow has been known for a long time since the pioneering works of Hurst 56 

(1951) and has been actively studied ever since (e.g. Koutsoyiannis, 2011; Montanari, 2012; O’Connell et 57 

al., 2016 and references therein). While a number of seasonal flow forecasting methods have been explored 58 

in the literature (e.g. Bierkens and van Beek, 2009; Dijk et al., 2013), attempts to explicitly exploit 59 

streamflow persistence in seasonal forecasting through information from past flows have been in general 60 

limited. Koutsoyiannis et al. (2008) proposed a stochastic approach to incorporate persistence of past flows 61 

into a prediction methodology for monthly average streamflow and found the method to outperform the 62 

historical analogue method (see also Dimitriadis et al., 2016 for theory and applications of the latter) and 63 

artificial neural network methods in the case of the Nile River. Similarly, Svensson (2016) assumed that the 64 

standardized anomaly of the most recent month will not change during future months to derive monthly 65 

flow forecasts for 1–3 months lead time and found the predictive skill to be superior to the analogue 66 

approach for 93 UK catchments. The abovementioned persistence approach has also been used 67 

operationally in the production of seasonal streamflow forecasts in the UK since 2013, within the 68 

framework of the Hydrological Outlook UK (Prudhomme et al. 2017). A few other studies have included 69 

past flow information in prediction schemes along with teleconnections or other climatic indices (Piechota 70 

et al., 2001; Chiew et al., 2003; Wang et al., 2009). Recently, it was shown that streamflow persistence, 71 

revealed as seasonal correlation, may also be relevant for prediction of extreme events by allowing one to 72 

update the flood frequency distribution based on river flow observations in the pre-flood season and reduce 73 

its bias and variability (Aguilar et al., 2017). The above previous studies postulated that seasonal 74 
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streamflow correlation may be due to the persistence of the catchments storage and/or the weather, but no 75 

attempt was made to identify the physical drivers. 76 

The present study aims to further inspect seasonal persistence in river flows and its determinants, by 77 

referring to a large sample of catchments in 6 European countries (Austria, Sweden, Slovenia, France, 78 

Spain and Italy). We focus on persistence properties of both high and low flows by investigating the 79 

following research questions: (i) what are the physical conditions, in terms of catchment properties, i.e. 80 

geology and climate, which may induce seasonal persistence in river flow? And, (ii) can floods and 81 

droughts be predicted, in probabilistic terms, by exploiting the information provided by average flows in 82 

the previous months? These questions are relevant for gaining a better comprehension of catchment 83 

dynamics and planning mitigation strategies for natural hazards. To reach the above goals, we identify a set 84 

of descriptors for catchment behaviours and climate, and inspect their impact on correlation magnitude and 85 

predictability of river flows. 86 

A few studies have analysed physical drivers of streamflow persistence on annual and deseasonalized 87 

monthly and daily timeseries (Mudelsee, 2007; Hirpa et al., 2010; Gudmundsson et al., 2011; Zhang et al., 88 

2012; Szolgayova et al., 2014; Markonis et al., 2018) but the topic has been less studied on intra-annual 89 

scales relevant to seasonal forecasting of floods and droughts.  90 

To demonstrate the high practical relevance of the identified seasonal correlations we present a 91 

technical experiment for one of the studied rivers (Section 7) in which the frequency distribution of both 92 

high and low flows is updated one season in advance by exploiting real-time information on the state of the 93 

catchment. 94 

2. Methodology 95 

The investigation of the persistence properties of river flows focuses separately on both high and low 96 

discharges and is articulated in the following steps: (a) identification of the high- and low-flow seasons; (b) 97 

correlation assessment between the peak flow in the high flow season (average flow in the low-flow 98 

season) and average flows in the previous months; (c) analysis of the physical drivers for streamflow 99 
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persistence and its predictability through a Principal Component Analysis; (d) real-time updating of the 100 

frequency distribution of high and low flows for a selected case study with significant seasonal correlation 101 

by employing a Meta-Gaussian approach. The above steps are described in detail in the following sections. 102 

2.1 Season Identification 103 

Season identification is performed algorithmically to identify the High Flow Season (HFS) and Low Flow 104 

Season (LFS) for each river time series. For the estimation of HFS, we employ an automated method 105 

recently proposed by Lee et al. (2015), which identifies the high flow season as the three-month period 106 

centred around the month with the maximum number of occurrences of Peaks Over Threshold (POT), with 107 

the threshold set to the highest 5% of the daily flows. To evaluate the selection of HFS, a metric 108 

constructed as the Percentage of Annual Maximum Flows (PAMF) captured in the HFS is used. The 109 

PAMFs are classified in subjective categories of “poor” (<40%), “low” (40–60%), “medium” (60–80%) 110 

and “high” (>80%) values, denoting the probability that the identified HFS is the dominant high-flow 111 

season in the record. If the identified peak month alone contains 80% or more of annual maxima flows, a 112 

uni-modal regime is assumed and the identification procedure is terminated. In all other cases, the method 113 

allows for the search of a second peak month and the identification of a minor HFS but we do not further 114 

elaborate on this analysis here because we are only interested in the most extreme seasons for the purpose 115 

of predicting high and low flows.  116 

The method proposed by Lee et al. (2015) has several advantages that make it suitable for the purpose 117 

of this research. Most importantly, it is capable of handling conditions of bi-modality, which is usually a 118 

major issue for traditional methods like, e.g., directional statistics (Cunderlik et al., 2004). A potential 119 

limitation is the assumption of symmetrical extension of HFS around the peak month, along with the 120 

uniform selection of its length (3-month period). The degree of subjectivity in the evaluation of the second 121 

HFS is another limitation, which is not relevant here as we focus on the main HFS. 122 
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LFS is herein identified as the one-month period with the lowest amount of mean monthly flow. An 123 

alternative approach of estimating the relative frequencies of annual minima of monthly flow and selecting 124 

the month with the highest frequency as LFS is also considered.  125 

2.2 Correlation analysis and physical interpretation through Principal Component Analysis 126 

2.2.1 Correlation analysis 127 

In the case of HFS, a correlation is sought between the maximum daily flow occurring in the HFS period 128 

and the mean flow in the previous months, before the onset of HFS. For LFS, correlation is computed 129 

between the mean flow in the LFS itself and the mean flow in the previous months. We use the mean flow 130 

in the previous month as a robust proxy of ‘storage’ in the catchment that is expected to reflect the state of 131 

the catchment, i.e., wetter/drier than usual. Since we are interested in seasonal persistence, we compute the 132 

Pearson’s correlation coefficient up to 9-month lag for HFS and 11-month lag for LFS. 133 

2.2.2 Analysis of physical drivers 134 

a. Catchment, geological and climatic descriptors 135 

An extensive investigation is carried out to identify physical drivers of seasonal streamflow correlation, in 136 

terms of catchment, geological and climatic descriptors.  137 

As catchment descriptors, we consider the basin area (A), the Baseflow Index (BI), the mean specific 138 

runoff (SR), the percentage of basin area covered by lakes (percentage of lakes, PL) and glaciers 139 

(percentage of glaciers, PG) and altitude as candidate explanatory variables for streamflow correlation.  140 

The area A (km2) is primarily investigated as it is representative of the scale of the catchment, under 141 

the assumption that in larger basins the impact of the climatological and geophysical processes affecting 142 

river flow becomes more significant and may lead to a magnified seasonal correlation. 143 

BI is considered based on the assumption that high groundwater storage may be a potential driver of 144 

correlation. BI is calculated from the daily flow series of the rivers following the hydrograph separation 145 

procedure detailed in Gustard et al. (2009). Flow minima are sampled from non-overlapping 5-day blocks 146 

of the daily flow series and turning points in the sequence of minima are sought and identified when the 147 
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90% value of a certain minimum is smaller or equal to its adjacent values. Subsequently, linear 148 

interpolation is used in between the turning points to obtain the baseflow hydrograph. The BI is obtained as 149 

the ratio of the volume of water beneath the baseflow separation curve versus the total volume of water 150 

from the observed hydrograph, and an average value is computed over all the observed hydrographs for a 151 

given catchment. A low index is indicative of an impermeable catchment with rapid response, whereas a 152 

high value suggests high storage capacity and a stable flow regime.  153 

SR (m3 s–1 km–2) is computed as the mean daily flow of the river standardized by the size of its basin 154 

area. It may be an important physical driver as it is an indicator of the catchment’s wetness. PL (%) and PG 155 

(%) are investigated for the Swedish and Austrian catchments, respectively, as lakes and glaciers are 156 

expected to increase catchment storage thus affecting persistence. Lake coverage data are based on 157 

cartography and available from the Swedish Water Archive (https://www.smhi.se/), while glacier coverage 158 

data are estimated from the CORINE land cover database (https://www.eea.europa.eu/publications/COR0-159 

landcover). 160 

The effect of catchment altitude is also inspected using relief maps from the Shuttle Radar 161 

Topography Mission (SRTM) data (http://srtm.csi.cgiar.org/). The data are available for the whole globe 162 

and are sampled at 3 arch-seconds resolution (approximately 90 meters). Topographic information is 163 

available for all catchments located at latitude lower than 60 degrees north while a 1 km resolution digital 164 

elevation model is available for Austria. 165 

As geological descriptors we consider the percentage of catchment area with the presence of flysch 166 

(percentage of flysch, PF) and karstic formations (percentage of karst, PK) for Austrian and Slovenian 167 

catchments, respectively, for which this type of information is available. A subset of Austrian catchments is 168 

characterised by the dominant presence of flysch, a sequence of sedimentary rocks characterized by low 169 

permeability, which is known to generate a very fast flow response. Karstic catchments, characterized by 170 

the irregular presence of sinkholes and caves, are also known for having rapid response times and complex 171 

behaviour; e.g. initiating fast preferential groundwater flow and intermittent discharge via karstic springs 172 

http://srtm.csi.cgiar.org/


8 

 

(Ravbar, 2013; Cervi et al., 2017). Geological features are expected to bepresumed to be  linked to 173 

persistence properties also because geology is the main control for the baseflow index across the European 174 

continent (Kuentz et al. 2017). PK (%) and PF (%) are estimated from geological maps of Slovenia and 175 

Austria, respectively. 176 

As climatic descriptors, the mean annual precipitation P (mm year–1) and the mean annual 177 

temperature T (°C) are selected. Corresponding gridded data are retrieved from the Worldclim database 178 

(http://www.worldclim.org/) at a spatial resolution of 10 minutes of degree (approximately 18.55 km). We 179 

note that low mean temperature regimes are also associated with snow, the presence of which is also 180 

considered in the interpretation of the results. We also adopt as climatic descriptor the De Martonne index 181 

(De Martonne, 1926), IDM, which is given by IDM = 𝑃 (𝑇 + 10)⁄  , and enables classification of a region 182 

into one of the following  6 climate classes, i.e., arid (IDM ≤ 5), semi-arid (5 < IDM ≤ 10), dry sub-humid 183 

(10 < IDM ≤ 20), wet sub-humid (20 < IDM ≤ 30), humid (30 < IDM ≤ 60) and very humid (IDM ≥ 60). 184 

Additionally, the Köppen-Geiger climatic classification (Kottek et al., 2006) of the rivers is assessed. 185 

b. Principal Component Analysis 186 

To identify what catchment, physiographic and climatic characteristics may explain river memory we 187 

attempt to regress the seasonal streamflow correlation against the physical descriptors introduced above. 188 

We expect the presence of multi-collinearity among the explaining variables and therefore Principal 189 

Component Analysis (PCA; Pearson, 1901; Hotelling, 1933) was applied to construct uncorrelated 190 

explanatory variables. In essence, PCA is an orthonormal linear transformation of p data variables into a 191 

new coordinate system of q ≤ p uncorrelated variables (principal components, PCs) ordered by decreasing 192 

degree of variance retained when the original p variables are projected into them (Jolliffe, 2002). Therefore, 193 

the first principal axis contains the greatest degree of variance in the data, while the second principal axis is 194 

the direction which maximizes the variance among all directions orthogonal to the first principal axis and 195 

so on. Specifically, let x be a random vector with mean μ and correlation matrix Σ, then the principal 196 

component transformation of x is obtained as follows:   197 
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 𝒚 = 𝑪𝑇𝒙′    (1)  198 

where y is the transformed vector whose kth column is the kth principal component (k =1, 2..p), C is the p × 199 

p matrix of the coefficients or loadings for each principal component and x' is the standardized x vector. 200 

Standardization is applied in order to avoid the impact of the different variable units on selecting the 201 

direction of maximum variance, when forming the PCs. The y values are the scores of each observation, i.e. 202 

the transformed values of each observation of the original p variables in the kth principal component 203 

direction. 204 

PCA has useful descriptive properties of the underlying structure of the data. These properties can be 205 

efficiently visualized in the biplot (Gabriel, 1971), which is the combined plot of the scores of the data for 206 

the first two principal components along with the relative position of the p variables as vectors in the two-207 

dimensional space. Herein, the distance biplot type (Gower and Hand, 1995), which approximates the 208 

Euclidean distances between the observations, is used. Variable vectors coordinates are obtained by the 209 

coefficients of each variable for the first two principal components. After construction of the PCs, a linear 210 

regression model is explored for the case of HFS and LFS lag-1 correlation. 211 

2.3 Technical experiment: Real-time updating of the frequency distribution of high and low flows 212 

In order to evaluate the usefulness of the information provided by the one-month-lag seasonal correlation 213 

for flow signatures in HFS and LFS, we perform a real-time updating of the frequency distribution of high 214 

and low flows based on the average river flow in the previous month. A similar analysis for the high flows 215 

was carried out by Aguilar et al. (2017) for the Po and Danube Rivers. In principle, this is a data 216 

assimilation approach, since real-time information, i.e. observations of the average river flow, is used in 217 

order to update a probabilistic model and inform the forecast of the flow signature of the upcoming season.  218 

In detail, a bi-variate meta-Gaussian probability distribution (Kelly and Krzysztofowicz, 1997; 219 

Montanari and Brath, 2004) is fitted between the observed flow signatures, i.e., peak flow in the HFS, QP 220 

and average flow in the LFS, QL, and the average flow in the pre-HFS and LFS months, Qm, respectively. 221 

The peak HFS flow and the average LFS flow are the dependent variables and are extracted as the peak 222 
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river discharge observed in the previously identified HFS and the average river discharge observed in the 223 

previously identified LFS, respectively. The average flow in the month preceding the HFS and the LFS is 224 

the explanatory variable in both cases. In the following, random variables are denoted by underscore and 225 

their outcomes are written in plain form.  226 

The normal quantile transform, NQT (Kelly and Krzysztofowicz, 1997), is used in order to make the 227 

marginal probability distribution of dependent and explanatory variables Gaussian. This is achieved as 228 

follows: a) the sample quantiles Q are sorted in increasing order e.g. Qm1 ,Qm2
 …Qmn

 , b) the cumulative 229 

frequency, e.g. FQmi
 is computed via a Weibull plotting position, and c) the standard normal quantile, e.g., 230 

NQmi
 is obtained as the inverse of the standard normal distribution for each cumulative frequency, e.g., 231 

G−1(FQmi
). Therefore, all sample quantiles are discretely mapped into the Gaussian domain. To get the 232 

inverse transformation for any normal quantile, we connect the points in the above mapping with linear 233 

segments. The extreme segments are extended to allow extrapolation outside the range covered by the 234 

observed sample. 235 

In the Gaussian domain, a bivariate Gaussian distribution is fitted between the random explanatory 236 

variable NQm and the dependent variables NQP and NQL by assuming stationarity and ergodicity of the 237 

variables. We define the generic random variable NQfs to represent any dependent flow signature, i.e.; NQP 238 

and NQL in our case. Then, the predicted signature at time t can be written as: 239 

NQfs(t) = ρ(NQm, NQfs) NQm(t − h) + Nε(t)                                                                                                   (2) 240 

where ρ(NQm, NQfs) is the Pearson’s cross correlation coefficient between NQm and NQfs, h is the selected 241 

correlation lag with h = 1 in the present application, and Nε(t) is an outcome of the stochastic process Nε, 242 

which is independent, homoscedastic, stochastically independent of NQm and normally distributed with 243 

zero mean and variance 1−ρ2(NQm, NQfs). Then, the joint bivariate Gaussian probability distribution 244 

function is defined by the mean (μ(NQm) = 0 and μ(NQfs) = 0), the standard deviation (σ(NQm) = 1 and 245 

σ(NQfs) = 1) of the standardized normalized series, and the Pearson’s cross correlation coefficient between 246 

the normalized series, ρ(NQm, NQfs). From the Gaussian bivariate probability properties, it follows that for 247 
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any observed NQm(t − h) the probability distribution function of NQfs(t) conditioned on NQm is Gaussian, 248 

with parameters given by: 249 

μ(NQfs(t)) = ρ(NQm, NQfs ) NQm(t − h)                                                                                                          (3) 250 

σ(NQfs(t)) = (1− ρ2(NQm, NQfs))
0.5                                                                                                                                                                         (4) 251 

To derive the probability distribution of Qfs(t) conditioned to the observed Qm(t − h), we first apply the 252 

inverse NQT, i.e., we use linear segments to connect the points of the previous discrete quantile mapping of 253 

the original quantiles into the Gaussian domain, and accordingly, obtain Qfs(t) for any NQfs(t).  254 

Subsequently, we estimate the parameters of an assigned probability distribution for the obtained quantiles 255 

in the untransformed domain. This is referred to as the updated probability distribution of the considered 256 

flow signature (NQP and NQL in our case). We use the Extreme Value Type I distribution for the peak 257 

flows and calculate the differences in the magnitude of estimated maxima for a given return period between 258 

the unconditioned and the updated distribution. The latter is conditioned by the 95% sample quantile of the 259 

observed mean flow in the previous month. To model the low flows we use the lognormal distribution, 260 

which was found to exhibit the best fit for the river in question among other typical candidates for average 261 

flows, i.e. the Weibull and the Gamma distribution. The low flows are conditioned by the lower 5% sample 262 

quantile of the observed mean flow in the previous month. 263 

3. Data and catchments description 264 

The dataset includes 224 records spanning more than 50 years of daily river flow observations from 265 

gauging stations, mostly from non-regulated streams. A few catchments are impacted by regulation. 266 

Among the 224 rivers, 108 are located in Austria, 69 in Sweden, 31 in Slovenia, 13 in France, 2 in Spain 267 

and one in Italy. Catchment areas vary significantly, the largest being the Po River basin in Italy (70 091 268 

km2) and the smaller being the Hålabäck River basin in Sweden (4.7 km2). The geographical location of the 269 

river gauge stations as well as their climatic classification are shown in Fig. 1. Most of the examined rivers 270 

belong to either a warm temperate (C) or a boreal/snow climate (D) with a subset impacted by polar 271 

climatic conditions (E), according to the updated World Map of the Köppen-Geiger climate classification 272 
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(Fig. 1) based on gridded temperature and precipitation data for the period 1951-2000 (Kottek et al., 2006). 273 

More specifically, the majority of French, Slovenian and approximately one third of the Swedish basins 274 

belong to the warm temperate Cfb category characterized by precipitation distributed throughout the year 275 

(fully humid) and warm summers. The rest of the Swedish catchments are impacted by a Dfc climatic type, 276 

i.e. a snow climate, fully humid with cool summers. The Austrian catchments belonging to the region 277 

impacted by the European Alps have the most complicated regime due to their topographic variability. At 278 

the lowest altitudes, Cfb is the prevailing regime, but as proximity to the Alps increases, a Dfc regime 279 

dominates and progressively, in the highest altitude basins, the climate becomes a polar tundra type (Et), 280 

characterized primarily by the very low temperatures present. The characteristics of all the climatic regimes 281 

of the studied rivers are given in the legend of Fig. 1. A summary of the river basins under study in terms of 282 

the selected descriptors is also provided in Table 1, showing that the investigated rivers cover a wide range 283 

of catchment area sizes, flow regimes and climatic conditions. 284 

It is relevant to note that 16 of the Austrian rivers are subject to regulation, which may alter the 285 

persistence properties of river flows. This relates to generally ‘mild’ forms of regulation, i.e. upstream 286 

regulation with very low degree of flow attenuation, hydropower operations and flow diversions to and 287 

from the basin. A preliminary examination of these rivers did not reveal any significant change during time 288 

of the flow regime. The presence of regulation does not preclude the exploitation of correlation for 289 

predicting river flows in probabilistic terms, but may affect the analysis of physical drivers, as it may 290 

enhance or reduce persistence in the natural river flow regime. Given that detailed information is generally 291 

lacking on the impact of regulation (Kuentz et al. 2017), we assume stationarity of the river flows for all the 292 

catchments herein considered and additionally, assume that river management does not significantly affect 293 

the identification of the physical drivers. 294 

 295 
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4. River memory analysis for the considered case studies 296 

4.1 Season Identification 297 

Approximately half of the 224 rivers are characterized by at least one high-flow season with medium or 298 

higher significance (PAMF(HFS) ≥ 60%). Among them, very strong unimodal regimes (PAMF(HFS) ≥ 299 

80%) are observed in 63 rivers, the majority of which are located in Sweden. For 25% of the rivers, a high-300 

flow season of low significance is found (PAMF(HFS) between 40–60%), while for the remaining 25% the 301 

high-flow distribution looks uniform along the year. Bi-modality regimes are found with low and moderate 302 

significance in rivers located mostly in Austria and Sweden, but we focus here on the major high-flow 303 

season, as we are interested in the most extreme events. A minor HFS analysis would be perhaps relevant 304 

in other regions of the world where bimodal flood regimes are more prominent, as suggested by the 305 

analysis of Lee et al. (2015). 306 

Regarding the LFS identification, the two considered approaches (see Section 2.1) agree for 139 out 307 

of 224 stations but the first method, i.e. the one-month period with the lowest amount of mean monthly 308 

flow is selected as being more relevant to the purpose of computing mean flow correlations. 309 

4.2 Seasonal correlation 310 

LFS correlation is markedly higher than the corresponding HFS correlation for lags 1–5 and its median 311 

remains higher than 0 for more lags (see Fig. 2). For the case of HFS correlation, we focus only on the most 312 

significant first lag, for which 73 rivers are found to have correlation significantly higher than 0 at 5% 313 

significance level. In Fig. 3, the autocorrelation of the whole monthly series is compared to the LFS 314 

correlation for lag of 1 and 2 months, in order to prove that the seasonal correlation for LFS is significantly 315 

higher than its counterpart computed by considering the whole year. The latter is also confirmed by the 316 

Kolmogorov-Smirnov test for both LFS lags (corresponding p-values, plag1 < 2.2 ×10–6 and plag2 < 2.2 ×10–6  317 

for the null hypothesis that the LFS correlation coefficients are not higher than the corresponding values for 318 

the monthly series autocorrelation; Conover, 1971). 319 
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Figure 4 shows the spatial pattern of HFS and LFS streamflow correlations. It is interesting to notice 320 

the emergence of spatial clustering in the correlation magnitude, which implies its dependence on different 321 

spatially varying physical mechanisms. For example, for HFS, a geographical pattern emerges within 322 

France, since the highest correlation coefficients are located in the northern part of the country, which is 323 

characterized by oceanic climate and higher baseflow indexes. 324 

5. Physical interpretation of correlation 325 

To attribute the detected correlations to physical drivers, we define 6 groups of potential drivers of seasonal 326 

correlation magnitude, which are: basin size, flow indices, presence of lakes and glaciers, catchment 327 

elevation, catchment geology, and hydro-climatic forcing. For some of the descriptors the information is 328 

available for a few countries only.  329 

In what follows, we will use the term “positive (negative) impact on correlation” to imply that an 330 

increasing value of the considered descriptor is associated to increasing (decreasing) correlation. For each 331 

descriptor, we also report between parentheses the Spearman’s rank correlation coefficient rs (Spearman, 332 

1904) between its value and the considered (LFS or HFS) correlation, and the p-value of the null 333 

hypothesis rs = 0. Spearman’s coefficient is adopted in view of its robustness to the presence of outliers and 334 

its capability of capturing monotonic relationships of non-linear type. 335 

5.1 Catchment area – Descriptor A 336 

Figure 5 shows that there is only a weak positive impact of the catchment area (log-transformed) on 337 

correlation for HFS (rs = 0.17, p = 0.01) but a more significant positive one for LFS (rs = 0.27, p = 5.5 × 10–338 

5). The presence of relevant scatter in the plots also indicates that it is not a key determinant of correlation. 339 

5.2 Flow indices – Descriptors BI and SR 340 

The effect of the BI and SR is shown in Fig. 6. BI (Fig. 6a) appears to be a marked positive driver for LFS 341 

(rs = 0.6, p = 1.8 × 10–23) while its effect for HFS is less clear, being weakly positive (rs = 0.21, p = 0.001). 342 
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For SR (Fig. 6b), it appears that both LFS and HFS streamflow correlations drop for increasing wetness (rs 343 

= –0.4, p = 4 × 10–10 and rs = –0.28, p = 2.8 × 10–5 respectively). 344 

5.3 Presence of lakes and glaciers – Descriptors PL and PG 345 

Detailed information on the presence of lakes is available for the 69 Swedish catchments while areal 346 

extension of glaciers is known for the 108 Austrian catchments. Figure S1 in the Supplement shows that the 347 

impact of lake area (Fig. S1a) on correlation for LFS and HFS is not significant but positive (rs = 0.10, p = 348 

0.399 and rs = 0.12, p = 0.347). The results for glaciers show a positive impact for LFS (rs = 0.28, p = 349 

0.081) but negative for HFS (rs = –0.34, p = 0.032). For a meaningful interpretation, these results should be 350 

considered in conjunction with the seasonality of flows for the Austrian catchments. Low flows for the 351 

glacier-dominated catchments are typically occurring in winter months, when glaciers are not contributing 352 

to the flow (Parajka et al., 2009). Thus the observed result for LFS is more likely portraying the impact of 353 

low temperature (low evapotranspiration) and snow accumulation, the latter generally being a slowly 354 

varying process. For HFS, which is typically occurring in the summer months for the considered 355 

catchments, flows are mainly determined by snowmelt which is associated to large variability and reduced 356 

persistence (Fig. S1b).  357 

5.4 Catchment elevation 358 

The areal coverage of the SRTM data is limited to 60 degrees north and 54 degrees south and therefore, 359 

data for the northern part of the Swedish catchments are not available. The rest of the rivers are divided in 360 

three regions based on proximity: Region I including the central and eastern part of the Alps and 361 

encompassing Austrian, Slovenian and Italian catchments; Region II showing the western part of the Alps 362 

and encompassing French and Spanish territory; and Region III including the southern part of Sweden. 363 

Figure 8 shows elevation maps along with the location of gauge stations and magnitude of correlations. 364 

Elevation seems to enhance LFS correlation which is more evident in the mountainous Region I (Fig. 7). 365 

For HFS correlation there is not a prevailing pattern. 366 
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In the case of Austrian catchments, a 1 km resolution digital model is also used to extract information 367 

on elevation. Figure 8 confirms that there is a positive correlation pattern emerging with elevation for LFS. 368 

Based on local climatological information, it can be concluded that the spatial pattern for LFS correlation is 369 

reflective of the timing and strength of seasonality of the low flows in Austria, where dry months occur in 370 

lowlands during the summer due to increased evapotranspiration and in the mountains during winter 371 

(mostly February) due to snow accumulation which is characterised by stronger seasonality compared to 372 

the lowlands flow regime (Parajka et al., 2016; see Fig. 1). Concerning HFS in the same region, high flows 373 

are significantly impacted by the seasonality of extreme precipitation (Parajka et al., 2010), which is highly 374 

variable, with the exception of the rivers where high flows are generated by snowmelt. Therefore, a 375 

spatially consistent pattern does not clearly emerge. 376 

 377 

5.5 Catchment geology – Descriptors PK and PF 378 

Two different geological behaviours are identified which may impact river correlation. We first focus on 21 379 

Slovenian catchments (out of 31) where more than 50% of the basin area is characterised by the presence of 380 

karstic aquifers (percentage of karstic areas PK ≥ 50%). Figure 9 shows boxplots of the estimated lag-1 381 

correlation coefficient for both HFS and LFS against rivers where PK < 50%. It is clear that there is a 382 

significant decrease in correlation where karstic areas dominate for both for HFS and LFS.  383 

In a second analysis, we focus on Austrian catchments and investigate the relationship between 384 

correlation and percentage of Flysch coverage, PF. Figure S2 in the Supplement shows that there is not a 385 

prevailing pattern in either case (rs = 0.13, p = 0.6 for LFS and rs = –0.19, p = 0.446 for HFS).  386 

5.6 Atmospheric forcing – Descriptors P and T 387 

Figure 10 shows the lag-1 HFS and LFS correlations against estimates of the annual precipitation P and 388 

annual mean temperature T as well as the De Martonne index IDM. LFS correlation appears to be more 389 

sensitive than HFS to the above climatic indices, showing a decrease with increasing temperature and also a 390 
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decrease with increasing precipitation (rs = –0.44, p = 3.1 × 10–12 for P and rs = –0.57, p = 1.8 × 10–20 for 391 

T).  HFS correlation is scarcely sensitive to these variables (rs =  392 

–0.17, p = 0.011 for P and rs = 0.08, p = 0.208 for T). The IDM (Fig. 10 c) shows a mild decrease of both 393 

LFS (rs = –0.06, p = 0.368) and HFS correlation with increasing IDM (rs = –0.17, p = 0.01), while for the 394 

latter there seems to be a clearer trend (lower correlation with higher IDM) in very humid areas (dark blue 395 

points in Fig. 10c). 396 

 397 

5.7 Physical drivers of high correlation 398 

To gain further insights into the results we select the 20 catchments with the highest streamflow seasonal 399 

correlation coefficients for both HFS and LFS periods in order to investigate their physical characteristics 400 

in relation to the remaining set of rivers. Table 2 summarizes statistics for selected descriptors in order to 401 

identify dominant behaviours. We also compare the number of rivers with distinctive features, i.e. lakes NL 402 

(number of rivers with lakes), glaciers NG (number of river with glaciers), flysch NF (number of rivers with 403 

flysch formations) and karst NK (number of rivers with karstic areas) for the highest correlation group with 404 

those obtained from 1000 randomly sampled 20-catchment groups from the whole set of considered 405 

catchments to assess whether higher correlation implies distinctive features. 406 

By focusing on HFS, one can notice that the catchments with higher seasonal correlation are 407 

characterised by larger catchment area, higher baseflow index and temperature with respect to the 408 

remaining catchments, and lower specific runoff, precipitation and wetness. Presence of lake, glaciers, 409 

karstic and Flysch areas do not appear significantly effective at a 5% significance level. More robust 410 

considerations can be drawn for the LFS: higher seasonal correlation is found for larger catchments with 411 

higher baseflow index and lower specific runoff, precipitation and wetness. Decreasing temperature is 412 

strongly associated with higher correlation for the LFS. The presence of lakes plays a significant role both 413 

for lag-1 and lag-2 correlations with the latter being also significantly influenced by presence of glaciers. 414 
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6. Principal component analysis of the predictors and linear regression 415 

We attempt to fit a linear regression model to relate correlation to physical drivers, in order to support 416 

correlation estimation for ungauged catchments. To avoid the impact of multicollinearity in the regression 417 

while additionally summarizing river information, we apply PCA (see Section 2.2). Although correlation 418 

effects are efficiently dealt with via the PCA, we avoid including highly correlated variables in the analysis. 419 

For example, the De Martonne Index, Precipitation and SR are mutually highly correlated (all Pearson’s 420 

cross-correlations are higher than 0.6) and therefore we only consider the SR in the PCA because it shows a 421 

more robust linear relationship with correlation magnitude. We select A, BI, SR and T as the variables to be 422 

considered in the PCA. A log transformation is applied on the basin area to reduce impact of outliers. Table 423 

3 shows the coefficients estimated for each component (the loadings) and the explained variance. The first 424 

principal component is primarily a measure of BI; the second principal component mostly accounts for T 425 

and the third principal component accounts for A. There is an evident geographical pattern emerging by the 426 

visualization of countries in the biplot (Fig. 11). Slovenian rivers cluster towards the direction of increasing 427 

SR and T, whereas Swedish rivers towards the opposite direction of increasing BI and decreasing T. 428 

Austrian rivers, which are the majority, are the most diverse. The first two components together explain the 429 

70% of the total variability in the data. 430 

Naturally, the statistical behaviour of the indices reflects the known local controls for certain rivers. 431 

For example, the observed lowest BI in Slovenia is consistent with the presence of karstic formations for 432 

the majority of the Slovenian rivers, as is the higher BI in Sweden and Austria, which is related to the 433 

presence of lakes and glaciers in both countries. 434 

In the case of HFS, all the examined linear models (combinations of ln A, SR, BI, P, T, IDM 435 

predictors) failed in explaining the streamflow correlation magnitude. On the contrary, the linear regression 436 

model performs fairly well in explaining the correlation for LFS, with an adjusted R2 value of 0.58 and an 437 

F-test returning a p-value < 2.2 ×10–16. The coefficients for the first three PCs are found significantly 438 

different from zero at a 0.1% significance level and are included in the regression (see Table 4). The 439 
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highest coefficient is obtained for the first PC, which mostly accounts for BI importance. Diagnostic plots 440 

from linear regression for LFS are shown in Fig. 12. There is no clear violation of the homoscedasticity 441 

assumption in linear regression, apart from the presence of a limited number of outliers. There is a certain 442 

departure from normality in the lower tail of the residuals, which relates to the fact that the model performs 443 

better in the area of higher seasonal streamflow correlations and overestimates the lower correlations. 444 

 445 

7. Real-time updating of the frequency distribution of high and low flows for the Oise River 446 

We apply the technical experiment (see section 2.3) for high and low flows to the Oise River in France and 447 

assess the difference in the estimated flood and low-flow magnitudes. We update the probability 448 

distribution of high and low flows after the occurrence of the upper 95% and lower 5% sample quantile of 449 

the observed mean flow in the previous month, respectively. 450 

The Oise River (55 years of daily flow values) at Sempigny in France has a basin area of 4320 km2 and its 451 

gauging station at Sempigny is part of the French national real-time monitoring system 452 

(https://www.vigicrues.gouv.fr/), which is in place to monitor and forecast floods in the main French rivers. 453 

The selected river has a high technical relevance since it experiences both types of extremes with large 454 

impacts. For instance, a severe drought event in 2005 led to water restrictions impacting agriculture and 455 

water uses in the region (Willsher, 2005), while the river originated an inundation during the 1993 flood 456 

events in northern and central France, which was one of the most catastrophic flood-related disasters in 457 

Europe in the period 1950-2005 (Barreldo, 2007). It is characterized by HFS correlation ρ = 0.54, which is 458 

the 3rd largest lag-1 correlation for the HFS in our dataset and LFS correlation ρ = 0.80, which stands for 459 

the 70% quantile of the sample lag-1 correlation for LFS.  460 

A visual inspection of the residuals plots is also performed (Fig. 13a, b) in order to evaluate the 461 

assumption of homoscedasticity of the residuals of the regression models given by Eq. (2). The residuals do 462 

not show any apparent trend and therefore the Gaussian linear model is accepted. Figure 13 (c, d) shows the 463 

conditioned and unconditioned probability distributions of peak and low flows in the Gaussian domain. As 464 
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expected follows from Eq. (3) and (4), the variance of the updated (conditioned) distributions decreases 465 

while the mean value increases. 466 

After application of the inverse NQT the conditioned peak flows are modelled through the EV1 467 

distribution and compared to the unconditioned (observed) peak flows. The corresponding Gumbel 468 

probability plot for conditioned and unconditioned distributions is shown in Fig. 13e. For the return period 469 

of 200 years, the updated distribution shows a 6% increase in the flood magnitude for the Oise River (307.7 470 

m3 s–1 to 326.44 m3 s–1). Likewise, the conditioned low flows are modelled through the lognormal 471 

distribution. The two cumulative distribution functions are compared in Fig. 13f showing a major departure 472 

in the estimated quantiles for the updated distribution; the occurrence of the predefined 5% quantile flow in 473 

the pre-LFS month induces a decrease of the exceedance probability of an average LFS flow of 15 m3 s–1 474 

from a prior 43% (according to the unconditioned model) to 1%. 475 

8. Discussion  476 

The methodology presented herein aims to progress our physical understanding of seasonal river flow 477 

persistence for the sake of exploiting the related information to improve probabilistic prediction of high and 478 

low flows. The correlation of average flow in the previous months with LFS flow and HFS peak flow was 479 

found to be relevant, with the former prevailing on the latter. This result was expected foreseen since the 480 

LFS correlation refers to average flow while the HFS correlation is related to rapidly occurring events. We 481 

also aim to investigate physical drivers for correlation and quantify their relative impact on correlation 482 

magnitude. Therefore, a thorough investigation of the geophysical and climatological features of the 483 

considered catchments was carried out.  484 

We found that increasing basin area and baseflow index are associated with increasing seasonal 485 

streamflow correlation, yet the latter has a stronger impact. Το this respect, Mudelsee (2007), Hirpa et al. 486 

(2010) and Szolgayova et al. (2014a) also found positive dependencies of long-term persistence on basin 487 

area, Markonis et al. (2018) found a positive impact too but for larger spatial scales (> 2 × 104 km2), while 488 

Gudmunsson et al. (2011) found basin area to have negligible to no impact to the low-frequency 489 
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components of runoff. Our results additionally point out that catchment storage induces mild positive 490 

correlation, not only for low discharges which are directly governed by base flow, but also for high flows, 491 

which is less anticipated. 492 

Previous studies also pointed out that correlation increases for groundwater-dominated regimes 493 

(Yossef et al., 2013; Dijk et al., 2013; Svensson, 2016) and slower catchment response times (Bierkens and 494 

van Beek, 2009), which concurs with the impact of baseflow index found herein as well as with the 495 

observed impact of fast responding karst areas. The latter findings are also in agreement with our 496 

conclusion that correlation decreases for increasing rapidity of river flow formation, which for instance 497 

occurs in the presence of karstic areas and wet soils, which explains why persistence decreases with high 498 

specific runoff; as also confirmed by other studies (Gudmundsson et al., 2011; Szolgayova et al., 2014).  499 

Other contributions also reported higher streamflow persistence in drier conditions, either relating to 500 

lower specific runoff or mean areal precipitation estimates (Szolgayova et al., 2014; Markonis et al., 2018). 501 

It was postulated that this is due to wet catchments showing increased short-term variability compared to 502 

drier catchments (Szolgayova et al., 2014) and having a faster response to rainfall due to saturated soil. A 503 

similar conclusion has been reached by other previous studies reporting that low humidity catchments are 504 

more sensitive to inter-annual rainfall variability (Harman et al., 2011), therefore leading to enhanced 505 

persistence. Yet, these studies refer to generally humid regions and cannot be extrapolated to more arid 506 

climates. A related conclusion is proposed by Seneviratne et al. (2006) who found the highest soil moisture 507 

memory for intermediate soil wetness. These results do not contrast with our findings, which refer to a wide 508 

range of climatic conditions. In fact, our finding that increased wetness has a negative impact on seasonal 509 

memory of both high and low flows, extends the above results to the seasonal scale and interestingly, to 510 

both types of extremes. 511 

We also confirm the role of lakes in determining higher catchment storage and therefore positive 512 

correlations for the LFS, which has only been  reported for annual persistence in a few sites (Zhang et al., 513 

2012). 514 
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The effect of snow cover for lag-1 LFS correlation is also revealed by the Austrian catchments. The 515 

mountainous rivers, directly affected by the process of snow accumulation, exhibit winter LFS and higher 516 

correlation than the rivers in the lowlands, which are more prone to drying out due to evapotranspiration in 517 

the hotter summer months. The inspection of elevation data confirmed the role of high altitudes in 518 

increasing LFS correlation, which is likely related to storage effects due to snow accumulation and gradual 519 

melting. In this respect, Kuentz et al. (2017) found that topography exerts dominant controls over the flow 520 

regime in the larger European region, controlling the flashiness of flow, and being a particularly important 521 

driver for other low flow signatures too. In fact, topography may affect the flow regime directly, through 522 

flow routing, but also indirectly, because of orographic effects in precipitation and hydroclimatic processes 523 

affected by elevation (e.g. snowmelt and evapotranspiration). 524 

Regarding atmospheric forcing, we find LFS correlation to be negatively correlated to mean areal 525 

temperature and annual precipitation. The former result may be explained considering that increased 526 

evapotranspiration (higher temperature) is expected likely to dry out LFS flows while snow coverage 527 

(lower temperature) was found to be associated with higher LFS correlation. An apparently different 528 

conclusion was drawn by Szolgayova et al. (2014a) and Gudmundsson et al. (2011), who reported 529 

increasing persistence with increasing mean temperature postulating that snow-dominated flow regimes 530 

smooth out interannual fluctuations. Yet, it should be noted that they refer to interannual variability while 531 

we refer here to seasonal correlation and therefore to shorter time scales, which imply a different dynamic 532 

of snow accumulation and snowmelt; latitude may also play a relevant role in this, since in southern Europe 533 

the complete ablation of snow can occur more than once during the cold season, and sublimation may 534 

account for 20–30% of the annual snowfall (Herrero and Polo, 2016), decreasing the amount of snowmelt 535 

and impacting LFS flows in the summer season. 536 

Snowmelt mechanisms are found to increase predictive skill during low-flow periods in some other 537 

studies (Bierkens and van Beek, 2009; Mahanama et al., 2011; Dijk et al., 2013). However, in the glacier-538 

dominated regime of western Alpine and central Austrian catchments, it is unlikely that this is not expected 539 
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to be a relevant driver of higher correlation, since low flow is occurring in the winter months. Yet the 540 

mountainous, glacier-dominated rivers still show increased LFS correlation compared to rivers in the 541 

lowlands, which agrees well with other studies that have found less uncertainty in the rainfall-runoff 542 

modelling in this regime owing to the greater seasonality of the runoff process and the decreased impact of 543 

rainfall compared to the rainfall-dominated regime of the lowlands (e.g Parajka et al., 2016). 544 

Although the considerable uncertainty of areal precipitation estimates should be acknowledged, the 545 

contribution of annual precipitation interestingly complements the negative effect of increasing specific 546 

runoff –which is highly correlated to P estimates– on the correlation magnitude for both LFS and HFS. 547 

This outcome confirms that catchments receiving significant amount of rainfall do show less correlation 548 

than drier regimes as discussed before. 549 

 550 

9. Conclusions and outlook 551 

This research investigates the presence of persistence in river flow at the seasonal scale, the associated 552 

physical drivers and the prospect for employing the related information to improve probabilistic prediction 553 

of high and low flows by exploring a large sample of European rivers. The main findings are summarized 554 

below: 555 

 Rivers in Europe show persistent features at the seasonal timescale, manifested as correlation between 556 

high- and low-flow signatures, i.e. peak flows in HFS and average flows in LFS respectively, and 557 

average flows in the previous month. LFS correlation Correlation for LFS signatures is found 558 

consistently higher than HFS correlation. 559 

 Seasonal correlation shows increased spatial variability together with spatial clustering. 560 

 Storage mechanisms, groundwater-dominated basins and slower catchment response time, as reflected 561 

by large basin areas, high baseflow index and the presence of lakes, amplify seasonal correlation. On 562 
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the contrary, correlation is lower in quickly responding karstic basins, and increased wetness 563 

conditions, as revealed by high specific runoff. 564 

 Low mean areal temperature is associated with higher LFS correlation owing to the weaker drying-out 565 

evapotranspiration force and the mechanism of snow accumulation in higher altitudes. Higher mean 566 

areal precipitation is associated with lower LFS predictability, possibly due to the presence of saturated 567 

conditions and increased short-term variability in wetter climates. 568 

 The drivers of LFS predictability are easier to identify and allow for the opportunity to construct 569 

regression models for possible application to ungauged basins (see Section 6). 570 

 HFS and LFS correlation may directly serve for the probabilistic prediction of ‘extremes’, i.e. high and 571 

low flows, as increased correlation can be exploited in various stochastic models. Such an application 572 

was performed in Section 7 in a data assimilation setting for a river of marked technical relevance. 573 

Regarding the latter, once a significant correlation is identified, it may be exploited in other model 574 

variants as well, e.g. adding more dependent variables of lagged flow and/or coupling with other relevant 575 

explanatory variables, such as teleconnections or antecedent rainfall, in multivariate prediction schemes. 576 

Indeed, the presence of river memory at the seasonal scale represents a possible opportunity to improve the 577 

prediction of water-related natural hazards by reducing uncertainty of associated estimates and allowing 578 

significant lag time for decision-making and hazard prevention. Besides the high relevance for extremes, 579 

this type of seasonal predictability could also be of interest to water resources management by, for instance, 580 

exploring the memory properties of a minor HFS.  581 

The inspection of the physical basis, apart from advancing our understanding of the catchment 582 

dynamics and enabling predictions in ungauged basins, is highly important as it may also guide the search 583 

for other dependent variables and build confidence in the formation of process-based stochastic models 584 

(Montanari and Koutsoyiannis, 2012). A large sample of indices was herein inspected, yet data are majorly 585 

needed to allow for more certain and generalized conclusions worldwide. An important note is the presence 586 

of regulation, the effect of which, due to lack of objective data, is not completely understood. However, the 587 
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opportunity of exploiting correlation is not affected by the presence of regulation, provided that the 588 

management of river flow does not change in time. 589 

We conclude that our results point out that river memory provides interesting information that holds 590 

both theoretical and operational potential to improve the understanding and prediction of extremes, support 591 

decision-making and increase the level of preparedness for water-related natural hazards. 592 
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 729 

Tables 730 

Table 1 Summary statistics of the river descriptors. Summary statistics for PL, PG and PF variables are computed 731 

only for the subset of catchments with positive values (the total number of catchments is also reported in brackets). 732 

PK is used as a categorical variable (PK is either higher or lower than 50% of catchment area), therefore sample 733 

statistics are not computed in this case, but the number of stations with PK ≥ 50% is reported as ‘positive’ presence 734 

of karst. 735 

Descriptor 

(Units)      

A  

(km2) 

BI   

(–) 

SR                 

(m3 s–1  km–2) 

PL    

(%) 

PG      

(%) 

PF       

(%) 

PK      

(–) 

P                        

(mm year–1) 

T 

(°C) 

IDM         

(–) 

Min 4.7 0.29 0.004 0.5 0.1 0.3 – 444 –1.8 29.41 

Max 70091 0.99 0.088 19.5 56.5 100 – 1500 13.7 153.40 

Standard 

deviation 

5904.3 0.14 0.018 4.04 15.54 32.56 – 288.22 3.59 24.53 

Sample size 224 224 224 69 [69] 39 [108] 18 [108] 21 [31] 224 224 224 

 736 

 737 

 738 

 739 
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 740 

 741 

 742 

 743 

 744 

 745 

Table 2 Differences in the mean values between the descriptors of the 20-highest correlation river group for HFS and 746 

LFS vs the remaining rivers (204). NL, NG, NF and NK columns contain the absolute number of rivers in the higher 747 

correlation group with the specific descriptor (presence of lake, glacier, flysch and karst ) with * denoting 748 

significance at 5% significance level (two-sided test) and brackets containing the mean value from the 1000 749 

resampled 20-catchment subsets. 750 

Descriptor

(Units) 

A        

(km2) 

BI          

(–) 

SR                  

(m3 s–1  km–2) 

NL     

(–) 

NG   

(–) 

NF       

(–) 

NK    

(–) 

P           

(mm year–1) 

T       

(°C) 

IDM    

(–) 

HFS lag1 +38.7% +9.6% –36.5% 5 [6] 5 [3] 1 [2] 1 [2] –6.7% +11.7% –11.3% 

LFS lag1 +358% +20.2% –47.3% 17* [6] 3 [3] 0 [2] 0 [2] –37.9% –80% –17.3% 

LFS lag2 +139.7% +18.9% –40.8% 12* [6] 7* [3] 0 [2] 0 [2] –26.5% –64.2% –8.8% 

 751 

Table 3 Loadings of the three Principal Components for ln A, SR, BI and T. The explained variance of each PC is 752 

denoted in parenthesis. 753 

Predictor variables PC1 (42.5%) PC2 (28.2%) PC3 (17%) PC4 (12.2%) 

ln A  –0.486 –0.427 0.748 0.145 

SR 0.48 0.483 0.652 –0.332 

BI –0.619 0.262 –0.11 –0.731 

T 0.385 –0.718 –0.04 –0.577 

 754 

Table 4 Summary of Linear Regression results for the LFS model. *** indicate a 0.1% significance level. 755 

Predictor Estimate Standard Error t value Pr(>|t|) Adjusted F-statistic 
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variables R2 

intercept 0.659407 0.008557 77.065 < 2 ×10–16*** 0.5834 104.2 

p-value:  

< 2.2 ×10–16 

 

PC1 –0.110632 0.006577 –16.820 < 2 ×10–16*** 

PC2 0.031761 0.008070 3.936 0.000111*** 

PC3 –0.038999 0.010388 –3.754 0.000223*** 

 756 

 757 

Figures 758 

 759 

Figure 1. Updated Köppen-Geiger climatic map for period 1951–2000 (Kottek et al., 2006) showing the location of 760 
the 224 river gauge stations. 761 
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762 
Figure 2. Boxplots of seasonal correlation coefficient against lag time for HFS (left panel) and LFS (right panel) 763 
analysis for the 224 rivers. The lower and upper ends of the box represent the 1st and 3rd quartiles, respectively, and 764 
the whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the box ends; outliers are 765 
plotted as filled circles.  766 

 767 

                                                                                                           768 
Figure 3. Boxplots of lag-1 and lag-2 correlation coefficients for LFS analysis (orange) and the whole monthly series 769 
(white) for the 224 rivers. The lower and upper ends of the box represent the 1st and 3rd quartiles, respectively, and 770 
the whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the box ends. 771 
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.  772 

Figure 4. Spatial distribution of the lag-1 correlation coefficients for HFS (left) and LFS (right) analysis. Legend 773 
shows the color assigned to each class of correlation for the data. 774 
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                                                                                775 
Figure 5. Scatterplots of lag-1 HFS (bottom panel) and LFS (top) streamflow correlation versus the natural logarithm 776 
of basin area ln A. 777 

 778 

Figure 6. Scatterplots of lag-1 HFS (bottom panels) and LFS streamflow correlation (top panels) versus baseflow 779 
index BI (a) and specific runoff SR (b). 780 

 781 

 782 

 783 

 784 
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785 

 786 

 787 

Figure 7. Relief maps from SRTM elevation data for the HFS and LFS lag-1 correlations of the rivers. Note that 788 
elevation scale is different for each region. Legend shows the colour assigned to each class of correlation for the data. 789 
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 790 
Figure 8. Digital elevation model of the Austrian river network depicting the spatial distribution of lag-1 positive 791 
correlation for HFS (left) and lag-1 positive correlation for LFS (right). Legend shows the colour assigned to each 792 
class of correlation for the data. 793 

                   794 
Figure 9. Boxplots of lag-1 correlation for Slovenian rivers with more than 50% presence of karstic formations PK 795 
and rivers with no or less presence for HFS analysis (left) and LFS analysis (right). The lower and upper ends of the 796 
box represent the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme value within 1.5 797 
IQR (interquartile range) from the box ends.  798 

 799 

 800 

 801 
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 803 

 804 

 805 
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  806 

 807 

                                                                                             808 
Figure 10. Scatterplots of lag-1 HFS and LFS correlation versus annual precipitation P (a), mean annual 809 

temperature T (b), and Index De Martonne IDM (c).  810 
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 811 

Figure 11. Principal component distance biplot showing the principal component scores on the first two principal 812 

axes along with the vectors (brown arrows) representing the coefficients of the baseflow index BI, specific runoff SR, 813 

natural logarithm of basin area ln A and mean annual temperature T variables when projected on the principal axes. 814 

Scores for the rivers are plotted in different colors corresponding to each country of origin and 68% normal 815 

probability contour plots are plotted for the countries. 816 

817 

 818 

Figure 12. Diagnostic plots of linear regression for the LFS model. Residuals versus the first (a), the second (b) and 819 

the third principal component (c) and the predicted values (d). Normal Q-Q plot of the residuals (e). Plot of the 820 

predicted values from linear regression vs the observed ones; red line is the diagonal line 1:1 (f).  821 

   822 
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    823 

 824 

825 

 826 
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Figure 13. Conditioning the frequency distributions for high and low flows for the Oise River. Plots of the 827 

residuals of the linear regression given by Eq. (2) for the HFS (a) and LFS (b) models. Probability 828 

distribution of the unconditioned normalized peak flows NQP (solid line) and the normalized peak flows 829 

NQP  conditioned to the occurrence of the 95% quantile (dotted line) for the HFS (c) and probability 830 

distribution of the unconditioned normalized low flows NQL (solid line) and the normalized low flows NQL 831 

conditioned to the occurrence of the 5% quantile (dotted line) for the LFS (d). Gumbel probability plots of 832 

the return period vs the unconditioned peak flows QP (black line) and the peak flows QP modelled by the 833 

EV1 distribution and conditioned to the occurrence of the 95% quantile (red line) for the HFS (e) and 834 

cumulative distribution function of the unconditioned low flows QL (black line) and the low flows QL 835 

modelled by the lognormal distribution and conditioned to the occurrence of the 5% quantile (red line) for 836 

the LFS (f).  837 


