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“Quotation from revised paper.” 

 

 

Reply to the Editor 

Dear Authors, 

Thank you for your detailed responses to the two referees’ reports. 

Based on my own reading of the manuscript, I find this is an interesting paper that fits the 

scope of HESS well. 

The two reviews are mostly favourable. However, they also make some valid points about 

providing context/justification, wider implications (in the discussion), subsections, and 

moving some of the less important figures to supplementary material (e.g. some of the 

scatterplots). 

I would therefore like to invite you to upload a revised manuscript for further review, 

incorporating the proposed changes and additions, and making any other modifications where 

you see fit. 

I look forward to receiving the revised manuscript. 

With best regards, 

Louise Slater 

 

We gratefully thank the Editor Louise Slater for her positive comments and suggestions for 

improvement as well as for handling the review process. We discuss below how we have 

taken into account the review comments in the revised version. 
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Reply to Reviewer #1 

 

SUMMARY: 

This paper looks at the lagged seasonal correlations between the average river flow in 

antecedent months and, on one side, peak flow for the High Flow Season (HFS), and on the 

other hand, average flow for the Low Flow Season (LFS). It also looks at what are the 

possible physical drivers that could explain these correlations. The study is carried out using a 

large sample of European rivers. It also shows a real-case application of the findings to flood 

frequency estimation 

 

GENERAL COMMENTS: 

The paper is well-written, clear, interesting and attempts more systematically than previous 

study to attribute the observed correlations to physical drivers. The methods used are adequate 

and robust, assumptions are being verified. Overall, it contributes to the advance of science in 

the field, and my recommendation would therefore be for publication. 

 

We gratefully thank the Reviewer for the very positive evaluation of our work and for 

recommending publication. We are also thankful for the constructive comments, the 

corrections and suggestions provided which have certainly helped improve the manuscript. 

These are discussed below. 

 

However, I have a couple of comments for suggested improvement: 1) My major comment is 

that, although the whole manuscript looks at both high flows and low flows, and analyses 

both in detail, the practical example at the end is only for high flows. I think a similar case 

study for low flows is missing there. If there is a really good reason for only giving an 

application example for high flows, the motivation for this should be clearly explained. 

We thank the Reviewer for this comment. Certainly, the application for LFS is also of great 

importance and we agree that it would be a useful addition to the paper. Some modifications 

are required in order to apply the methodology for the case of updating the distribution of 

average flow in LFS. Following the Reviewer’s suggestion, in the revised version, we have 

presented this application too and discussed it as follows. In order to update the distribution 

for the average flow in LFS, the already identified average flow in the pre-LFS period serves 

as the explanatory variable. A linear model is adopted in the Gaussian space in the same 

manner as for the HFS model. For the case study, we update the low flow distribution upon 

the hypothetical occurrence of a mean flow in the pre-LFS month equal to its lower 5% 

sample quantile. The updated distribution in the non-Gaussian space could be modelled by 

any adequate distribution exhibiting good fit. Among the Gamma, the Weibull and the 

lognormal distributions, which are typical candidates for average flows, the lognormal 

distribution was found to exhibit the best fit for the river in question. The above information 

along with the equations describing the new linear model for the LFS is included in Section 

2.3 which is renamed to “Technical experiment: Real-time updating of the frequency 

distributions for high and low flows”. In Section 7, we now include the following plots for the 

LFS case study alongside the existing plots for the Oise River. In order to maintain the brevity 

of the manuscript, we have dropped the second HFS application for the Torsebro River. We 
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have also added discussion on the relevance of the chosen river for preparing for extremes 

occurring in high and low flow periods (Lines 450-457 of the revised manuscript). 
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Figure 13. Conditioning the frequency distributions for high and low flows for the Oise River. Plots of 

the residuals of the linear regression given by Eq. (2) for HFS model (a) and the LFS (b). Probability 

distribution of the unconditioned normalized peak flows NQP (solid line) and the normalized peak 

flows NQp conditioned to the occurrence of the 95% quantile (dotted line) for the HFS (c) and 

probability distribution of the unconditioned normalized low flows NQL (solid line) and the 

normalized low flows NQL conditioned to the occurrence of the 5% quantile (dotted line) for the LFS 

(d). Gumbel probability plots of the return period vs the unconditioned peak flows QP (black line) and 

the peak flows QP modelled by the EV1 distribution and conditioned to the occurrence of the 95% 

quantile (red line) for the HFS (e) and cumulative distribution function of the unconditioned low flows 

QL (black line) and the low flows QL modelled by the lognormal distribution and conditioned to the 

occurrence of the 5% quantile (red line) for the LFS (f). 

 

Section 2.2 is too long. It would help readability to have a few sub-sections in here. 

Suggestion of subsections below (could be different, this is just a suggestion): 2.2.1. 

Correlation analysis 2.2.2. Analysis of physical drivers a) Drivers (catchment descriptors, 

geological descriptors, climatic descriptors) b) Principal Component Analysis 

 

We thank the Reviewer for this suggestion. We agree and we have adopted the proposed 

subsections. 

 

MINOR COMMENTS: 

 

Abstract: 

line 43: change “in real-world cases” to “in two real-world cases”: otherwise it is misleading 

and it sounds like you’ve done this to all the 224 catchments 

Thanks, we have corrected the wording to “a real-world case”. 
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1. Introduction: 

Line 63-66: Note that the persistence method described by Svensson (2016) that you cite here, 

has been used operationally in the production of the UK Hydrological Outlook since 2013 

(see Prudhomme et al., 2017) 

Reference: Christel Prudhomme, Jamie Hannaford, Shaun Harrigan, David Boorman, Jeff 

Knight, Victoria Bell, Christopher Jackson, Cecilia Svensson, Simon Parry, Nuria Bachiller-

Jareno, Helen Davies, Richard Davis, Jonathan Mackay, Andrew McKenzie, Alison Rudd, 

Katie Smith, John Bloomfield, RobWard & Alan Jenkins (2017) Hydrological Outlook UK: 

an operational streamflow and groundwater level forecasting system C2 at monthly to 

seasonal time scales, Hydrological Sciences Journal, 62:16, 2753-2768, DOI: 

10.1080/02626667.2017.1395032 

 

We thank the Reviewer for bringing to our attention this important application. We have 

included a short mention to the operational use of the method in Lines 67-69: 

“The abovementioned persistence approach has also been used operationally in the 

production of seasonal streamflow forecasts in the UK since 2013, within the 

framework of the Hydrological Outlook UK (Prudhomme et al. 2017)” 

 

2. Methodology 

Section 2.2: see comment earlier in general comments regarding splitting this section 

Thanks, we have addressed this issue as discussed above. 

 

Line 127: change “in terms of catchment, climatic and geological descriptors” to “in terms of 

catchment, geological and climatic descriptors”, because that is the order in which you list 

them later in the text. 

Thanks, we have changed this. 

 

Line 128-130: add altitude to the list of catchment descriptors (as you present it after 

percentages of lakes and glaciers). 

Thanks, this is added. 

 

Line 139: replace “baseflow index” with “BI” 

Thanks, we have changed it. 

 

5. Physical interpretation of correlation 

Line 365: typo: replace “20-cathcment” with “20-catchment” 

Thank you for the careful review, we have corrected it. 

 

8. Discussion and Conclusions 

Line 456: typo: replace “There” with “Their” or “These” 

Thanks, we have corrected this too. 
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Reply to Reviewer #2 

Recommendation: 

This is a very interesting paper, investigating the drivers of seasonal streamflow correlation 

for both high and low flows, using a wide range of physical drivers including catchment, 

geological and climatic descriptors. The paper is very well structured, easy to follow, concise 

and clear throughout with a well explained methodology and clear contribution to the field. 

Limitations and assumptions are also discussed well. I would recommend this paper for 

publication subject to minor revisions based on the comments below. 

We are grateful to the Reviewer for providing very positive remarks on the contribution and 

quality of our work and for recommending publication. We also wish to thank her/him for all 

the thoughtful suggestions and comments provided which have certainly helped improve the 

manuscript and highlight its contribution. These are discussed below. 

 

General Comments: 

1. It may be apt to mention that this analysis is for Europe, in the title of the paper 

Thank you for this suggestion. We have changed the title of the paper to “A large sample 

analysis of European rivers on seasonal river flow correlation and its physical drivers”. 

 

2. I agree with reviewer 1 that the readability of section 2.2 would improve if it were split into 

subsections 

Thank you for this suggestion. We agree as well and we have adopted Reviewer’s 1 

suggestion on that. 

 

3. It is not clear from the methods or from section 7 why you are doing this technical 

experiment and what you hope to gain from it. There is a brief explanation of this in the 

abstract, and it would be beneficial to further describe what the purpose of this experiment is 

within the manuscript. 

Thank you for the comment. The technical experiment is meant to highlight the practical 

applicability of the proposed method, besides its importance for improving the physical 

understanding of river memory. Providing more reliable flood estimates is a fundamental 

hydrological task and we want to provide a relevant case study showing how the identified 

correlation explicitly serves such a purpose. Following the Reviewer’s suggestion, in the 

revised version, we have elaborated on the purpose of the technical experiment and extended 

the relevant discussion in the introduction (Lines 91-94) and in the conclusions (Lines 563-

573) as well. We have also extended the technical experiment itself (Section 7) to include the 

low flows distribution updating as well and discussed its practical relevance specifically for 

the river in question (Lines 450-457): 

 

 “The Oise River (55 years of daily flow values) at Sempigny in France has a basin area 

of 4320 km2 and its gauging station at Sempigny is part of the French national real-time 

monitoring system (https://www.vigicrues.gouv.fr/), which is in place to monitor and 

forecast floods in the main French rivers. The selected river has a high technical 

relevance since it experiences both types of extremes with large impacts. For instance, a 

severe drought event in 2005 led to water restrictions impacting agriculture and water 
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uses in the region (Willsher, 2005), while the river originated an inundation during the 

1993 flood events in northern and central France, which was one of the most 

catastrophic flood-related disasters in Europe in the period 1950-2005 (Barreldo, 2007). 

 

4. Again, I agree with reviewer 1 that I was expecting to a case study / technical experiment 

for low flows as well, and would like to see this included in the revised manuscript as it 

would certainly be of interest. 

Thank you for the comment. Indeed, this is a very important application too. In the revised 

version, we have included the relevant case study discussed above. 

 

5. While I find the discussion to be thorough, with comparison to the literature and interesting 

points made, the conclusions seem to be very rushed and do not do the paper justice. I would 

recommend including a separate conclusions section and expanding significantly on this, 

including for example the wider implications of your work, how the findings could be applied 

and used, what further work could be done from this, etc. The conclusions imply that all of 

your results agree with the literature that was already out there, when in fact I believe this 

paper has done more than this. This is also the first time data assimilation is mentioned so 

there is no context here. It would also be interesting to further mention section 7 as an 

example of use. 

We sincerely thank the Reviewer for the suggestions on how to improve the conclusions in 

order to better convey the research findings of this work. We have included a separate 

conclusions section (Section 9, “Conclusions and outlook”) and discussed areas of practical 

applicability as well as directions for further research. We have also mentioned section 7 as an 

example of use and elaborated on other possible probabilistic models. Additionally, we 

introduced the data assimilation concept in Section 2.3 (Lines 215-217) as follows: 

 

“In principle, this is a data assimilation approach, since real-time information, i.e. 

observations of the average river flow, is used in order to update a probabilistic model 

and inform the forecast of the flow signature of the upcoming season.” 

 

6. There are a lot of figures included in this manuscript - is it necessary to include all of these, 

or could some of them be provided in supplementary material for further interest? Some are 

barely discussed in the paper, for example 15a,b,c,d. 

We thank the Reviewer for this comment. We have added Figures 7 and 11 as supplementary 

material in the revised version. 

 

– Minor Comments and Clarifications: 

Line 33-34: it should be mentioned that the study covers 6 countries in Europe, the abstract 

implies that the whole of Europe is included 

We thank the Reviewer for this remark. We have included this.  

 

Line 78: Remove "in fact" 

Thanks, we have removed it. 
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Lines 87-89: This is repetitive of information stated just above 

Thanks, it has been removed. 

 

Line 105: "employed" is used a lot in this paragraph - maybe just use "used"? 

Thanks for the suggestion, we have adopted it. 

 

Line 110-111: Why do you not take into account the minor HFS after identifying it? This 

could be interesting to discuss; but at least should be justified. 

We thank the Reviewer for this comment. Actually, we are interested in exploring the river 

memory for the purpose of predicting high flows and low flows and therefore we are 

interested in the most extreme seasons. Exploring the memory for the minor HFS may be 

interesting for reservoir management or water resources management, but in our opinion 

would not add much for the purpose of analyzing the probability of occurrence of the most 

relevant flows. Besides, minor high-flow seasons characterized by low or moderate 

significance were only detected in a few rivers in Austria and Sweden (section 4.1), and 

therefore, we consider a minor HFS analysis to be more relevant in other regions of the world 

where bimodal flood regimes are more prominent, as shown by the analysis of Lee et al. 

(2015). We have add these considerations in Lines 301-305 of the revised manuscript: 

 

“Bi-modality regimes are found with low and moderate significance in rivers located 

mostly in Austria and Sweden, but we focus here on the major high-flow season, as we 

are interested in the most extreme events. A minor HFS analysis would be perhaps 

relevant in other regions of the world where bimodal flood regimes are more prominent, 

as suggested by the analysis of Lee et al. (2015).” 

 

Line 123: Why do you look for correlation with mean flow in the previous months? This is 

fine, but the reason should be included. 

We use the mean flow in the previous month as a robust indicator of the ‘storage’ in the 

catchment. The mean flow is more likely to portray the condition of the catchment and its 

possible change with respect to a higher quantile. The latter correlation is less related to the 

memory properties of the catchment which are of interest here. We have include the following 

explanation in the revised version in Lines 130-132.  

 

“We use the mean flow in the previous month as a robust proxy of ‘storage’ in the 

catchment expected to reflect the state of the catchment, i.e. wetter/drier than usual.” 

 

Line 134: basing -> based 

Thanks, we have corrected the wording accordingly.  

 

Line 155: A very brief explanation of flysch and karstic formations would be helpful for those 

of us with no geological background. 

Thanks, we have extend the following phrases giving a brief description of the geology as 

follows: 

 



9 

“A subset of Austrian catchments is characterized by the dominant presence of flysch, a 

sequence of sedimentary rocks characterized by low permeability, which is known to 

generate a very fast flow response.” 

“Karstic catchments, characterized by the irregular presence of sinkholes and caves, are 

also known for having rapid response times and complex behaviour; e.g. initiating fast 

preferential groundwater flow and intermittent discharge via karstic springs (Ravbar, 

2013; Cervi et al., 2017).” 

 

Line 161: Remove "of" ("because of geology...") 

Thanks, we have removed it.  

 

Line 165: What type of data is this? 

‘Data’ refers to the data described above (mean annual temperature and precipitation), which 

are gridded. We have added the following clarification in Lines 176-177: 

“As climatic descriptors, the mean annual precipitation P (mm year–1) and the mean 

annual temperature T (°C) are selected. Corresponding gridded data are retrieved…” 

 

Line 166: What is this in km (approx.)? 

10 minutes of degree equal approximately 18.55 km at the equator, i.e. the grid size is approx. 

344 km2, but as the latitude increases towards the poles, the longitude distances decrease. We 

have included this in parenthesis. 

 

Lines 164-170: You don’t mention here how this relates to snow, which is discussed a lot in 

the results 

Thanks, we have add that low mean temperature regimes are associated with snow (Line 179).  

 

Line 233: Where is this data from? is it observations? please clarify 

These are daily streamflow records from gauging stations. These are provided by the 

institutions mentioned in the authors’ affiliations and are available upon request. We have 

added the following phrase (Lines 264-265): 

“The dataset includes 224 records spanning more than 50 years of daily river flow 

observations from gauging stations, mostly from non-regulated streams.” 

 

Lines 242-243: Please clarify what Cfb and Dfc climatic types are 

Thanks, these acronyms are defined in the legend of Figure 1.  We have clarified this and 

reiterated the explanation in the text as well. 

 

Lines 251: This is indeed interesting, could you expand on which rivers are regulated? 

Line 257: Is the regulation really mild; what do you define as mild regulation? 

We have information for the presence of such regulation for 16 of the Austrian rivers. We 

used the term ‘mild’ regulation to describe anthropogenic influences of an intensity that does 

not majorly alter the flow regimes. These are related to upstream regulation with very low 

degree of flow attenuation, hydropower operations and flow diversions to and from the basin. 

Indeed this is a subjective characterization given by the operators of the stations and 
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unarguably the regulation issue requires more investigation. Unfortunately, the data that we 

have do not have a time reference (start, duration and end of regulation) nor does the 

regulation have a common starting period for all the rivers in question. A preliminary 

examination of these rivers did not reveal any consistent patterns worth discussing. However, 

because regulation is very common in European rivers, although relevant data are generally 

lacking (Kuentz et al. 2017) and since the possibility of human influences upstream cannot be 

excluded even in rivers that are formally denoted as nonregulated, we rely on the assumption 

of stationarity throughout the manuscript. We have included the above explanation of 

regulation in Lines 284-293. 

 

“It is relevant to note that 16 of the Austrian rivers are subject to regulation, which may 

alter the persistence properties of river flows. This relates to generally ‘mild’ forms of 

regulation, i.e. upstream regulation with very low degree of flow attenuation, 

hydropower operations and flow diversions to and from the basin. A preliminary 

examination of these rivers did not reveal any significant change during time of the flow 

regime. The presence of regulation does not preclude the exploitation of correlation for 

predicting river flows in probabilistic terms, but may affect the analysis of physical 

drivers, as it may enhance or reduce persistence in the natural river flow regime. Given 

that detailed information is generally lacking on the impact of regulation (Kuentz et al. 

2017), we assume stationarity of the river flows for all the catchments herein considered 

and additionally, assume that river management does not significantly affect the 

identification of the physical drivers.” 

 

 

Line 287: indexes -> indices 

Line 289: available for "a" few countries only. 

Thanks, we have corrected the wording accordingly.  

 

Line 204: "it looks that" implies that you are unsure, maybe rephrase this 

Lines 349 & 352: again, "looks" implies you are unsure 

Thanks for these remarks, we have rephrased.  

 

Line 359: "having" -> "with" 

Line 378: summarize -> summarizing 

Thanks, we have corrected these accordingly.  

 

Line 378: PCA analysis - analysis is included in this acronym, so reads oddly 

Indeed, we have now removed “analysis”.  

 

Line 385: remove "majorly" 

Line 391: indexes -> indices 

Line 393: remove "also" 

Thanks, we have adopted the above suggestions.  
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Line 407: add "(see sect. 2.3)" after technical experiment 

Thanks, we have added this.  

 

Line 435: "within this respect" is odd phrasing, consider rephrasing 

Thanks, we have rephrased the wording.  

 

Line 456: there -> their 

Line 473: associated to higher -> associated with higher 

Thanks, we have corrected the wording accordingly.  

 

Figure 2: Are the boxplots of all the gauging stations? Please clarify in the captions. 

Yes they are.  We have added this clarification in the caption.  

 

Figure 8: Very nice figure, but you have red dots on top of a green map which should ideally 

be avoided 

Figure 9: Again, a very nice figure, but it’s very hard to see the yellow dots 

Thank you for pointing this out, indeed this should be avoided. We have changed the color of 

the dots.  

 

Once again, we would like to thank the Reviewers and the Editor for the very constructive 

assistance. 
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Abstract 27 

The geophysical and hydrological processes governing river flow formation exhibit persistence 28 

at several timescales, which may manifest itself with the presence of positive seasonal 29 

correlation of streamflow at several different time lags. We investigate here how persistence 30 

propagates along subsequent seasons and affects low and high flows. We define the High Flow 31 

Season (HFS) and the Low Flow Season (LFS) as the three-month and the one-month periods 32 

which usually exhibit the higher and lower river flows, respectively. A dataset of 224 European 33 

rivers from six European countries spanning more than 50 years of daily flow data is exploited. 34 

We compute the lagged seasonal correlation between selected river flow signatures, in HFS and 35 

LFS, and the average river flow in the antecedent months. Signatures are peak and average river 36 

flow for HFS and LFS, respectively. We investigate the links between seasonal streamflow 37 

correlation and various physiographic catchment characteristics and hydro-climatic properties. 38 

We find persistence to be more intense for LFS signatures than HFS. To exploit the seasonal 39 

correlation in flood the frequency estimation of high and low flows, we fit a bivariate Meta-40 

Gaussian probability distribution to the selected flow signatures peak HFS flow and average pre-41 

HFS flow in the antecedent months in order to condition the peak flow distribution of high and 42 

low flows in the HFS and LFS, respectively, upon river flow observations in the previous 43 

months. The benefit of the suggested methodology is demonstrated by updating the flood 44 

frequency distribution of high and low flows one season in advance in a real-world cases. Our 45 

findings suggest that there is a traceable physical basis for river memory which in turn can be 46 

statistically assimilated into flood high- and low-flow frequency estimation to reduce uncertainty 47 

and improve predictions for technical purposes.  48 

 49 

Keywords: flood frequency, seasonal streamflow correlation, river memory, persistence, real-50 

time flood flow forecasting, floods, low flows, meta-Gaussian 51 
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1. Introduction 52 

Recent analyses for the Po River and the Danube River highlighted that catchments may exhibit significant 53 

correlation between peak river flows and average flows in the previous months (Aguilar et al., 2017). Such 54 

correlation is the result of the behaviours of the physical processes involved in the rainfall-runoff 55 

transformation that may induce memory in river flows at several different time scales. The presence of 56 

long-term persistence in streamflow has been known for a long time since the pioneering works of Hurst 57 

(1951) and has been actively studied ever since (e.g. Koutsoyiannis, 2011; Montanari, 2012; O’Connell et 58 

al., 2016 and references therein). While a number of seasonal flow forecasting methods have been explored 59 

in the literature (e.g. Bierkens and van Beek, 2009; Dijk et al., 2013), attempts to explicitly exploit 60 

streamflow persistence in seasonal forecasting through information from past flows have been in general 61 

limited. Koutsoyiannis et al. (2008) proposed a stochastic approach to incorporate persistence of past flows 62 

into a prediction methodology for monthly average streamflow and found the method to outperform the 63 

historical analogue method (see also Dimitriadis et al., 2016 for theory and applications of the latter) and 64 

artificial neural network methods in the case of the Nile River. Similarly, Svensson (2016) assumed that the 65 

standardized anomaly of the most recent month will not change during future months to derive monthly 66 

flow forecasts for 1–3 months lead time and found the predictive skill to be superior to the analogue 67 

approach for 93 UK catchments. Notably, tThe abovementioned persistence approach has also been used 68 

operationally in the production of seasonal streamflow forecasts in the UK since 2013, within the 69 

framework of known as the Hydrological Outlook UK (Prudhomme et al. 2017).  A few other studies have 70 

included past flow information in prediction schemes along with teleconnections or other climatic indices 71 

(Piechota et al., 2001; Chiew et al., 2003; Wang et al., 2009). Recently, it was shown that streamflow 72 

persistence, revealed as seasonal correlation, may also be relevant for prediction of extreme events by 73 

allowing one to update the flood frequency distribution based on river flow observations in the pre-flood 74 

season and reduce its bias and variability (Aguilar et al., 2017). The above previous studies postulated that 75 
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seasonal streamflow correlation may be due to the persistence of the catchments storage and/or the weather, 76 

but no attempt was made to identify the physical drivers.  77 

The present study aims to further inspect seasonal persistence in river flows and its determinants, by 78 

referring to a large sample of catchments in 6 European countries (Austria, Sweden, Slovenia, France, 79 

Spain and Italy). We focus on persistence properties of both high and low flows by investigating the 80 

following research questions: (i) what are the physical conditions, in terms of catchment properties, i.e. 81 

geology and climate, which may induce seasonal persistence in river flow? And, (ii) can floods and 82 

droughts be predicted, in probabilistic terms, by exploiting the information provided by average flows in 83 

the previous months? These questions is are relevant for gaining a better comprehension of catchment 84 

dynamics and planning mitigation strategies for natural hazards. In fact, wWe also aim at determining what 85 

the physical conditions are, in terms of catchment properties, i.e. geology and climate, which may induce 86 

seasonal persistence in river flow. To reach the latter above goals, we identify a set of descriptors for 87 

catchment behaviours and climate, and inspect their impact on correlation magnitude and therefore 88 

predictability of river flows.  89 

A few studies have analysed physical drivers of streamflow persistence on annual and deseasonalized 90 

monthly and daily timeseries (Mudelsee, 2007; Hirpa et al., 2010; Gudmundsson et al., 2011; Zhang et al., 91 

2012; Szolgayova et al., 2014; Markonis et al., 2018) but the topic has been less studied on intra-annual 92 

scales relevant to seasonal forecasting of floods and droughts. 93 

To demonstrate the high practical relevance of the identified seasonal correlations we present a 94 

technical experiment for one of the studied rivers (Section 7) in which the frequency distribution of both 95 

high and low flows is updated one season in advance by exploiting real-time information on the state of the 96 

catchment.Therefore, we herein follow up previous work by further investigating in a larger sample of 97 

catchments the predictability of high and low flows in probabilistic terms. Additionally, we inspect the 98 

physical drivers of correlation. 99 

 100 
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2. Methodology 101 

The investigation of the persistence properties of river flows focuses separately on both high and low 102 

discharges and is articulated in the following steps: (a) identification of the high- and low-flow seasons; (b) 103 

correlation assessment between the peak flow in the high flow season (average flow in the low-flow 104 

season) and average flows in the previous months; (c) analysis of the physical drivers for streamflow 105 

persistence and its predictability through a Principal Component Analysis; (d) real-time updating of the 106 

flood frequency distribution of high and low flows for a selected case studies study with significant 107 

seasonal correlation by employing a Meta-Gaussian approach. The above steps are described in detail in the 108 

following sections. 109 

2.1 Season Identification 110 

Season identification is performed algorithmically to identify the High Flow Season (HFS) and Low Flow 111 

Season (LFS) for each river time series. For the estimation of HFS, we employ an automated method 112 

recently proposed by Lee et al. (2015), which identifies the high flow season as the three-month period 113 

centred around the month with the maximum number of occurrences of Peaks Over Threshold (POT), with 114 

the threshold set to the highest 5 % of the daily flows. To evaluate the selection of HFS, a metric 115 

constructed as the Percentage of Annual Maximum Flows (PAMF) captured in the HFS is employedused. 116 

The PAMFs are classified in subjective categories of “poor” (<40 %), “low” (40–60 %), “medium” (60–80 117 

%) and “high” (>80 %) values, denoting the probability that the identified HFS is the dominant high-flow 118 

season in the record. If the identified peak month alone contains 80 % or more of annual maxima flows, a 119 

uni-modal regime is assumed and the identification procedure is terminated. In all other cases, the method 120 

allows for the search of a second peak month and the identification of a minor HFS but we do not further 121 

elaborate on this analysis here because we focus on the major HFSwe are only interested in the most 122 

extreme seasons for the purpose of predicting high flows and low flows.  123 

The method proposed by Lee et al. (2015) has several advantages that make it suitable for the purpose 124 

of this research. Most importantly, it is capable of handling conditions of bi-modality, which is usually a 125 
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major issue for traditional methods like, e.g., directional statistics (Cunderlik et al., 2004). A potential 126 

limitation is the assumption of symmetrical extension of HFS around the peak month, along with the 127 

uniform selection of its length (3-month period). The degree of subjectivity in the evaluation of the second 128 

HFS is another limitation, which is not relevant here as we focus on the main HFS. 129 

LFS is herein identified as the one-month period with the lowest amount of mean monthly flow. An 130 

alternative approach of estimating the relative frequencies of annual minima of monthly flow and selecting 131 

the month with the highest frequency as LFS is also considered.  132 

2.2 Correlation analysis and physical interpretation through Principal Component Analysis 133 

2.2 2.2.1 Correlation analysis 134 

In the case of HFS, a correlation is sought between the maximum daily flow occurring in the HFS period 135 

and the mean flow in the previous months. For LFS, correlation is computed between the mean flow in the 136 

LFS itself and the mean flow in the previous months. We use the mean flow in the previous month as a 137 

robust proxy of ‘storage’ in the catchment expected to reflect the state of the catchment and its possible 138 

change, i.e., wetter/drier than usual. Since we are interested in seasonal persistence, we compute the 139 

Pearson’s correlation coefficient up to 9-month lag for HFS and 11-month lag for LFS. 140 

2.2.2 Analysis of physical drivers 141 

a. Catchment, geological and climatic descriptors 142 

An extensive investigation is carried out to identify physical drivers of seasonal streamflow correlation, in 143 

terms of catchment, geological climatic and geological climatic descriptors.  144 

As catchment descriptors, we consider the basin area (A), the Baseflow Index (BI), the mean specific 145 

runoff (SR), and the percentage of basin area covered by lakes (percentage of lakes, PL) and glaciers 146 

(percentage of glaciers, PG) and altitude as candidate explanatory variables for streamflow correlation.  147 

The area A (km2) is primarily investigated as it is representative of the scale of the catchment, under 148 

the assumption that in larger basins the impact of the climatological and geophysical processes affecting 149 

river flow becomes more significant and may lead to a magnified seasonal correlation. 150 
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BI is considered basing based on the assumption that high groundwater storage may be a potential 151 

driver of correlation. BI is calculated from the daily flow series of the rivers following the hydrograph 152 

separation procedure detailed in Gustard et al. (2009). Flow minima are sampled from non-overlapping 5-153 

day blocks of the daily flow series and turning points in the sequence of minima are sought and identified 154 

when the 90 % value of a certain minimum is smaller or equal to its adjacent values. Subsequently, linear 155 

interpolation is used in between the turning points to obtain the baseflow hydrograph. The baseflow 156 

indexBI is obtained as the ratio of the volume of water beneath the baseflow separation curve versus the 157 

total volume of water from the observed hydrograph, and an average value is computed over all the 158 

observed hydrographs for a given catchment. A low index is indicative of an impermeable catchment with 159 

rapid response, whereas a high value suggests high storage capacity and a stable flow regime.  160 

SR (m3 s–1 km–2) is computed as the mean daily flow of the river standardized by the size of its basin 161 

area. It may be an important physical driver as it is an indicator of the catchment’s wetness. PL (%) and PG 162 

(%) are investigated for the Swedish and Austrian catchments, respectively, as lakes and glaciers are 163 

expected to increase catchment storage thus affecting persistence. Lake coverage data are based on 164 

cartography and available from the Swedish Water Archive (https://www.smhi.se/), while glacier coverage 165 

data are estimated from the CORINE land cover database (https://www.eea.europa.eu/publications/COR0-166 

landcover). 167 

The effect of catchment altitude is also inspected using relief maps from the Shuttle Radar 168 

Topography Mission (SRTM) data (http://srtm.csi.cgiar.org/). The data are available for the whole globe 169 

and are sampled at 3 arch-seconds resolution (approximately 90 meters). Topographic information is 170 

available for all catchments located at latitude lower than 60 degrees north while a 1 km resolution digital 171 

elevation model is available for Austria. 172 

As geological descriptors we consider the percentage of catchment area with the presence of flysch 173 

(percentage of flysch, PF) and karstic formations (percentage of karst, PK) for Austrian and Slovenian 174 

catchments, respectively, for which this type of information is available. A subset of Austrian catchments is 175 

http://srtm.csi.cgiar.org/
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characterised by the dominant presence of flysch, a sequence of sedimentary rocks characterized by low 176 

permeability, which is known to generate a very fast flow response. Karstic catchments, characterized by 177 

the irregular presence of sinkholes and caves, are also known for having rapid response times and complex 178 

behaviour; e.g. initiating fast preferential groundwater flow and intermittent discharge via karstic springs 179 

(Ravbar, 2013; Cervi et al., 2017). Geological features are expected to be linked to persistence properties 180 

also because of geology is the main control for the baseflow index across the European continent (Kuentz 181 

et al. 2017). PK (%) and PF (%) are estimated from geological maps of Slovenia and Austria, respectively. 182 

As climatic descriptors, the mean annual precipitation P (mm year–1) and the mean annual 183 

temperature T (°C) are selected. Corresponding gridded dData are retrieved from the Worldclim database 184 

(http://www.worldclim.org/) at a spatial resolution of 10 minutes of degree (approximately 18.55 km). We 185 

note that low mean temperature regimes are also associated with snow, the presence of which is also 186 

considered in the interpretation of the results. We also adopt as climatic descriptor the De Martonne index 187 

(De Martonne, 1926), IDM, which is given by IDM = 𝑃 (𝑇 + 10)⁄  , and enables classification of a region 188 

into one of the following  6 climate classes, i.e., arid (IDM ≤ 5), semi-arid (5 < IDM ≤ 10), dry sub-humid 189 

(10 < IDM ≤ 20), wet sub-humid (20 < IDM ≤ 30), humid (30 < IDM ≤ 60) and very humid (IDM ≥ 60). 190 

Additionally, the Köppen-Geiger climatic classification (Kottek et al., 2006) of the rivers is also assessed. 191 

b. Principal Component Analysis 192 

To identify what catchment, physiographic and climatic characteristics may explain river memory we 193 

attempt to regress the seasonal streamflow correlation against the physical descriptors introduced above. 194 

We expect the presence of multi-collinearity among the explaining variables and therefore Principal 195 

Component Analysis (PCA; Pearson, 1901; Hotelling, 1933) was applied to construct uncorrelated 196 

explanatory variables. In essence, PCA is an orthonormal linear transformation of p data variables into a 197 

new coordinate system of q ≤ p uncorrelated variables (principal components, PCs) ordered by decreasing 198 

degree of variance retained when the original p variables are projected into them (Jolliffe, 2002). Therefore, 199 

the first principal axis contains the greatest degree of variance in the data, while the second principal axis is 200 
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the direction which maximizes the variance among all directions orthogonal to the first principal axis and 201 

so on. Specifically, let x be a random vector with mean μ and correlation matrix Σ, then the principal 202 

component transformation of x is obtained as follows:   203 

 𝒚 = 𝑪𝑇𝒙′    (1)  204 

where y is the transformed vector whose kth column is the kth principal component (k =1, 2..p), C is the p × 205 

p matrix of the coefficients or loadings for each principal component and x' is the standardized x vector. 206 

Standardization is applied in order to avoid the impact of the different variable units on selecting the 207 

direction of maximum variance, when forming the PCs. The y values are the scores of each observation, i.e. 208 

the transformed values of each observation of the original p variables in the kth principal component 209 

direction. 210 

PCA has useful descriptive properties of the underlying structure of the data. These properties can be 211 

efficiently visualized in the biplot (Gabriel, 1971), which is the combined plot of the scores of the data for 212 

the first two principal components along with the relative position of the p variables as vectors in the two-213 

dimensional space. Herein, the distance biplot type (Gower and Hand, 1995), which approximates the 214 

Euclidean distances between the observations, is used. Variable vectors coordinates are obtained by the 215 

coefficients of each variable for the first two principal components. After construction of the PCs, a linear 216 

regression model is explored for the case of HFS and LFS lag-1 correlation. 217 

2.3 Technical experiment: Real-time updating of the flood frequency distribution of high and low 218 

flows 219 

In order to evaluate the usefulness of the information provided by the one-month-lag seasonal correlation 220 

for flow signatures in HFS and LFS, we perform a real-time updating of the flood frequency distribution of 221 

high and low flows based on the average river flows in the previous month. A similar analysis for the high 222 

flows was carried out by Aguilar et al. (2017) for the Po and Danube Rivers. In principle, Tthis is in 223 

principle, a data assimilation approach, since real-time information, i.e. observations of the average river 224 
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flow, is used in order to update the existing a probabilistic model and initiate inform a new the forecast for 225 

of the flow signature of the upcoming season.  226 

In detail, a bi-variate meta-Gaussian probability distribution (Kelly and Krzysztofowicz, 1997; 227 

Montanari and Brath, 2004) is fitted between the observed flow signatures, i.e., observed peak flow in the 228 

HFS, Qp QP and average flow in the LFS, QL, and the average flow in the pre-flood HFS season and LFS 229 

months, Qm, respectively. The peak HFS flow and the average LFS flow areis the dependent variables and 230 

is are extracted  as the peak river discharge observed in the previously identified HFS and the average river 231 

discharge observed in the previously identified LFS, respectively. The average flow in the month preceding 232 

the HFS and the LFS is the explanatory variable in both cases. In the following, random variables are 233 

denoted by underscore and their outcomes are written in plain form.  234 

The normal quantile transform, NQT (Kelly and Krzysztofowicz, 1997), is used in order to make the 235 

marginal probability distribution of dependent and explanatory variables Gaussian. This is achieved as 236 

follows: a) the sample quantiles Q are sorted in increasing order e.g. Qm1 ,Qm2
 …Qmn

 , b) the cumulative 237 

frequency, e.g. FQmi
 is computed via a Weibull plotting position, and c) the standard normal quantile, e.g., 238 

NQmi
 is obtained as the inverse of the standard normal distribution for each cumulative frequency, ie.eg., 239 

G−1(FQmi
). Therefore, all sample quantiles are discretely mapped into the Gaussian domain. To get the 240 

inverse transformation for any normal quantile NQmi
, we connect the points in the above mapping with 241 

linear segments. The extreme segments are extended to allow extrapolation outside the range covered by 242 

the observed sample.  243 

In the Gaussian domain, a bivariate Gaussian distribution is fitted between the random explanatory 244 

variable NQm and the dependent variables NQp NQP and NQL by assuming stationarity and ergodicity of 245 

the variables. We define the generic random variable NQfs to represent any dependent flow signature, i.e.,; 246 

in our case NQP and NQL in our case. Then, the predicted signature at time t can be written as:: 247 

NQpNQfs(t) = ρ(NQm, NQpNQfs) NQm(t −- h) + Nε(t)                                                                                                             248 

(2) 249 
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where ρ(NQm, NQpNQfs) is the Pearson’s cross correlation coefficient between NQm and NQpNQfs, h is the 250 

selected correlation lag with h = 1 in the present application, and Nε(t) is an outcome of the stochastic 251 

process Nε, which is independent, homoscedastic, stochastically independent of NQm and normally 252 

distributed with zero mean and variance 1−ρ2(NQm, NQp NQfs). Then, the joint bivariate Gaussian 253 

probability distribution function is defined by the mean (μ(NQm) = 0 and μ(NQpNQfs) = 0), the standard 254 

deviation (σ(NQm) = 1 and σ(NQpNQfs) = 1) of the standardized normalized series, and the Pearson’s cross 255 

correlation coefficient between the normalized series, ρ(NQm, NQpNQfs). From the Gaussian bivariate 256 

probability properties, it follows that for any observed NQm(t −- h) the probability distribution function of 257 

NQp NQfs (t) conditioned on NQm is Gaussian, with parameters given by: 258 

μ(NQpNQfs(t)) = ρ(NQm, NQp NQfs ) NQm (t − -h)                                                                                                                         259 

(3) 260 

σ(NQpNQfs(t)) = (1− ρ2(NQm, NQpNQfs))
0.5                                                                                                                                                                                  261 

(4) 262 

To derive the probability distribution of Qfs(t) , i.e. Qp QP and QL conditioned to the observed Qm(t − -h), 263 

we first apply the inverse NQT, i.e., we use linear segments to connect the points of the previous discrete 264 

quantile mapping of the original quantiles into the Gaussian domain, and accordingly, obtain Qfs(t) for any 265 

NQfs(t). to a discrete set of probabilities andSubsequently, we estimated the parameters of an assigned 266 

probability distribution tofor the obtained quantiles in the untransformed domain. This is referred to as the 267 

updated probability distribution of the considered flow signature (NQP and NQL in our case). We use the 268 

Extreme Value Type I distribution for the peak flows and calculate the differences in the magnitude of 269 

estimated maxima for a given return period between the unconditioned and the updated distribution. The 270 

latter is conditioned by the 95% sample quantile of the observed mean flow in the previous month. To 271 

model the low flows we use the lognormal distribution, which was found to exhibit the best fit for the river 272 

in question among other typical candidates for average flows, i.e. the Weibull and the Gamma distribution. 273 

Respectively,The  the low flows are conditioned by the lower 5% sample quantile of the observed mean 274 
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flow in the previous month. To model the low flows we use the lognormal distribution, which was found to 275 

exhibit the best fit for the river in question among other typical candidates for average flows, i.e. the 276 

Weibull and the Gamma distribution. 277 

3. Data and catchments description 278 

The dataset includes 224 records spanning more than 50 years of daily river flow observations from 279 

gauging stationsdata, mostly from non-regulated streams. A few catchments are impacted by mild 280 

regulation. Among the 224 rivers, 108 are located in Austria, 69 in Sweden, 31 in Slovenia, 13 in France, 2 281 

in Spain and one in Italy. Catchment areas vary significantly, the largest being the Po River basin in Italy 282 

(70 091 km2) and the smaller being the Hålabäck River basin in Sweden (4.7 km2). The geographical 283 

location of the river gauge stations as well as their climatic classification is are shown in Fig. 1. Most of the 284 

examined rivers belong to either a warm temperate (C) or a boreal/snow climate (D) with a subset impacted 285 

by polar climatic conditions (E), according to the updated World Map of the Köppen-Geiger climate 286 

classification (Fig. 1) based on gridded temperature and precipitation data for the period 1951-2000 (Kottek 287 

et al., 2006). More specifically, the majority of French, Slovenian and approximately one third of the 288 

Swedish basins belong to the warm temperate Cfb category characterized by precipitation distributed 289 

throughout the year (fully humid) and warm summers. The rest of the Swedish catchments are impacted by 290 

a Dfc climatic type, i.e. a snow climate, fully humid with cool summers. The Austrian catchments 291 

belonging to the region impacted by the European Alps have the most complicated regime due to their 292 

topographic variability. At the lowest altitudes, Cfb is the prevailing regime, but as proximity to the Alps 293 

increases, a Dfc regime dominates and progressively, in the highest altitude basins, the climate becomes a 294 

polar tundra type (Et), characterized primarily by the very low temperatures present. The characteristics of 295 

all the climatic regimes of the studied rivers are given in the legend of Fig. 1. A summary of the river 296 

basins under study in terms of the selected descriptors is also provided in Table 1, showing that the 297 

investigated rivers cover a wide range of catchment area sizes, flow regimes and climatic conditions. 298 
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It is interesting relevant to note that some 16 of the above Austrian rivers are subject to regulation, 299 

which may alter the persistence properties of river flows. This relates to generally ‘mild’ forms of 300 

regulation, i.e. upstream regulation with very low degree of flow attenuation, hydropower operations and 301 

flow diversions to and from the basin. A preliminary examination of these rivers did not reveal any 302 

significant change during time of the flow regime. The presence of regulation does not preclude the 303 

exploitation of correlation for predicting river flows in probabilistic terms, but may affect the analysis of 304 

physical drivers, as it may enhance or reduce persistence in the natural river flow regime. Given that 305 

detailed information is generally lacking on the impact of regulation (Kuentz et al. 2017), we assume 306 

stationarity of the river flows for all the catchments herein considered and additionally, assume that river 307 

management does not significantly affect the identification of the physical drivers.. On the one hand, under 308 

the assumption that river flow management does not change in time, the presence of regulation does not 309 

preclude the exploitation of correlation for predicting river flows in probabilistic terms. On the other hand, 310 

regulation may affect the analysis of physical drivers, as it may enhance or reduce persistence in the natural 311 

river flow regime 312 

. Given that the results that we herein present are derived from a large sample of catchments, we 313 

assume that they are not significantly affected by the abovementioned types of mild regulation that takes 314 

place in a few of them. 315 

4. River memory analysis for the considered case studies 316 

4.1 Season Identification 317 

Approximately half of the 224 rivers are characterized by at least one high-flow season with medium or 318 

higher significance (PAMF(HFS) ≥ 60 %). Among them, very strong unimodal regimes (PAMF(HFS) ≥ 80 319 

%) are observed in 63 rivers, the majority of which are located in Sweden. For 25 % of the rivers, a high-320 

flow season of low significance is found (PAMF(HFS) between 40–60 %), while for the remaining 25 % 321 

the high-flow distribution looks uniform along the year. Bi-modality regimes are found with low and 322 

moderate significance in rivers located mostly in Austria and Sweden, but we focus here on the major high-323 
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flow season, for which we inspect higher seasonal correlation against previous average flowas we are 324 

interested in the most extreme events. A minor HFS analysis would be perhaps relevant in other regions of 325 

the world where bimodal flood regimes are more prominent, as suggested by the analysis of Lee et al. 326 

(2015). 327 

Regarding the LFS identification, the two considered approaches (see Section 2.1) agree for 139 out 328 

of 224 stations but the first method, i.e. the one-month period with the lowest amount of mean monthly 329 

flow is selected as being more relevant to the purpose of computing mean flow correlations. 330 

4.2 Seasonal correlation 331 

LFS correlation is markedly higher than the corresponding HFS correlation for lags 1–5 and its median 332 

remains higher than 0 for more lags (see Fig. 2). For the case of HFS correlation, we focus only on the most 333 

significant first lag, for which 73 rivers are found to have correlation significantly higher than 0 at 5 % 334 

significance level. In Fig. 3, the autocorrelation of the whole monthly series is compared to the LFS 335 

correlation for lag of 1 and 2 months, in order to prove that the seasonal correlation for LFS is significantly 336 

higher than its counterpart computed by considering the whole year. The latter is also confirmed by the 337 

Kolmogorov-Smirnov test for both LFS lags (corresponding p-values, plag1 < 2.2 ×10–6 and plag2 < 2.2 ×10–6  338 

for the null hypothesis that the LFS correlation coefficients are not higher than the corresponding values for 339 

the monthly series autocorrelation; Conover, 1971). 340 

Figure 4 shows the spatial pattern of HFS and LFS streamflow correlations. It is interesting to notice 341 

the emergence of spatial clustering in the correlation magnitude, which implies its dependence on different 342 

spatially varying physical mechanisms. For example, for HFS, a geographical pattern emerges within 343 

France, since the highest correlation coefficients are located in the northern part of the country, which is 344 

characterized by oceanic climate and higher baseflow indexes. 345 
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5. Physical interpretation of correlation 346 

To attribute the detected correlations to physical drivers, we define 6 groups of potential drivers of seasonal 347 

correlation magnitude, which are: basin size, flow indexesindices, presence of lakes and glaciers, catchment 348 

elevation, catchment geology, and hydro-climatic forcing. For some of the descriptors the information is 349 

available for a few countries only.  350 

In what follows, we will use the term “positive (negative) impact on correlation” to imply that an 351 

increasing value of the considered descriptor is associated to increasing (decreasing) correlation. For each 352 

descriptor, we also report between parentheses the Spearman’s rank correlation coefficient rs (Spearman, 353 

1904) between its value and the considered (LFS or HFS) correlation, and the p-value of the null 354 

hypothesis rs = 0. Spearman’s coefficient is adopted in view of its robustness to the presence of outliers and 355 

its capability of capturing monotonic relationships of non-linear type. 356 

5.1 Catchment area – Descriptor A 357 

Figure 5 shows that there is only a weak positive impact of the catchment area (log-transformed) on 358 

correlation for HFS (rs = 0.17, p = 0.01) but a more significant positive one for LFS (rs = 0.27, p = 5.5 × 10–359 

5). We expected a more pronounced positive impact of the catchment area. The presence of relevant scatter 360 

in the plots also indicates that it is not a key determinant of correlation. 361 

5.2 Flow indexes indices – Descriptors BI and SR 362 

The effect of the BI and SR is shown in Fig. 6. BI (Fig. 6a) appears to be a marked positive driver for LFS 363 

(rs = 0.6, p = 1.8 × 10–23) while its effect for HFS is less clear, being weakly positive (rs = 0.21, p = 0.001). 364 

As fFor SR (Fig. 6b), it looks appears that both LFS and HFS streamflow correlations drop for increasing 365 

wetness (rs = –0.4, p = 4 × 10–10 and rs = –0.28, p = 2.8 × 10–5 respectively). 366 

5.3 Presence of lakes and glaciers – Descriptors PL and PG 367 

Detailed information on the presence of lakes is available for the 69 Swedish catchments while areal 368 

extension of glaciers is known for the 108 Austrian catchments. Figure 7 S1 in the Supplement shows their 369 
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impact.that The the impact of lake area (Fig. 7AS1a) on correlation for LFS and HFS is not significant but 370 

positive (rs = 0.10, p = 0.399 and rs = 0.12, p = 0.347). The results for glaciers show a positive impact for 371 

LFS (rs = 0.28, p = 0.081) but negative for HFS (rs = –0.34, p = 0.032). For a meaningful interpretation, 372 

these results should be considered in conjunction with the seasonality of flows for the Austrian catchments. 373 

Low flows for the glacier-dominated catchments are typically occurring in winter months, when glaciers 374 

are not contributing to the flow (Parajka et al., 2009). Thus the observed result for LFS is more likely 375 

portraying the impact of low temperature (low evapotranspiration) and snow accumulation, the latter 376 

generally being a slowly varying process. For HFS, which is typically occurring in the summer months for 377 

the considered catchments, flows are mainly determined by snowmelt which is associated to large 378 

variability and reduced persistence (Fig. 7BS1b).  379 

5.4 Catchment elevation 380 

The areal coverage of the SRTM data is limited to 60 degrees north and 54 degrees south and therefore, 381 

data for the northern part of the Swedish catchments are not available. The rest of the rivers are divided in 382 

three regions based on proximity: Region I including the central and eastern part of the Alps and 383 

encompassing Austrian, Slovenian and Italian catchments; Region II showing the western part of the Alps 384 

and encompassing French and Spanish territory; and Region III including the southern part of Sweden. 385 

Figure 8 shows elevation maps along with the location of gauge stations and magnitude of correlations. 386 

Elevation seems to enhance LFS correlation which is more evident in the mountainous Region I (Fig. 87). 387 

For HFS correlation there is not a prevailing pattern. 388 

In the case of Austrian catchments, a 1 km resolution digital model is also used to extract information 389 

on elevation. Figure 9 8 confirms that there is a positive correlation pattern emerging with elevation for 390 

LFS. Based on local climatological information, it can be concluded that the spatial pattern for LFS 391 

correlation is reflective of the timing and strength of seasonality of the low flows in Austria, where dry 392 

months occur in lowlands during the summer due to increased evapotranspiration and in the mountains 393 

during winter (mostly February) due to snow accumulation which is characterised by stronger seasonality 394 
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compared to the lowlands flow regime (Parajka et al., 2016; see Fig. 1). Concerning HFS in the same 395 

region, high flows are significantly impacted by the seasonality of extreme precipitation (Parajka et al., 396 

2010), which is highly variable, with the exception of the rivers where high flows are generated by 397 

snowmelt. Therefore, a spatially consistent pattern does not clearly emerge. 398 

 399 

5.5 Catchment geology – Descriptors PK and PF 400 

Two different geological behaviours are identified which may impact river correlation. We first focus on 21 401 

Slovenian catchments (out of 31) where more than 50 % of the basin area is characterised by the presence 402 

of karstic aquifers (percentage of karstic areas PK ≥ 50 %). Figure 10 9 shows boxplots of the estimated 403 

lag-1 correlation coefficient for both HFS and LFS against rivers where PK < 50 %. It is clear that there is a 404 

significant decrease in correlation where karstic areas dominate for both for HFS and LFS.  405 

In a second analysis, we focus on Austrian catchments and investigate the relationship between 406 

correlation and percentage of Flysch coverage, PF. Figure 11 S2 in the Supplement shows that there is not a 407 

prevailing pattern in either case (rs = 0.13, p = 0.6 for LFS and rs = –0.19, p = 0.446 for HFS).  408 

5.6 Atmospheric forcing – Descriptors P and T 409 

Figure 12 10 shows the lag-1 HFS and LFS correlations against estimates of the annual precipitation P and 410 

annual mean temperature T as well as the De Martonne index IDM. LFS correlation looks appears to be 411 

more sensitive than HFS to the above climatic indices, showing a decrease with increasing temperature and 412 

also a decrease with increasing precipitation (rs = –0.44, p = 3.1 × 10–12 for P and rs = –0.57, p = 1.8 × 10–20 413 

for T).  HFS correlation looks is scarcely sensitive to these variables (rs =  414 

–0.17, p = 0.011 for P and rs = 0.08, p = 0.208 for T). The IDM (Fig. 12 10 c) shows a mild decrease of 415 

both LFS (rs = –0.06, p = 0.368) and HFS correlation with increasing IDM (rs = –0.17, p = 0.01), while for 416 

the latter there seems to be a clearer trend (lower correlation with higher IDM) in very humid areas (dark 417 

blue points in Fig. 12c10c). 418 
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 419 

5.7 Physical drivers of high correlation 420 

To gain further insights into the results we select the 20 catchments having with the highest streamflow 421 

seasonal correlation coefficients for both HFS and LFS periods in order to investigate their physical 422 

characteristics in relation to the remaining set of rivers. Table 2 summarizes statistics for selected 423 

descriptors in order to identify dominant behaviours. We also compare the number of rivers with distinctive 424 

features, i.e. lakes NL (number of rivers with lakes), glaciers NG (number of river with glaciers), flysch NF 425 

(number of rivers with flysch formations) and karst NK (number of rivers with karstic areas) for the highest 426 

correlation group with those obtained from 1000 randomly sampled 20-catchcment groups from the whole 427 

set of considered catchments to assess whether higher correlation implies distinctive features. 428 

By focusing on HFS, one can notice that the catchments with higher seasonal correlation are 429 

characterised by larger catchment area, higher baseflow index and temperature with respect to the 430 

remaining catchments, and lower specific runoff, precipitation and wetness. Presence of lake, glaciers, 431 

karstic and Flysch areas do not appear significantly effective at a 5 % significance level. More robust 432 

considerations can be drawn for the LFS: higher seasonal correlation is found for larger catchments with 433 

higher baseflow index and lower specific runoff, precipitation and wetness. Decreasing temperature is 434 

strongly associated with higher correlation for the LFS. The presence of lakes plays a significant role both 435 

for lag-1 and lag-2 correlations with the latter being also significantly influenced by presence of glaciers. 436 

6. Principal component analysis of the predictors and linear regression 437 

We attempt to fit a linear regression model to relate correlation to physical drivers, in order to support 438 

correlation estimation for ungauged catchments. To avoid the impact of multicollinearity in the regression 439 

while additionally summarize summarizing river information, we apply a PCA analysis (see Section 2.2). 440 

Although correlation effects are efficiently dealt with via the PCA, we avoid including highly correlated 441 

variables in the analysis. For example, the De Martonne Index, Precipitation and SR are mutually highly 442 
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correlated (all Pearson’s cross-correlations are higher than 0.6) and therefore we only consider the SR in 443 

the PCA because it shows a more robust linear relationship with correlation magnitude. We select A, BI, 444 

SR and T as the variables to be considered in the PCA. A log transformation is applied on the basin area to 445 

reduce impact of outliers. Table 3 shows the coefficients estimated for each component (the loadings) and 446 

the explained variance. The first principal component is primarily a measure of BI; the second principal 447 

component majorly mostly accounts for T and the third principal component accounts for A. There is an 448 

evident geographical pattern emerging by the visualization of countries in the biplot (Fig. 1311). Slovenian 449 

rivers cluster towards the direction of increasing SR and T, whereas Swedish rivers towards the opposite 450 

direction of increasing BI and decreasing T. Austrian rivers, which are the majority, are the most diverse. 451 

The first two components together explain the 70 % of the total variability in the data. 452 

Naturally, the statistical behaviour of the indexes indices reflects the known local controls for certain 453 

rivers. For example, the observed lowest BI in Slovenia is consistent with the presence of karstic 454 

formations for the majority of the Slovenian rivers, as also is the higher BI in Sweden and Austria, which is 455 

related to the presence of lakes and glaciers in both countries. 456 

In the case of HFS, all the examined linear models (combinations of ln A, SR, BI, P, T, IDM 457 

predictors) failed in explaining the streamflow correlation magnitude. On the contrary, the linear regression 458 

model performs fairly well in explaining the correlation for LFS, with an adjusted R2 value of 0.58 and an 459 

F-test returning a p-value < 2.2 ×10–16. The coefficients for the first three PCs are found significantly 460 

different from zero at a 0.1 % significance level and are included in the regression (see Table 4). The 461 

highest coefficient is obtained for the first PC, which mostly accounts for BI importance. Diagnostic plots 462 

from linear regression for LFS are shown in Fig. 1412. There is no clear violation of the homoscedasticity 463 

assumption in linear regression, apart from the presence of a limited number of outliers. There is a certain 464 

departure from normality in the lower tail of the residuals, which relates to the fact that the model performs 465 

better in the area of higher seasonal streamflow correlations and overestimates the lower correlations.   466 

 467 
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7. Real-time updating of the flood frequency distribution of high and low flows for selected 468 

the Oise rRivers 469 

We apply the technical experiment (see section 2.3) for high and low flows to two the Oise Rriver in 470 

Frances with significant lag-1 streamflow correlation for HFS and assess the difference in the estimated 471 

flood and low-flow magnitudes. We update the probability distribution of high and low flows after the 472 

occurrence of the upper 95% and lower 5% sample quantile of the observed mean flow in the previous 473 

month, respectively. 474 

The first river is the Oise River (55 years of daily flow values) at Sempigny in France with has a basin area 475 

of 4320 km2 and its gauging station at Sempigny is part of the French national real-time monitoring system 476 

(https://www.vigicrues.gouv.fr/), which is in place to monitor and forecast floods in the main French rivers. 477 

The selected river has a high technical relevance since it experiences both types of extremes with large 478 

impacts. , fFor instance, a severe drought event in 2005 led to water restrictions impacting agriculture and 479 

water uses in the region (Willsher, 2005), while the river originated an inundation during the 1993 flood 480 

events in northern and central France, which was one of the most catastrophic flood-related disasters in 481 

Europe in the period 1950-2005 (Barreldo, 2007). It is characterized by HFS correlation ρ = 0.54, which is 482 

the 3rd largest lag-1 correlation for the HFS in our dataset and LFS correlation ρ = 0.80, which stands for 483 

the 70 % quantile of the sample lag-1 correlation for LFS. The second river is the Torsebro River at Helge 484 

in Sweden (53 years of daily flow values). Its lag-1 correlation coefficient for the HFS equals 0.46 which 485 

ranks 9th among the rivers. The Torsebro River has a catchment area of 3665 km2 with lake coverage of 5.4 486 

%, while the Oise River catchment is slightly larger (4320 km2).  487 

A visual inspection of the residuals plots for both rivers is also performed (Fig. 15a13a, b) in order to 488 

evaluate the assumption of homoscedasticity of the residuals of the regression models given by Eq. (2). The 489 

residuals do not show any apparent trend and therefore the Gaussian linear model is accepted. Figure 15 13 490 

(c, d) shows the conditioned and unconditioned probability distributions of peak and low flows in the 491 
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Gaussian domain. As expected from Eq. (3) and (4), the variance of the updated (conditioned) distributions 492 

decreases while the mean value increases. 493 

After application of the inverse NQT the conditioned peak flows are modelled through the EV1 494 

distribution and compared to the unconditioned (observed) peak flows. The corresponding Gumbel 495 

probability plots for conditioned and unconditioned distributions are is shown in Fig. 153 (e, f) for the two 496 

rivers. For the return period of 200 years, the updated distribution shows a 6 % increase in the flood 497 

magnitude for the Oise River (307.7 m3 s–1 to 326.44 m3 s–1) and a 10 % increase for the Torsebro River 498 

(298.07 m3 s–1 to 329.22 m3 s–1). Likewise, the conditioned low flows are modelled through the lognormal 499 

distribution. The two cumulative distribution functions are compared in Fig. 13f showing a major departure 500 

in the estimated quantiles for the updated distribution; the occurrence of the predefined 5 % quantile flow 501 

in the pre-LFS month induces a decrease of the exceedance probability of an average LFS flow of 15 m3 s–1 502 

from a prior 43% (according to the unconditioned model) to 1%. 503 

8. Discussion and Conclusions 504 

The methodology presented herein aims to progress our physical understanding of seasonal river flow 505 

persistence for the sake of exploiting the related information to improve probabilistic prediction of high and 506 

low flows. The correlation of average flow in the previous months with LFS flow and HFS peak flow was 507 

found to be relevant, with the former prevailing on the latter. This result was expected since the LFS 508 

correlation refers to average flow while the HFS correlation is related to rapidly occurring events. We also 509 

aim to investigate physical drivers for correlation. Therefore, a thorough investigation of the geophysical 510 

and climatological features of the considered catchments was carried out.  511 

We found that increasing basin area and baseflow index are associated with increasing seasonal 512 

streamflow correlation. Within Το this respect, Mudelsee (2007), Hirpa et al. (2010) and Szolgayova et al. 513 

(2014a) also found positive dependencies of long-term persistence on basin area, Markonis et al. (2018) 514 

found a positive impact too but for larger spatial scales (> 2 × 104 km2), while Gudmunsson et al. (2011) 515 

found basin area to have negligible to no impact to the low-frequency components of runoff. Our results 516 
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additionally point out that catchment storage induces mild positive correlation, not only for low discharges 517 

which are directly governed by base flow, but also for high flows. 518 

Previous studies also pointed out that correlation increases for groundwater-dominated regimes 519 

(Yossef et al., 2013; Dijk et al., 2013; Svensson, 2016) and slower catchment response times (Bierkens and 520 

van Beek, 2009), which concurs with the impact of baseflow index found herein as well as with the 521 

observed impact of fast responding karst areas. The latter findings are also in agreement with our 522 

conclusion that correlation decreases for increasing rapidity of river flow formation, which for instance 523 

occurs in the presence of karstic areas and wet soils, which explains why persistence decreases with high 524 

specific runoff; as also confirmed by other studies (Gudmundsson et al., 2011; Szolgayova et al., 2014).  525 

Other contributions also reported higher streamflow persistence in drier conditions, either relating to 526 

lower specific runoff or mean areal precipitation estimates (Szolgayova et al., 2014; Markonis et al., 2018). 527 

It was postulated that this is due to wet catchments showing increased short-term variability compared to 528 

drier catchments (Szolgayova et al., 2014) and having a faster response to rainfall due to saturated soil. A 529 

similar conclusion has been reached by other previous studies reporting that low humidity catchments are 530 

more sensitive to inter-annual rainfall variability (Harman et al., 2011), therefore leading to enhanced 531 

persistence. Yet, these studies refer to generally humid regions and cannot be extrapolated to more arid 532 

climates. A related conclusion is proposed by Seneviratne et al. (2006) who found the highest soil moisture 533 

memory for intermediate soil wetness. There These results do not contrast with our findings, which refer to 534 

a wide range of climatic conditions. 535 

We also confirm the role of lakes in determining higher catchment storage and therefore positive 536 

correlations for the LFS, which has been reported for annual persistence in a few sites (Zhang et al., 2012). 537 

The effect of snow cover for lag-1 LFS correlation is also revealed by the Austrian catchments. The 538 

mountainous rivers, directly affected by the process of snow accumulation, exhibit winter LFS and higher 539 

correlation than the rivers in the lowlands, which are more prone to drying out due to evapotranspiration in 540 

the hotter summer months. The inspection of elevation data confirmed the role of high altitudes in 541 
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increasing LFS correlation, which is likely related to storage effects due to snow accumulation and gradual 542 

melting. In this respect, Kuentz et al. (2017) found that topography exerts dominant controls over the flow 543 

regime in the larger European region, controlling the flashiness of flow, and being a particularly important 544 

driver for other low flow signatures too. In fact, topography may affect the flow regime directly, through 545 

flow routing, but also indirectly, because of orographic effects in precipitation and hydroclimatic processes 546 

affected by elevation (e.g. snowmelt and evapotranspiration). 547 

Regarding atmospheric forcing, we find LFS correlation to be negatively correlated to mean areal 548 

temperature and annual precipitation. The former result may be explained considering that increased 549 

evapotranspiration (higher temperature) is expected to dry out LFS flows while snow coverage (lower 550 

temperature) was found to be associated to with higher LFS correlation. An apparently different conclusion 551 

was drawn by Szolgayova et al. (2014a) and Gudmundsson et al. (2011), who reported increasing 552 

persistence with increasing mean temperature postulating that snow-dominated flow regimes smooth out 553 

interannual fluctuations. Yet, it should be noted that they refer to interannual variability while we refer here 554 

to seasonal correlation and therefore to shorter time scales, which imply a different dynamic of snow 555 

accumulation and snowmelt; latitude may also play a relevant role in this, since in southern Europe the 556 

complete ablation of snow can occur more than once during the cold season, and sublimation may account 557 

for 20–30 % of the annual snowfall (Herrero and Polo, 2016), decreasing the amount of snowmelt and 558 

impacting LFS flows in the summer season. 559 

Snowmelt mechanisms are found to increase predictive skill during low-flow periods in some other 560 

studies (Bierkens and van Beek, 2009; Mahanama et al., 2011; Dijk et al., 2013). However, in the glacier-561 

dominated regime of western Alpine and central Austrian catchments this is not expected to be a relevant 562 

driver of higher correlation, since low flow is occurring in the winter months. Yet the mountainous, glacier-563 

dominated rivers still show increased LFS correlation compared to rivers in the lowlands, which agrees 564 

well with other studies that have found less uncertainty in the rainfall-runoff modelling in this regime 565 
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owing to the greater seasonality of the runoff process and the decreased impact of rainfall compared to the 566 

rainfall-dominated regime of the lowlands (e.g Parajka et al., 2016). 567 

Although the considerable uncertainty of areal precipitation estimates should be acknowledged, the 568 

contribution of annual precipitation interestingly complements the negative effect of increasing specific 569 

runoff –which is highly correlated to P estimates– on the correlation magnitude for both LFS and HFS. 570 

This outcome confirms that catchments receiving significant amount of rainfall do show less correlation 571 

than drier regimes. 572 

We conclude that our results are essentially in agreement with the relevant literature and point out the 573 

possibility to exploit river memory within a data assimilation context to reduce uncertainty in the prediction 574 

of future high and low flows. The opportunity of exploiting correlation is not affected by the presence of 575 

regulation, provided the management of river flow does not change in time. Therefore, river memory is an 576 

interesting option to inspect opportunities for improving the prediction of water-related natural hazards. 577 

9. Conclusions and outlook 578 

This research investigates the presence of persistence in river flow at the seasonal scale, the associated 579 

physical drivers and the prospect for employing the related information to improve probabilistic prediction 580 

of high and low flows. The main findings are summarized below: 581 

 Rivers in Europe show persistent features at the seasonal timescale, manifested as correlation between 582 

high- and low-flow signatures, i.e. peak flows in HFS and average flows in LFS respectively, and 583 

average flows in the previous month. LFS correlation is found consistently higher than HFS correlation. 584 

 Seasonal correlation shows increased spatial variability together with spatial clustering. 585 

 Storage mechanisms, groundwater-dominated basins and slower catchment response time, as reflected 586 

by large basin areas, high baseflow index and the presence of lakes, amplify correlation. On the 587 

contrary, correlation is lower in quickly responding karstic basins, and increased wetness conditions, as 588 

revealed by high specific runoff. 589 
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 Low mean areal temperature is associated with higher LFS correlation owing to the weaker drying-out 590 

evapotranspiration force and the mechanism of snow accumulation in higher altitudes. Higher mean 591 

areal precipitation is associated with lower LFS predictability, possibly due to the presence of saturated 592 

conditions and increased short-term variability in wetter climates. 593 

 The drivers of LFS predictability are easier to identify and allow for the opportunity to construct 594 

regression models for possible application to ungauged basins (see Section 6). 595 

 HFS and LFS correlation may directly serve for the probabilistic prediction of ‘extremes’, i.e. high and 596 

low flows, as increased correlation can be exploited in various stochastic models.  Such an application 597 

was performed in Section 7 in a data assimilation setting for a river of marked technical relevance. 598 

Regarding the latter, once a significant correlation is identified, it may be exploited in other model 599 

variants as well, e.g. adding more dependent variables of lagged flow and/or coupling with other relevant 600 

explanatory variables, such as teleconnections or antecedent rainfall, in multivariate prediction schemes. 601 

Indeed, the presence of river memory at the seasonal scale represents a possible opportunity to improve the 602 

prediction of water-related natural hazards by reducing uncertainty of associated estimates and allowing 603 

significant lag time for decision-making and hazard prevention. Besides the high relevance for extremes, 604 

this type of seasonal predictability could also be of interest to water resources management by, for instance, 605 

exploring the memory properties of a minor HFS.  606 

The inspection of the physical basis, apart from advancing our understanding of the catchment 607 

dynamics, is highly important as it may also guide the search for other dependent variables and build 608 

confidence in the formation of process-based stochastic models (Montanari and Koutsoyiannis, 2012). A 609 

large sample of indices was herein inspected, yet data are majorly needed to allow for more certain and 610 

generalized conclusions worldwide. An important note is the presence of regulation, the effect of which, 611 

due to lack of objective data, is not completely understood. However, the opportunity of exploiting 612 

correlation is not affected by the presence of regulation, provided that the management of river flow does 613 

not change in time. 614 
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We conclude that our results are essentially in agreement with the relevant literature and point out 615 

thethat possibility to exploit river memory within a data assimilation context to reduce uncertainty in the 616 

prediction of future high and low flows. The opportunity of exploiting correlation is not affected by the 617 

presence of regulation, provided the management of river flow does not change in time. Therefore, river 618 

memory isprovides interesting information an interesting optiondirection that holds both theoretical and 619 

operational potential to inspect opportunities forto improvinge the understanding and prediction of  620 

extremeswater-related natural hazards, support decision-making and increase the level of preparedness for 621 

water-related natural hazards. 622 
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 763 

Tables 764 

Table 1 Summary statistics of the river descriptors. Summary statistics for PL, PG and PF variables are computed 765 

only for the subset of catchments with positive values (the total number of catchments is also reported in brackets). 766 

PK is used as a categorical variable (PK is either higher or lower than 50 % of catchment area), therefore sample 767 

statistics are not computed in this case, but the number of stations with PK ≥ 50 % is reported as ‘positive’ presence 768 

of karst. 769 

Descriptor 

(Units)      

A  

(km2) 

BI   

(–) 

SR                 

(m3 s–1  km–2) 

PL    

(%) 

PG      

(%) 

PF       

(%) 

PK      

(–) 

P                        

(mm year–1) 

T 

(°C) 

IDM         

(–) 

Min 4.7 0.29 0.004 0.5 0.1 0.3 – 444 –1.8 29.41 

Max 70091 0.99 0.088 19.5 56.5 100 – 1500 13.7 153.40 
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Standard 

deviation 

5904.3 0.14 0.018 4.04 15.54 32.56 – 288.22 3.59 24.53 

Sample size 224 224 224 69 [69] 39 [108] 18 [108] 21 [31] 224 224 224 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

Table 2 Differences in the mean values between the descriptors of the 20-highest correlation river group for HFS and 782 

LFS vs the remaining rivers (204). NL, NG, NF and NK columns contain the absolute number of rivers in the higher 783 

correlation group with the specific descriptor (presence of lake, glacier, flysch and karst ) with * denoting 784 

significance at 5 % significance level (two-sided test) and brackets containing the mean value from the 1000 785 

resampled 20-catchment subsets. 786 

Descriptor

(Units) 

A        

(km2) 

BI          

(–) 

SR                  

(m3 s–1  km–2) 

NL     

(–) 

NG   

(–) 

NF       

(–) 

NK    

(–) 

P           

(mm year–1) 

T       

(°C) 

IDM    

(–) 

HFS lag1 +38.7 % +9.6 % –36.5 % 5 [6] 5 [3] 1 [2] 1 [2] –6.7 % +11.7 % –11.3 % 

LFS lag1 +358 % +20.2 % –47.3 % 17* [6] 3 [3] 0 [2] 0 [2] –37.9 % –80 % –17.3 % 

LFS lag2 +139.7 % +18.9 % –40.8 % 12* [6] 7* [3] 0 [2] 0 [2] –26.5 % –64.2 % –8.8 % 

 787 

Table 3 Loadings of the three Principal Components for ln A, SR, BI and T. The explained variance of each PC is 788 

denoted in parenthesis. 789 
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Predictor variables PC1 (42.5 %) PC2 (28.2 %) PC3 (17 %) PC4 (12.2 %) 

ln A  –0.486 –0.427 0.748 0.145 

SR 0.48 0.483 0.652 –0.332 

BI –0.619 0.262 –0.11 –0.731 

T 0.385 –0.718 –0.04 –0.577 

 790 

Table 4 Summary of Linear Regression results for the LFS model. *** indicate a 0.1 % significance level. 791 

Predictor 

variables 

Estimate Standard Error t value Pr(>|t|) Adjusted 

R2 

F-statistic 

intercept 0.659407 0.008557 77.065 < 2 ×10–16*** 0.5834 104.2 

p-value:  

< 2.2 ×10–16 

 

PC1 –0.110632 0.006577 –16.820 < 2 ×10–16*** 

PC2 0.031761 0.008070 3.936 0.000111*** 

PC3 –0.038999 0.010388 –3.754 0.000223*** 

 792 

 793 
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Figures 794 

 795 

Figure 1. Updated Köppen-Geiger climatic map for period 1951–2000 (Kottek et al., 2006) showing the location of 796 
the 224 river gauge stations. 797 
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798 
Figure 2. Boxplots of seasonal correlation coefficient against lag time for HFS (left panel) and LFS (right panel) 799 
analysis for the 224 rivers. The lower and upper ends of the box represent the 1st and 3rd quartiles, respectively, and 800 
the whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the box ends; outliers are 801 
plotted as filled circles.  802 

 803 

                                                                                                           804 
Figure 3. Boxplots of lag-1 and lag-2 correlation coefficients for LFS analysis (orange) and the whole monthly series 805 
(white) for the 224 rivers. The lower and upper ends of the box represent the 1st and 3rd quartiles, respectively, and 806 

the whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the box ends. 807 
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 810 

Figure 4. Spatial distribution of the lag-1 correlation coefficients for HFS (left) and LFS (right) analysis. Legend 811 
shows the color assigned to each class of correlation for the data. 812 

                                                                                813 
Figure 5. Scatterplots of lag-1 HFS (bottom panel) and LFS (top) streamflow correlation versus the natural logarithm 814 
of basin area ln A. 815 Formatted: Font: Italic
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 816 

Figure 6. Scatterplots of lag-1 HFS (bottom panels) and LFS streamflow correlation (top panels) versus baseflow 817 
index BI (a) and specific runoff SR (b). 818 

 819 

 820 

Figure 7. Scatterplots of lag-1 HFS (bottom) and LFS (top) streamflow correlations versus percentage of lakes PL of 821 
the Swedish catchments (a) and percentage of glaciers PG of the Austrian catchments (b).  822 

 823 

 824 
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828 

 829 

 830 

Figure 87. Relief maps from SRTM elevation data for the HFS and LFS lag-1 correlations of the rivers. Note that 831 
elevation scale is different for each region. Legend shows the colour assigned to each class of correlation for the data. 832 
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833 

 834 
Figure 98. Digital elevation model of the Austrian river network depicting the spatial distribution of lag-1 positive 835 
correlation for HFS (left) and lag-1 positive correlation for LFS (right). Legend shows the colour assigned to each 836 
class of correlation for the data. 837 

                   838 
Figure 109. Boxplots of lag-1 correlation for Slovenian rivers with more than 50% presence of karstic formations PK 839 
and rivers with no or less presence for HFS analysis (left) and LFS analysis (right). The lower and upper ends of the 840 
box represent the 1st and 3rd quartiles, respectively, and the whiskers extend to the most extreme value within 1.5 841 
IQR (interquartile range) from the box ends.  842 
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                                                                               843 
Figure 11. Scatterplots of lag-1 correlation vs percentage of flysch area coverage PF for HFS (bottom) and LFS (top) 844 
analysis for the Austrian catchments. 845 

 846 

 847 
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 849 

 850 

 851 

 852 
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  853 

 854 

                                                                                             855 
Figure 1210. Scatterplots of lag-1 HFS and LFS correlation versus annual precipitation P (a), mean annual 856 

temperature T (b), and Index De Martonne IDM (c).  857 
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 858 

Figure 1311. Principal component distance biplot showing the principal component scores on the first two principal 859 

axes along with the vectors (brown arrows) representing the coefficients of the baseflow index BI, specific runoff SR, 860 

natural logarithm of basin area ln A and mean annual temperature T variables when projected on the principal axes. 861 

Scores for the rivers are plotted in different colors corresponding to each country of origin and 68% normal 862 

probability contour plots are plotted for the countries. 863 

864 

 865 

Figure 1412. Diagnostic plots of linear regression for the LFS model. Residuals versus the first (a), the second (b) 866 

and the third principal component (c) and the predicted values (d). Normal Q-Q plot of the residuals (e). Plot of the 867 

predicted values from linear regression vs the observed ones; red line is the diagonal line 1:1 (f).  868 
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Figure 1513. Conditioning the flood frequency distributions for high and low flows for the Oise River and 875 

the Torsebro River. Plots of the residuals of the linear regression given by Eq. (2) for the the Oise RHFS 876 

iver (a) and the LFS Torsebro River (b) models. Probability distribution of the unconditioned normalized 877 

peak flows NQPNQp  (solid line) and the normalized peak flows NQP NQp  conditioned to the occurrence of 878 

the 95% quantile (dotted line) for the Oise Riverthe HFS (c) and probability distribution of the 879 

unconditioned normalized low flows NQL (solid line) and the normalized low flows NQL conditioned to the 880 

occurrence of the 5% quantile (dotted line) for the LFS the Torsebro River (d). Gumbel probability plots of 881 

the return period vs the unconditioned peak flows Qp QP (black line) and the peak flows QpQP  modelled 882 

by the EV1 distribution and conditioned to the occurrence of the 95 % quantile (red line) for the Oise 883 

RiverHFS (e) and cumulative distribution function of the unconditioned low flows QL (black line) and the 884 

low flows QL modelled by the lognormal distribution and conditioned to the occurrence of the 5 % quantile 885 

(red line) for the LFS the Torsebro River (f).  886 


