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Abstract. Particle filters are becoming increasingly popular for state and parameter estimation in hydrology. One of their

crucial parts is the resampling after the assimilation step. We introduce a resampling method that uses the full weighted

covariance information calculated from the ensemble to generate new particles and effectively avoids filter degeneracy. The

ensemble covariance contains information between observed and unobserved dimensions and is used to fill the gaps between

them. The covariance resampling approximately conserves the first two statistical moments and partly maintains information5

of higher order moments in the retained ensemble. The effectiveness of this method is demonstrated with a synthetic case – an

unsaturated soil consisting of two homogeneous layers – by assimilating time domain reflectometry (TDR)-like measurements.

Using this approach we can estimate state and parameters for a rough initial guess with just 100 particles. The estimated states

and parameters are tested with a free run after the assimilation, which is found to be in good agreement with the synthetic

truth.10

1 Introduction

Mathematical models represent hydrological and other geophysical systems. They aim to describe the dynamics and the future

development of system states. These models need the current state and certain system parameters (e.g. material properties,

forcing) for state prediction. Both, state and system parameters, are typically ill-known and have to be estimated.

Data assimilation methods, originally used for state estimation only, are adapted to also estimate parameters and other15

model components like the boundary condition. The ensemble Kalman filter (EnKF) (Evensen, 1994; Burgers et al., 1998) is a

popular data assimilation method in hydrology. It has the advantage of using the ensemble covariance to correlate dimensions

with observations to unobserved dimensions. The EnKF with parameter estimation is applied to several hydrological systems.

Moradkhani et al. (2005b) used the EnKF for a rainfall-runoff model and Chen and Zhang (2006) for saturated flow modeling.

The EnKF based on Richards equation is mostly applied in synthetic studies (e.g. Wu and Margulis, 2011; Song et al., 2014;20

Erdal et al., 2015; Shi et al., 2015; Man et al., 2016). However, some applications to real data exist (e.g. Li and Ren, 2011;

Bauser et al., 2016).

As the EnKF is based on Bayes’ theorem, all uncertainties have to be represented correctly, otherwise the method has a poorer

performance (Liu et al., 2012; Zhang et al., 2015). Nonlinear systems (e.g. systems described by Richards equation) violate the

1

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-121
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 3 April 2018
c© Author(s) 2018. CC BY 4.0 License.



EnKF assumption of Gaussian probability density functions (Harlim and Majda, 2010; DeChant and Moradkhani, 2012). The

dynamics of Richards equation is generally dissipative and the Gaussian assumption is appropriate. However, jumps at layer

boundaries, soliton-like fronts during strong infiltration and diverging potentials for strong evaporation deform the probability

density function and lead to non-Gaussianity. In this case the probability density function requires higher statistical moments

to be described correctly. Particle filter can accomplish this task.5

The particle filter has already been used for state and parameter estimation for various hydrological systems. Since parame-

ters do not have their own model dynamics like the state, the resampling step is crucial. Moradkhani et al. (2005a) suggested

to perturb the parameters using Gaussian noise with zero mean after the resampling step. They used an unweighted variance of

the ensemble modified with a damping factor such that the ensemble spread does not become too large. This method or similar

has been used for instance for land surface models (Qin et al., 2009; Plaza et al., 2012), rainfall-runoff models (Weerts and10

El Serafy, 2006) and soil hydrology (Montzka et al., 2011; Manoli et al., 2015). A common challenge is that with only a rough

initial guess, perturbing only the parameters does not guarantee a sufficient ensemble spread and the filter can diverge.

Further development of the resampling for parameter estimation was done by Moradkhani et al. (2012) and Vrugt et al.

(2013). They used a Markov chain Monte Carlo (MCMC) method to generate new particles. This method was further used

by e.g. Yan et al. (2015) and Zhang et al. (2017). The latter compared the performance of this method with an EnKF and the15

particle filter presented by Moradkhani et al. (2005a) and found that the performance of the filters were similar with slight

advantages for the EnKF. While the MCMC is accurate, it is also expensive, as it requires additional model runs. To increase

the efficiency, Abbaszadeh et al. (2018) additionally combined it with a generic algorithm.

In this paper we introduce the covariance resampling, a resampling method that generates new particles using the ensemble

covariance. This method conserves the first two statistical moments in the limit of large numbers while partly maintaining20

higher order moments in the retained ensemble. With the covariance, the unobserved parameters of the new particles are cor-

related to the observed state dimensions. The particle filter with covariance resampling is able to estimate state and parameters

in case of a difficult initial condition without additional model evaluations.

2 Particle Filter

The particle filter is an ensemble-based sequential data assimilation method that consists of a forecast and an analysis step. The25

ensemble members are called particles. It is used to combine information from observation and model to a posterior estimate.

For a detailed review consider e.g. van Leeuwen (2009)

If new information in the form of observations becomes available, the system is propagated forward to the time the obser-

vation is taken (forecast). This results in a prior probability density function. The prior is updated with the information of the

observation to get the posterior. This is accomplished using Bayes’ theorem,30

P (u|d) =
P (d|u)P (u)

P (d)
, (1)
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which describes the probability of an eventu under the condition of another event d. In data assimilation this is used to combine

the information of the prior P (u) of the state u with the observation d. The probability P (d) is a normalization constant

P (d) =
∫
duP (d|u)P (u) . (2)

Both, EnKF and particle filter are Monte Carlo approaches based on Bayes’ theorem with the difference that the EnKF

assumes a Gaussian prior and posterior. The particle filter instead directly approximates the prior by an ensemble of realizations5

(particles). This direct sampling of the prior distribution allows the particle filter to have non-Gaussian probability density

functions. Sampling the prior with N particles, represented by Dirac delta functions, P (u) is approximated as

P (u)' 1
N

N∑

i=1

δD(u−ui) . (3)

Inserting this equation into Bayes’ theorem results in an approximated posterior distribution

P (u|d)'
N∑

i=1

wi δD(u−ui) , (4)10

where the weights wi are given by

wi =
P (d|ui)
P (d)

. (5)

Since the weights are normalised to 1, the normalisation constant P (d) can be obtained by:

N∑

i=1

wi = 1 ⇒ P (d) =
N∑

i=1

P (d|ui) . (6)

In general, P (d|ui) is an arbitrary distribution that represents the observation error. We assume Gaussian distributed observa-15

tion errors which results in:

P (d|ui)∝ exp
[
(d−H(ui))ᵀ R−1 (d−H(ui))

]
, (7)

where R−1 is the inverse of the observation error covariance and H is the observation operator that projects the state u from

state-space to observation-space.

To sequentially assimilate observations, it is necessary to propagate the ensemble forward in time to the next observation.20

Consider the following generic model equation:

uk = f(uk−1) +βk , (8)

where f(·) is the deterministic part of the model and βk is a stochastic model error. The index k denotes the time. To estimate

state and parameters simultaneously we use an augmented state. In our case the augmented state u consists of the state θ (water

content) and a set of parameters p25

u=


θ
p


 . (9)

3

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-121
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 3 April 2018
c© Author(s) 2018. CC BY 4.0 License.



...

...

w1 w2 w3 wN�1 wN

x N�1 � xN�1 N�1 N�1

0 1

Figure 1. Illustration of the universal resampling process. A random number x is drawn from a uniform distribution in the interval [0,N−1].

The endpoint of this number indicates the first particle. Then N−1 is added (N − 1)-times to this random number, where every endpoint is

a particle of the new ensemble. In the illustration, particle one is chosen once, particle two not once and particle three twice. This way some

particles are replicated and other particles are dropped. If the model does not have a stochastic model error, it is necessary to perturb the new

particles, otherwise they would be identical and the filter would degenerate.

3 Resampling

Particle filters tend to filter degeneracy, which is also referred to as filter impoverishment. After several analysis steps, one

particle gets all statistical information as its weight becomes increasingly large, whereas the remaining particles only get a

small weight such that the ensemble effectively collapses to this one particle. In this case, the filter does not react on new

observations and follows the particle with the large weight.5

Gordon et al. (1993) introduced resampling to particle filters, a technique that reduces the variance in the weights and has the

potential to prevent filter degeneracy. The idea of resampling is that after the analysis, particles with large weights are replicated

and particles with small weights are dropped. This helps that the regions with high weighted particles are represented better by

the ensemble, which alleviates the degeneracy of the filter. There are many different resampling algorithms (see van Leeuwen

(2009) for a summary). One of these methods is the stochastic universal resampling.10

3.1 Stochastic Universal Resampling

The stochastic universal resampling (Kitagawa, 1996) can be summarized as follows (see also Fig. 1): All weights are aligned

after each other on an interval [0,1]. A random number in the interval [0,N−1] is drawn from a uniform distribution. This

number points to the first particle of the new ensemble, selected by the corresponding weight. ThenN−1 is added (N−1)-times

to x. Each of the endpoints selects the corresponding particle for the new ensemble. This way some particles get duplicated15

and some particles are dropped. With this approach, particles with a weight smaller than N−1 can be chosen maximally once,

whereas a weight larger than N−1 guarantees that the particle is at least chosen once. If all particles have equal weights, no

particle is dropped. The result is a new set of N particles. After the resampling step, all weights are set to N−1. The stochastic

universal resampling has a low sampling noise compared to other resampling methods (van Leeuwen, 2009).

3.2 Covariance Resampling20

If the model does not have a stochastic model error, like we consider in this study, it is necessary to perturb the particles,

otherwise they would be identical and the filter would still degenerate. Even in the presence of a model error it can be useful to
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perturb the particles after the resampling step. For example if the model error is ill-known or structurally incorrect, it can help

to guarantee a sufficient ensemble spread and diversity.

There are different suggestions how to do the perturbation. For example, Moradkhani et al. (2005a) used the ensemble vari-

ance to perturb the parameters with a Gaussian with zero mean. Pham (2001) proposed to sample new particles by perturbing

the identical particles using a Gaussian with the (damped) ensemble covariance matrix as covariance. Xiong et al. (2006) sam-5

pled the whole ensemble from a Gaussian using the first two moments specified by the ensemble (full covariance information),

which neglects the particle filter ability to use non-Gaussian distribution.

We neither perturb the duplicated states nor draw a complete new ensemble. The covariance resampling we propose uses the

universal resampling – other resampling methods can be equally used – to choose the ensemble members that are kept. Instead

of duplicating the particles and setting the weights to N−1, the weight of the particles is changed to10

wi =
z

N
with i ∈ {1,2, ..,N ′} , (10)

where the particle i is chosen z-times andN ′ is the number of kept particles. This ensures that the estimated statistical moments

are conserved.

The total ensemble reduces to N ′. To have N ensemble members again, N −N ′ new particles have to be generated. These

particles are sampled from a Gaussian N
(
u,Pf

)
with the weighted mean15

u=
N∑

i=1

wiui . (11)

and the weighted covariance

Pf =
1

1−∑N
i=1w

2
i

N∑

i=1

[ui−u] [ui−u]ᵀ , (12)

where the factor 1
1−∑N

i=1w
2
i

is Bessel’s correction for a weighted covariance. Mean and covariance are calculated using the

weights before resampling (Eq. (5)).20

Sampling only the dropped particles from Gaussian conserves the first two statistical moments in the limit of large numbers

with the advantage that information of higher moments is partly conserved in the retained ensemble. A weight of N−1 is

assigned to each of the new particles, which results in a sum of all weights larger than one. Therefore, it is necessary to

normalize the weights again. The whole resampling process is illustrated in Fig. 2.

New particles are generated with a Cholesky decomposition of the covariance matrix. The calculation of the covariance25

from the ensemble can result in small numerical errors that have to be regularised, otherwise the decomposition would fail. For

details about the generation of new particles and regularisation of the covariance matrix see Appendix A.

Pham (2001) introduced a tuning parameter to modify the covariance matrix and Moradkhani et al. (2005a) for the variance,

respectively. They used the tuning factor to reduce the amplitude of the perturbation. For the covariance resampling we also

introduce a tuning parameter. If the model dynamics does not support a sufficient spread for the ensemble, the perturbation of30

the covariance resampling has to be large enough to prevent the ensemble from degeneracy. One example for such a case are
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Figure 2. Illustration of the particle filter with covariance resampling. The green bars show the weight of each ensemble member (ten in

this example) and the black dots the position of it. (a) The prior represented through the ensemble. (b): The ensemble is propagated to the

next observation (depicted as Gaussian, red curve). (c): The particles are weighted according to the observation. At this point, some particles

have already negligible weight. (d): The universal resampling drops partilces with low weight (three in this example). Instead of adding new

particles at the same position, only the weights of the kept particles are changed. If a particle is resampled k-times, it will get the weight

kN−1. The ensemble size is reduced and new particles have to be added to conserve the ensemble size and avoid filter degeneration. (e): The

new particles are drawn from the full covariance of the ensemble (Eq. (12)) and their weight is set to N−1. Since new particles with weights

are added to the ensemble, it is necessary to normalize the weights to one again. This results in the posterior or the next prior respectively.

parameters. The covariance matrix is modified by a multiplicative factor γ

P′f = (γγᵀ) ◦Pf , (13)

where ◦ is the entrywise product (Hadamard product). In the case of parameters the factor is chosen larger than one for the

parameter space to provide a sufficient ensemble spread.
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4 Case study

The algorithm is tested using a synthetic case study of a one-dimensional unsaturated porous medium with two homogeneous

layers. The system has a vertical extent of 1 m with the layer boundary in the middle at 50 cm. The representation of the

considered system is described following the structure of Bauser et al. (2016). The general representation of a system has four

components: dynamics, forcing, subscale physics and state. The dynamics propagates the state forward in time, conditioned on5

the subscale physics and forcing.

The dynamics in an unsaturated porous medium can be described by the Richards’ equation

∂tθ−∇ [K(θ) [∇hm− 1]] = 0 , (14)

where hm(L) is the matric head, K(LT−1) the isotropic hydraulic conductivity and θ (−) the volumetric water content. We

use the finite-element solver MuPhi (Ippisch et al., 2006) to solve Richards’ equation numerically. The resolution is set to 1 cm10

which results in a 100-dimensional water content state.

The macroscopic material properties represent the averaged subscale physics with the functions K(θ) and hm(θ) and a set

of parameters. In this study, the Mualem van Genuchten parametrisation is used (Mualem (1976), Van Genuchten (1980)):

K(Θ) =KwΘτ

[
1−

[
1−Θn/[n−1]

]1−1/n
]2

, (15)

hm(Θ) =
1
α

[
Θ−n/[n−1]− 1

]1−1/n

, (16)15

with the saturation Θ (−)

Θ :=
θ− θr
θs− θr

. (17)

With these equations the subscale physics is described by six parameters for each layer. The parameter θs (−) is the saturated

water content and θr (−) the residual water content. The matric head hm is scaled with the parameter α (L−1) that can be

related to the air entry value. The parameter Kw (LT−1) is the saturated hydraulic conductivity, τ (−) a tortuosity factor and20

n (−) is a shape parameter. In this study the parameters α,n and Kw will be estimated for each layer. Combining Eq. (16) and

Eq. (15) results in a conductivity function

K(hm) =Kw [1 + (αhm)n]−τ(1−1/n)
[
1− (αhm)n−1(1 + (αhm)n)−1+1/n

]2
(18)

that incorporates all estimated parameters.

For the true trajectories and the observations, parameters by Carsel and Parrish (1988) for sandy loam are used for the upper25

layer (layer 1) and loamy sand for the lower layer (layer 2). Table 1 gives the true values for the estimated parameters and

Table 2 the values for the fixed parameters, respectively. In the following the parameters will have an index representing their

corresponding layer.
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Figure 3. Upper boundary condition for the data assimilation case. Four rain events (blue) followed by a dry period (orange) are used for the

test of the data assimilation run. After this run, two additional rain events and dry periods are used in a free run to test the assimilation results

(grey background). The intensity and duration of these events is set equal to the first events of the data assimilation run. Note the different

axes for infiltration and evaporation.

Since state and parameters are estimated, we separate the model equation Eq. (8) into

un =


θ

k

pk


=


f(θk−1,pk−1)

pk−1


 , (19)

with a constant model for the parameters p and Richards’ equation as f(·). Note that the model error of equation Eq. (8) is set

to zero. In hydrology the model error is typically ill-known and can vary both in space and time.

The forcing is reflected in the boundary condition of the simulation. For the lower boundary, a Dirichlet condition with zero5

potential (groundwater table) is used. The upper boundary condition is chosen as a flux boundary (Neumann), representing

four rain events with increasing intensity and dry periods in between (see Fig. 3).

Using infiltrations with an increasing intensity has the advantage that the system has more time to adjust the parameters. This

way less observations are necessary to resolve the infiltration front and the information of the observations can be incorporated

in the state and parameters. The stronger infiltration front in the end is used to test the robustness of the estimated state and10

paramters.

The last component of the system is the state. Initially, the system is in equilibrium and will be forced by the boundary

condition. The initial state is depicted in Fig. 4. Six TDR-like observations are taken equidistantly in each layer at the positions

(0.1,0.25,0.3) m for layer 1 and (0.6,0.75,0.9) m for layer 2. The measurement error is chosen to be σObs = 0.007 (e.g.

Jaumann and Roth, 2017). Observations are taken hourly for the duration of 160 h.15

For the initial state of the data assimilation, the observations at time zero are used. The measured water content is interpolated

linearly between the measurements and kept constant towards the boundary. Additionally, the saturated water content for loamy

8
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Figure 4. Initial state for the data assimilation run. Observations at time zero are connected linearly and set constant towards the layer

boundary. The ensemble (light green) with 100 ensemble members is generated by perturbing this state with a Gaussian with a specified

covariance. The initial truth that is used for the observations is shown in black.

sand, which is 0.41 is taken as the lower boundary. The approximated state is used as the ensemble mean for the particle filter.

This procedure is a viable option for real data although it represents a rather crude approximation of the real initial condition.

To generate the ensemble, the approximated state is perturbed by a correlated multivariate Gaussian. The standard deviation

of this perturbation is chosen to be 0.003. The value is chosen such that the ensemble represents the uncertainty of the water

content in most parts (see Fig. 4). The square of it is used for the whole covariance matrix but is modified using the following5

two steps:

1. All covariances between the two layers are set to zero to ensure no correlations across the layer boundary.

2. The matrix is multiplied with the fifth-order polynomial Gaspari and Cohn (Gaspari and Cohn, 1999) function using a

length scale c= 10 cm. This function has a compact support and approximates a Gaussian with half-width c. This way, the

water content is only correlated in the range of 20 cm.10

The use of the covariance increases the diversity of the ensemble and also helps to avoid degeneration. Using uncorrelated

Gaussian random numbers with zero mean would result in a fast degeneration of the particle filter caused by the dissipative

nature of the system. The perturbation would simply dissipate and the ensemble collapses.

The initial parameters for the ensemble are uniformly distributed. The ranges of the uniform distributions are given in Tab.

1. Note that the logarithm of the saturated conductivity Kw is used for the estimation, so Kw spans three order of magnitudes.15

The ensemble size is 100. The multiplicative factor Eq. (13) is set to:

γ =


1100

1.26


 , (20)
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Table 1. True Mualem van Genuchten parameters and range of the uniformly distributed initial guess.

Parameter Truth Lower Upper

log(Kw,1) -4.40 -7 -4

log(Kw,2) -4.91 -7.5 -4

n1 2.28 2.2 3.5

n2 1.89 1.8 3.2

α1 -12.4 -14 -12

α2 -7.5 -10.5 -6.5

Table 2. Fixed Mualem van Genuchten parameters.

Parameter Layer 1 Layer 2

θs 0.41 0.41

θr 0.057 0.065

τ 0.5 0.5

where the index denotes the dimension. The covariance in the 100-dimensional state space is unchanged. For the parameter

space a factor of 1.2 is used to compensate the missing dynamics.

After the assimilation, the final mean of the augmented state is used to run a forecast without data assimilation. In this run

two additional infiltration events and evaporation periods (see Fig. 3) are used to test the forecasting ability of the estimated

states and parameters.5

5 Results

The development of the parameters is depicted in Fig. 5. The saturated conductivity Kw,1 (Fig. 5a) can be estimated quickly

because the infiltration front induces dynamics in the first layer which is strongly dependent on Kw. Instead Kw,2 (Fig. 5b) is

not sensitive to the dynamics in the first hours, as the infiltration front did not reach the second layer yet. At around 46 h, the

infiltration front reaches the first observation position in the second layer and the estimation for Kw,2 improves quickly.10

If dynamic is induced in the system, the ensemble spread in the water content space increases because of different parameter

sets. This makes the particles and their corresponding parameter sets distinguishable and parameter estimation possible. The

parameters n1 and n2 (Fig. 5c and d) as well as α2 (Fig. 5f) can be estimated well. One exception is α1 (Fig. 5e). This parameter

is insensitive to the observations. The effect of α on the trajectory of the ensemble members is limited to a small region next to

the layer boundary. Further away, wrong values can be compensated by n. The parameter α1 jitters randomly around a value15

slightly larger than the truth. In a synthetic case, the estimation of α1 can be improved easily by having observations directly

next to the boundary. This way a different value for α1 would have a direct influence on the trajectory and α1 would become
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Figure 5. Estimation of all six parameters ((a): Kw,1 , (b): Kw,2, (c): n1, (d): n2, (e): α1, (f): α2) over time. The ensemble mean is shown

in orange and the ensemble in light orange. The truth is a dashed black line.

sensitive to the observations. However, in reality it is not feasible to change the measurement position or measure directly next

to the layer interface. We decided to retain these positions to illuminate an often encountered practical difficulty.

To see the effect of the parameters on the forward propagation, it is necessary to have a closer look at the conductivity

function Eq. (18). This function is used for the model forward propagation and many parameter sets can effectively describe

the same situation in a limited regime of the hydraulic head. The function is shown in Fig. 6 for both layers and reveals that the5

difference between the truth and the estimated parameters is small.
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Figure 6. Conductivity function K(hm) (Eq. (18)) for (a): layer 1 and (b): layer 2. In this function all estimated parameters are represented.

The initial ensemble (light green) with the mean (green) are shown. The truth (dashed black) is almost congruent with the estimated mean

(orange), such that only the final ensemble (light orange) is visible.

The final water content state agrees with the synthetic truth in a narrow band (see Fig. 7). The estimated state is slightly

biased to higher water contents. We checked that the direction of the bias is a random effect and is different for different seeds.

The observation of a bias instead is caused by long range correlations of the model. In this case, the system has started to relax

after the last infiltration and a higher water content in one part results in a higher water content in the rest of the layer. The

ensemble spread next to the layer boundary is caused by the large spread of α1.5

To analyse the ensemble, we take a closer look at the effective sample size and the number of particles that are resampled.

The effective sample size is defined as (Doucet, 1998):

Neff =
1

∑N
i=1w

2
i

(21)
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Figure 7. Final water content state after the assimilation run. The truth (dashed black) is almost congruent with the estimated mean (orange),

such that only the final ensemble (light orange) is visible. The estimated mean is used to start a free forward run afterwards. The difference

of the estimated water content and the synthetic truth lies in a narrow band, with a small bias to larger water contents.

and gives an estimate how many particles are significant. For example, if one particle accumulates all the weight Neff = 1 and

the ensemble is effectively described only by this particle.

Fig. 8 shows the effective sample size and the number of new particles over time. The effective sample size drops every

time new information is available and the number of resampled particles increases. For times t < 15h, the effective sample

size drops to small values. The infiltration front propagates through the first layer, which leads to a large ensemble spread5

caused by unknown parameters and only a few particles have a significant weight. The filter assimilates the information from

the observations and resamples particles with low weight. This improves the state and parameters and leads to an increasing

effective sample size until the infiltration front reaches the second layer (t≈ 46h). The effective sample size decreases rapidly

because the parameters in the second layer are still unknown and lead to a large ensemble spread again. This variation of the

effective sample size occurs every time the filter gets new information that leads to a discrepancy between states of the particles10

and the observations.

The effective sample size is a crucial parameter for the covariance resampling. If it drops to low values the filter can de-

generate because effectively too few particles contribute to the weighted covariance (Eq. (12)) and the covariance information

becomes insignificant.

For further analysis, the RMSE is calculated based on the difference of the true water content and the weighted mean at15

every observation time. This includes also the unobserved dimensions. The RMSE shows a similar behaviour as the parameters

and the effective sample size (see Fig. 9). During the first infiltration, the state and the parameters are improved, the RMSE

becomes smaller. Then the infiltration front reaches the boundary interface. The parameters of the second layer and α1 are still
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Figure 8. Amount of particles that are resampled (orange) and the effective ensemble size (green dots). The lines connecting the dots are

for better visibility of the time dependent behaviour. The effective sample size increases while the number of resampled particles decreases.

Every infiltration reduces the effective sample size and leads to more resampled particles.

wrong and diverse. This leads to a spread of the ensemble by the system dynamics and also a shift of the mean away from the

truth. The parameters in the second layer are estimated and the state is corrected, which leads to a decrease in the RMSE. The

increase for the next infiltration events becomes smaller since state and parameters are already improved.

The forward run without data assimilation shows that the RMSE oscillates in a narrow range. These oscillations are part of

the unobserved space next to the boundary and are mainly caused by the wrong value of α for the first layer. In the beginning,5

the RMSE stays small, but when the infiltration front reaches the boundary of the two layers, the mean state and the truth begin

to deviate from each other (limited to the boundary interface). After the infiltration front passed, the state starts to equilibrate

and is increasingly defined by the whole parameter set, which has a certain distance to the true equilibrium.

6 Summary and Conclusions

We introduced a resampling method for particle filters that uses the covariance information of the ensemble to generate new10

particles and effectively avoids filter degeneracy. The method was tested in a synthetic one-dimensional unsaturated porous

medium with two homogeneous layers. Even with just a rough initial guess, a broad parameter range and only 100 ensemble

members, the estimation shows excellent results. After the assimilation, the results are verified in a free run with the final

results.
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Figure 9. The RMSE (red) of the water content calculated between the truth and the estimated mean including all dimensions. After 160

hours the free run starts (grey background). During this forward run, the RMSE is about 10−3. For the assimilation and the free run the

RMSE increases with each infiltration.

The covariance connects information between observed and unobserved dimensions. This has some similarity to the ensem-

ble Kalman filter but in our approach information of higher order moments is partly maintained in the retained ensemble. Even

tough the RMSE of the water content includes the unobserved state dimensions, it stays in a narrow range (RMSE is about

10−3) during the forecast. With every infiltration, the RMSE shows excursions caused by a wrong value of parameter α in the

first layer that results in a wrong state near the layer boundary during the infiltration.5

Transferring the information to the unobserved dimensions helps the filter to not degenerate when only a rough initial

guess is available. The states and parameters are both altered actively. For the used initial condition, perturbing the parameters

only (Moradkhani et al., 2005a), can lead to filter degeneracy because the state is only changed by the dynamics of the system.

Compared to the particle filter with MCMC resampling (Moradkhani et al., 2012; Vrugt et al., 2013), the covariance resampling

presented in this study has the advantage that it does not need additional model runs to generate new particles. However, the10

covariance resampling has to calculate the covariance matrix and perform a Cholesky decomposition every assimilation step.

Similar to localization for the ensemble Kalman filter (Houtekamer and Mitchell, 2001; Hamill et al., 2001), it is possible to

localize the covariance in the resampling to increase the efficiency.

The effective sample size (Eq. (21)) is a crucial parameter for this method. The covariance resampling needs a sufficient

effective sample size, otherwise the calculation of the covariance matrix (Eq. (12)) becomes inaccurate and the filter may15

degenerate. In such a situation, the filter can be improved by resetting the weights to N−1 or increasing the ensemble size. In

our example this was not necessary because the effective sample size was critical only for single assimilation steps.

Different parameter sets can approximately describe the same conductivity function (Eq. (18)) in a certain matric head

regime. Model dynamics is necessary to differentiate between those sets. If the infiltration covers only a small regime, the

conductivity function is only significant in the observed range and can differ from the truth otherwise. This is also reflected in20
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the chosen boundary condition. Starting with infiltrations with low intensity but longer duration helps the filter to explore the

water content range slowly and the observations can resolve the infiltration front.

The covariance resampling connects observed with unobserved dimensions to effectively estimate parameters and prevent

filter degeneracy. It conserves the first two statistical moments in the limit of large numbers, while partly maintaining higher

order moments in the retained ensemble. The method is able to estimate state and parameters in case of a difficult initial5

condition without additional model evaluations and using a rather small ensemble size.

Appendix A: Generation of correlated random numbers

A1 Cholesky Decomposition

Correlated random numbers are generated using the Cholesky decomposition. We use the LDLT decomposition which is part

of the Eigen3 library (Guennebaud, Jacob et al., 2010). Decomposing the covariance matrix Q leads to10

Q = LDLᵀ , (A1)

where D is a diagonal matrix and L is a lower unit triangular matrix. The LDLT form of the decomposition is related to the

LLT-form by

Q = L′L′ᵀ with L′ := LD
1
2 . (A2)

To draw a random vector y from a Gaussian distributionN (µ,Q) with meanµ, we first generate a normal distributed (N (0,I))15

random vector x . This vector is multiplied with L′ and the mean µ is added:

y = L′x +µ (A3)

To verify that this gives the correct result the covariance matrix of y is calculated:

(y−µ)(y−µ)ᵀ = L′x(L′x)ᵀ = L′xxᵀL′ᵀ = L′IL′ᵀ = Q (A4)

yields Q as required.20

A2 Regularisation of the ensemble covariance matrix

The calculation of the Cholesky decomposition (LDLT-version) is only possible if the matrix is not indefinite. Mathematically,

a covariance matrix has to be positive semidefinite:

vᵀQv = vᵀ∑(yi−µ)(yi−µ)ᵀv (A5)

=
∑

vᵀ(yi−µ)(yi−µ)ᵀv (A6)25

=
∑

(vᵀ(yi−µ))2 ≥ 0 with v ∈ IRd , (A7)
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but the covariance matrix calculated from our ensemble is occasionally indefinite. The reason for the covariance matrix being

indefinite is a numerical error in the calculation of this matrix. In fact, the calculation of the eigenvalues λ results in negative

values in the order of O(10−20).

For this purpose, the identity matrix I, which is multiplied by a scalar λmax, is added to the covariance matrix. The value of

λmax is in the order of magnitude of the largest negative eigenvalue of Q. Thus, the regularised covariance matrix reads5

QReg. = Q +λmaxI . (A8)

In our experiments, the smallest variance on the main diagonal of the covariance matrix is still 16 orders of magnitude larger

than λmax such that the influence of this correction is negligible and does not change the results.
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