
Summary: The paper introduces a new resampling method for particle fil-
ters, well suited to estimate both state variables and model parameters in a
sequential DA approach. The well-known Universal Resampling Approach is
modified by assigning new weights to the particles that should be duplicated,
without actually duplicating the particles. These weights are proportional to
the number of times the particles are selected in the universal resampling. To
keep constant the ensemble size, new particles (states and parameters) are
then generated by sampling from a multivariate Gaussian distribution having
the same mean and covariance of the weighted particles. To avoid the degen-
eracy of the filter, the covariance is inflated using a multiplicative factor.
The proposed method is applied to a synthetic 1-d infiltration problem in a
porous media constituted of two layers. Initial conditions and soil parameters
(saturated hydraulic conductivity and two parameters of the Van-Genuchten
equations, for both layers) are considered uncertain. The authors demon-
strate that, in the considered example, the proposed pf well retrieves the state
variables of the system and the soil parameters.
The paper is well written and the method is clear. At my knowledge, the
proposed resampling technique is new and I really like it, since it gives the
possibility to propagate realizations consistent with the model equations (a
limitation of EnKF – see e.g., Pasetto et al. 2012) and, at the same time,
the possibility of sampling new particles, which is fundamental to explore the
parameter space.

Reply: We thank the reviewer for the detailed comments and suggestions,
which will help to improve our manuscript. In the following we provide the
answers to the comments.

Specific comments

Comment: The paper does not present any result on the convergence of the
filter with respect to the ensemble size: it would be important to show that at
least the first and second moments of state and parameters converge toward
the correct solution when N increases, and that the results are insensitive to
the particular seed used. This analysis would also help justifying the choice
of N=100.

Reply: Thank you for pointing this out. A continuous convergence to the
truth with an increasing ensemble size does not occur. For varying seeds
combined with a small fixed ensemble size (e.g. 20) the filter converges to
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the truth or degenerates for different seeds. Increasing the ensemble size
leads to less cases that degenerate and ultimately the filter converges to the
true value for every chosen seed. The resulting parameters are in a narrow
range around the truth except for the insensitive parameter α1. A paragraph
about the seed and ensemble size dependence of the resulting parameters will
be added to clarify the behaviour of the filter.

Comment: In a similar way, the sensitivity of the filter to the multiplicative
factor gamma for the parameters (selected to be 1.2) should be presented.
Could the authors give an advice to the readers on how to choose gamma for
a different problem?
Reply: The multiplicative factor is a tuning factor that depends on the
specific problem and can be used to increase the efficiency of the filter. The
covariance resampling also works with a neutral factor of 1.0 but needs (in
this case) approximately an order of magnitude more ensemble members for
convergence. The factor will be discussed in more detail in the course of the
convergence analysis.

Comment: A comparison of the results against the SIR using universal re-
sampling (or the methodology proposed in Moradkhani et al. 2005) would
help to understand if the proposed PF is retrieving the correct solution (in
terms of both mean and covariance) and which are the practical advantages
of the proposed resampling step.
Reply: Using the SIR with universal resampling leads to filter degenera-
tion after a few assimilation cycles because the model equation in our case
study does not have a stochastic model error. Therefore, after resampling,
the duplicated particles will stay identical after forward propagation which
leads to filter degeneration. For the resampling techniques of Moradkhani
et al. (2005), we tested different tuning factors in the interval [0.2, 0.8] for the
parameter resampling. The tuning factor modifies the variance of the per-
turbation. We also tried different ensemble sizes in the interval [100, 1000].
Using the same initial conditions as in the presented case, we were not able
to achieve converging results. Changing the state’s initial condition from
the interpolation to the truth, the resampling of Moradkhani et al. (2005)
was able to follow the truth in state space for 400 ensemble members and a
factor of 0.6, but without convergence in parameter space and the ensemble
of parameter α1 diverges.
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Minor comments

Comment: Please revise the numbers and labels on the x and y axis for all
figures. Probably there was an error with the software used to produce the
figures.
Reply: Thank you very much, we will revise the figures. This is an issue
with the used font during the plotting, which is not correctly displayed after
uploading the .pdf file. We are in contact with Copernicus to solve it in the
revised version.

Comment: L8, p1: ‘With just 100 particles’. In large scale applications 100
particles are frequently adopted. However, in this 1-d scenario it is difficult to
assess is 100 particles are ‘small’, especially without presenting a comparison
with other approaches and/or the sensitivity of the results to the number of
particles.
Reply: You are right. The comparison to other approaches is difficult be-
cause the case studies have a different setup, therefore we will delete the
‘just’.

Comment: L8-10, p1: ‘The estimated states and parameters are tested with
a free run after the assimilation, which is found to be in good agreement with
the synthetic truth’. PFs (and DA in general) are meant to assess not only
the mean value of states and parameters, but also their covariance (if not all
the pdf). To assess if the covariance computed is correct, a comparison with
respect to other DA schemes would be required.
Reply: The entire ensemble is propagated forward in time and the ensemble
mean is calculated using the weights at the last assimilated observation. This
way we consider the mean of the propagated distribution. We will clarify this
point.

Comment: L20, p1: ‘The EnKF based on Richards equation..’. EnKF is
applied to Richards equation, not ‘based on’. Please rephrase.
Reply: Thank you for pointing this out. We will rephrase the sentence.

Comment: L23, p2: what does it mean ‘without additional model evalua-
tion’? This statement would be more relevant if the results of the proposed
method are compared against more traditional PFs (e.g. SIR with a standard
resampling).
Reply: In this case we considered the MCMC resampling, which needs
additional model runs for the resampling process. These runs are usually
expensive and therefore, we think the absence of additional model runs as
an advantage. We will clarify the statement.
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Comment: L27,p2: missing point.
Reply: Thank you for noticing the missing point. We will correct it.

Comment: Section 3 and part of section 2: particle filters refer to a broad
class of methods (see, e.g., Arulampalam 2002). The authors are mainly de-
scribing the Sequential Importance Resampling technique. Please clarify this
point in the paper, so that readers familiar with PFs can easily understand
which technique has been modified.
Reply: We will clarify this point.

Comment: Fig1: Write evapotranspiration instead of evaporation.
Reply: In our simulations we do not have plants and therefore, no transpi-
ration.

Comment: Eq. 12, Page 5. I was expecting to see the weight wi in the
summation. Please, provide a reference for the Bessel correction.
Reply: You are right with expecting the weight wi in the summation. The
missing weight in the equation is a typing error. The correct equation is:

Pf = 1
1 − ∑N

i=1 w
2
i

N∑
i=1

wi [ui − u] [ui − u]ᵀ . (1)

It is possible to represent the weights using a larger number of equal weighted
particles. For example, a particle with wi = 1/2, ui = 1 and two particles
with wi = 1/4, ui = 2 is equal to having two particle with wi = 1/4, ui = 1
and two particles with wi = 1/4, ui = 2.

Inserting equal weighted particles in this equation results in

Pf = 1
1 − 1

N

N∑
i=1

1
N

[ui − u] [ui − u]ᵀ (2)

= 1
N − 1

N∑
i=1

[ui − u] [ui − u]ᵀ . (3)

This is equal to the correction of an unbiased estimate of the covariance.

Comment: Lines 5-10, p9: it is not clear how the covariance matrix for the
initial ensemble has been generated. Which matrices are multiplied in step
2? Is step one performed after step 2, to ensure zero correlation of the states
across the two layers?
Reply: Thank you for pointing this out. Every entry of the initial covariance
matrix is set to 0.0032. In the first step, covariances across the layer boundary
are set to zero. The Gaspari and Cohn function is multiplied component-
wise (not written in the manuscript) with the resulting matrix. Therefore,
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both steps are exchangeable. The component-wise multiplication with the
Gaspari and Cohn function results in a covariance that decreases with the
distance. We will rephrase and extend this paragraph to clarify the steps.

Comment: Page 13, L1: add ‘of’ after estimate
Reply: We will add the ‘of’.
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