
Dear Dr Graham Jewitt, 

We would like to express our thanks to you and to the reviewers for the insightful comments.  

We believe the revised manuscript has improved in quality thanks to the review process. The 

most important changes are: 

 Model predictions: Much more detailed description of how we derive the predicted 

biases from the tau-omega model and how we compare the data-driven estimates to those 

predictions 

 Sensitivity analyses: We have put a greater emphasis on the results obtained using the 

SMAP tau as reference product (one additional figure; greatly extended discussion on 

potential errors in the tau product). We have also added a robustness check in which we 

additionally controlled for changing tau in the estimation. 

 Extended discussion: We now have separate discussion sections on the interpretation of 

the results (confounding and errors), on what questions the technique could be applied to 

in the future, and on the implications of our findings for hydrological studies. 

 Error parameters of other products: We now provide more details on the estimated error 

parameters of the in-situ and reanalysis data, but the focus remains firmly on the SMAP 

error parameters. 

 Improved figures: We have revised the captions and legends of several figures. 

Our point-by-point responses have already been published online. To facilitate the review 

process, we have also attached them to this document, followed by a copy of the manuscript with 

tracked changes. 

Yours sincerely, 

Simon Zwieback 

On behalf of all authors. 



This paper presents a new, extended Bayesian methodology for estimating errors of 
remotely sensed soil moisture. The model is inspired by triple collocation approaches (and 
their assumed linear error model), and in some sense, extends triple collocation to allow 
time-varying multiplicative and additive errors. This new methodology is then applied to 
show that the sensitivity of the SMAP soil moisture product is influenced by its mis-
specification of the vegetation optical depth, and that this could artificially inflate estimates 
of vegetation, soil moisture coupling. This paper could become an important contribution 
to the literature – the point about SMAP is quite informative given the broad use of this 
dataset. Furthermore, the new error characterization technique is an important advance 
and could (or should) become widely used. I applaud the authors for the careful testing of 
the method through a simulation study and several sensitivity analyses However, as 
currently written, the paper is frequently lacking in sufficient detail of the methodology 
employed to derive its results, as I’ve outlined below. In particular, for each figure in the 
paper, what is shown in each figure and especially how it was described must be explicitly 
described in the text. This is not currently the case for a majority of figures. These, and a 
few other major concerns outlined below, need to be addressed before it can be published. 
 

We are grateful to Alexandra Konings for the insightful review. We have added numerous 

clarifications, as we outline in our response. 

 
Major Comments: 
A) Figure 1b lists the soil moisture as an output. If I understand correctly from the text, an 
explicit best guess ‘true’ soil moisture timeseries is never determined. This is probably the 
conservative thing to do – I am sure the uncertainty would be quite wide. Nevertheless, 
some explicit discussion/warning about the fact that this Bayesian approach is primarily 
for determining error statistics, and that accompanying posterior true soil moisture 
timeseries may not be useful (or if the authors disagree with me, some justification on that, 
as that would obviously be very intriguing!), is warranted.  
 

The algorithm estimates the posterior distribution of the soil moisture at each time step, as 

indicated in Fig. 1. What it does not yield is a single best guess, but rather a posterior distribution, 

although an estimate of the location (e.g. mean) could easily be derived from the posterior 

distribution. We now describe this in more detail in the section on MCMC sampling: 

Each sample consists of draws from the posterior distribution, or actually an 

approximation thereof, of all the unobserved random variables (Output in Fig. 1b). They 

comprise the parameter random variables (e.g. the time-dependent biases) as well the soil 

moisture time series, i.e. one value of \theta for each SMAP observation. 

For the future, we agree that the application of this technique to product merging (i.e. estimating 

soil moisture by combining several products) is an interesting avenue to explore, thus building 

on related triple collocation results (e.g. Yilmaz, M. T., W. T.Crow, M. C.Anderson, and C.Hain 

(2012), An objective methodology for merging satellite- and model-based soil moisture products, 

Water Resour. Res., 48, W11502, doi:10.1029/2011WR011682.) 

B) Figure 2 is unclear. How is the bias defined? And how can the RMSE be greater than 
posterior in right-most column of Figure 2b if sigma simulation values (Table 1) are 
positive? 
 



We have now defined the bias in Eq. 7, and similarly the RMSE is now defined in a separate 

equation (Eq. 6). The text has similarly been extended, and so has the caption. 

The dot refers to the posterior standard deviation, as we now make clear in the legend. It is also 

mentioned in the caption and in the text. 

 
C) Even though the units are the same, it is a little confusing to have both the RMSE/bias 
and posterior on the same axes in Figure 2b, since the former represent a *difference*. I 
suggest splitting this into two rows. Than in the row where you show the posterior, it would 
also be useful to include the uncertainty of the posterior (through violin pots if necessary) 
and how it compares to the prior uncertainty. Is it actually much tighter, or has the mean 
just shifted? The bottom of page 7 mentions that “Fig. 2b shows that the posterior standard 
deviations are” but I only see the posterior represented by a single point. 
 

As we state in our response to point B), we believe there has been a misunderstanding due to our 

insufficiently clear wording: the dot represents the posterior standard deviation. We believe this 

confusion arose due to the bad wording in the legend, which we have fixed. We now denote the 

posterior standard deviation by s_p throughout (text and figure). We contend that these 

quantities are directly comparable: for instance, asymptotically the posterior standard deviation 

of a parameter coincides with its RMSE (in a frequentist setting), provided certain regularity 

assumptions apply. 

The posterior standard deviation is indeed considerably smaller than the prior standard 

deviation, i.e. the data tighten the distribution of a given parameter. For instance, the posterior 

standard deviation of mu shown in Fig. 2, is <0.01 m3m-3 and thus more than an order of 

magnitude smaller than the prior standard deviation of 0.3 m3m-3. We hope the new figure that 

shows the prior distributions will help readers to gauge this difference (see point O). 

 
D) How is Figure 3a calculated? Is this assuming perfect retrieval? It must be influenced 
by the type of soil (influencing the dielectric mixing model) in some way. Also, are the 
different lines different average levels of true tau or something else? Please mention this 
also in the caption and clarify the text. What happened to the tau = 0.1 line in figure b? Did 
you decide to no longer use it? All of these things should be explained!  
 

We have amended the figure accordingly. We make clear that the two tau levels are the prescribed 

tau in the forward simulation, which is now described in much more detail: 

To compute the predicted biases in Fig. 3a), we assumed the \tau-\omega model applied 

and was correctly specified (temperature, dielectric mixing model [Dobson; silt loam], 

single-scattering albedo \omega = 0.05, etc.). For a given value of \tau_{\mathrm{true}}, 

we simulated the V-polarized brightness temperatures for dry and wet soil moisture 

conditions. These brightness temperatures were in turn the basis for estimating soil 

moisture by inverting the \tau-\omega model using the wrong \tau_{\mathrm{inv}} as 

a function of \Delta \tau. For both dry and wet soil moisture conditions, the deviation 

was an estimate of the retrieval bias: their mean was taken to be an estimate of the offset 

M, whereas their difference allowed us to estimate L. When plotted against \Delta \tau, 



M and L are increase nearly linearly and only show a weak dependence on 

t\tau_{\mathrm{true}}. The slope of this relation is thus well but not perfectly defined. 

We refer to the slopes as \mu^{\star} (for M) and \lambda^{\star} (for L), respectively. 

To account for the spread due to the slight curvature and dependence on \tau, we 

estimated the likely range of values by computing the slopes from the differences in L or 

M between five equally spaced values of \Delta \tau (between -0.1 and 0.1), repeated for 

equally many values of \tau_{\mathrm{true}} (between 0.1 and 0.6). The range of these 

values was \lambda^{\star}_{\mathrm{pred}} in [2.0, 3.8] and 

\mu^{\star}_{\mathrm{pred}} in [0.33, 0.65] m3m-3. These ranges will later be compared 

to data-driven estimates, thus providing a first-order assessment of the agreement 

between predictions and observations, despite the neglect of other retrieval errors. 

 

Further, we state explicitly that no tau value was assumed to produce figure b. We still have kept 

the same colour and linestyle across the two subfigures, as the caption should make it sufficiently 

clear that there is no direct link between the lines. 

 
 
E) Fig 3b: The small clarification on the definition of L and M (which falls out of the model 
equations pretty easily) is negated by how long it takes to understand the figure because 
what it shows is barely described in the text. I suggest just removing this part of the figure. 
 

The reason we included this figure in the first place is because the interpretation of L caused no 

small degree of puzzlement when we presented preliminary results of this study. As we suspect 

that some readers will skip Sec. 2 and 3, we have included this figure and we also recapitulate the 

meaning of the parameters in the text. While we have kept the figure, we have amended the 

caption in the hope that it will facilitate its interpretation. The relevant part reads 

Explanation of the bias terms, illustrated for a time-changing sensitivity L(t) and offset 

M(t). A varying sensitivity changes the response of the SMAP retrieval to a unit change in 

the true soil moisture. When it is larger than one, the SMAP data have a larger dynamic 

range than the true soil moisture (illustrated by the slope > 1 in the inset). The time-

average value of L is l, and the temporal standard deviation of L is given by |\lambda| 

(length of arrow). A variable M induces non-constant offsets, and the magnitude of its 

temporal variability is given by |\mu|. M > 0 corresponds to a positive offset (shown in 

the inset). 

 

F) Looking at Figure 4a, it is not clear visually that L is actually more closely related to 
delta tau than to tau itself. Can the authors check the statistics on this (preferably at all 
sites)? As evidenced by the sensitivity analyses the authors needed to do, estimating tau 
a priori is pretty difficult. If indeed L is a better match to tau directly than to delta tau, it 
would be easier for the understandability of the paper, and arguably more useful for future 
researchers’ intuition about spatio-temporal variations in SMAP baseline soil moisture 
sensitivity. 



 
We believe a potential confounding by tau is an important concern, and we have included an 

additional scenario in Fig. 7 to address it. 

This new scenario uses two explanatory variables for L and M, namely Delta tau and tau itself. 

As we write in the methods: “To account for a potential confounding of \tau itself, which may 

also have an effect on the bias estimates, we included the smoothed SMOS \tau as second 

explanatory variable for $L$ and $M$, referred to as$\tau control.” As we subsequently describe 

in the results, the estimates of the Delta tau lambda and mu change very little for all stations but 

one. This indicates that the standard inference results are not strongly influenced by confounding 

from this source. Also, the lambda parameter corresponding to tau is considerably smaller than 

that of Delta tau: medians of 0.00 and 0.16, respectively (25th/75th percentiles: -0.06/0.02 vs. 

0.05/0.33). We hence do not believe that an additional dependence on tau, given delta tau, is a 

major issue here. However, we have completely revised the discussion section and now talk at 

length about confounding.  

We have also computed estimates using only tau as explanatory variable, as suggested above, but 

we do not show them in the revised manuscript. The results for the tau parameters are potentially 

subject to confounding due to Delta tau (see above). For the South Fork site, the impression that 

there is a stronger relation to tau is borne out by the data to only a limited extent. The lambda 

parameter estimates turned out to be (10-90% posterior interval): 

 standard model, i.e. only delta tau: Delta tau lambda: 0.25-0.36  

 only tau: tau lambda: -0.02 - 0.11 

Across all network sites, the Delta tau lambda are consistent in the sense that the posterior 

medians are all positive, whereas for the only tau configuration they are almost equally 

distributed between positive (4/7) and negative (3/7) values.  

 

 
G) More on Figure 4: The caption mentions “The magnitude of the dependence for a unit 
change in delta tau, lambda* is consistent with predictions by tau-omega”. This is a strong-
ish claim to casually throw into a caption. First of all, I’m guessing that the grey bar is some 
sort of model prediction from tau-omega? This needs to be explained in the caption 
though. It’s particularly unclear since the color between the word ‘model’ is different than 
that of the grey bar. As mentioned elsewhere, the paper does not explain how it arrives at 
these model predictions. This has to be explained somewhere for it to be a paper that has 
any chance of being reproducible. Also, presumably it would not be hard to make these 
model predictions site-dependent (e.g. changing soil texture, estimated albedo, mean tau) 
– why are they constant with time? Lastly, it’s unclear exactly what’s going on in the right-
hand column. Is it just the left hand column divided by the average delta tau at each site? 
If so, given that delta tau is probably as uncertain as the performance of the new 
methodology in this application and given that the resulting model – estimate mismatch is 
actually not particularly encouraging, I suggest just leaving this out. Lastly, it would be 
useful if there was some discussion about what the sites mean. Are the trends in lambda 
and mu across sites consistent with e.g. vegetation density or canopy type characteristics? 

 



To clarify these issues, we have made several changes to the text and figure. 

We have already described the extended description of the model predictions. There, we outline 

how we arrive at the range of model predictions displayed in the figure as well as the limitations. 

The reason for using time-independent model estimates is that these estimates are based on time 

series, i.e. multiple time instances (with changing Delta tau) are required to estimate a time-

independent parameter like mu/mustar. 

We have changed the colour of the word ‘model’ and amended the caption: 

The decent model-estimation match only pertains to lambda, i.e. subfigure b), and we have 

revised the caption to make this crystal clear. About lambda, we write that the magnitude are 

“broadly consistent with predictions by the \tau-\omega model of Sec. 4.’. Conversely, “the 

unnormalized quantities \mu^{\star} smaller than predicted by the model.” 

The right-hand column shows the comparison of the un-normalized quantities to the model 

predictions. To make it easier for the reader to understand this panel, we now show how the un-

normalized estimates are computed in a separate equation (10), and we have greatly extended 

the discussion of the model predictions. 

Finally, we briefly discuss the apparent dependence on potential controls (like land cover). We 

discuss spatial patterns and the relation to land cover at much greater length in the subsection on 

the sparse sites. In this subsection, we write: 

There is no clear apparent dependence of $\lambda^{\star}$ on location or land cover 

properties; for instance, Monte Buey and Bell Ville are within < 100 km of one another, 

and despite the similarity in planted crops the latter's $\lambda^{\star}$ is considerably 

larger. 

 

H) Page 10, L27: I don’t see why the re-analysis data error should depend significantly on 
delta tau at all. Why is this assumption made? 

 

We now discuss our rationale for including the Delta tau explanatory variable in the bias model 

of the re-analysis data.  

The inclusion of a $\Delta \tau$-dependent bias for the reanalysis product is not driven 

by physical reasoning, but for statistical reasons. By controlling for the same explanatory 

variables for both products, the impact of potential confounders - e.g. a seasonal bias that 

is correlated with $\Delta \tau$ - on the bias estimates of the remotely sensed product 

can be reduced. If this were not done, the model would try to partially adjust the time-

variable bias term of the remote sensing product to minimize the systematic differences 

to the re-analysis product, thus distorting these bias estimates. 

 
I) The baseline SMOS VOD product is known to have significant issues, because it relies 
heavily on an LAI-based prior (see discussion in Fernandez-Moran et al, Remote Sensing 



2017). The SMOS-IC product has been developed specifically to get around this and early 
results are looking favorable. It is not yet publicly available to my knowledge, but the 
authors are quite willing to share. However, I am not sure SMOS VOD is the best ‘true’ 
VOD here – it will differ from the underlying ideal SMAP values due to differences in 
footprint, orbit, etc between the two satellites. Thus, I suggest using VOD from the dual-
channel algorithm (either the O’Neill et al once currently used in the sensitivity analysis or 
I’d be happy to share our MT-DCA retrievals, which have somewhat less high-frequency 
noise and spatially variable albedo) instead of the SMOS VOD. The point in Figure 6 about 
the role of using optical data vs using a climatology for VOD would work just as well even 
without the first column in the figure. 

 

We share the reservations with respect to the tau products. To better address them, we have made 

a number of changes. First, we discuss the SMAP DC results obtained over the network sites in 

more detail. In particular, we mention some of the issues associated with either product. Second, 

we now also show the SMAP DC results over the contiguous US, i.e. over the sparse sites (Fig. ?). 

As with the network sites, the results are very similar. Third, in response to Wade Crow’s 

remarks, we have included a separate discussion section where we discuss errors in the tau 

products and their impact on interpreting the results in a descriptive and a causal framework. 

Note that we continue to use the SMOS L3 product, as we hope that we are able to paint a more 

complete picture by showing the results obtained with two different products. Unfortunately, the 

other products mentioned are currently not publically available. We hope that the techniques 

developed in the manuscript will in the future contribute to elucidating the error structure of 

novel products such as the MT-DCA soil moisture. 

J) The discussion section would benefit from some more discussion about the greater 
implications of this new methodology. For example, this technique might work particularly 
well for triple collocation of land surface fluxes of water and carbon, where it is easy to 
imagine significant seasonality in the error terms. Do the authors agree? 

 

This is a good point. We have included a separate discussion section, where we dwell on the 

implications for error characterization more generally.  

Geophysical products in general are potentially also subject to time-variable errors, so that 

the presented approach could be applied to variables such as wind speed, land surface 

fluxes and leaf area index. The issue of non-constant error sources, be they associated with 

environmental conditions or varying observational parameters, likely pertains to many 

such variables. Extensions of our approach could in the future shed light on the error 

properties of a wide range of products, thus contributing to the development of improved 

retrieval approaches. 

K) Similarly, can the authors discuss the implications of the normalization in Eq. 6 for 
the interpretation of the results? 

 

We do so by comparing the normalized results with absolute (unnormalized ones: the quantities 

with an asterisk). We detail the associated changes to this point in our reply to point G).  



 

Minor Comments: 
L) Page 2, line 32: See also Momen et al, JGR-B 2017 

We have added a reference to this paper. 

M) Page 3, line 5: You haven’t defined delta tau here 
At the beginning of the paragraph, we now write ‘We hypothesize that seasonal changes in the 

error structure arise due to an inaccurate vegetation correction in the retrieval, so that the biases 

relative to the in-situ data track the misspecification in the vegetation optical depth \Delta \tau.’ 

This is not a precise definition, but it should suffice for the introduction. 

 

N) Figure 2: it would be helpful to explicitly explain somewhere why there are no RMSE 
values in the no mu, no lambda, no kappa case. It would also be easier to read the 
axes if there were more horizontal tick marks in each row, and if the tick labels were 
repeated between part a and part b. 

We have amended the caption accordingly. We have also changed the ticks and labels as 

suggested. Note that we have slightly redesigned the figure in line with other suggestions. 

O) Section 2.1.3: You assume quite specific priors. Would be helpful to show these 
distributions in the supplementary material to give the reader a sense of what they look 
like? 

Good idea, we have added a new figure (supplement).  

 
P) Page 7: I suggest defining the RMSE error with equation or at least separate symbol 
for clarity. It’s easy to miss this definition in the middle of the writing, but integral to 
following the rest of the discussion 

Done.  

Q) Page 7, line 29: How is this calculated? 
We now state explicitly the dynamic range on which these calculations were based: “The 

sensitivity coefficients \lambda are retrieved with comparable precision: the RMSE of 0.05 

corresponds to a differential bias between dry and wet conditions of around 0.01 m3 m-3 

(assuming a soil moisture dynamic range sim 0.25 m3m-3” 

 

R) Figure 2: Suggest splitting this into three columns: one with posterior vs. prior 
distribution (in violin plots if necessary), then third column with bias and RMSE. 

We believe this comment is to do with our bad wording in that we referred to the posterior 

standard deviation as the posterior (uncertainty), see points B) and C).  

While we agree in principle that showing the entire posterior distribution is a good idea, we 

believe the well-behaved unimodal distributions, which we have exclusively encountered in our 

analyses, warrant the restriction to location and dispersion parameters to summarize those 

posterior distributions. 

S) Figure 2: Need to make it clearer that the ‘no kappa’ and no mu, lambda, kappa’ 



simulations are cases where still have that in forward model. This is very difficult to 
pick out from text as is. 

done 

 
T) Page 11, line 5: note that this reference is broken 

We have added the year 

U) Page 16, line 1 : The authors might want to cite Crow et al, GRL 2015 here, which 
showed this point quite convincingly for soil moisture –latent heat coupling 

We are grateful for this remark, as we were not aware of the paper. 

 

V) I don’t think the subscript p is ever defined. Is this an index for the number of explanatory 
variables? 

We now also define it explicitly (“sensitivity to the pth explanatory variable”) 



This paper describes and applies a new analysis technique to identify time-dependent biases 
present in remotely sensed soil moisture products. This represents a very significant 
methodological advancement in the tools available to examine the error structure of these products 
(indeed any remotely sensed product). The authors offer a compelling motivation their approach 
(i.e., as we start to use remotely sensed soil moisture data products for coupling applications, it is 
important that we develop a more sophisticated understanding of their underlying errors). In my 
view, this paper represents a major step in that direction and has the potential to impact a great 
deal of on-going research plans (including my own). However, as is often the case with highly novel 
manuscripts, there are some important questions regarding the presentation and interpretation of 
results that needed to be cleared up prior to publication. 
Wade Crow 
 

We thank Wade Crow for his insightful review. We have made numerous modifications to the 

manuscript: apart from two new figures, we discuss several key results in considerably more 

detail. 

 
1) What happens if there is error correlation between the explanatory variable (w) and the products 
(y)? There are credible reasons to suspect that this arises between the SMOS “tau” product and 
the SMAP L3 soil moisture product - particularly in agricultural areas. Both products suffer from a 
common dependence of the zero-order tau-omega emission equation and the assumption of 
temporally constant surface rough-ness. These assumptions are particularly problematic over 
cropland agriculture and their violation could easily induce correlated errors into both products. A 
related issue is that the interpretation of SMOS tau products is known to be complicated in 
agricultural areas (see e.g., https://lib.dr.iastate.edu/agron_pubs/115). In fact the “reference” 
SMOS tau time series shown in Figure 4a demonstrates questionable features. First, corn crop 
canopies (responsible for 60% of the land cover in the South Fork water shed) typically demonstrate 
a biomass plateau between growth stages R2 and R6, which in Iowa which corresponds (roughly) 
to between August 1 and September 15 later. This expected “plateau” is actually somewhat more 
consistent with the SMAP “input tau” than the SMOS “reference tau” plotted in Figure 4a. Second, 
the rise in SMOS tau after October 1 is almost certainly a roughness artifact associated with post-
harvest tillage and not a real vegetation opacity signal. So, there are credible reasons to suspect 
that (at least some) of the dynamics in the “delta tau” results actually reflect error in the SMOS tau 
"reference" (versus the SMAP tau input). 
I’m probably overstating the problems with SMOS tau product here, but the broader question is 
how results are impacted by the presence of (potentially non-independent) errors in the explanatory 
variable? Is it possible that the diagnosed time dependent vegetation bias is due (in part) to the 
presence of error in in the SMOS tau product?  
 

The impact of errors in the tau product on the estimated bias parameters is an important concern 

that we now address in more detail throughout the manuscript. The main changes are extended 

discussions and a greater focus on an alternative tau product (sensitivity analysis based on the 

SMAP tau product) through extended discussions and a new figure. We are aware that we cannot 

resolve the issues mentioned, a fact we acknowledge openly, but we hope the extended 

discussions will provide a balanced picture. 

There is now a separate discussion section that deals with the interpretation of the inferred biases. 

There, we posit that the role of errors when analysing the results is contingent on what general 

view one adopts. One of these views is purely descriptive, the other tries to establish a causal link. 

The purely descriptive view is easier to uphold because it is only concerned with associations 

rather than the mechanisms of these associations. As associations can be misleading if interpreted 

causally (errors in the tau product, confounding, etc.), we have clearly stressed the largely 



descriptive nature of our analyses by employing phrases such as "errors associated with the 

vegetation correction" rather than induced or even caused.  

It is the causal view that is more directly affected by errors in the input tau product. While we 

focus on a largely descriptive view, we do engage in analyses towards establishing a causal link, 

chiefly via the comparison to tau omega predictions. These comparisons rely on the assumptions 

of no confounding and no errors in the input tau product. We now mention these assumptions is 

explicitly (see below), and we discuss three important points in this context 

- the definition of the errors: in the context of soil moisture retrieval, we believe that it is 

mainly a model-internal effective parameter (that can partially account for e.g. changes in 

effective roughness or for an inappropriate choice of the effective scattering albedo). It is 

this effective parameter that should serve as reference in the computation of delta tau, 

rather than a purely vegetation-based proxy.  

- the nature of the errors, which have both systematic and random components 

- possible confounders 

The distinction between a hypothetical true tau and an effective tau is, we believe, an important 

one to make, both for interpreting the estimated biases but also with the view of diagnosing of 

vegetation-water interactions that forms part of our motivation for studying time-varying biases. 

For single-channel retrievals, such a value typically exists: for a given soil moisture value (and 

forward model, single scattering albedo, etc.) it is the value that aligns the error-free brightness 

temperature with the true soil moisture. For dual-channel or multi-angular algorithms, such a 

value may not exist, in which case a retrieval of both tau and soil moisture would yield a wrong 

soil moisture estimate. However, it may be a good approximation, as hinted at by Parrens et al. 

2017. They found that a joint retrieval of a single vegetation & roughness parameter, i.e. one 

effective tau parameter, yielded good soil moisture estimation results; this should work even 

better for a constant incidence angle (because in that case, the value of N_r in their model is 

immaterial). 

However, even if such an effective tau did exist, it would be dependent on the algorithm, 

incidence angle, etc. We stress this view in the discussion. We also highlight the limitations of this 

view in Sec. 5.2, where we discuss the diagnosing of vegetation-water interactions for which one 

tends to consider tau to be a vegetation proxy. 

Owing to the complexities, we do not hazard a guess as to what influence deviations in the SMOS 

or SMAP DC tau from either a "true" or an "effective" tau have on the estimated biases. Based on 

analogies to regression modelling, we would expect causally biased estimates in the presence of 

random or systematic errors. We state this openly in the completely revised discussions. The two 

key paragraphs in the new discussion section read: 

 

A mechanistic interpretation of the inferred biases is complicated by a number of poorly 
understood factors. First, the time-variable biases are relative to the in-situ data. The 
results over the sparse sites should hence be interpreted with caution due to 



representativeness error, even if they are similar to those at the dense high-quality 
network sites. Even at the network sites, residual time-dependent biases of the in-situ data 
cannot be ruled out completely. Another major uncertainty are errors in the satellite-
derived contemporaneous tau products, which are not accounted for in the estimation. 
One important reason for why these errors are difficult to quantify is that in the context 
of soil moisture retrieval tau can be considered as essentially a model-internal effective 
quantity (Parrens17). As such, an observation-based estimate of tau reflects not only the 
vegetation conditions but also inaccuracies of the tau-omega model itself, the way it is 
parameterized and other environmental conditions. An instance for the latter are 
roughness changes associated with harvest in croplands (Patton13) which likely 
contribute to the autumnal increase in SMOS $\tau$ in Fig. 6a. To a good degree of 
approximation, roughness changes will be captured by the effective \tau that the SMOS 
or SMAP DC algorithms retrieve from the brightness temperatures (Parrens17). 
Nevertheless, the estimates used in this study will still be affected by systematic and 
random errors with respect to this effective quantity. Systematic differences between the 
effective tau for the SMAP retrievals and that of the SMOS satellite are, for instance, due 
to different incidence angles and model parameters. The impact of such errors on the 
estimated biases is unknown, but analogies to simple regression models suggest that they 
can distort these estimates in either direction. 
 
While it is premature to attribute the inferred biases completely to an imperfect vegetation 
correction, there are two lines of reasoning that suggest that the inferred biases are not 
spurious. First, they are fairly consistent across croplands, and also between sites with 
sparse and dense in-situ networks. Also, they tend to be large both in absolute terms (e.g. 
\lambda > 0.1) and compared to the posterior uncertainties. Further, they are also robust 
to the specification of the input tau product (SMAP DC instead of SMOS tau) and to 
several model modifications (Sec.5). However, these results are purely descriptive in that 
they only quantify associations, rather than establishing a causal link. A first step towards 
such a mechanistic interpretation is the comparison of the time-variable biases with 
predictions by the \tau-\omega model. This second line of reasoning suggests that the 
magnitude of the multiplicative biases lambda* is largely consistent with theoretical 
expectations (Fig. 4a). However, this analysis is contingent on i) the tau-omega model 
being appropriate and correctly specified (e.g. known \omega), ii) there being no 
confounding biases such as seasonal inundation, and iii) the sufficient accuracy of the 
input tau product. It is difficult to dispel these concerns, and indeed the deviations from 
the predictions (for mu*) indicate that unconsidered phenomena also contribute to the 
time-varying biases in addition to those resulting from the vegetation correction. 
 
2) Section 2.1.1 – While the notation presented here which suggests that all three soil moisture 
products are subject to the same error model, I couldn’t find any discussion of retrieved error 
parameters for the other two soil moisture products (i.e., in situ and MERRA). In addition, there 
seems to be a break in symmetry in that the selected explanatory variable is relevant for only one 
product (SMAP L3) and Figure 1 seems to indicate that no explanatory is applied to the in situ 
product. One of the appealing facets of triple collocation is the symmetry in its treatment of all three 
products. Does the break in symmetry applied here (via the selection of a single explanatory 
variable) preclude the objective cross comparison of error results across all three products? 
Discussion of error results for the other two products would also help establish credibility of the 
approach (e.g., were in time dependent biases found in the MERRA product and did that analysis 
reflect the known superiority of the core network relative to the other two products?). 



 

We now discuss some of the estimated parameters pertaining to the other products. First, we 

have added a new figure (Fig. 8) that shows the estimated noise level for all three products, or 

more precisely a normalized version that facilitates inter-product comparisons. In particular, the 

discussion addresses the spatial representativeness issues raised at several points in the referee 

report: 

To analyse the estimated noise level for all three products, we computed a normalized 

version sigma/l, where the division by l accounts for the different dynamic ranges of the 

three products by scaling the noise level with respect to the in-situ data (Fig. 8). SMAP 

achieves a median value of 0.045 m3m-3, a higher value than that of the in-situ data or 

MERRA-2 (0.029 and 0.040 m3m-3, respectively). For all three products, the corresponding 

values over the network sites are smaller by around 50%. For the in-situ data, the larger 

noise level at the sparse sites is not surprising, owing to their limited representativeness. 

However, direct comparisons could be misleading. For instance, the larger noise level 

estimates (and greater spread of these estimates) may be partially accounted for by the 

small number of available networks and by the heterogeneous land cover and vegetation 

conditions across the sparse sites in the contiguous US. 

We also discuss MERRA mu/lambda parameters in a bit more detail, both in terms of the 

rationale and the results. With respect to the rationale, we have added that 'the inclusion of a 

delta tau dependent bias for the reanalysis product is not driven by physical reasoning, as the 

MODIS NDVI climatology that gives rise to a non-zero delta tau plays no role in the generation 

of the MERRA reanalysis product. However, there is a compelling statistical reason to include the 

same explanatory variables as in the remotely sensed product. By controlling for the same 

explanatory variables, the impact of potential confounders - e.g. a seasonal bias that is correlated 

with Delta tau - on the bias estimates of the remotely sensed product can be reduced. If this were 

not done, the model would try to partially adjust the time-variable bias term of the remote sensing 

product to minimize the systematic differences to the re-analysis product, thus distorting these 

bias estimates.' With respect to the results, we mention in the results that 'Reanalysis bias 

parameters were estimated as well, but they are considerably smaller in magnitude than those of 

the SMAP product.’ More precisely, the mu parameter of the MERRA product is 0.000 on average 

(compared to 0.007 for the SMAP product), whereas for lambda they are 0.04 and 0.18 

respectively. Further, their direction is highly heterogeneous, whereas the SMAP bias parameters 

are all of the same sign. 

Finally, we do not share the view that the notation in Section 2.1.1. suggests that the error models 

are identical for all products. To include the possibility of different error models, we indexed the 

explanatory variables and the number of explanatory variables by the product. To better highlight 

this dependence, we now write “The explanatory variables can depend on the product n as well 

as on the parameter (\mu, \lambda). We also highlight that we use a reference product that is 

assumed unbiased. 

 
3) Section 2.1.2 - The auto-regressive nature of a soil moisture time series signal is (arguably) its 
most defining characteristic. Therefore, the application of a transformed white noise process in (5) 



as a temporal soil moisture model is jarring. Some discussion regarding the sensitivity of results to 
the lack of serial correlation in (5) is needed. It is hard to imagine that the retrieval of time-dependent 
bias parameters is not impacted at least somewhat by the neglect of serial auto-correlation in the 
soil moisture model. 
 

We share those concerns, and we devised the simulation study to address some of them: in the 
simulations, the simulated soil moisture is auto-correlated, whereas the standard inference model 
implementation prescribes independent soil moisture values. However, we do agree that we did 
not discuss these aspects in sufficient detail. We now discuss the issue of time scales in the 
simulation section 3: 
 

The other crucial assumption in the model is the probability distribution for the soil 
moisture. Also here, the changes are typically small (up to 10% improvement in the RMSE, 
but a decrease in bias) when replacing the standard time-invariant model by a seasonally 
variable model. The improvement suggests that the model-internal soil moisture 
distribution can have an impact on the estimated bias parameters, in particular when the 
actual soil moisture is correlated with the explanatory variable, as it was in the simulated 
data. We would hence expect that for most applications it is the seasonal and sub-seasonal 
time scales that the soil moisture model should be able to capture. For comparison, 
autocorrelation on the inter-storm time scale that is not captured by our model but present 
in the simulated data did not seem to have a major impact (sufficient fidelity for the full 
model, Fig 2) 

 
To expand on our discussion in the manuscript, we believe it is important to distinguish different 
time scales. The temporal structure of soil moisture time series is of course complex. To simplify 
it, we isolated two important time scales: long (i.e. seasonal) time scales, and short time scales  
 
As outlined in our discussion, we believe that representing the seasonal time scales, on which 
also the biases vary in our application, is more important for accurate bias parameter inference 
than correctly representing the very short time scales. We do want to explore the shorter time 
scales in the future, though. It is definitely possible to represent such time scales in the model 
itself, but it requires a clever implementation (initially, we had tried to implement an AR-1 model 
for soil moisture, but it was impractical because the MCMC sampling was very slow, which is 
usually thought to indicate an issue with the way the model is set up. Internally, there are 
different ways to parameterize the same model, and they are not equivalent in terms of MCMC 
sampling efficiency). 
 

 
 
4a) Section 2.2 - I understand that the Bayesian interference applied here is a fairly standard 
statistical procedure; however, I think it would help the (general earth science) reader if the authors 
provided more expository detail on exactly how the MC chain is implemented to solve the Bayesian 
problem. I’m a little unclear, for example, on how time is handled in the analysis (i.e. the analysis 
conducted sequentially or as a batch process across all time?). 
 

To paint a clearer picture of the Bayesian approach, we have extended the description of the 

MCMC sampling. 



… Here, we rely on Hamiltonian Monte Carlo as implemented using the adaptive No-U-

Turn Sampler in pymc3. The No-U-Turn Sampler produces successive, dependent 

samples of the posterior distribution that are called a chain. Each sample consists of draws 

from the posterior distribution, or actually an approximation thereof, of all the 

unobserved random variables (Output in Fig1b). They comprise the parameter random 

variables (e.g. the time-dependent biases) as well the soil moisture time series, i.e. one 

value of \theta for each SMAP observation. For each location, we sample two independent 

chains with 2000 samples each, which standard quality controls (divergences, chain 

mixing) indicate is sufficient. Following common practice, the first 1000 samples are 

discarded 

 
4b) On a related point, I’m also not quite clear on how effective the triple collocation analogy is. For 
example, the decision to use N=3 products seem almost arbitrary (e.g., later on the analysis, the 
MERRA product is dropped with apparently minimal consequence). Presumably, larger N equates 
to tighter posterior distributions; however, this is never clarified. 
 

We agree that there are limitations to the analogy. Similar issues commonly arise when 

comparing classical inference approaches with Bayesian approaches. Classical approaches, 

including method-of-moments-type estimators that classical triple collocation can be thought an 

instance of, are plagued by problems of identifiability. In order for them to be applied 

successfully, the data must provide sufficient information to estimate all parameters at the same 

time, loosely speaking. In case of classical triple collocation, these are N=3 three error variances 

and often also N-1=two sets of bias parameters (often called additive and multiplicative bias), 

and they can be uniquely identified when N = 3 (but not when N = 2). 

Conversely, for Bayesian approaches this issue does not arise in this form, owing to the prior 

information. A proper prior distribution (which is what we adopt in our approach) ensures valid 

posterior distributions even in the extreme case that no data are available, in which prior = 

posterior. A relevant publication in this context is Bayarri and Berger, The Interplay of Bayesian 

and Frequentist Analysis, Statistical Science, 2004. 

In such data-poor situations the specific choice of prior plays a crucial role. It is to minimize the 

importance of the prior that we assumed 3 products, in analogy to triple collocation, as 3 products 

provide enough information even without any priors (classical case). For the scenario with only 

two products, we prescribed a much stronger prior on the in-situ data in an attempt to make up 

for the reduced information content.  

We do realize that these qualitative arguments can only partially address the valid concern raised 

by the reviewer. However, we do not have theoretical results to bolster these views. The 

simulations studies indicate that N = 3 products is sufficient to estimate the parameters of interest 

(more precisely: to substantially narrow the posterior distribution compared to the prior). With 

respect to the appropriate choice of products (number, type, etc.), our manuscript leaves a lot of 

questions open. 

 



To better address these concerns, we have provided an abridged summary of our rationale in Sec. 

2: 

We focus on a setting inspired by triple collocation studies, i.e. we for the most part 

assume that N = 3 independent and noisy products are available Gruber 16. In regular 

triple collocation, three independent products provide sufficient information to estimate 

the random errors of all three products and bias parameters of two of the three products. 

In a Bayesian setting, the presence of prior information allows one to reduce the number 

of independent products, but the results will strongly depend on the prior distributions. 

 

 
5) Section 4.1.1 – I had to read this section a couple of time before I realized that the in situ 
observations were directly used as one of the three products in the Bayesian analysis (and not 
withheld as some type of independent verification). Presumably, the in situ observations 
correspond to the “y_o” product in described in Figure 1; however, I’m not sure if that link is ever 
explicitly made. More clarification on this point would be helpful. 
 

We have made two changes. First, we now list the three input products in the very first sentence 

of this section, and then describe them in more detail. Second, we now explicitly state that the in-

situ data constitute the reference product y_0 (before, we had written that product n = 0 is the 

reference product). 

 
6) Section 4.2.1 – Here I missed something fairly basic. What exactly is meant by the “model” 
referenced in the 3rd paragraph of the section and the vertical shading in parts b) and c) of Figure 
4? Presumably, the authors are referring to the tau-omega model sensitivity results shown in Figure 
3. However, this is never quite made clear. In addition, it isn’t clear to me exactly how the (site-
independent) “model” bias parameters are calculated. As a result, I’m missing some of the insight 
provided by Figures 4b and 4c. Is the take-away message that, despite not being given explicit 
access to the tau-omega model, the Bayesian model recovers the same bias parameter results 
predicted by the tau-omega model? I recommend that the authors spend a little more time outlining 
the context behind (and the interpretation of) Figure 4. 
 

We have greatly extended the description and discussion of this aspect. The methods are now 

described in much greater detail. For M and L, we write 

To compute the predicted biases in Fig. 3a), we assumed the \tau-\omega model applied 

and was correctly specified (temperature, dielectric mixing model [Dobson; silt loam], 

single-scattering albedo \omega = 0.05, etc.). For a given value of \tau_{\mathrm{true}}, 

we simulated the V-polarized brightness temperatures for dry and wet soil moisture 

conditions. These brightness temperatures were in turn the basis for estimating soil 

moisture by inverting the \tau-\omega model using the wrong \tau_{\mathrm{inv}} as 

a function of \Delta \tau. For both dry and wet soil moisture conditions, the deviation 

was an estimate of the retrieval bias: their mean was taken to be an estimate of the offset 

M, whereas their difference allowed us to estimate L. When plotted against \Delta \tau, 

M and L increase nearly linearly and only show a weak dependence on 

t\tau_{\mathrm{true}}. The slope of this relation is thus well but not perfectly defined. 

We refer to the slopes as \mu^{\star} (for M) and \lambda^{\star} (for L), respectively. 



To account for the spread due to the slight curvature and dependence on \tau, we 

estimated the likely range of values by computing the slopes from the differences in L or 

M between five equally spaced values of \Delta \tau (between -0.1 and 0.1), repeated for 

equally many values of \tau_{\mathrm{true}} (between 0.1 and 0.6). The range of these 

values was \lambda^{\star}_{\mathrm{pred}} in [2.0, 3.8] and 

\mu^{\star}_{\mathrm{pred}} in [0.33, 0.65] m3m-3. These ranges will later be compared 

to data-driven estimates, thus providing a first-order assessment of the agreement 

between predictions and observations, despite the neglect of other retrieval errors. 

We have also amended Fig. 3 (showing the star parameters explicitly). In the results, we have 

extended the description of the model-estimate comparison: 

When converted into absolute quantities (\lambda^{\star}), the inferred dependence of 

L on \Delta \tau matches the model predictions reasonably well (Fig. 

\ref{fig:networksites}b). In other words, the data-derived, completely independent 

estimate is broadly consistent with the predicted impact of a \tau misspecification in the 

retrieval, despite limitations in the estimates (e.g. issues with the reference \tau) and the 

model predictions (e.g. assumed knowledge of the land surface temperature) of 

\lambda^{\star}. There is no clear apparent dependence of \lambda^{\star} on location 

or land cover properties; for instance, Monte Buey and Bell Ville are within < 100 km of 

one another, and despite the similarity in planted crops the latter's \lambda^{\star} is 

considerably larger. 

We now also revisit this issue in the discussions; the associated changes to the appropriate section 

are described in our reply to point 1. 

 
7) Section 4.2.2 - The authors provide a nice sensitivity analysis which describes the impact of 
using a different tau reference on results (in the first two columns of Figure 6). In theory, this should 
go a long way in addressing my first point; however, (as with the case in Figure 4 above) I did not 
take away as much from this figure as I had hoped. The lack of sensitivity in the time-variation bias 
parameters to the use of a second tau references is reassuring. However, I don’t quite follow why 
the large changes observations when using a contemporary MODIS tau indicates a lack of 
sensitivity to the use of MODIS tau climatology in the SMAP L3 retrievals. The delta tau generated 
by the MODIS contemporary minus climatology differences leads to significantly non-zero lambda 
and mu estimates - just not the same estimates as the application of “delta tau” results generated 
relative to SMOS tau. How exactly does this support the conclusion that inter-annual tau anomalies 
are not a significant source of error? Some additional discussion on this point would be very helpful. 
I also think a fuller sensitivity discussion of results in Figure 6 here would likely go a long way 
towards addressing concerns I raised in my first point. 
 

We have made two changes. First, we have added a new figure that also shows the results of the 

sparse sites obtained with the SMAP-based Delta tau. This figure also features in the second 

change, namely the extended descriptions. We also point out under what assumptions the smaller 

estimates obtained with the contemporaneous MODIS tau can be interpreted to indicate that the 

biases are not only due to outdated NDVI-derived data in the retrieval. In the results section, we 

write: 



Our sensitivity analyses focus on the reference \tau product. When the SMAP dual 

channel result is used as the reference \tau product, the bias parameters change little for 

the vast majority of sites (Fig. 6). When the posterior uncertainties are taken into account, 

the \lambda and \mu values tend to overlap with those obtained using the SMOS \tau 

product, indicating that the results are not sensitive to the choice of microwave-derived 

reference \tau product. Also the spatial patterns across the sparse study sites are very 

similar (Fig. 8). 

We have also extended the analysis of the MODIS-derived Delta tau.  

By contrast, the estimates can change substantially when \tau is derived from 

contemporaneous NDVI data, and predominantly they are smaller in magnitude. If the 

problem with the use of the NDVI climatology in the retrieval were the use of a 

climatology alone, we would expect similar estimates. Conversely, we would expect the 

estimates to be smaller if it was the link between NDVI and \tau that led to an inaccurate 

vegetation correction. The smaller estimates that were actually observed may thus 

indicate that the use of a climatology is not a dominant error source in the SMAP 

vegetation input data. 

As outlined in our reply to point 1), there is now a separate discussion section that deals with 

errors in tau in the context of interpreting the results. 

 

 
8) Section 4.2.4 – The author’s link the results in Figure 7c to the presence of time-dependent 
errors identified in Figure 7a and 7b. However, there is a major difference in that Figure 7c results 
reflect climatological anomalies (lacking any seasonality) while results in 7a and 7b reflect time-
dependent biases which (almost certainly) have a fixed seasonal component (which, of course, 
would not be reflected in an anomaly). Therefore, a substantial(?) fraction of the time dependent 
biases reflected in Figures 7a and 7b have no impact on anomaly results in Figure 7c. Given this, 
I’m unclear exactly what the relevance of Figures 7a and 7b is for the interpretation of Figure 7c 
(although, admittedly there does appear to be some spatial consistency across the sub-figures). 
 

We have extended the discussion of these results. Our main point in the discussions is not that 

there is a clear-cut link between the estimated biases and the R2 values, but rather that the spatial 

patterns suggest that there may be one that deserves attention in future studies. 

In the results: 

While the spatial patterns largely match those of the time-variable biases, the link between 

them is not clear and not necessarily uniform across all sites. The computation of 

anomalies largely removes seasonal offsets, which constitute a major fraction of the 

estimated additive biases. However, it does not remove higher-frequency variations or 

inter-annual differences, although the record is too short to reliably study those. Neither 

can it account for the changes in sensitivity, which are particularly large over croplands. 

Finally, the in-situ soil moisture anomalies, predominantly derived from single probes, 

are subject to major uncertainties. All these factors likely contribute to the elevated 

associations between the \tau and the SMAP soil moisture anomalies (Delta R2), but the 



precise impact of time-variable biases on our ability to diagnose such interactions remains 

an open question. 

In the discussion: 

The spurious vegetation signal in the soil moisture data may distort estimates of water-

vegetation coupling. We find inflated values of R^2 between the SMOS vegetation optical 

depth and SMAP soil moisture, whereas purely random noise would decrease the R^2 

(Fig. 7c). While the spatial patterns largely match those of the estimated biases, this does 

not imply a causal link between the two. However, the inflated R^2 values hint at 

potential pitfalls in using remotely sensed soil moisture to study global hydrology. 

 
 
9) I also have two general comments concerning Figure 7. I’ll present them as “comments” to reflect 
that I’m inclined to give the authors some latitude with how they respond to them: A) The authors 
discuss spatial representative issues; however, the impact of upscaling a single, point-scale 
observation to the SMAP footprint scale should not be underestimated. While the point is never 
explicitly made in Chan et al. [2016]; however, a comparison of TC-based results in (their) Figures 
7 and 9 suggests that the correlation between a single-point ground observation and grid-scale 
truth is approximately equal to that between ASCAT soil moisture retrievals and the same grid-
scale truth. Given that there is strong reason to suspect that SMAP soil moisture products are 
significantly more precise than ASCAT products, a priori, I’d expect single-point ground 
observations to be a noisier source of grid-scale soil moisture than SMAP L3 retrievals over a great 
deal of the United States. Combined with the fact that there is likely some error cross-correlation 
between SMAP L3 products and SMOS tau products (especially over agricultural sites see my point 
#1 above), it seems possible that results in Figure 7c can be explained without the need to invoke 
the presence of time-dependent vegetation biases in the SMAP L3. 
Chen, F., Crow, W.T., Colliander, A., Cosh, M.H., Jackson, T.J., Bindlish, R., Reichle, 
R.H., Chan, S.K., Bosch, D.D., Starks, P.J. and Goodrich, D.C. Application of triple 
collocation in ground-based validation of Soil Moisture Active/Passive (SMAP) level 2 
data products. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing. 99:1-14. 10.1109/JSTARS.2016.2569998. 2016. 
B) Point-to-grid upscaling issues associated with ground-based soil moisture observations are 
particularly daunting for agricultural landscapes. Most of the time the actual site isn’t even located 
in a cultivated field (instead that are typically shunted into non-cultivated areas at the edges of the 
field). As a result, these measurements have no hope of capturing (often significant) inter-annual 
soil moisture variability associated with changes in planting, canopy development and crop 
development. Given the soil moisture ground measurement expertise among the co-authors, I’ll 
defer to their judgment on this issue - but it does seem relevant to the interpretation of Figure 7c. 
 
 

We agree with the limitations of the sparse sites. This is also why we discuss the network sites in 

considerably more detail. Our motivation for including Figure 7c) is the similarity of the spatial 

patterns, which do suggest a connection. However, we make clear that the specifics of this link 

are currently unknown. In the future, we hope that our work on biases will inform the 

interpretation of correlation coefficients, regression models and similar statistics.  

We hope the extended discussions, see in particular our reply to the previous point, clarify this 

stance. 
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Abstract. Remotely sensed soil moisture products are influenced by vegetation and how it is accounted for in the retrieval,

which is a potential source of time-variable biases. To estimate such complex, time-variable error structures from noisy data,

we introduce a Bayesian extension to triple collocation in which the systematic errors and noise terms are not constant but

vary with explanatory variables. We apply the technique to the SMAP soil moisture product over croplands, hypothesizing

that errors in the vegetation correction during the retrieval leave a characteristic fingerprint in the soil moisture time series. We5

find that time-variable offsets and sensitivities are commonly associated with an imperfect vegetation correction. Especially

the changes in sensitivity can be large, with seasonal variations of up to 40%. Variations of this size impede the seasonal

comparison of soil moisture dynamics and the detection of extreme events. Also, estimates of vegetation-hydrology coupling

can be distorted, as the SMAP soil moisture has larger R2 values with a biomass proxy than the in-situ data, whereas noise

alone would induce the opposite effect. We conclude that complex biases can be present in soil moisture products and that they10

should be accounted for in observational and modelling studies.

1 Introduction

Soil moisture products derived from satellite measurements are subject to errors. These are not constant, but vary in space

and time. For any given location, they may depend on variable factors such as vegetation phenology, atmospheric conditions

or measurement characteristics like the incidence angle (Loew and Schlenz, 2011; Entekhabi et al., 2010; Su et al., 2016).15

Vegetation is commonly considered to be the most delicate factor to control when retrieving soil moisture from the raw satellite

measurements (Dorigo et al., 2017; Chan et al., 2016). An imperfect vegetation correction during the retrieval will induce

time-variable errors in the soil moisture product (Konings et al., 2017). As such structural errors potentially distort estimates
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of vegetation-soil moisture coupling in unexpected ways (cf. Doherty and Welter, 2010), they are more pernicious than simple

quasi-random noise or than time-constant biases.

However, the time-variable error properties of soil moisture products are poorly understood and rarely considered in practice

(Loew and Schlenz, 2011). Arguably one reason for this is that there is currently no consistent way of estimating such rich

error structures from data. If an exact reference soil moisture measurement were available, this would be an easy enterprise (Su5

and Ryu, 2015). Dense in-situ measurements are widely considered to be the closest one can get to perfect reference data, but

they are rare, and non-negligible uncertainties remain (Colliander et al., 2017). In absence of perfect reference data, any useful

error estimation procedure must cope with errors in all input data. Triple collocation and its various extensions can provide

consistent error estimates in these circumstances (Gruber et al., 2016; Zwieback et al., 2016). However, similar to the standard

RMSE metric they cannot directly separate non-constant systematic errors from quasi-random measurement noise. Conversely,10

common pre-processing steps (forming anomalies, analysis of short time periods) provide a simple means to deal with certain

non-constant errors but lack generality (Loew and Schlenz, 2011; Gruber et al., 2016).

Here, we extend triple collocation to estimate non-constant error structures (Sec. 2). The central idea is to express systematic

errors such as an offset and random errors in terms of explanatory variables like a vegetation index (cf. Xu et al., 2017;

Doherty and Welter, 2010). The choice of explanatory variables should be informed by the measurement principle and the15

retrieval algorithm. In our case study of the SMAP product, we will specify it in terms of a misspecification of the vegetation

[.. ]correction during the retrieval process. We generally assume that three independent and noisy products are available. Once

their hypothesized error structure has been specified, our Bayesian Triple Collocation approach proceeds in two steps. First,

the specified error structure is embedded in a probabilistic model that links the unknown soil moisture θ with observed soil

moisture products yn. Second, Bayesian inference is applied, and one thus obtains estimates and uncertainties of the error20

parameters of interest. A simulation study indicates that time-variable systematic errors can be estimated reliably for as few as

250 samples (Sec. 3).

We apply this procedure to estimate time-variable biases in the SMAP soil moisture product that are associated with an

imperfect vegetation correction (Sec. 4). This is not to say that other soil moisture products are not subject to similar biases;

on the contrary, the SMAP baseline product is widely considered to provide the most reliable global soil moisture data record25

available (Chan et al., 2017; Colliander et al., 2017). To estimate soil moisture from the passive microwave measurements, the

retrieval algorithm has to correct for the vegetation influence (Kurum et al., 2011; Chan et al., 2017). Specifically, the SMAP

algorithm assumes that the vegetation optical depth τ , a dimensionless measure of how much the microwaves interact with the

vegetation, is known a priori.

We focus on croplands, as they present a particular challenge to the vegetation correction approach using an a priori τ . Over30

crops, the input τ , which is derived from the Normalized Difference Vegetation Index (NDVI), only provides an incomplete

picture of the vegetation influence at microwave frequencies. The NDVI, being strongly influenced by leaf chemistry, can only

indirectly account for the dominant controls on τ , namely the vegetation water content and the canopy structure, both of which

are particularly diverse and dynamic in crops [.. ](Lawrence et al., 2014; Momen et al., 2017). The NDVI-based input τ also

does not account for inter-annual variability in vegetation conditions, which cannot be neglected over croplands (Patton and35

2



Hornbuckle, 2013). Consequently, agricultural regions have been identified as a weak spot for the SMAP product (Colliander

et al., 2017). However, the time-average metrics analysed so far cannot distinguish seasonal biases from quasi-random noise,

and the magnitude of vegetation-induced systematic errors thus remains unknown.

We hypothesize that seasonal changes in the error structure arise due to an inaccurate vegetation correction in the retrieval,

so that the biases relative to the in-situ data track the misspecification in the vegetation optical depth ∆τ . We specify the5

SMAP offset and sensitivity as a function of ∆τ , based on predictions by the τ -ω radiative transfer model (Kurum et al.,

2011). We estimate the associated error parameters with the Bayesian triple collocation approach, using in-situ and re-analysis

data as additional soil moisture products. We find that SMAP soil moisture biases that track ∆τ are widespread and large over

croplands. This is especially so for the sensitivity, resulting in a time-dependent dynamic range of the SMAP soil moisture

product that impedes seasonal comparisons of soil moisture dynamics. We attribute the time-variable biases to the imperfect10

vegetation correction, as the inferred bias characteristics largely match those predicted by the τ -ω model. To illustrate the

potential influence of these biases on estimates of vegetation-hydrology coupling (Adegoke and Carleton, 2002), we show

that the coefficient of determination between SMOS τ anomalies and SMAP soil moisture anomalies is inflated compared to

in-situ soil moisture measurements. In summary, our analyses suggest that soil moisture products can be subject to previously

neglected time-variable biases that should be accounted for in observational and modelling studies.15

2 Bayesian triple collocation

We now present a general overview of the approach (Fig. 1), which consists of two components. First, a probabilistic model that

links the unknown soil moisture θ with the observed soil moisture products yn. The link itself characterizes the error structure:

it depends on error parameters γyn and explanatory variables w. Second, a Bayesian inference approach that provides estimates

of all the unknown quantities, in particular the error parameters. By conditioning on the observed soil moisture data (input),20

we get a posterior distribution over the unobservable quantities (output). We focus on a setting inspired by triple collocation

studies, i.e. we for the most part assume that N = 3 independent and noisy products are available (Gruber et al., 2016). In

regular triple collocation, three independent products provide sufficient information to estimate the σ of all three products

and bias parameters of two of the three products. In a Bayesian setting, the presence of prior information allows one to

reduce the number of independent products, but the results will strongly depend on the prior distributions.25

Our approach has several characteristics that make it useful in a wide range of applications. It is widely applicable, as no

soil moisture product is assumed to be free of errors. This is particularly critical for estimating the noise magnitude and the

sensitivity, which cannot be estimated consistently by standard regression approaches when the reference product is subject

to errors (Yilmaz and Crow, 2013). Also, it provides principled uncertainty estimates through the posterior distribution. It is

flexible, as it can be adapted to many functional relations and error structures. Finally, it is transparent because all modelling30

assumptions are explicit. Owing to its flexibility, the model can be modified to test the sensitivity of the results to certain

assumptions. We will exploit these advantages by modifying the prior distribution and the likelihood; for instance, we will test

several models for the unknown soil moisture θ.
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Figure 1. The two components of Bayesian triple collocation. a) The probabilistic model expresses the observable products in terms of

the unknown soil moisture, error parameters and explanatory variables. The set of error parameters of the reference product, γy0 , does not

contain variable bias terms. b) The soil moisture products and explanatory variables serve as input to the inference, which produces estimates

(posterior probability distributions) of, amongst other things, the error parameters.

2.1 Probabilistic model

The probability distribution comprises the observable products y0 to yN−1, the unknown soil moisture θ and numerous param-

eters: the set of parameters γyn characterizes product n, and γθ does the same for the soil moisture. The structure of the model

is summarized in Fig. 1a, which depicts the corresponding directed acyclic graph (MacKay, 2003). This graph expresses how

the distribution over all the random variables is factorized into smaller components. Starting with an observable product yn,5

its distribution is modelled conditional on the unknown θ, the associated parameters γyn (including the time-independent and

time-dependent bias parameters) and the explanatory variablesw·,n. We refer to this conditional distribution as the error model.

It is conditional on the soil moisture θ, whose distribution (conditional on parameters γθ) is referred to as the soil moisture

model. The final component are the parameters γyn and γθ, which are assigned prior distributions. These prior distributions are

integral to the Bayesian approach, and they express the initial belief about the parameters’ likely values. We now describe each10

of these components in turn. To facilitate future applications of the approach, we do this using very general notation, which we

will later in the SMAP case study simplify by dropping subscripts.

2.1.1 Error model

Each product’s error model is governed by a set of parameters γyn which quantify the error component such as the biases

(systematic errors). We consider an affine error model according to which the dynamic range or sensitivity of the product can15

differ from that of the true soil moisture, governed by the scaling parameter Ln(t). We also include an additive offset or bias
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Mn(t) (Zwieback et al., 2012; Yilmaz and Crow, 2013), yielding

yn(t) = Ln(t)(θ(t)− θ0) + (θ0 +Mn(t)) + εn(t) , (1)

where we essentially relate the deviation of soil moisture from a typical, prescribed soil moisture θ0 to the observed product.

Our key extension compared to previous triple collocation studies is to make the bias terms and the noise magnitude vary

with time-dependent explanatory variables, w·,np(t):5

Ln(t) = ln +

Pλ,n∑
p=1

λnpwλ,np(t) (2)

Mn(t) =mn +

Pµ,n∑
p=1

µnpwµ,np(t) (3)

where ln and mn are time-invariant values specific to product n, and the parameters λnp and µnp are coefficients that quantify

the [.. ]dependence on the pth explanatory variablewλ,np andwµ,np, respectively. [.. ]The explanatory variables can depend

on the product n as well as on the parameter (µ, λ). They are external quantities that are part of the model input. To facilitate10

the interpretation of the parameters, we always assume the explanatory variables to have zero mean and unit standard deviation

(Gelman et al., 2008). ln andmn thus represent the time-average biases. The magnitude of λn and µn represents the magnitude

of the associated temporal changes in Ln and Mn, respectively.

The quasi-random errors are characterized by their variance and further distributional assumptions. For the variance S2
n(t) =

E(εn(t)2) we suggest a multiplicative model that is commonly employed in regression studies (Harvey, 1976)15

S2
n(t) = σ2

n(t)

Pσ,n∏
p=1

wσ,np(t)
κnp (4)

where κ governs the sensitivity of the error variance to the explanatory variable, which has to be positive. We always assume it

to be normalized so its geometric mean is one, as this simplifies the interpretation of the typical variance σ2
n(t). A positive value

κ > 0 indicates a larger variance as the explanatory variable increases, and a negative value corresponds to a smaller variance.

To complete the specification of the errors, a probability distribution has to be assumed. We focus on a normal distribution20

with zero mean and variance given by S2
n, as our robustness checks indicated that the results were not very sensitive to this

assumption (cf. Sec. 3). Finally, two further properties have to be specified. First, we assume that the errors at different times are

independent. We will later show that violations of this assumption commonly have negligible impact on the estimated parameter

values. Second, we postulate that the errors of the various products are independent. This is generally a key assumption in triple

collocation-type studies (Gruber et al., 2016).25

We generally specify y0 to be the reference product (Yilmaz and Crow, 2013; Gruber et al., 2016). Its error magnitude is

assumed to be constant over time, and so are its additive bias (M = 0 m3 m−3) and its sensitivityL= 1. This constraint ensures

that the unknown soil moisture distribution (its mean and scale) can be inferred from data, as it essentially specified what the

reference product was a noisy estimate of (Zwieback et al., 2016). The bias terms are thus always relative to this reference

product.30
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2.1.2 Soil moisture model

The second piece of the probabilistic model concerns the soil moisture θ, the distribution of which also has to be specified. Our

default representation is a simple logistic model. The physical quantity θ, which is constrained to between 0 and the porosity

φ, is expressed as a function of the non-dimensional unbounded soil moisture Θ

θ(t) = φ
1

1 + exp(−A−BΘ(t))
withΘ∼N (0,1) . (5)5

Θ is modelled as a standard normal random variable. The site-specific parameters A, B and φ are inferred in the Bayesian

inference. We summarized the parameters of the soil moisture model under γθ.

One drawback of this model is that it cannot account for the autocorrelation and seasonality of soil moisture. To test for

the importance of temporal characteristics, we also generalize the model by making A and B time dependent. We do this by

expanding A and B in a spline basis with 12 monthly basis functions. While this model cannot completely account for the10

complex temporal characteristics of soil moisture, it captures the seasonal trends.

2.1.3 Prior distributions

To complete the full probability distribution, one has to specify the prior distributions of the parameters γθ and γyn . As we

work with normalized explanatory variables, we can use a problem-independent prior distribution (Gelman et al., 2008). We

choose the priors to be weakly informative, thus partially ruling out unreasonable values but still letting the data speak for15

themselves (Gelman et al., 2008). Our default choices are summarized in Tab. 1.

For all products yn, we put a very weak prior on the error magnitude variance σ2. It is given by an exponential distribution

with mean 0.1 (m3 m−3)2, plotted in Fig. S1. In other words, we barely constrain this quantity. For the product error param-

eters, m and µ [m3 m−3] are assumed distributed according to a t distribution T (0,0.32;4); Fig. S1. It is centred at 0 with a

standard deviation of 0.3 and very heavy tails due to its four degrees of freedom. These values barely constrain the estimation of20

the additive bias m, as they do not rule out biases as large as 0.5 m3 m−3. Similarly for l and λ [-], whose prior is T (1,0.32;4).

The standard prior distribution for the soil moisture parameters γθ follows a similar logic. The porosity [m3 m−3] is given by

T (0.4,0.12;4). The parametersA andB in the standard logistic model are assigned T (0,3.02;4) and an exponential distribution

with mean 3.0, respectively.

2.2 Bayesian inference25

The Bayesian inference takes the observed products and explanatory variables as input and outputs posterior probability dis-

tributions over the unknown quantities (Fig. 1). The posterior distributions are obtained from the probabilistic model by con-

ditioning on the input data. Conditioning is a well-defined mathematical operation, but analytical solutions are infeasible for

complicated models like ours (MacKay, 2003). Instead, one has to resort to approximations. Monte Carlo methods are arguably

the most popular. Their output is an approximation to the posterior distribution that consists of samples drawn from this distri-30

bution. Here, we rely on Hamiltonian Monte Carlo as implemented using the adaptive No-U-Turn Sampler in pymc3 (Hoffman
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Table 1. The default model specification used in both the simulation study and the SMAP case study, and the baseline configuration for the

simulation runs. The bias terms for the reference product y0 were assumed known.

Model specification Simulation parameters

Errors

σ [m3 m−3] exponential prior [0.02, 0.04, 0.05]

m [m3 m−3] Student prior m0 = 0 [0.00, 0.03, -0.05]

l [-] Student prior l0 = 1 [1.0, 1.1, 0.9]

µ [m3 m−3] Student prior µ0 = 0 [0.0, 0.02, -0.02]

λ [-] Student prior λ0 = 0 [0.0, 0.06, 0.0]

κ [-] Student prior κ0 = 0 [0.0, 0.2, -0.2]

Ancillary components

ε distribution Normal Normal

θ distribution logistic (A, B, φ) logistic

and Gelman, 2014; Salvatier et al., 2016). [.. ]The No-U-Turn Sampler produces successive, dependent samples of the

posterior distribution that are called a chain. Each sample consists of draws from the posterior distribution, or actually an

approximation thereof, of all the unobserved random variables (Output in Fig. 1b). They comprise the parameter random

variables (e.g. the time-dependent biases) as well as the soil moisture time series, i.e. one value of θ for each SMAP

observation. For each location, we sample two independent chains with 2000 samples each, which standard quality controls5

(divergences, chain mixing) indicate is sufficient. Following common practice, the first 1000 samples are discarded (Brooks

and Gelman, 1998)

3 Simulation study

We now study the applicability of Bayesian triple collocation using a simulation study. We used three simulated products

with realistic error properties (Tab. 1). y0 was taken to be the reference product in both the simulation and in the probabilistic10

models. For the other two products the biases and error magnitudes were assumed dependent on a normalized explanatory

variable that varied seasonally (Tab. 1). The soil moisture was prescribed using a simple antecedent precipitation model driven

by a seasonally-dependent Hidden Markov Model rainfall generator, which gave rise to autocorrelated soil moisture. Mimicking

the SMAP sensor, an observation was made every 2-4 days.

We first analysed the fidelity with which the error parameters could be estimated. To this end, we simulated R = 25 time15

series and computed the posterior distribution using the default probability model of the previous section, summarized in Tab.

1. We computed an [.. ]aggregated RMSE error for each parameter π by comparing the prescribed parameters πn for all
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Figure 2. Simulation results illustrating the estimation fidelity. a) Dependence on sample size. b) Comparison of RMSE and the simulation

bias magnitude b to the posterior standard deviation sp. In a) and b) the first line shows the full model, whereas κ is set to zero in the

inference in the second, and λ, µ and κ were set to zero in the third. In these cases, the RMSE is equal to b, and these values are not

shown in a).

products with the posterior [.. ]means inferred from each simulation run [.. ]r

RMSE =

(
1

NπR

Nπ∑
n=1

R∑
r=1

(π̂n,r−πn)2
) 1

2

(6)

where π̂n,r is the posterior mean of parameter π estimated for product n (out of Nπ) in run r. To quantify systematic

deviations, we computed an average absolute bias (in the root mean square sense) between the truth and posterior

mean for each parameter:5

b =

(
1

NπR

Nπ∑
n=1

(
R∑

r=1

(π̂n,r−πn)2
)) 1

2

, (7)

and we subsequently averaged the magnitudes over all products (referred to as mean absolute bias). To explore the

impact of the number of observations on the accuracy, we did this for 100, 250 and 500 observations, which bound the number

of observations that were available in the SMAP study.

The error parameters could be estimated with sufficient fidelity in the simulation study (Fig. 2; full model). The accuracy10

of the estimated time-variable additive bias parameter µ was found better than 0.01 m3 m−3, and thus likely sufficient to

detect relevant non-constant biases. The sensitivity coefficients λ are retrieved with comparable precision: the RMSE of 0.05

corresponds to a differential bias between dry and wet conditions of around 0.01 m3 m−3 (assuming a soil moisture dynamic

range ∼ 0.25 m3 m−3). Again, this should be sufficient for many applications. Finally, the time-constant noise magnitude σ

could be estimated accurately (� 0.005 m3 m−3).15
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Bayesian triple collocation yields a distribution of the parameters and thus naturally provides uncertainty estimates. [.. ]The

posterior standard deviation sp compares favourably to the RMSE errors: Fig. 2b shows that the posterior standard deviations

are within 10 to 20 % of the RMSE errors. Even though these two quantities represent different kinds of uncertainty, they are

expected to be comparable for large samples (MacKay, 2003). The posterior distribution hence provides a useful summary of

the estimation uncertainty.5

To test the sensitivity of the estimates to model assumptions, we extended the simulation study. The most critical aspect

turned out to be the specification of the bias terms: neglecting variable bias terms can impair the overall estimation quality.

Neglecting the complex error structure leads to an overestimation of the error magnitude (Fig. 2). In our case, setting µ, λ

and κ to 0 induced an increase in the RMSE of σ by a factor of two. This increase was mainly due to a large bias, as the

varying offsets were wrongly attributed to quasi-random noise. The posterior uncertainty estimates also became inaccurate.10

Conversely, neglecting only the variability of the error magnitude (i.e. setting κ= 0) had limited impact on the retrieval of the

other parameters.

To test for additional model assumptions, we modified the model and the forward simulations. The impact on the estimation

accuracy was typically limited (see the supplement), so we only provide a short summary. First, the model for the noise term

ε had a moderate influence on the estimation quality. A mismatch between assumed and simulated ε distributions increased15

the RMSE of the error variance by a small amount (<0.001 m3 m−3 for σ) for a range of error distributions and strongly

autocorrelated errors. The other crucial assumption in the model is the probability distribution for the soil moisture. Also here,

the changes are typically small (up to 10% improvement in the RMSE, but a decrease in bias) when replacing the standard

time-invariant model by a seasonally variable model or by a different time-invariant model. The improvement suggests that

the model-internal soil moisture distribution can have an impact on the estimated biases, in particular when the actual soil20

moisture is correlated with the explanatory variable, as it was in the simulated data. We would hence expect that for most

applications it is the seasonal and sub-seasonal time scales that the soil moisture model should be able to capture. For

comparison, autocorrelation on the inter-storm time scale that is not captured by our model but present in the simulated

data did not seem to introduce major limitations (sufficient fidelity for the full model, Fig. 2). The prior distributions had an

even smaller impact. Making the prior distributions twice as wide or the tails less heavy changed the estimates by only a few25

percent.

4 SMAP case study

4.1 Materials and methods

4.1.1 Data

[.. ]To estimate the biases of the SMAP soil moisture product, we used N = 3 soil moisture data sets in the probabilistic30

inference: apart from the SMAP product, these were in-situ data from dense networks or sparse sites, and MERRA-

2 reanalysis data. The SMAP data set we analysed was the SMAP enhanced Level-2 soil moisture product, which is
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Table 2. Network sites from north to south, including their Koeppen-Geiger climate regime.

Site Location Climate Crop cover [%] Samples

Kenaston Canada (Saskatchewan) Cold 90 351

Carman Canada (Manitoba) Cold 80 352

South Fork USA (Iowa) Cold 90 323

REMEDHUS Spain Temperate 80 475

Fort Cobb USA (Oklahoma) Temperate 60 413

Bell Ville Argentina Arid 90 399

Monte Buey Argentina Arid 90 400

disseminated on the 9 km EASE-Grid 2.0 at a resolution of 33 km (Chan et al., 2017; O’ Neill et al., 2017). It contains a variety

of estimates of the top (5 cm) soil moisture, of which we chose the standard product (baseline V single channel algorithm, 9

am morning passes). The single channel retrievals rely on an a priori τ derived from a MODIS climatology; these τ values

are included in the disseminated product. We studied all available data since the beginning of the record in April 2015 until

August 2017, i.e. up to three annual growing seasons. After removing flagged retrievals (Colliander et al., 2017), the number5

of available measurements is on the order of 300-500, which is not ideal but should be sufficient according to Fig. 2a.

The analyses focus on seven locations in North America, South America and Europe with significant crop cover, due to

the availability of high-quality dense in-situ networks (Tab. 2). At these SMAP core or candidate sites, continuous calibrated

in-situ measurements at 5 cm depth are collected at multiple locations within a SMAP grid cell (Colliander, 2017; Colliander

et al., 2017).10

To provide a better overview of the spatial patterns, we also used data from > 200 in-situ sites in the contiguous United States

(SCAN and USCRN networks). These sparse sites consist of a single station per satellite pixel, and their representativeness is

hence not comparable to that of the network sites. The USDA’s SCAN network has been in continuous operation since 1999

and provides soil moisture data at 2 in (5 cm) depth (Schaefer et al., 2007). The USCRN network consists of 114 sites whose

location was chosen to be maximally representative of its surroundings; we used the 5 cm soil moisture observations (Bell15

et al., 2013; Diamond et al., 2013; Palecki et al., 2017). We assigned these sites a dominant land cover based on the MODIS

MCD12C1 land cover product (Friedl et al., 2017).

For the third soil moisture product we used the MERRA2 reanalysis (M2T1NXLND.5.12.4) (Gelaro et al., 2017; Global

Modeling and Assimilation Office, 2017). It is the most recent reanalysis product of NASA’s Global Modeling Office, available

at a resolution of 55 km. For sensitivity analyses, we also used GLDAS-2 (Noah model, GLDAS_NOAH025_3H.2.1), a popular20

land assimilation data set (Roddell and Beaudoing, 2017).

To quantify the error structure as a function of ∆τ , we estimated ∆τ as the difference between an external estimate of

τ and the SMAP input τ . The external estimate was based on independent L-band microwave observations by the SMOS

satellite (Level 3 operational algorithm). The multi-angular observations and the temporal aggregation of multiple overpasses

are conducive to providing robust, if noisy, measurements of the vegetation optical depth relevant to SMAP (Al Bitar et al.,25
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2017). To reduce the impact of high-frequency noise, the ∆τ data were smoothed to a temporal resolution of 16 days (LOWESS

filter). The explanatory variable used in the Bayesian inference is the normalized version

w∆τ (t) =
1

std(∆τ)
(∆τ(t)−mean(∆τ)) . (8)

4.1.2 Error estimation

In our estimation we specified the error structure based on our hypothesized impact of a vegetation misspecification. The τ -ω5

model (Kurum et al., 2011) predicts that a vegetation misspecification ∆τ = τinv−τtrue will induce both a sensitivity L and an

offsetM which scale approximately linearly with ∆τ (Fig. 3a). There is thus only one explanatory variable (Pλ,n = Pµ,n = 1),

namely the normalized w∆τ of Eq. 8. By slightly simplifying the notation, the error model reads

ySMAP(t) = (l+λw∆τ (t))︸ ︷︷ ︸
L(t)

(θ(t)− θ0)

+ (m+µw∆τ (t))︸ ︷︷ ︸
M(t)

+θ0 + ε(t) . (9)10

Here θ0 was taken to be the mean value of the in-situ product. We quickly recall the interpretation of the error parameters.

λ and µ quantify the temporal changes in the sensitivity and offset, respectively, that are associated with changes in ∆τ .

Their magnitudes correspond to the temporal standard deviation of the sensitivity and offset, respectively (Fig. 3b). Their

sign expresses the direction of the dependence on ∆τ . It is predicted to be positive: as ∆τ grows, the inversion increasingly

overcompensates the vegetation-induced loss of sensitivity to soil moisture and increase in brightness temperature, which in15

turn inflates both L and M , respectively.

[.. ]

To compute the predicted biases in Fig. 3a), we assumed the τ -ω model applied and was correctly specified (temper-

ature, dielectric mixing model [Dobson; silt loam], single-scattering albedo ω = 0.05, etc.). For a given value of τtrue, we

simulated the V-polarized brightness temperatures for dry and wet soil moisture conditions. These brightness tempera-20

tures were in turn the basis for estimating soil moisture by inverting the τ -ω model using the wrong τinv as a function of

∆τ . For both dry and wet soil moisture conditions, the deviation was an estimate of the retrieval bias: their mean was

taken to be an estimate of the offset M , whereas their difference allowed us to estimate L. When plotted against ∆τ ,

M and L increase nearly linearly and only show a weak dependence on tτtrue. The slope of this relation is thus well

but not perfectly defined. We refer to the slopes as µ? (for M ) and λ? (for L), respectively. To account for the spread25

due to the slight curvature and dependence on τ , we estimated the likely range of values by computing the slopes from

the differences in L or M between five equally spaced values of ∆τ (between -0.1 and 0.1), repeated for equally many

values of τtrue (between 0.1 and 0.6). The range of these values was λ?pred ∈ [2.0,3.8] and µ?pred ∈ [0.33,0.65] m3 m−3.

These ranges will later be compared to data-driven estimates, thus providing a first-order assessment of the agreement

between predictions and observations, despite the simplified setup and neglect of other retrieval errors.30
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Figure 3. a) The expected error structure due to a misspecified vegetation in the SMAP retrieval. Additive bias M , sensitivity L and

variable noise level S2 induced by a misspecified vegetation optical depth τ , as predicted by the τ -ω model for the SMAP satellite and

single-scattering albedo ω = 0.05. Two different values of the true τ were assumed (0.06 in dark blue, 0.01 in light blue). The slopes

of these approximately linear relationships will later be compared to independent data-driven estimates. b) General explanation of the

bias terms, illustrated for a hypothetical time-changing sensitivity L(t) and offsetM(t) (underlying change in ∆τ not shown). A varying

sensitivity changes the response of the SMAP retrieval to a unit change in the true soil moisture. When it is larger than one, the SMAP

data have a larger dynamic range than the true soil moisture (illustrated by the slope > 1 in the inset). The time-average value of L

is l, and the temporal standard deviation of L is given by |λ| (length of arrow). A variable M induces non-constant offsets, and the

magnitude of its temporal variability is given by |µ|. M > 0 corresponds to a positive offset (shown in the inset).

The same overcompensation that increases the sensitivity also increases the noise level, so that we also made the variance

of ε(t), S2(t), time dependent. We used two explanatory variables, exp∆τ and the external τ (both normalized, Pκ,n = 2).

The reason for also including τ was that the noise level S2 is predicted to depend on τ even if ∆τ is constant, in contrast to the

bias terms. By transforming ∆τ to exp∆τ , the predicted dependence of S2 shown in Fig. 3 could be reproduced accurately.

The dependence on exp∆τ is positive, i.e. an increase in ∆τ is associated with an increase in noise level. We would thus5

expect κexp∆τ > 0.

The same error structure was assumed for the re-analysis data[.. ]. The inclusion of a ∆τ -dependent bias for the reanalysis

product is not driven by physical reasoning, but for statistical reasons. By controlling for the same explanatory variables for

both products, the impact of potential confounders - e.g. a seasonal bias that is correlated with ∆τ - on the bias estimates

of the remotely sensed product can be reduced. If this were not done, the model would try to partially adjust the time-10

variable bias term of the remote sensing product to minimize the systematic differences to the re-analysis product, thus

distorting the bias estimates. The in-situ observations were taken as reference product [.. ]y0: L= 1, M = 0, κ= 0). All

12



other model components – the soil moisture and error distributions, the priors – [.. ]were identical to the simulation study (Tab.

1).

[.. ]

To compare the estimated biases with the model predictions, we re-expressed λ and µ in absolute terms by reversing the

rescaling from ∆τ to w∆τ . Thus, [.. ]5

λ? =
λ

std(∆τ)
and µ? =

µ

std(∆τ)
(10)

are, respectively, the slope of L and M vs ∆τ . In other words, [.. ]the estimated λ? describes the inferred change in L

for a unit change in ∆τ , and similarly for µ?. They can be directly compared to the model predictions [.. ]described above.

Note that the division only reverses the scaling but not the offset inherent in the normalization from ∆τ to w∆τ . Estimating

the derivative at the mean value of ∆τ (due to the offset) rather than at ∆τ = 0 has, however, no impact for a purely linear10

relation.

To test the robustness of the estimates, we varied the input data and the model configuration. Instead of using the SMOS

τ as reference, we also derived ∆τ from the SMAP dual channel (LOWESS smoothed) retrievals (O’ Neill et al., 2017) and

from contemporaneous MODIS NDVI data (Didan, 2017). We converted the MODIS NDVI to τ using the same equations as

in the generation of the SMAP input climatology. We refer to these model runs as SMAP DC τ and MODIS τ , respectively. We15

also modified the external soil moisture products: instead of MERRA-2 we used GLDAS-2 (GLDAS θ), and we also dropped

the reanalysis data set altogether (no reanalysis). This is possible in a Bayesian setting; to improve the identification of the

errors, we assigned a narrower prior distribution to the in-situ noise magnitude (0.02 m3 m−3). [.. ]To account for a potential

confounding of τ itself, which may also have an effect on the biases, we included the smoothed SMOS τ as second

explanatory variable for L and M , referred to as τ control. Finally, we also modified the model configuration. We made20

the probability model for θ vary seasonally [.. ](θ spline) to account for the non-negligible impact of this detail of the model

specification on the estimates observed in the simulation (Sec. 2.1.2[.. ]).

4.1.3 Estimates of vegetation-soil moisture coupling

To explore the relation between time-variable vegetation biases and estimates of vegetation-water coupling, we analysed the

coefficient of determination R2 between τ and soil moisture anomalies. These were derived from the SMOS τ time series and25

both SMAP and in-situ soil moisture, respectively. The associated anomalies τ ′ and θ′ were obtained by subtracting a seasonal

climatology that in turn was the smoothed (30 day) multi-year average of the input time series. To compare the SMAP and the

in-situ soil moisture data, we then computed the difference in the coefficient of determination ∆R2

∆R2 =R2(τ ′SMOS,θ
′
SMAP)−R2(τ ′SMOS,θ

′
in−situ) (11)

If the SMAP soil moisture were only contaminated by random noise relative to the in-situ data, ∆R2 would tend to be negative.30

Time-variable vegetation biases, on the other hand, can induce positive values. Time-average biases cancel out. Of course, there

are also other error sources such as representativeness errors, especially for the sparse networks. Further, the time series are
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comparatively short, but ∆R2 can provide a first tentative assessment of the reliability of coupling metrics such as R2 in the

presence of time-variable biases.

4.2 Results

4.2.1 Network sites

SMAP biases that track the vegetation misspecification ∆τ are common at the core validation sites. Especially changes in5

the sensitivity can be large. Reanalysis bias parameters were estimated as well, but they are considerably smaller in

magnitude than those of the SMAP product.

The varying sensitivity of SMAP is illustrated for the South Fork site, Iowa (USA), in Fig. 4a). In July, when the predom-

inantly cultivated corn is heading and flowering (Tomer et al., 2008), the magnitude of the SMAP response to rainfall events

matches that of the in-situ data. Conversely, in autumn (senescence, post harvest) the sensitivity of SMAP to soil moisture10

variations is diminished. The Bayesian inference reproduces this visually inferred pattern, as the sensitivity L drops by more

than 0.5 (or 50%). By design, the temporal changes in L are governed by changes in ∆τ , which drops by about 0.1 from

July to September. Over the entire time series, its temporal variability is |λ|= 0.3. Note that even when ∆τ ≈ 0 (August), the

sensitivity is too low. As ∆τ is essentially zero on average over the entire time series ([.. ]-0.01), the sensitivity at ∆τ = 0

corresponds to the time-average value l. Its posterior median is 0.64 and thus less than the expected value of 1. We will return15

to the time-average biases later.

Pronounced changes in the sensitivity are found for all network sites but one (Fig. 4b). For the most part their magnitude is

large, as the |λ| values correspond to a temporal variability of around 10 to 50%. The inferred relation to ∆τ is consistently

positive (λ > 0), i.e. as ∆τ increases over time, so does the SMAP sensitivity L(t). The inferred direction hence matches

the model prediction (Fig. 3a) of a positive λ. The model does not constrain the magnitude of the λ parameter because the20

latter is an internally normalized quantity. When converted into absolute quantities (λ?), the inferred dependence of L on ∆τ

matches the model predictions reasonably well (Fig. 4b). In other words, the data-derived, completely independent estimate

is broadly consistent with the predicted impact of a τ misspecification in the retrieval, despite limitations in the estimates

(e.g. issues with the reference τ ) and the model predictions (e.g. assumed knowledge of the land surface temperature) of

λ?. There is no clear apparent dependence of λ? on location or land cover properties; for instance, Monte Buey and Bell25

Ville are within < 100 km of one another, and despite the similarity in planted crops the latter’s λ? is considerably larger.

Also the additive biases track changes in ∆τ at the network sites, but to a lesser extent (Fig. 4c). Over time, the biases vary

by up to 0.02 m3 m−3 in magnitude. The inferred direction, µ > 0, matches the predictions, as an increase in ∆τ corresponds

to a larger offset. However, the magnitude of the inferred change of the offset with ∆τ , µ?, is generally smaller than predicted.

A very small value of µ? is found at the South Fork site: it is a factor of ten smaller than its predicted range (Fig. 4c). It is also30

small enough to be practically irrelevant, as the additive bias at South Fork is inferred to be essentially constant (Fig. 4a).

The time-variable biases are complemented by the time-average biases, which are quite large at several network sites. The

time-average sensitivity l deviates from its nominal value of one by more than 30% at three out of 8 sites (Fig. 5). It tends to
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Figure 4. Time-variable biases over the network sites. a) The SMAP product’s sensitivity decreases from summer to late autumn 2015 at the

South Fork site (42.4N, 93.4W), which is reflected by a decrease in the inferred sensitivity L that tracks a decrease in ∆τ : in early summer

L(t)≈ 1, but it subsequently drops well below the time-average value of l = 0.7. Its temporal standard deviation is given by λ= 0.3 (arrow).

M(t) is approximately constant (M(t)≈m) because µ is small (not shown). b) Over the network sites, the association of changes in the

sensitivity with changes in ∆τ is predominantly positive ([.. ]marker: posterior median, lines: 5–95% uncertainty), as predicted by the

model (positive λ; grey background). The magnitude of the dependence for a unit change in ∆τ , λ? of Eq. 10, is broadly consistent with

predictions by the τ -ω model of Sec. 4.1.2. c) The additive biases are of the right direction (positive), but the unnormalized quantities µ?

smaller than [.. ]predicted by the model.

be larger than one, as may be expected considering the surface soil moisture SMAP is sensitive to has a larger dynamic range

than the moisture at the depth of the probes. The South Fork site of (Fig. 4a) with l < 1 is thus somewhat unusual. However, it

is typical in that its time-average additive bias m is negative. Conversely, the noise level σ inferred using our approach tends to

be small, usually on the order of 0.03 m3 m−3 (Fig. 5). These values are not directly comparable to standard RMSE estimates

because our approach disentangles the quasi-random noise from a sensitivity that deviates from 1, temporally variable biases5

associated with ∆τ and in-situ errors. Also, the quasi-random errors tend to increase with ∆τ (Fig. 5), as predicted by the τ -ω

model (Fig. 3a). However, there is considerable variability in the magnitude across the study sties.

4.2.2 Sensitivity analysis
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Figure 5. The time-average error properties l (sensitivity),m (additive bias) and σ (noise standard deviation), and the κ parameter (sensitivity

of SMAP’s noise level to ∆τ ) as inferred for all network sites. Meaning of markers and lines as in Fig. 4.

[.. ] Our sensitivity analyses focus on the reference τ product. When the SMAP dual channel result is used as the reference τ

product, the bias parameters change little for the vast majority of sites (Fig. 6[.. ], column 1). When the posterior uncertainties

are taken into account, the λ and µ values tend to overlap with those obtained using the SMOS τ product. This is despite

potential disadvantages of the SMOS product (different resolution and footprint than SMAP, different retrieval model and

use of NDVI-based regularization in the retrieval (Al Bitar et al., 2017)) or of the SMAP DC product (e.g. no multi-angular5

information, measurement noise-induced error correlations with soil moisture estimate). Taken together, the similarity

over the network sites indicates that the results are not particularly sensitive to whether the SMOS or the SMAP DC τ

product serves as the reference for ∆τ .

By contrast, [.. ]the estimates can change substantially when τ is derived from contemporaneous NDVI data, [.. ]and

predominantly they are smaller in magnitude (Fig. 6, column 2). If the problem with the use of the NDVI climatology10

in the retrieval were the use of a climatology alone, we would expect similar estimates. Conversely, we would expect

the estimates to be smaller in magnitude if it was the link between NDVI and τ [.. ]that led to an inaccurate vegetation

correction, because the NDVI-based ∆τ would provide little information on the biases. The smaller estimates that were

actually observed may thus indicate that the use of a climatology [.. ]is not a dominant error source in the SMAP vegetation

input data. [.. ]15

The estimates of the time-variable biases are reasonably robust to other aspects of the model specification. The impact

of replacing the MERRA2 with the GLDAS2 soil moisture or dropping it altogether is also small (Fig. 6, columns 3 and 4).

[.. ]By additionally including the smoothed SMOS τ as an explanatory variable, potential confounding on ∆τ could be

assessed: the estimates changed very little for all but one station (Fig. 6, column 5). When allowing the soil moisture

parameters A and B to vary seasonally (Eq. 5), the parameter estimates do not change substantially for all sites but one (Fig. 6,20

[.. ]column 6). The standard setup of the probabilistic model hence seems adequate for quantifying the SMAP error structure.
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Robustness of SMAP bias parameters to model specification
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Figure 6. Robustness quantified by changes in the estimated λ (top row, [-]) and µ (bottom row, [m3 m−3]) parameters. Each panel compares

the reference estimates on the horizontal axis (median: marker, lines: 10–90% posterior probability interval) to those obtained with the

modified model on the vertical axis (cf. Sec. 4.1.2). The most prominent outliers are annotated – B: Bell Ville, C: Carman, M: Monte Buey,

R: REMEDHUS.

4.2.3 Sparse sites

Across the sparse sites within the contiguous US we commonly find pronounced time-variable biases (Fig. 7a-b). While the

results over the sparse sites are deemed much less reliable than those over the network sites, they are similar in areas of overlap.

The largest changes in sensitivity of λ≈ 0.3 are found over croplands (e.g. Midwest, Central Valley in California). As predicted

by the model, the λ are predominantly positive but notable exceptions occur in the Mississippi Delta. Large and positive λ are5

also common over pastures and grasslands. The additive bias parameters µ tend to show a similar spatial pattern, in that they

are largest over crop- and grasslands (Fig. 7b). [.. ]

Large biases over crop- and grasslands are also found when ∆τ is computed from the SMAP DC product (Fig. 8a,b).

The spatial patterns are very similar. Again, there is a close correspondence between the sparse and the network sites.

Thus, irrespective of the ∆τ product, the analysis of the sparse sites reveals sizeable biases over grasslands in addition to10

croplands.

To analyse the estimated noise level for all three products, we computed a normalized version σ l−1, where the division

by l accounts for the different dynamic ranges of the three products by scaling the noise level with respect to the in-situ

data (Fig. 9; SMOS-based ∆τ ). SMAP achieves a median value of 0.045 m3 m−3, a higher value than that of the in-

situ data or MERRA-2 (0.029 and 0.040 m3 m−3, respectively). For all three products, the corresponding values over15

the network sites are smaller by ∼ 50%. For the in-situ data, the larger noise level at the sparse sites is not surprising,

owing to their limited representativeness. However, direct comparisons could be misleading. For instance, the larger noise
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Figure 7. Time-variable biases and ∆R2 coupling metric across the contiguous US obtained using the SMOS τ product, shown for the

network sites and the sparse sites (only those with >250 valid SMAP observations). a) The time-dependent sensitivity parameters λ

are predominantly positive, and the largest magnitudes are found over crop- and grasslands. b) The additive biases exhibit a similar

spatial pattern. c) The degree of association R2 between anomalies of vegetation τ and soil moisture is commonly higher for SMAP

than for in-situ soil moisture (∆R2 > 0).
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Figure 8. Time-variable biases and ∆R2 coupling metric across the contiguous US, [.. ]obtained using the [.. ]SMAP [.. ]DC τ product. [..

]Cf. [.. ]Fig. [.. ]7 for [.. ]results based on the SMOS τ product.

18



0.00 0.02 0.04 0.06 0.08

σ l−1 [m3 m−3]

MERRA-2

in-situ

SMAP

MERRA-2

in-situ

SMAP

Product standard deviation, matched to in-situ

Networks Sparse

Figure 9. Estimated noise level normalized to the in-situ dynamic range. For both the network and the sparse in-situ sites, the distribu-
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level estimates (and greater spread of these estimates) may be partially accounted for by the small number of available

networks and by the heterogeneous land cover and vegetation conditions across the sparse sites in the contiguous US.

4.2.4 Vegetation-soil moisture coupling

The observed coupling between vegetation and soil moisture anomalies is larger when using SMAP than when using in-situ soil

moisture data (Fig. 7c). Positive values of ∆R2 are particularly pronounced over croplands (0.12 on average), with the spatial5

pattern largely conforming to that of the time-variable biases. Conversely, if the time-variable errors in the remotely sensed

soil moisture were purely random, the degree of association would decrease, i.e. ∆R2 < 0. Even though spatial representative

errors are likely large for the sparse networks, the ∆R2 values are comparable at proximal network sites. When the SMAP DC

τ product is used instead, the results are similar in terms of both magnitudes and spatial patterns (Fig. 8c).

5 [.. ]10

[.. ]While the spatial patterns largely match those of the time-variable [.. ]biases, the link between them is not clear and

not necessarily uniform across all sites. The computation of anomalies largely removes seasonal offsets, which constitute

a major fraction of the estimated additive biases. However, it does not remove higher-frequency variations or inter-annual

differences, although the record is too short to reliably study those. Neither can it account for the changes in sensitivity,

which are particularly large over croplands. Finally, the in-situ soil moisture anomalies, predominantly derived from single15

probes, are subject to major uncertainties. All these factors likely contribute to the elevated associations between the

τ and the SMAP soil moisture anomalies (∆R2 > 0, but the precise impact of time-variable [.. ]biases on our ability to

diagnose such interactions remains an open question.

[.. ]
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5 Discussion

5.1 Detected time-variable errors in the SMAP product

By applying Bayesian triple collocation to the SMAP soil moisture product, we detect time-variable biases. These time-

variable biases track the misspecification of the vegetation optical depth ∆τ during the soil moisture retrieval. They are both

additive and multiplicative, i.e. not only the offset but also the sensitivity changes over time. Especially the changes in sensitiv-5

ity can be large over croplands, as seasonal variations in [.. ]L on the order of 30% (λ≈ 0.3) deserve attention in future studies

(Fig. 4, 7). The spatial patterns of the time-variable biases largely match those of the temporal autocorrelation estimated

by Dong et al. (2018), which were also largest over croplands. These and our findings suggest that the NDVI-based

vegetation correction in the SMAP retrieval introduces particularly large errors in agricultural regions.

A mechanistic interpretation of the inferred biases is complicated by a number of poorly understood factors. First, the10

time-variable biases are relative to the in-situ data. The results over the sparse sites should hence be interpreted with caution

due to representativeness error, even if they are similar to those at the dense high-quality network sites [.. ](Fig. 7). Also at the

network sites, residual time-dependent biases [.. ]in the in-situ data cannot be ruled out completely.

[.. ]Another major uncertainty are errors in the satellite-derived τ products, which are not accounted for in the esti-

mation. One reason why these errors are difficult to quantify is that in the context of soil moisture retrieval τ can be15

considered as essentially a model-internal effective quantity (Parrens et al., 2017). As such, an observation-based es-

timate of τ reflects not only the vegetation conditions but also inaccuracies of the tau-omega model itself, the way it is

parameterized and other environmental conditions. An instance for the latter are roughness changes associated with har-

vest in croplands (Patton and Hornbuckle, 2013), which likely contribute to the autumnal increase in SMOS τ in Fig. 4[..

]a. To a good degree of approximation, roughness changes will be captured by the effective τ that the SMOS or SMAP20

DC algorithms retrieve from the brightness temperatures (Parrens et al., 2017). Nevertheless, the estimates used in this

study will still be affected by errors with respect to this effective quantity that can be random and systematic (e.g. due

to the different incidence angles for SMOS and SMAP). The impact of such errors on the estimated biases is unknown,

but analogies to simple regression models suggest that they can distort these estimates in either direction (Frost and

Thompson, 2002).25

While it is premature to attribute the inferred biases completely to an imperfect vegetation correction, there are two

lines of reasoning that suggest that the inferred biases are not spurious. First, they are fairly consistent across croplands,

and also between sites with sparse and dense in-situ [.. ]networks (Fig. 7). Also, they tend to be large both in absolute

terms (e.g. λ > 0.1) and compared to the posterior uncertainties. Further, they are also robust to the specification of the

input τ product (SMAP DC instead of SMOS) and to several model modifications (Sec. 4.2.2). However, these results are30

purely descriptive in that they only quantify associations, rather than establishing a causal link. A first step towards such

a mechanistic interpretation is the comparison of the time-variable biases with predictions by the τ -ω model. This second

line of reasoning suggests that the estimated multiplicative biases λ? are largely consistent with theoretical expectations

(Fig. 4). However, this analysis is contingent on i) the tau-omega model being appropriate and correctly specified (e.g. [..
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]known ω), ii) there being no confounding biases such as seasonal inundation, and iii) the sufficient accuracy of the input

τ product. It is difficult to dispel these concerns, and indeed the deviations from the predictions (for µ?) may indicate that

unconsidered phenomena also contribute to the time-varying biases in addition to those resulting from the vegetation

correction.

One further caveat is that also time-average biases are present (additive bias: m 6= 0, sensitivity: l 6= 1). For instance, the5

SMAP retrievals at the South Fork site have too low a sensitivity (l < 1) and are too dry (negative m) on average (Fig. 4a).

Our analysis has focused on the time-dependent biases, partly because the time-independent biases are better known and more

commonly compensated for in analyses such as data assimilation studies (Yilmaz and Crow, 2013; Kornelsen and Coulibaly,

2015; Colliander et al., 2017). Also, there are many potential sources for these time-invariant biases between the retrievals and

the in-situ data, e.g. the calibration of the in-situ probes, the dielectric mixing model in the retrieval, or an offset in the mean10

input vegetation optical depth (i.e. mean(∆τ) 6= 0).

We conclude that our key finding is the presence of sizeable time-variable biases in the SMAP product. They are

associated with, but likely not entirely caused by, deviations of the a priori τ used in the soil moisture retrieval from τ

estimated from contemporaneous microwave data.

5.2 Implications for hydrological applications15

The time-varying biases can have a negative impact in many applications. The changing sensitivity impedes the seasonal

comparison of soil moisture dynamics, as the same SMAP-observed change corresponds to a wide range of actual soil mois-

ture changes depending on the season [.. ](e.g. Fig. 4a). Variable sensitivities are particularly problematic for characterizing

droughts, as extreme conditions may not be apparent in the SMAP data when the sensitivity happens to be small [.. ](as would

happen for reduced vegetation water content). These issues also carry over to inter-annual comparisons. Inter-annual20

differences in the vegetation water content may, owing to the use of a climatology for τ in the retrieval, induce a spurious

vegetation signal in the soil moisture [.. ]retrievals.

The spurious vegetation signal in the soil moisture data may distort estimates of water-vegetation coupling. We find

inflated values of R2 between the SMOS vegetation optical depth and SMAP soil moisture, whereas purely random noise

would decrease the R2 (Fig. 7c). [.. ]While the spatial patterns largely match those of the estimated biases, this does not25

imply a causal link between the two. However, the inflated R2 values hint at potential pitfalls in [.. ]using remotely sensed

soil moisture to study global hydrology.

[.. ]

5.3 Estimating complex error structures

Soil moisture products can be subject to complex, time-variable errors, as revealed by our novel method for estimating30

such complex error structures from data. Other estimation procedures are conceivable, especially if high-quality in-situ

data are available, and should be explored in the future. Our Bayesian triple collocation approach is widely applicable

because it yields consistent estimates of error magnitudes and biases even when no error-free reference data set is
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available. It does, however, have to be assumed to be free of systematic error. The method is flexible, so that the error

structure parameterization can be adapted to the problem at hand. We hope that this will enable the community to better

characterize the uncertainties of remotely sensed soil moisture products. The knowledge of time-variable structural errors

is key to improving the products, and it also helps to inform the application of these data sets in practice.

The presented approach could be applied to a wide range of variables besides soil moisture, such as wind speed,5

land surface fluxes and leaf area index. The issue of non-constant error sources, be they associated with environmental

conditions or varying observational parameters, likely pertains to many such variables. By shedding light onto residual

biases, our approach could in the future contribute to the development of improved retrieval approaches.

6 Conclusions

We developed a probabilistic approach for estimating complex error structures to study time-variable biases in the SMAP10

soil moisture product. We hypothesized that temporal changes in the error structure arise due to an inaccurate vegetation

correction in the retrieval, so that the biases relative to the in-situ data track the misspecification in the vegetation optical

depth ∆τ . Our conclusions are as follows

1. Sizeable temporal changes in the offset and the sensitivity were detected, and they were particularly large over

croplands (e.g. change in sensitivity ∼ 30%).15

2. While the estimated time-variable biases track the ∆τ (with respect to contemporaneous SMOS or SMAP dual

channel estimates), they are not necessarily entirely caused by an inappropriate vegetation correction. The attribu-

tion to this source is complicated by the potential presence of confounding variables or errors in the reference τ .

However, the time-variable multiplicative biases match the expected biases, as predicted by the τ -ω model, in di-

rection and magnitude, suggesting that the vegetation correction is indeed an issue. Conversely, the additive biases20

only match in direction.

3. The time-variable biases impede the seasonal comparison of remotely sensed soil moisture values. In particular,

extreme conditions like droughts may not be apparent in the SMAP data when the sensitivity happens to be small.

4. The presented estimation approach is widely applicable because it yields consistent estimates of error magnitude

and biases even when no error-free reference data set is available. Further, it is flexible in that a wide range of25

different kinds of error structures can be estimated purely from observations.

More generally, our findings illustrate the importance of recognizing time-variable biases in [.. ]soil moisture products. The

uncertainty analyses, including the choice of metrics or error parameters, must account for them. The widely used RMSE

cannot distinguish between such systematic errors and white noise. Neglecting that distinction can easily give rise to misleading

interpretations, for instance into how water availability regulates [.. ]vegetation processes. Remotely sensed soil moisture30

products provide unique insight into [.. ]such vegetation-hydrology couplings, but only up to a point as phenology-dependent
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biases of unknown size are potentially present in all remotely sensed products. Neglecting the associated seasonal and inter-

annual biases will distort observation-based estimates of the couplings. Robust estimates of such complex error structures can

help to mitigate these biases, and thus to exploit the full potential of observational data sets.
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