
This paper describes and applies a new analysis technique to identify time-dependent biases 
present in remotely sensed soil moisture products. This represents a very significant 
methodological advancement in the tools available to examine the error structure of these products 
(indeed any remotely sensed product). The authors offer a compelling motivation their approach 
(i.e., as we start to use remotely sensed soil moisture data products for coupling applications, it is 
important that we develop a more sophisticated understanding of their underlying errors). In my 
view, this paper represents a major step in that direction and has the potential to impact a great 
deal of on-going research plans (including my own). However, as is often the case with highly novel 
manuscripts, there are some important questions regarding the presentation and interpretation of 
results that needed to be cleared up prior to publication. 
Wade Crow 
 

We thank Wade Crow for his insightful review. We have made numerous modifications to the 

manuscript: apart from two new figures, we discuss several key results in considerably more 

detail. 

 
1) What happens if there is error correlation between the explanatory variable (w) and the products 
(y)? There are credible reasons to suspect that this arises between the SMOS “tau” product and 
the SMAP L3 soil moisture product - particularly in agricultural areas. Both products suffer from a 
common dependence of the zero-order tau-omega emission equation and the assumption of 
temporally constant surface rough-ness. These assumptions are particularly problematic over 
cropland agriculture and their violation could easily induce correlated errors into both products. A 
related issue is that the interpretation of SMOS tau products is known to be complicated in 
agricultural areas (see e.g., https://lib.dr.iastate.edu/agron_pubs/115). In fact the “reference” 
SMOS tau time series shown in Figure 4a demonstrates questionable features. First, corn crop 
canopies (responsible for 60% of the land cover in the South Fork water shed) typically demonstrate 
a biomass plateau between growth stages R2 and R6, which in Iowa which corresponds (roughly) 
to between August 1 and September 15 later. This expected “plateau” is actually somewhat more 
consistent with the SMAP “input tau” than the SMOS “reference tau” plotted in Figure 4a. Second, 
the rise in SMOS tau after October 1 is almost certainly a roughness artifact associated with post-
harvest tillage and not a real vegetation opacity signal. So, there are credible reasons to suspect 
that (at least some) of the dynamics in the “delta tau” results actually reflect error in the SMOS tau 
"reference" (versus the SMAP tau input). 
I’m probably overstating the problems with SMOS tau product here, but the broader question is 
how results are impacted by the presence of (potentially non-independent) errors in the explanatory 
variable? Is it possible that the diagnosed time dependent vegetation bias is due (in part) to the 
presence of error in in the SMOS tau product?  
 

The impact of errors in the tau product on the estimated bias parameters is an important concern 

that we now address in more detail throughout the manuscript. The main changes are extended 

discussions and a greater focus on an alternative tau product (sensitivity analysis based on the 

SMAP tau product) through extended discussions and a new figure. We are aware that we cannot 

resolve the issues mentioned, a fact we acknowledge openly, but we hope the extended 

discussions will provide a balanced picture. 

There is now a separate discussion section that deals with the interpretation of the inferred biases. 

There, we posit that the role of errors when analysing the results is contingent on what general 

view one adopts. One of these views is purely descriptive, the other tries to establish a causal link. 

The purely descriptive view is easier to uphold because it is only concerned with associations 

rather than the mechanisms of these associations. As associations can be misleading if interpreted 

causally (errors in the tau product, confounding, etc.), we have clearly stressed the largely 



descriptive nature of our analyses by employing phrases such as "errors associated with the 

vegetation correction" rather than induced or even caused.  

It is the causal view that is more directly affected by errors in the input tau product. While we 

focus on a largely descriptive view, we do engage in analyses towards establishing a causal link, 

chiefly via the comparison to tau omega predictions. These comparisons rely on the assumptions 

of no confounding and no errors in the input tau product. We now mention these assumptions is 

explicitly (see below), and we discuss three important points in this context 

- the definition of the errors: in the context of soil moisture retrieval, we believe that it is 

mainly a model-internal effective parameter (that can partially account for e.g. changes in 

effective roughness or for an inappropriate choice of the effective scattering albedo). It is 

this effective parameter that should serve as reference in the computation of delta tau, 

rather than a purely vegetation-based proxy.  

- the nature of the errors, which have both systematic and random components 

- possible confounders 

The distinction between a hypothetical true tau and an effective tau is, we believe, an important 

one to make, both for interpreting the estimated biases but also with the view of diagnosing of 

vegetation-water interactions that forms part of our motivation for studying time-varying biases. 

For single-channel retrievals, such a value typically exists: for a given soil moisture value (and 

forward model, single scattering albedo, etc.) it is the value that aligns the error-free brightness 

temperature with the true soil moisture. For dual-channel or multi-angular algorithms, such a 

value may not exist, in which case a retrieval of both tau and soil moisture would yield a wrong 

soil moisture estimate. However, it may be a good approximation, as hinted at by Parrens et al. 

2017. They found that a joint retrieval of a single vegetation & roughness parameter, i.e. one 

effective tau parameter, yielded good soil moisture estimation results; this should work even 

better for a constant incidence angle (because in that case, the value of N_r in their model is 

immaterial). 

However, even if such an effective tau did exist, it would be dependent on the algorithm, 

incidence angle, etc. We stress this view in the discussion. We also highlight the limitations of this 

view in Sec. 5.2, where we discuss the diagnosing of vegetation-water interactions for which one 

tends to consider tau to be a vegetation proxy. 

Owing to the complexities, we do not hazard a guess as to what influence deviations in the SMOS 

or SMAP DC tau from either a "true" or an "effective" tau have on the estimated biases. Based on 

analogies to regression modelling, we would expect causally biased estimates in the presence of 

random or systematic errors. We state this openly in the completely revised discussions. The two 

key paragraphs in the new discussion section read: 

 

A mechanistic interpretation of the inferred biases is complicated by a number of poorly 
understood factors. First, the time-variable biases are relative to the in-situ data. The 
results over the sparse sites should hence be interpreted with caution due to 



representativeness error, even if they are similar to those at the dense high-quality 
network sites. Even at the network sites, residual time-dependent biases of the in-situ data 
cannot be ruled out completely. Another major uncertainty are errors in the satellite-
derived contemporaneous tau products, which are not accounted for in the estimation. 
One important reason for why these errors are difficult to quantify is that in the context 
of soil moisture retrieval tau can be considered as essentially a model-internal effective 
quantity (Parrens17). As such, an observation-based estimate of tau reflects not only the 
vegetation conditions but also inaccuracies of the tau-omega model itself, the way it is 
parameterized and other environmental conditions. An instance for the latter are 
roughness changes associated with harvest in croplands (Patton13) which likely 
contribute to the autumnal increase in SMOS $\tau$ in Fig. 6a. To a good degree of 
approximation, roughness changes will be captured by the effective \tau that the SMOS 
or SMAP DC algorithms retrieve from the brightness temperatures (Parrens17). 
Nevertheless, the estimates used in this study will still be affected by systematic and 
random errors with respect to this effective quantity. Systematic differences between the 
effective tau for the SMAP retrievals and that of the SMOS satellite are, for instance, due 
to different incidence angles and model parameters. The impact of such errors on the 
estimated biases is unknown, but analogies to simple regression models suggest that they 
can distort these estimates in either direction. 
 
While it is premature to attribute the inferred biases completely to an imperfect vegetation 
correction, there are two lines of reasoning that suggest that the inferred biases are not 
spurious. First, they are fairly consistent across croplands, and also between sites with 
sparse and dense in-situ networks. Also, they tend to be large both in absolute terms (e.g. 
\lambda > 0.1) and compared to the posterior uncertainties. Further, they are also robust 
to the specification of the input tau product (SMAP DC instead of SMOS tau) and to 
several model modifications (Sec.5). However, these results are purely descriptive in that 
they only quantify associations, rather than establishing a causal link. A first step towards 
such a mechanistic interpretation is the comparison of the time-variable biases with 
predictions by the \tau-\omega model. This second line of reasoning suggests that the 
magnitude of the multiplicative biases lambda* is largely consistent with theoretical 
expectations (Fig. 4a). However, this analysis is contingent on i) the tau-omega model 
being appropriate and correctly specified (e.g. known \omega), ii) there being no 
confounding biases such as seasonal inundation, and iii) the sufficient accuracy of the 
input tau product. It is difficult to dispel these concerns, and indeed the deviations from 
the predictions (for mu*) indicate that unconsidered phenomena also contribute to the 
time-varying biases in addition to those resulting from the vegetation correction. 
 
2) Section 2.1.1 – While the notation presented here which suggests that all three soil moisture 
products are subject to the same error model, I couldn’t find any discussion of retrieved error 
parameters for the other two soil moisture products (i.e., in situ and MERRA). In addition, there 
seems to be a break in symmetry in that the selected explanatory variable is relevant for only one 
product (SMAP L3) and Figure 1 seems to indicate that no explanatory is applied to the in situ 
product. One of the appealing facets of triple collocation is the symmetry in its treatment of all three 
products. Does the break in symmetry applied here (via the selection of a single explanatory 
variable) preclude the objective cross comparison of error results across all three products? 
Discussion of error results for the other two products would also help establish credibility of the 
approach (e.g., were in time dependent biases found in the MERRA product and did that analysis 
reflect the known superiority of the core network relative to the other two products?). 



 

We now discuss some of the estimated parameters pertaining to the other products. First, we 

have added a new figure (Fig. 8) that shows the estimated noise level for all three products, or 

more precisely a normalized version that facilitates inter-product comparisons. In particular, the 

discussion addresses the spatial representativeness issues raised at several points in the referee 

report: 

To analyse the estimated noise level for all three products, we computed a normalized 

version sigma/l, where the division by l accounts for the different dynamic ranges of the 

three products by scaling the noise level with respect to the in-situ data (Fig. 8). SMAP 

achieves a median value of 0.045 m3m-3, a higher value than that of the in-situ data or 

MERRA-2 (0.029 and 0.040 m3m-3, respectively). For all three products, the corresponding 

values over the network sites are smaller by around 50%. For the in-situ data, the larger 

noise level at the sparse sites is not surprising, owing to their limited representativeness. 

However, direct comparisons could be misleading. For instance, the larger noise level 

estimates (and greater spread of these estimates) may be partially accounted for by the 

small number of available networks and by the heterogeneous land cover and vegetation 

conditions across the sparse sites in the contiguous US. 

We also discuss MERRA mu/lambda parameters in a bit more detail, both in terms of the 

rationale and the results. With respect to the rationale, we have added that 'the inclusion of a 

delta tau dependent bias for the reanalysis product is not driven by physical reasoning, as the 

MODIS NDVI climatology that gives rise to a non-zero delta tau plays no role in the generation 

of the MERRA reanalysis product. However, there is a compelling statistical reason to include the 

same explanatory variables as in the remotely sensed product. By controlling for the same 

explanatory variables, the impact of potential confounders - e.g. a seasonal bias that is correlated 

with Delta tau - on the bias estimates of the remotely sensed product can be reduced. If this were 

not done, the model would try to partially adjust the time-variable bias term of the remote sensing 

product to minimize the systematic differences to the re-analysis product, thus distorting these 

bias estimates.' With respect to the results, we mention in the results that 'Reanalysis bias 

parameters were estimated as well, but they are considerably smaller in magnitude than those of 

the SMAP product.’ More precisely, the mu parameter of the MERRA product is 0.000 on average 

(compared to 0.007 for the SMAP product), whereas for lambda they are 0.04 and 0.18 

respectively. Further, their direction is highly heterogeneous, whereas the SMAP bias parameters 

are all of the same sign. 

Finally, we do not share the view that the notation in Section 2.1.1. suggests that the error models 

are identical for all products. To include the possibility of different error models, we indexed the 

explanatory variables and the number of explanatory variables by the product. To better highlight 

this dependence, we now write “The explanatory variables can depend on the product n as well 

as on the parameter (\mu, \lambda). We also highlight that we use a reference product that is 

assumed unbiased. 

 
3) Section 2.1.2 - The auto-regressive nature of a soil moisture time series signal is (arguably) its 
most defining characteristic. Therefore, the application of a transformed white noise process in (5) 



as a temporal soil moisture model is jarring. Some discussion regarding the sensitivity of results to 
the lack of serial correlation in (5) is needed. It is hard to imagine that the retrieval of time-dependent 
bias parameters is not impacted at least somewhat by the neglect of serial auto-correlation in the 
soil moisture model. 
 

We share those concerns, and we devised the simulation study to address some of them: in the 
simulations, the simulated soil moisture is auto-correlated, whereas the standard inference model 
implementation prescribes independent soil moisture values. However, we do agree that we did 
not discuss these aspects in sufficient detail. We now discuss the issue of time scales in the 
simulation section 3: 
 

The other crucial assumption in the model is the probability distribution for the soil 
moisture. Also here, the changes are typically small (up to 10% improvement in the RMSE, 
but a decrease in bias) when replacing the standard time-invariant model by a seasonally 
variable model. The improvement suggests that the model-internal soil moisture 
distribution can have an impact on the estimated bias parameters, in particular when the 
actual soil moisture is correlated with the explanatory variable, as it was in the simulated 
data. We would hence expect that for most applications it is the seasonal and sub-seasonal 
time scales that the soil moisture model should be able to capture. For comparison, 
autocorrelation on the inter-storm time scale that is not captured by our model but present 
in the simulated data did not seem to have a major impact (sufficient fidelity for the full 
model, Fig 2) 

 
To expand on our discussion in the manuscript, we believe it is important to distinguish different 
time scales. The temporal structure of soil moisture time series is of course complex. To simplify 
it, we isolated two important time scales: long (i.e. seasonal) time scales, and short time scales  
 
As outlined in our discussion, we believe that representing the seasonal time scales, on which 
also the biases vary in our application, is more important for accurate bias parameter inference 
than correctly representing the very short time scales. We do want to explore the shorter time 
scales in the future, though. It is definitely possible to represent such time scales in the model 
itself, but it requires a clever implementation (initially, we had tried to implement an AR-1 model 
for soil moisture, but it was impractical because the MCMC sampling was very slow, which is 
usually thought to indicate an issue with the way the model is set up. Internally, there are 
different ways to parameterize the same model, and they are not equivalent in terms of MCMC 
sampling efficiency). 
 

 
 
4a) Section 2.2 - I understand that the Bayesian interference applied here is a fairly standard 
statistical procedure; however, I think it would help the (general earth science) reader if the authors 
provided more expository detail on exactly how the MC chain is implemented to solve the Bayesian 
problem. I’m a little unclear, for example, on how time is handled in the analysis (i.e. the analysis 
conducted sequentially or as a batch process across all time?). 
 

To paint a clearer picture of the Bayesian approach, we have extended the description of the 

MCMC sampling. 



… Here, we rely on Hamiltonian Monte Carlo as implemented using the adaptive No-U-

Turn Sampler in pymc3. The No-U-Turn Sampler produces successive, dependent 

samples of the posterior distribution that are called a chain. Each sample consists of draws 

from the posterior distribution, or actually an approximation thereof, of all the 

unobserved random variables (Output in Fig1b). They comprise the parameter random 

variables (e.g. the time-dependent biases) as well the soil moisture time series, i.e. one 

value of \theta for each SMAP observation. For each location, we sample two independent 

chains with 2000 samples each, which standard quality controls (divergences, chain 

mixing) indicate is sufficient. Following common practice, the first 1000 samples are 

discarded 

 
4b) On a related point, I’m also not quite clear on how effective the triple collocation analogy is. For 
example, the decision to use N=3 products seem almost arbitrary (e.g., later on the analysis, the 
MERRA product is dropped with apparently minimal consequence). Presumably, larger N equates 
to tighter posterior distributions; however, this is never clarified. 
 

We agree that there are limitations to the analogy. Similar issues commonly arise when 

comparing classical inference approaches with Bayesian approaches. Classical approaches, 

including method-of-moments-type estimators that classical triple collocation can be thought an 

instance of, are plagued by problems of identifiability. In order for them to be applied 

successfully, the data must provide sufficient information to estimate all parameters at the same 

time, loosely speaking. In case of classical triple collocation, these are N=3 three error variances 

and often also N-1=two sets of bias parameters (often called additive and multiplicative bias), 

and they can be uniquely identified when N = 3 (but not when N = 2). 

Conversely, for Bayesian approaches this issue does not arise in this form, owing to the prior 

information. A proper prior distribution (which is what we adopt in our approach) ensures valid 

posterior distributions even in the extreme case that no data are available, in which prior = 

posterior. A relevant publication in this context is Bayarri and Berger, The Interplay of Bayesian 

and Frequentist Analysis, Statistical Science, 2004. 

In such data-poor situations the specific choice of prior plays a crucial role. It is to minimize the 

importance of the prior that we assumed 3 products, in analogy to triple collocation, as 3 products 

provide enough information even without any priors (classical case). For the scenario with only 

two products, we prescribed a much stronger prior on the in-situ data in an attempt to make up 

for the reduced information content.  

We do realize that these qualitative arguments can only partially address the valid concern raised 

by the reviewer. However, we do not have theoretical results to bolster these views. The 

simulations studies indicate that N = 3 products is sufficient to estimate the parameters of interest 

(more precisely: to substantially narrow the posterior distribution compared to the prior). With 

respect to the appropriate choice of products (number, type, etc.), our manuscript leaves a lot of 

questions open. 

 



To better address these concerns, we have provided an abridged summary of our rationale in Sec. 

2: 

We focus on a setting inspired by triple collocation studies, i.e. we for the most part 

assume that N = 3 independent and noisy products are available Gruber 16. In regular 

triple collocation, three independent products provide sufficient information to estimate 

the random errors of all three products and bias parameters of two of the three products. 

In a Bayesian setting, the presence of prior information allows one to reduce the number 

of independent products, but the results will strongly depend on the prior distributions. 

 

 
5) Section 4.1.1 – I had to read this section a couple of time before I realized that the in situ 
observations were directly used as one of the three products in the Bayesian analysis (and not 
withheld as some type of independent verification). Presumably, the in situ observations 
correspond to the “y_o” product in described in Figure 1; however, I’m not sure if that link is ever 
explicitly made. More clarification on this point would be helpful. 
 

We have made two changes. First, we now list the three input products in the very first sentence 

of this section, and then describe them in more detail. Second, we now explicitly state that the in-

situ data constitute the reference product y_0 (before, we had written that product n = 0 is the 

reference product). 

 
6) Section 4.2.1 – Here I missed something fairly basic. What exactly is meant by the “model” 
referenced in the 3rd paragraph of the section and the vertical shading in parts b) and c) of Figure 
4? Presumably, the authors are referring to the tau-omega model sensitivity results shown in Figure 
3. However, this is never quite made clear. In addition, it isn’t clear to me exactly how the (site-
independent) “model” bias parameters are calculated. As a result, I’m missing some of the insight 
provided by Figures 4b and 4c. Is the take-away message that, despite not being given explicit 
access to the tau-omega model, the Bayesian model recovers the same bias parameter results 
predicted by the tau-omega model? I recommend that the authors spend a little more time outlining 
the context behind (and the interpretation of) Figure 4. 
 

We have greatly extended the description and discussion of this aspect. The methods are now 

described in much greater detail. For M and L, we write 

To compute the predicted biases in Fig. 3a), we assumed the \tau-\omega model applied 

and was correctly specified (temperature, dielectric mixing model [Dobson; silt loam], 

single-scattering albedo \omega = 0.05, etc.). For a given value of \tau_{\mathrm{true}}, 

we simulated the V-polarized brightness temperatures for dry and wet soil moisture 

conditions. These brightness temperatures were in turn the basis for estimating soil 

moisture by inverting the \tau-\omega model using the wrong \tau_{\mathrm{inv}} as 

a function of \Delta \tau. For both dry and wet soil moisture conditions, the deviation 

was an estimate of the retrieval bias: their mean was taken to be an estimate of the offset 

M, whereas their difference allowed us to estimate L. When plotted against \Delta \tau, 

M and L increase nearly linearly and only show a weak dependence on 

t\tau_{\mathrm{true}}. The slope of this relation is thus well but not perfectly defined. 

We refer to the slopes as \mu^{\star} (for M) and \lambda^{\star} (for L), respectively. 



To account for the spread due to the slight curvature and dependence on \tau, we 

estimated the likely range of values by computing the slopes from the differences in L or 

M between five equally spaced values of \Delta \tau (between -0.1 and 0.1), repeated for 

equally many values of \tau_{\mathrm{true}} (between 0.1 and 0.6). The range of these 

values was \lambda^{\star}_{\mathrm{pred}} in [2.0, 3.8] and 

\mu^{\star}_{\mathrm{pred}} in [0.33, 0.65] m3m-3. These ranges will later be compared 

to data-driven estimates, thus providing a first-order assessment of the agreement 

between predictions and observations, despite the neglect of other retrieval errors. 

We have also amended Fig. 3 (showing the star parameters explicitly). In the results, we have 

extended the description of the model-estimate comparison: 

When converted into absolute quantities (\lambda^{\star}), the inferred dependence of 

L on \Delta \tau matches the model predictions reasonably well (Fig. 

\ref{fig:networksites}b). In other words, the data-derived, completely independent 

estimate is broadly consistent with the predicted impact of a \tau misspecification in the 

retrieval, despite limitations in the estimates (e.g. issues with the reference \tau) and the 

model predictions (e.g. assumed knowledge of the land surface temperature) of 

\lambda^{\star}. There is no clear apparent dependence of \lambda^{\star} on location 

or land cover properties; for instance, Monte Buey and Bell Ville are within < 100 km of 

one another, and despite the similarity in planted crops the latter's \lambda^{\star} is 

considerably larger. 

We now also revisit this issue in the discussions; the associated changes to the appropriate section 

are described in our reply to point 1. 

 
7) Section 4.2.2 - The authors provide a nice sensitivity analysis which describes the impact of 
using a different tau reference on results (in the first two columns of Figure 6). In theory, this should 
go a long way in addressing my first point; however, (as with the case in Figure 4 above) I did not 
take away as much from this figure as I had hoped. The lack of sensitivity in the time-variation bias 
parameters to the use of a second tau references is reassuring. However, I don’t quite follow why 
the large changes observations when using a contemporary MODIS tau indicates a lack of 
sensitivity to the use of MODIS tau climatology in the SMAP L3 retrievals. The delta tau generated 
by the MODIS contemporary minus climatology differences leads to significantly non-zero lambda 
and mu estimates - just not the same estimates as the application of “delta tau” results generated 
relative to SMOS tau. How exactly does this support the conclusion that inter-annual tau anomalies 
are not a significant source of error? Some additional discussion on this point would be very helpful. 
I also think a fuller sensitivity discussion of results in Figure 6 here would likely go a long way 
towards addressing concerns I raised in my first point. 
 

We have made two changes. First, we have added a new figure that also shows the results of the 

sparse sites obtained with the SMAP-based Delta tau. This figure also features in the second 

change, namely the extended descriptions. We also point out under what assumptions the smaller 

estimates obtained with the contemporaneous MODIS tau can be interpreted to indicate that the 

biases are not only due to outdated NDVI-derived data in the retrieval. In the results section, we 

write: 



Our sensitivity analyses focus on the reference \tau product. When the SMAP dual 

channel result is used as the reference \tau product, the bias parameters change little for 

the vast majority of sites (Fig. 6). When the posterior uncertainties are taken into account, 

the \lambda and \mu values tend to overlap with those obtained using the SMOS \tau 

product, indicating that the results are not sensitive to the choice of microwave-derived 

reference \tau product. Also the spatial patterns across the sparse study sites are very 

similar (Fig. 8). 

We have also extended the analysis of the MODIS-derived Delta tau.  

By contrast, the estimates can change substantially when \tau is derived from 

contemporaneous NDVI data, and predominantly they are smaller in magnitude. If the 

problem with the use of the NDVI climatology in the retrieval were the use of a 

climatology alone, we would expect similar estimates. Conversely, we would expect the 

estimates to be smaller if it was the link between NDVI and \tau that led to an inaccurate 

vegetation correction. The smaller estimates that were actually observed may thus 

indicate that the use of a climatology is not a dominant error source in the SMAP 

vegetation input data. 

As outlined in our reply to point 1), there is now a separate discussion section that deals with 

errors in tau in the context of interpreting the results. 

 

 
8) Section 4.2.4 – The author’s link the results in Figure 7c to the presence of time-dependent 
errors identified in Figure 7a and 7b. However, there is a major difference in that Figure 7c results 
reflect climatological anomalies (lacking any seasonality) while results in 7a and 7b reflect time-
dependent biases which (almost certainly) have a fixed seasonal component (which, of course, 
would not be reflected in an anomaly). Therefore, a substantial(?) fraction of the time dependent 
biases reflected in Figures 7a and 7b have no impact on anomaly results in Figure 7c. Given this, 
I’m unclear exactly what the relevance of Figures 7a and 7b is for the interpretation of Figure 7c 
(although, admittedly there does appear to be some spatial consistency across the sub-figures). 
 

We have extended the discussion of these results. Our main point in the discussions is not that 

there is a clear-cut link between the estimated biases and the R2 values, but rather that the spatial 

patterns suggest that there may be one that deserves attention in future studies. 

In the results: 

While the spatial patterns largely match those of the time-variable biases, the link between 

them is not clear and not necessarily uniform across all sites. The computation of 

anomalies largely removes seasonal offsets, which constitute a major fraction of the 

estimated additive biases. However, it does not remove higher-frequency variations or 

inter-annual differences, although the record is too short to reliably study those. Neither 

can it account for the changes in sensitivity, which are particularly large over croplands. 

Finally, the in-situ soil moisture anomalies, predominantly derived from single probes, 

are subject to major uncertainties. All these factors likely contribute to the elevated 

associations between the \tau and the SMAP soil moisture anomalies (Delta R2), but the 



precise impact of time-variable biases on our ability to diagnose such interactions remains 

an open question. 

In the discussion: 

The spurious vegetation signal in the soil moisture data may distort estimates of water-

vegetation coupling. We find inflated values of R^2 between the SMOS vegetation optical 

depth and SMAP soil moisture, whereas purely random noise would decrease the R^2 

(Fig. 7c). While the spatial patterns largely match those of the estimated biases, this does 

not imply a causal link between the two. However, the inflated R^2 values hint at 

potential pitfalls in using remotely sensed soil moisture to study global hydrology. 

 
 
9) I also have two general comments concerning Figure 7. I’ll present them as “comments” to reflect 
that I’m inclined to give the authors some latitude with how they respond to them: A) The authors 
discuss spatial representative issues; however, the impact of upscaling a single, point-scale 
observation to the SMAP footprint scale should not be underestimated. While the point is never 
explicitly made in Chan et al. [2016]; however, a comparison of TC-based results in (their) Figures 
7 and 9 suggests that the correlation between a single-point ground observation and grid-scale 
truth is approximately equal to that between ASCAT soil moisture retrievals and the same grid-
scale truth. Given that there is strong reason to suspect that SMAP soil moisture products are 
significantly more precise than ASCAT products, a priori, I’d expect single-point ground 
observations to be a noisier source of grid-scale soil moisture than SMAP L3 retrievals over a great 
deal of the United States. Combined with the fact that there is likely some error cross-correlation 
between SMAP L3 products and SMOS tau products (especially over agricultural sites see my point 
#1 above), it seems possible that results in Figure 7c can be explained without the need to invoke 
the presence of time-dependent vegetation biases in the SMAP L3. 
Chen, F., Crow, W.T., Colliander, A., Cosh, M.H., Jackson, T.J., Bindlish, R., Reichle, 
R.H., Chan, S.K., Bosch, D.D., Starks, P.J. and Goodrich, D.C. Application of triple 
collocation in ground-based validation of Soil Moisture Active/Passive (SMAP) level 2 
data products. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing. 99:1-14. 10.1109/JSTARS.2016.2569998. 2016. 
B) Point-to-grid upscaling issues associated with ground-based soil moisture observations are 
particularly daunting for agricultural landscapes. Most of the time the actual site isn’t even located 
in a cultivated field (instead that are typically shunted into non-cultivated areas at the edges of the 
field). As a result, these measurements have no hope of capturing (often significant) inter-annual 
soil moisture variability associated with changes in planting, canopy development and crop 
development. Given the soil moisture ground measurement expertise among the co-authors, I’ll 
defer to their judgment on this issue - but it does seem relevant to the interpretation of Figure 7c. 
 
 

We agree with the limitations of the sparse sites. This is also why we discuss the network sites in 

considerably more detail. Our motivation for including Figure 7c) is the similarity of the spatial 

patterns, which do suggest a connection. However, we make clear that the specifics of this link 

are currently unknown. In the future, we hope that our work on biases will inform the 

interpretation of correlation coefficients, regression models and similar statistics.  

We hope the extended discussions, see in particular our reply to the previous point, clarify this 

stance. 


