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Abstract. In this paper a novel methodology to estimate the unknown discharge hydrograph at the entrance of a river reach,

where no information is available, is presented. The methodology is obtained by coupling an optimization procedure, based

on the Bayesian Geostatistical Approach (BGA), with a forward self-developed 2D hydraulic model of the stream. In order

to accurately describe the flow propagation in real rivers characterized by large floodable areas, the forward model solves the

2D Shallow Water Equations by means of a Finite Volume explicit shock-capturing algorithm. The forward code exploits the5

computational power of Graphics Processing Units (GPUs) achieving ratio of physical to computational time up to 1000. With

the aim of enhancing the computational efficiency of the inverse estimation, the Bayesian technique is parallelized developing

a procedure based on the Secure Shell (SSH) protocol which allows to take advantage of remote High Performance Computing

clusters (including those available on the Cloud) equipped with GPUs. The capability of the coupled models is assessed

estimating irregular and synthetic inflow hydrographs in real river reaches, taking into account also the presence of downstream10

corrupted observations. Finally, the capability to adopt this methodology for real cases is demonstrated by reconstructing a real

flood wave in a river reach located in Northern Italy.

1 Introduction

The definition of discharge hydrographs in specific river sections is still a relevant hydraulic problem not only for flood mod-

elling purposes, but also for more practical issues related to flood protection measures, hydropower plants, water resource15

management, design of new structures, etc. Flood routing techniques, either hydrological or hydraulic, are extensively studied

and widely used to estimate discharge hydrographs in downstream ungauged sites based on data available at upstream gauged

stations (forward propagation). However, often, the flow hydrograph is required in a river section which is completely un-

gauged and does not have upstream useful information for its definition. In these cases, discharge hydrographs at specific sites

can be estimated by coupling rainfall-runoff and forward flood propagation models. However, rainfall-runoff models (Beven20

(2011)) present several uncertainties associated, for example, with the choice of the model for the basin schematization, with

the evaluation of the effective rainfall, and with the calibration procedure. An alternative approach is to assess the upstream
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unknown flow hydrograph using only the information, in terms of discharge values or water levels, available downstream the

selected site and, possibly, the characteristics of the river reach. In literature, this approach is known as reverse flow routing

(D’Oria and Tanda (2012)), an ill-posed inverse problem that presents three main challenges: the solution may not exist, or it

may be non-unique, and instabilities may arise during the inversion. The traditional attempts of solving the reverse flow routing

problem are based on two main approaches: the solution of a reverse form of the Saint Venant equations (e.g. Eli et al. (1974),5

Szymkiewicz (1993), Dooge and Bruen (2005), Bruen and Dooge (2007)) and the back oriented application of hydrological

routing schemes (e.g. Das (2009), Koussis et al. (2012), Koussis and Mazi (2016)). Beyond the approximations introduced by

the hydrological routing schemes, the above procedures were applied to simplified reach geometries and flow conditions. In

almost all cases, especially considering downstream information affected by errors, instabilities and spurious oscillations ap-

peared; low-pass filters, with subjective parameters, were sometime used to damp the estimated inflow fluctuations. D’Oria and10

Tanda (2012) and Zucco et al. (2015) provide additional references and details on the reverse flow routing problem. In addition

to the above procedures, the estimation of an unknown upstream flow hydrograph, based only on downstream information (ob-

servations), can be performed via optimization methods. These techniques aim at finding the upstream flow hydrograph that,

routed downstream, best matches the available observations. D’Oria and Tanda (2012) solved the reverse flow routing problem

adopting a novel Bayesian Geostatistical Approach (BGA) as optimization procedure, which considers a flow hydrograph as15

a statistical continuous random function that presents autocorrelation and accounts for uncertainties. The Authors showed the

capability of the BGA methodology, in combination with a forward hydraulic model, to estimate the discharges in an upstream

ungauged section based only on an available downstream flow hydrograph: the procedure evidenced no instabilities, also in

presence of corrupted downstream flow values. The forward model, which solves the 1D Saint Venant equations, was con-

sidered already implemented and calibrated and able to describe, with sufficient accuracy, the hydraulic routing process. The20

BGA method was further extended in order to adopt, as downstream observations, stage hydrographs instead of discharge ones

(D’Oria et al. (2014)). Saghafian et al. (2015) identified the upstream hydrograph of a river reach, given the downstream one,

by using a Genetic Algorithm coupled with a forward hydraulic model, which solves the 1D Saint-Venant equations under the

kinematic wave approximations. Only some minor oscillations and instabilities occurred during the inversion, but the Authors

applied the procedure to a rectangular prismatic channel and no errors were added to the downstream observations. Zucco et al.25

(2015) investigated the reverse flow routing process in natural channels, and estimated the discharge hydrograph in ungauged

sections, by means of a Genetic Algorithm coupled with a simplified routing model. The parametric forward model was based

on the continuity equation written in a characteristic form, lumped over the entire river reach, and on simplified rating curves

at the channel ends. In addition, the unknown inflow hydrograph was assumed distributed in time as a Pearson type III func-

tion with three parameters, preventing the possibility of estimating of real flood waves with irregular shapes (e.g. multi-peak30

hydrographs).

All the previously cited works adopted 1D hydraulic models or simplified hydrological routing models, in combination

with different optimization procedures. Nevertheless, in many real cases, the complex hydrodynamic field generated by the

flood propagation cannot be accurately described under 1D assumptions and it is necessary to adopt schemes based on the 2D

Shallow Water Equations, even if this poses the drawback of the computational efficiency and requires a detailed terrain survey.35
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However, nowadays, bathymetric data can be easily obtained from high-resolution Digital Terrain Models (DTM) and fast 2D

numerical models have been developed. With the purpose of estimating the discharge hydrograph in an upstream ungauged

river section, having water level information only in a downstream observation site, this paper extends the BGA methodology

for reverse flow routing of D’Oria and Tanda (2012) and D’Oria et al. (2014) to 2D forward modelization in order to model

natural rivers with complex geometry, including flood plains and floodable areas. With this aim, the stable, accurate and fast5

PARFLOOD GPU code (Vacondio et al. (2014),Vacondio et al. (2017),Vacondio et al. (2016)), which solves the conservative

form of the 2D Shallow Water Equations on a finite volume scheme, is adopted as forward model and coupled to the inverse

estimation procedure. In order to reduce the computational times, the Jacobian matrix estimation procedure, which is the key

point of the BGA method, has been parallelized. Additionally, a host-server data management procedure has been implemented

so as to exploit the computational power of remote large modern supercomputer and or cloud HPC resources. The capability10

of the optimization procedure has been tested by estimating real or pseudo real inflow hydrographs in natural river reaches,

where 1D models cannot accurately describe the flood propagation. Moreover, during the discharge estimation, the presence of

downstream corrupted observations has also been taken into account, since registered data at gauging stations are quite often

affected by instrumental errors. Dealing with real recorded data and real field application, the discharge parameter values have

been estimated in a logarithmic space, in order to prevent the rise of negative values.15

The paper is organized as follows: in Sect. 2 the theory of the Bayesian Geostatistical Approach is illustrated. A step-by-step

description of the inverse procedure is provided in Sect. 3: the parallel implemented scheme, the forward model optimization

for reducing the run times and the iteration management between the local host and the remote server are detailed described.

Section 4 is dedicated to the procedure validation, which concerns the estimation of inflow hydrographs with different shapes in

two rivers in Northern Italy. The application of the inverse procedure for reconstructing a historical flooding event is presented20

in Sect. 5. Some concluding remarks are finally outlined in Sect. 6.

2 Theory of the Bayesian Geostatistical Approach

The optimization software adopted to solve the reverse flow routing problem is the bgaPEST (Fienen et al. (2013)), which

implements the Bayesian Geostatistical Approach of Kitanidis (1995) and it is developed according to the PEST (Model

Independent Parameter Estimation) parameter estimation software (Doherty (2016)). The bgaPEST is appropriate to solve25

inverse problems (in a context of a highly parametrized inversion), which are characterized by unknown parameters that are

correlated one another in space or time, as for example the discharge values of a flow hydrograph. The first applications

of the inverse methodology are related to the estimation of spatial parameter fields in a groundwater context (Kitanidis and

Vomvoris (1983), Hoeksema and Kitanidis (1984), among others) but later the method has been adopted to evaluate unknown

time functions in different areas (e.g. Snodgrass and Kitanidis (1997), Michalak et al. (2004), Butera et al. (2013), D’Oria and30

Tanda (2012), D’Oria et al. (2015), Leonhardt et al. (2014)).
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2.1 The Bayes’ theorem

The crux of the adopted bgaPEST, as well as other methods based on the Bayesian Approach, is the Bayes’ theorem, which

reads:

p(s|y)∝ L(y|s)p(s) (1)

where s is the vector of the unknown parameters, y is the vector of the measured data, p(s|y) is the posterior probability5

density function (pdf) of s given y, L(y|s) is the likelihood function and p(s) is the prior probability density function of s. Since

the present work aims at estimating an upstream hydrograph in an ungauged section, assuming the knowledge of downstream

water levels, s represents the discharge values over time of the unknown inflow hydrograph, whereas y denotes the downstream

water level observations. Following Eq.(1), the posterior pdf, which represents the parameter knowledge after the observations,

can be seen as a combination between a priori knowledge on the parameters (prior pdf), where a priori means that the observed10

data are still not considered, and information about parameters contained in the measured data (likelihood function) (Glickman

and Van Dyk (2007)). In the BGA method proposed by Kitanidis (1995), the prior pdf and the likelihood function are described

by means of Gaussian distributions and the best set of parameter s is obtained by maximizing the posterior pdf.

2.1.1 The likelihood function

Focusing on the terms of the Bayes’ theorem in Eq.(1), the likelihood function L(y|s), characterizes the misfit between ob-15

served data and model results (Fienen et al. (2013)). Starting from the results of the forward model, L(y|s) delineates how a

particular set of parameters s is able to reproduce the observations y in space and/or time, therefore accounting for the epistemic

errors. The investigated inverse problem presents different sources of errors, which are related to the conceptual schematization

of the inverse procedure, to the numerical forward model and to the data measurement. In the likelihood function, the errors

are assumed to be independent and identically distributed, with null mean and covariance matrix, expressed as follows:20

R = σ2
RI (2)

where σ2
R denotes the variance that regulates the misfit between observed and modeled data, and I the identity matrix.

2.1.2 The prior probability density function

The prior knowledge about s (p(s) in Eq.(1)) is limited to the assignment of a mean value (unknown and estimated during

the procedure) and a characteristic about continuity and/or smoothness implemented as covariance matrix. It furnishes a soft25

knowledge about the structure/shape of the unknowns and provides a regularization of the solution; the prior can also be used

to enforce non-negativity to the parameters (D’Oria and Tanda (2012)). The prior mean is defined as:

E [s] = Xβ (3)
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where E is the expected value, β is the vector of drift coefficients (a single value in this case), and X is a known matrix of

basis functions (a single vector of ones, in this case), which link each value of s with the appropriate element of β (Fienen et al.

(2008)).

The prior covariance matrix of the unknown parameters Qss is then defined as:

Qss = E
[
(s−Xβ)(s−Xβ)T

]
(4)5

In the context of geostatistics, the covariance matrix Qss is a function of the separation distance (in time in this case)

between the parameters and describes their deviations from the mean behavior. Different models can be adopted to describe

the covariance; for example, it can be assumed as a linear function, represented through a limiting case of the exponential

covariance model (Fienen et al. (2008)), according to the following relation:

Qss(θ) = θlexp
(
−|d|
l

)
(5)10

where d represents the vector of the separation distances in time between the parameters, l a fixed integral scale (l =

10max(d)) and θ the slope (structural parameter), which influences the correlation between the discharge values of the un-

known hydrograph. A different formulation (D’Oria et al. (2014)) defines the prior covariance matrix Qss by means of a

Gaussian model characterized by two structural parameters (σ2
s and l):

Qss(θ) = σ2
s exp

(
−
∣∣d2
∣∣

l2

)
(6)15

where σ2
s denotes the variance. The linear function (Eq.(5)) enforces only continuity to the solution whereas the Gaussian

model (Eq.(6)) adds also some degree of smoothness, but the final solution is still driven by the observations.

2.1.3 The posterior probability density function

With the assumptions made, the likelihood and prior terms, that compose the posterior pdf of Eq.(1), can be rewritten as follows

(Fienen et al. (2009); D’Oria and Tanda (2012); D’Oria et al. (2014)):20

L(y|s) = exp
(
−1

2
(y−h(s))T R−1 (y−h(s))

)
(7)

p(s) = exp
(
−1

2
(s−Xβ)T Q−1

ss (s−Xβ))
)

(8)

The term h(s), in the likelihood function, represents the modeled values in the same place and time of the available observa-

tions y. Therefore, to evaluate h(s), a forward model of the considered river reach that is able to describe the hydraulic routing25

process is required in order to provide, for a given set of parameter s, the corresponding downstream water levels.

Recalling that the aim of the inverse procedure is to obtain the vector of the unknown parameters s, as well as to quantify

the uncertainty in the estimation, the solution is found maximizing the posterior pdf. In case a linear relationship between
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parameters and observations (linear forward model) holds, the best estimate ŝ of vector s (and β̂ of β) is obtained by solving

the following linear system of equations (Michalak and Kitanidis (2003)):





ŝ = Xβ̂ + QssHT ξ
 HQssHT + R HX

XT HT 0




 ξ

β̂


=


 y

0


 (9)

where H is the sensitivity (Jacobian) matrix, representing how the observations y are influenced by a single unknown pa-

rameter si (D’Oria et al. (2015)). However, for this particular problem, h(s) is nonlinear and therefore matrix H depends on s.5

Following the quasi-linear geostatistical approach (Kitanidis (1995)), for each iteration k, the relationship between observations

and parameters is successively linearized about a candidate solution sk:

h(s)≈ h(sk) + H̃k (s− sk) (10)

and then a correction to the measurements is applied according to the following relation:

yk = y−h(sk) + H̃ksk (11)10

Therefore, the sensitivity matrix is evaluated at each iteration, as follows (D’Oria et al. (2014)):

H̃k =
∂h(s)
∂s

∣∣∣∣
sk

(12)

Analogously to the linear system in Eq. (9), the linearized system is solved according to:

 H̃kQssH̃

T

k + R H̃kX

XT H̃
T

k 0




 ξk+1

β̂k+1


=


 yk

0


 (13)

and the next estimate of the parameters is evaluated by means of:15

s̃k+1 = Xβ̂k+1QssH̃
T

k ξk+1 (14)

A proper selection of the covariance model structural parameters (θ, σ2
s and l) and optionally of the epistemic error variance

σ2
R is important to reach a good solution. However, the structural parameters are estimated from the data using a Bayesian

adaptation of the Restricted Maximum Likelihood (RML) method of Kitanidis (1995), which adopts probability functions and

allows reaching the best compromise between the fitting of the modeled data and the observations, and the prior information20

(Fienen et al. (2013)). Dealing with non linear problems, unknown (s) and structural parameters must be iteratively estimated

in successive steps.

Finally, at the end of the estimation, the linearized uncertainties of the unknowns can be evaluated in terms of the posterior

covariance matrix of the estimated parameters (D’Oria et al. (2014)). The diagonal of this matrix represents the variance related

to the parameter estimation that allows defining the 95% credibility interval of the resulted parameters.25
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3 Description of the Bayesian estimation procedure

After having described the theory of the Bayesian approach in Sect. 2, some operational information about the BGA inverse

procedure is now illustrated. As mentioned in the Introduction and sketched in Fig. 1-a, the goal of the adopted BGA methodol-

ogy is the estimation of the discharge hydrograph in an upstream-ungauged river section (identified by a question mark in Fig.

1-a), having information about water levels observed in a downstream section (intermediate site in Fig. 1-a). A boundary con-5

dition, downstream of the observation site, must also be specified; this can be based on observed data or can be approximated

extending the computational domain faraway from the intermediate section. The inverse method estimates Np parameters (the

vector of the unknown parameters s in Eq. (1)), which derive from the discretization of the discharge hydrograph by means of

time intervals, regular in this case (Fig.1-b).

(a) (b)

Figure 1. Definition of the reverse flood routing problem (a) and of the unknown parameters (b).

The BGA algorithm solves the inverse problem by means of the following steps.10

Firstly, the unknown parameters and the structural ones are initialized. The first ones may be all assumed equal to a constant

value coherent with the considered river, whereas the structural parameters are usually set as to guarantee a flat solution

(complexity is introduced during the optimization process only if supported by the data) and the variance of the epistemic

errors is assumed close to the expected one.

Assuming the first guess of the unknown parameters as upstream boundary condition, the hydraulic forward model is run15

and the resulted water levels are extracted at the observation site. The simulation of a base run, once assumed a particular

set of parameters (deriving from the initialization or from previous estimation steps), represents a mandatory step for the

Jacobian/sensitivity matrix evaluation, which is performed at this point of the procedure. The Jacobian matrix quantifies how

each observation is influenced by the variation of each estimable parameter, and it is calculated using a finite differences

method. According to Eq. (12), each element is evaluated as the ratio between the variation of each observation for given20

variation of each parameter (numerator) and the variation of the parameter value with reference to the base run (denominator).

Therefore, additionally to the base run, the hydraulic forward model is further run as many times as the number of parameters
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to estimate Np. At each run, a single value of the upstream boundary condition is modified by a known quantity with respect

to the previous value (denominator of Eq. (12)), and the hydraulic forward model is run. Therefore, each simulation tests the

sensitivity of the resulted water levels (all the observations at once) to the variation of a single parameter i.

In order to exemplify this step, Fig. 2-a shows the discharge imposed as upstream boundary condition for a base run: after

the propagation, the resulted water levels extracted at the observation site are shown in Fig. 2-c. Assuming that the Jacobian5

matrix is testing the sensitivity to parameter i, in Fig. 2-b the considered parameter is varied with a known quantity and a new

upstream boundary condition is defined (solid line); it is worth noting that the solid and the dotted lines differ only for the

parameter i. The water levels resulted from this single parameter variation are shown in Fig. 2-d (solid line): they are identical

to the base run ones until time i-1, whereas after they differ from those of the base run (dotted line). The computation of the

differences between the resulted water levels of the simulation i and of the base run (solid and dotted lines) and the variation10

of parameter i allows computing the column i of the Jacobian matrix, which is a Nobs×Np matrix, where Nobs represents the

number of the observations.

After having collected all the perturbed observations, the Jacobian/sensitivity matrix is evaluated and a new set of parameters

s is estimated (Eq. (14)).

Figure 2. Example of the base run (a) and of the run i for the Jacobian matrix evaluation (b).

Then the first set of resulted parameters is used for evaluating a new Jacobian matrix and as a result, a second set of15

parameters is estimated. This procedure is repeated until the convergence or the maximum number of iteration Ni is reached.

Then, holding the last set of parameters s constant, the structural parameters are estimated. Due to the non-linearity of the

problem, the model and the structural parameter estimation is repeated until convergence of the lasts (or the maximum number

of iterations No is reached). Therefore, the BGA implementation requires running the forward model Nt times, according to
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the following relation (Fienen et al. (2013)):

Nt = (Np + 1)NoNi + 1 (15)

The whole BGA procedure previously described is sketched in Fig. 3-a.

(a) (b)

Figure 3. Scheme of BGA algorithm in the serial (a) and parallel (b) version.

3.1 Parallelization of the Jacobian matrix evaluation

Focusing on the total computational time required by the inverse estimation procedure, it emerges that the most relevant contri-5

bution is ascribed to the run of the forward model, rather than to the bgaPEST operations (i.e. the computation of each element

of the Jacobian matrix). However, since each Np run in Eq. (15) checks the sensitivity of the observations to the variation of a

single parameter, the solution of a test does not have effects on the solution of the other ones. Therefore, in order to reduce the

computational burden, the independent Np runs can be potentially performed in parallel.

In this work, the PARFLOOD 2D-GPU numerical model presented in Vacondio et al. (2014) and Vacondio et al. (2017) has10
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been adopted for routing the inflow hydrograph. Therefore, the bgaPEST routine to evaluate the Jacobian matrix has been par-

allelized in order to run simulations taking advantage of the computational capability of modern High Performance Computing

(HPC) clusters, which are usually equipped with many GPUs. The implemented parallel procedure, which is sketched in the

flow chart of Fig. 3-b, handles the parallelism among host and GPUs by means of the Secure Shell network protocol (SSH)

and manages the most operative parts of the parallelism (login, run, etc.) outside the bgaPEST code. In the serial version (Fig.5

3-a), the crucial part of the implementation consists in a do-loop over the parameters. Considering an i parameter, firstly the

input file that will be read by the forward model is written, then the model is run and finally the resulted values are read. In

the modified version (Fig. 3-b), this main loop is split in three parts: firstly, all the input files (equal to Np), inside of which a

particular parameter is modified are written, then the forward model is run, and finally a second loop is performed to read all

the resulted values.10

3.2 The forward model

In the parallel bgaPEST (Fig. 3-b), the “Run forward model” instruction actually runs a shell script, which controls the file

transfer between the host (a classical PC or a single node of a cluster), and the HPC platform, the creation of theNp simulations

for the Jacobian matrix evaluation, and the run of the 2D-SWE GPU code on the device (GPU). In the present work, a cluster15

with 10 NVIDIA ® Tesla ® P100 GPUs hosted by the University of Parma was adopted. As shown in Fig. 4, the bgaPEST

algorithm runs on the CPU of a computer, where theNp simulations (in Fig. 4 assumed equal to three for the sake of simplicity)

are firstly created and then sent to the server user partition, by means of the SSH protocol. Here, the cluster access node

schedules all the jobs submitted by the users, using the HPC scheduler Portable Batch System (PBS). Then, each simulation

is assigned to a specific GPU node. At the end of the computation, the observations are extracted and the output files remain20

on the cluster partition, until the CPU verifies via SSH the end of the simulation and copies the results back. The procedure

sketched in Fig. 4 and following described represents one of the Nt iterations.

Figure 4. Schematization of the data transfer assuming three parameters and thus three parallel simulations.
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With the aim of describing in detail the “Run forward model”, after having clarified the data transfer procedure (Fig. 4), in

Listing 1 the structure of the shell file is presented. In order to use the Algorithm for different test cases and potentially on

different HPC clusters, all the paths are firstly declared together with the involved variables (number of parameters to estimate,

time interval among parameters, start/end of the simulation) (line 2). Then, the algorithm (line 3) checks if the considered run

is one useful for the Jacobian matrix evaluation, where a given parameter varies, or if it is the base run. Considering the first if5

condition true (line 3), the script generates and copies all the simulations to the server (lines 5-7). These tests contain the same

bathymetrical, initial conditions (water level and velocity), roughness configuration but different upstream boundary condition;

each simulation tests the sensitivity to the variation of a given model parameter. Moreover, all the simulations adopt the same

grid (Cartesian or multiresolution), which is generated only once at the beginning of the procedure. It is relevant to notice that

all the Np simulations have not to be run from time tstart to time tend. In effect, the variation of parameter i causes effects10

only after time ti and thus the results until ti are still identical to the base run (see Fig. 2). The PARFLOOD model guarantees

the possibility of using the results of the base run and starting simulations from time ti. The theoretical physical time T of

simulations run from time tstart to time tend is evaluated as follows:

T =Np (Np− 1)∆t (16)

where Np denotes the parameter number and ∆t the time interval between parameters i and i+ 1.15

Conversely, the physical time T ∗ of simulations run from time trestart to time tend reads:

T ∗ = (Np− 1)∆t+
Np∑

i=2

[Np− (Ni− 1)]∆t (17)

As pointed out by Eq. (16)-(17) and exemplified in Fig. 5 for a test case with 20 parameters, this simply operation allows

reaching a relevant decrease of the total computational times. Therefore, at line 8, the algorithm computes the time useful to20

restart the simulation.

In order to perform the simulation, the host logins to the HPC cluster server by means of the SSH protocol (line 9) and a sleep

condition ensures the login procedure (line 10). Then the job is submitted to the queue of the cluster using external parameters

for passing the name of the simulation folder and the time for restart (line 11): the submitted job contains the reference to the

PBS queue and the link to the executable 2D-SWE GPU code. At the end of the simulation, the water levels at the observation25

site are automatically extracted. Once the job is submitted, the SSH login is closed (line 12). After having submitted all the

simulations, for each parameter (line 15) the code regularly (line 18) tests via SSH the presence of the end_file, which states

the end of the simulation (line 20), and waits in case it is missing (line 25). Once the simulation is finished, the resulted

observations are copied back to the CPU (line 28) and the folder is removed from the server (line 29).

On the other side, the else condition (line 31) is true for the base run, which is necessary for the Jacobian matrix computation.30

The simulation folder, which contains all the necessary input files, is copied to the server (line 32) and the job is submitted (line
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Figure 5. Comparison of the cumulative computational times obtained simulating the Np runs from time tstart until tend or with restart

options.

35). Then, the algorithm periodically verifies the end of the simulation and copies the results back to the CPU (lines 39-49). It

is relevant to notice that the base run is firstly performed, whereas the other Np ones can be parallel performed.

Listing 1. “Run forward model” for the parallel bgaPEST scheme
1 # ! / bin / bash

2 V a r i a b l e and p a t h d e c l a r a t i o n

3 i f [ p a r a m e t e r run ] ;5

4 then

5 f o r ( ( i =1 ; i <=Np ; i ++ ) )

6 do

7 C r e a t e and copy t h e s i m u l a t i o n f o l d e r t o t h e s e r v e r ( s i m u l a t i o n _ i )

8 Compute t h e t ime from which r e s t a r t i n g t h e s i m u l a t i o n10

9 ssh s e r v e r name << EOF

10 s l e e p 15

11 ssh s u b m i s s i o n : f rame number f o r r e s t a r t , name of t h e t e s t case , j o b t o s ubm i t

12 e x i t

13 EOF15

14 done

15 f o r ( ( i =1 ; i <=Np ; i ++ ) )

16 do

17 e n d _ f i l e =0

18 whi le [ e n d _ f i l e −eq 0 ] ;20

19 do

20 ssh s e r v e r name f i n d s e r v e r _ p a t h −iname e n d _ f i l e . t x t | wc − l > e n d _ f i l e

21 i f [ e n d _ f i l e ] ;

22 then

23 c o n t i n u e25

24 e l s e

12

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-118
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 April 2018
c© Author(s) 2018. CC BY 4.0 License.



25 s l e e p 10

26 f i

27 done

28 Copy t h e f i l e w i th o b s e r v a t i o n from s e r v e r t o CPU

29 Remove t h e s i m u l a t i o n f o l d e r on t h e c l u s t e r5

30 e l s e

31 C r e a t e and copy t h e s i m u l a t i o n f o l d e r t o s e r v e r

32 s sh s e r v e r name << EOF

33 s l e e p 15

34 s sh s u b m i s s i o n : f rame number f o r r e s t a r t , name of t h e t e s t case , j o b t o s ubm i t10

35 e x i t

36 EOF

37 e n d _ f i l e =0

38 whi le [ e n d _ f i l e −eq 0 ] ;

39 do15

40 ssh s e r v e r name f i n d s e r v e r _ p a t h −iname e n d _ f i l e . t x t | wc − l > e n d _ f i l e

41 i f [ e n d _ f i l e ] ;

42 then

43 c o n t i n u e

44 e l s e20

45 s l e e p 10

46 f i

47 done

48 Copy t h e f i l e w i th o b s e r v a t i o n from s e r v e r t o CPU

49 f i25

4 Validation of the inverse methodology

With the purpose of validating the BGA method described before, it is worth noting that reference solutions for inverse prob-

lems are by definition unavailable, since the goal of the methodology is the estimation of an upstream inflow hydrograph that

is unknown at the beginning of the process. Therefore, in this section the inflow hydrographs in two natural rivers in Northern

Italy are estimated and the reference solutions, which are necessary in order to validate the inverse procedure, are obtained as30

follows (D’Oria et al. (2014)). Considering the domain in Fig. 6, a selected inflow discharge Qref is routed from the upstream

section A until the downstream boundary D, where a rating curve is imposed far away from C. The resulted water level hydro-

graph is extracted in sites B and C. The inverse procedure is then applied to the sub-domain sketched with solid line in Fig.

6, by assuming the water levels in sites B and C (resulted from step 1) as observations and downstream boundary condition,

respectively. The methodology estimates the inflow Qest assuming that no information is available on the discharge (or water35

stage) at the inflow.

Quantitative information about the accuracy of the inverse methodology is here provided evaluating the differences between

the reference Qref and the estimated Qest hydrographs by means of three different indicators. Firstly, the Nash-Sutcliffe

13

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-118
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 27 April 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 6. Exemplification of a test case definition.

efficiency criterion (Nash and Sutcliffe (1970)) Eh was adopted, according to the following relation:

Eh =

[
1−

∑Np

i=1(Qi
ref −Qi

est)2
∑Np

i=1(Qi
ref −Qref

)2

]
· 100 (18)

where Np is the number of parameters, Qref
i and Qest

i are the i-th reference and estimated inflow values, respectively, and

Q
ref

is the mean value of the reference hydrograph. Then, the root mean square error, RMSE was evaluated as follows:

RMSE =

√∑N
i=1(Qi

ref −Qi
est)2

Np
(19)5

Finally, the error in the peak discharge Ep was assessed as:

Ep =

[
Qest

p

Qref
p

− 1

]
· 100 (20)

where Qest
p and Qref

p denote the peak discharge value of the estimated and reference hydrographs, respectively.

4.1 Inflow hydrograph estimation on the Parma River

The first test concerns the estimation of a Synthetic Discharge Hydrograph at the entrance of the Parma River (Northern Italy).10

Figure 7-a illustrates the studied domain and the locations of the upstream boundary condition A, of the observation site B and

of the downstream boundary section C. The domain includes a 20-km long reach, which is characterized by several meanders

and flood plains. As shown in Fig. 7, the flow field significantly varies at low and high discharge values due to the river

morphology. At the beginning of the flood wave, the flow is characterized by both low water depths (7-b) and velocity (7-d).

Conversely, at the arrival of the flood pick, most of the meanders are cut by the flow, as shown in (7-c) and (7-e) for water15

14
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Figure 7. Map of the maximum simulated water depths in the Parma river (a): the upstream (A) and downstream (C) boundary conditions

and the intermediate observation site (B) are indicated. With reference to the area marked with dotted white line in (a), (b) and (c) represent

the water depths and (d) and (e) the velocity field at low and high discharge values, respectively.

depths and velocity, respectively. This makes the adoption of 1D numerical schemes difficult to accurately describe the flood

propagation.

The bathymetry was derived from a 1 m resolution DTM obtained through a LiDAR survey carried out in drought condition.

The domain was discretized by means of a Cartesian grid with cell sizes ∆x= ∆y = 4 m and about 275 · 103 computing cells

were adopted. The Manning roughness coefficient was assumed equal to 0.05 s/m1/3. The steady state values of water depth5

and velocity fields obtained considering the initial discharge value of the hydrograph are adopted as intitial conditions.

The inflow condition to be estimated concerns a Synthetic Discharge Hydrograph with gamma distribution that was calcu-

lated as follows (D’Oria et al. (2015)):

Q(t) =A+B · f(t,b,k) (21)

where t denotes the time, A the base flow (constant value), B the volume above the base flow (constant value) and f the10

gamma distribution, which states:

f(t,b,k) =
1

kbΓ(b)
tb−1e−

t
k (22)

where Γ(b) represents the gamma function defined through the parameters b and k that denote the shape and the scale

parameter, respectively. The parameters of the gamma distribution were set as follows: A = 100 m3/s, B =3·107 m3, b = 6 and

k = 10000 s. The resulted flood wave presented a peak value of about 630 m3/s at time (b-1)k = 14 hours (Fig. 8-a).15
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(a) (b)

Figure 8. Parma inflow: flow and stage hydrographs referred to sections A and C, respectively (a) and observation error distribution (b).

During the estimation, when the sensitivity to the first parameter p1 is investigated, the steady state flow for the initial

discharge is also recomputed. This means that parameter p1 determines not only the first value of the estimated flood wave but

also it governs the initial condition of the river reach.

The inflow hydrograph duration was limited to 40 hours and it was discretized using 2 hours steps (Np=21), whereas the

observation stage hydrographs were discretized every 0.5 hours (80 water levels). The prior pdf was defined by means of a5

Gaussian covariance model, and the initial structural parameters were set as reported in Table 1. In order to avoid non-physical

discharge values during the computations, non-negativity was enforced to the unknown parameters performing the estimation

in a logarithmic space. The initial model parameter values were defined by applying the linesearch tool of the bgaPEST, which

damps the solution between successive iterations (Fienen et al. (2013)), and avoids numerical instabilities that may occur

starting from a worse first choice of the parameters.10

The inflow hydrograph was estimated firstly considering the observations free of errors and with truncation error resulting

in a variance of 10−8 m2. Then, the same discharge hydrograph was defined corrupting the observed water levels with random

errors uniformly distributed with maximum deviations of ±0.05 m and variance 10−3 m2 (Fig. 8-b).

Qualitative assessment of the inverse methodology is achieved by comparing the reference with the estimated inflow hy-

drograph, as well as the observed with the modeled water levels in the observation site. Considering the simulation without15

errors in the observations, Fig. 9 shows that the estimated flood wave overlaps the reference one (a), and the modeled water

levels agree with the measured ones (b). Particularly, with reference to the peak value, the estimated flood wave presents the

maximum misfit of 0.2%, whereas the modeled water levels differ from the observed ones less than the 0.01%.

The results of the simulation with random errors corrupting the observations are depicted in Fig. 10. The estimated flood

wave well matches the reference one, presenting a misfit referred to the peak value lower than the 5%, and similarly the mod-20

eled water levels reproduce the reference ones with residual less than 1%. Only the last value of the reconstructed flood wave

it is slightly overestimated, since the more the tested parameter nears the end of the wave, the fewer observations contain infor-
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(a) (b)

Figure 9. Parma inflow and uncorrupted observations: reference vs estimated inflow hydrograph (a) and observed vs modeled water levels

(b). The residuals between reference and estimated values are also reported.

mation about the related effects, as illustrated by the increasing range of the 95% credibility interval. However, the estimated

wave is inside the 95% credibility interval, thus confirming the good results of the solution.

(a) (b)

Figure 10. Parma inflow and corrupted observations: reference vs estimated inflow hydrograph (a) and observed vs modeled water levels (b).

The residuals between reference and estimated values are also reported.

The structural parameters estimated in presence and absence of corrupted observations are reported in Table 1.

Quantitative assessment of the methodology accuracy has been achieved by means of the Nash-Sutcliffe Eh, root mean

square error RMSE and error in the peak discharge Ep values reported in Table 2. The Eh values are over the 99%, the Ep5
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Table 1. Parma inflow: initial and estimated structural parameters.

No random errors Random errors

σ2
R (m2) Initial - 1.00E-4

Estimated - 1.09E-3

σ2
S (m6s−2) Initial 5.00E+2 5.00E+2

Estimated 1.07E+3 5.36E+1

l(s) Initial 6.48E+4 6.48E+4

Estimated 2.90E+4 5.28E+4

ones are almost negligible and the RMSE error is less than 0.5 m3/s without random errors and reaches the maximum value of

6 m3/s with corrupted observations.

Table 2. Parma inflow: Nash-Sutcliffe Eh, root mean square error RMSE and error in the peak discharge Ep values.

Eh (-) RMSE (m3/s) Ep (%)

No random errors 99.99 0.49 -0.04

Random errors 99.88 6.65 0.15

4.2 Inflow hydrograph estimation on the Secchia River

The second test case concerns both a different river reach and shape of the inflow hydrograph. The studied domain includes a 25

km-long reach of the Secchia River (Northern Italy) between the flood control reservoir of Rubiera-Campogalliano located at5

West of Modena town (point A) and the gauging station of Ponte Bacchello (point C) and referring the water level observations

to the gauging station of Ponte Alto (point B) (Fig. 11). The modeled river reach is characterized by the presence of many

flood plains and floodable areas that influence the flood propagation. The bathymetry was derived from a 1 m resolution DTM

obtained through a LiDAR survey carried out in drought condition.

The domain was discretized by means of a non-uniform BUQ grid (Vacondio et al. (2017)), resulting in 77 · 103 computing10

cells. The Manning roughness coefficient in the riverbed was assumed equal to 0.05 s/m1/3 (Vacondio et al. (2016)).

The discharge hydrograph to be estimated is the synthetic flood wave of 20 years-return period of the Secchia River with a

peak value of about 780 m3/s after 18 hours. In order to increase the non-smoothness of the wave, a quite abrupt increment

that separates the initial steady-state condition (100 m3/s) from the rising limb was introduced (Fig. 12-a). It is noteworthy that

this flow hydrograph is characterized by a pseudo real irregular shape, that cannot be approximated by a parametric function15
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Figure 11. Map of the water depths at the flood pick occurrence on the Secchia river, with indicated the upstream (A) and downstream (C)

boundary conditions and the intermediate observation site (B).

(i.e. Gamma distribution, Pearson function). The inflow hydrograph ended in 72 hours and it was discretized using 2 hours

steps (Np=37), whereas the observation stage hydrograph was discretized every 0.5 hours (144 water level values). The inflow

hydrograph was firstly estimated assuming the water levels extracted in section B free of errors (with truncation error resulting

in a variance of 10−8 m2), and secondly considering corrupted observations with random errors uniformly distributed with

maximum deviations of ±0.05 m and variance 10−3 m2 (Fig. 12-b). Besides the discharge and stage hydrographs, Fig. 12-a5

depicts the discharge hydrograph resulted in the downstream boundary condition section, in order to highlight the attenuation

effect exerted by the flood plains and floodable areas.

(a) (b)

Figure 12. Secchia inflow: flow and stage hydrographs referred to sections A and C, respectively (a) and observation error distribution (b).
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The parameters were estimated in a logarithmic space and their initial values were calculated adopting the linesearch tool

of the bgaPEST (Fienen et al. (2013)). The prior pdf was described by means of a linear and Gaussian variogram, in the con-

figuration with and without corrupted observations, respectively (Table 3). The initial model parameter values were calculated

adopting the linesearch tool of the bgaPEST (Fienen et al. (2013)), and the estimation was performed in a logarithmic space.

As shown in Fig. 13 for the simulation without corrupted observations, the estimated flood wave matches almost perfectly the5

reference one, as well as the modeled water levels agree with the measured ones. With reference to the peak value, the flood

wave is estimated with less than the 0.03% difference against the reference one, and similarly, the residuals between modeled

and observed water levels are less than the 0.01%.

(a) (b)

Figure 13. Secchia inflow and uncorrupted observations: reference vs estimated inflow hydrograph (a) and observed vs modeled water levels

(b). The residuals between reference and estimated values are also reported.

The results of the simulation with corrupted observations depicted in Fig. 14 highlight that both the shape and the peak value

are well captured. The residual between reference and estimated discharge, referred to the peak value, is about 8%, whereas10

the misfit between observed and modeled water levels is less than 0.3%. The small discrepancies of the estimated peak flood

wave from the reference one are essentially caused by the fact that the portion with the peak is discretized with only a few

parameters and the adopted variogram smooths the solution.

The structural parameters estimated in presence and absence of corrupted observations are reported in Table 3.

The resulted indicators used for evaluating the accuracy of the methodology are reported in Table 4. The Nash-Sutcliff15

efficiency Eh exceed the 99%, the errors in the peak flow Ep are almost negligible and the RMSE error is less than 1 m3/s

without random errors and reaches the maximum value of 16 m3/s with corrupted observations: these values highlight the

accuracy of the procedure in estimating the overall shape and peak of the inflow hydrographs.

With the aim of exemplifying the efficiency of the proposed parallel inverse procedure, some details about the computational

times are furnished for this test case, whose main features are reported in Table 5.20
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(a) (b)

Figure 14. Secchia inflow and corrupted observations: reference vs estimated inflow hydrograph (a) and observed vs modeled water levels

(b). The residuals between reference and estimated values are also reported.

Table 3. Secchia inflow: initial and estimated structural parameters.

No random errors Random errors

θ (m6s−3) Initial 1.00E-10 -

Estimated 3.97E-6 -

σ2
R (m2) Initial - 1.00E-4

Estimated - 1.11E-3

σ2
S (m6s−2) Initial - 5.00E+2

Estimated - 1.38E+1

l(s) Initial - 4.32E+4

Estimated - 3.88E+4

The computational time of the whole inflow hydrograph simulation (72 hours) is 9.62 minutes, whereas the simulations

for evaluating the Jacobian matrix and testing parameters from 2 till 37 required a computational time progressively lower

than 9.62 minutes, thanks to the restart option illustrated in the Sect. 3. In order to evaluate the total time required by the

inverse procedure, it is noteworthy that dealing with an HPC cluster the global run time depends on the number of the available

GPUs. However, this test was performed using 10 GPUs and the computational cost of the 609 runs was about 13 hours. Since5

the implemented procedure that manages the interaction between host and server can be used for different HPC cluster, the

availability of a cluster equipped with Np GPUs would have allowed the estimation of the flood wave in about 8 hours. On the
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Table 4. Secchia inflow: Nash-Sutcliffe Eh, root mean square error RMSE and error in the peak discharge Ep values.

Eh (-) RMSE (m3/s) Ep (%)

No random errors 99.99 0.13 -0.02

Random errors 99.44 16.57 2.89

Table 5. Secchia inflow: characteristics of the simulation.

Number of parameters Np 37

Physical total time of the inflow hydrograph 72 hours

Physical total time of the run testing the 1st parameter p1, assuming 100 hours for reaching the steady state condition 172 hours

Computational time of the whole inflow hydrograph simulation (72 hours) 9.62 minutes

Computational time of the run testing the 1st parameter (172 hours) 19.38 minutes

Number of the BGA iterations Ni for the model parameter estimation 4

Number of the BGA iterations No for the structural parameter estimation 4

Total number of simulations Nt (Eq. 15) 609

other side, the adoption of the serial bgaPEST procedure and the PARFLOOD code as routing model would have required about

4 days of computations that means about 8 times slower than the parallel procedure here proposed. Particularly interesting is the

hypothetical evaluation of the computational time for a serial BGA procedure and the adoption of a serial CPU code as forward

hydraulic model. Vacondio et al. (2014) pointed out that the PARFLOOD code led to speedup up to two order of magnitude if

compared to a serial CPU code. Therefore, if a serial BGA procedure and the GPU forward model would have required about5

4 computational days, the inverse problem solution with a serial forward code would ended in 400 computational days, making

the use of the inverse procedure practically unfeasible.

5 Reconstruction of a historical event: the December 2009 flood wave on the Secchia River

After the model validation assessed in the previous section, the inverse procedure is now adopted in the framework of a real

field application, by investigating the December 2009 flooding event on the Secchia River, which is one of the three most10

significant events occurred in the last ten years in this river. The Interregional Agency for the Po River (AIPo) monitored the

river and provided the water stage hydrographs recorded in two gauging stations, indicated in Fig. 11, with letters B and C,

respectively. As shown in Fig. 15, the registered water levels present more than a rising and recession limb, and thus, beside
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the challenges related to a real field application, this test aims at addressing also the estimation of an inflow with two peaks. In

order to estimate the discharge at section A (Fig. 11), the water levels registered at point B and C were assumed as observations

and downstream boundary condition, respectively. The event was simulated from 9 p.m. of the 22nd December 2009, till 12

a.m. of the 26th December, for a total duration of 87 hours. The water levels were recorded every 0.5 hours, and thus the

observations consist of 174 values. Conversely, the unknown inflow hydrograph was discretized every hour, in a result of 885

parameters to be estimated (Np=88). The stage hydrographs, adopted as observations and downstream boundary condition,

respectively, are shown in Fig. 15.

Figure 15. December 2009 registered stage hydrographs on the Secchia River, referred to sections B and C, respectively.

The studied domain is analogous to the one previously adopted for a syntethic inflow, and thus, the reader is kindly referred

to Sect. 4.2 for the information about bathymetry, initial condition, and roughness configuration.

As before, the parameters were estimated in a logarithmic space and their initial values were calculated adopting the line-10

search tool of the bgaPEST (Fienen et al. (2013)). The prior pdf was described by means of a Gaussian variogram; the initial

and estimated structural parameters are reported in Table 6.

Table 6. Secchia 2009 event: initial and estimated structural parameters.

σ2
S (m6s−2) l(s)

Initial 5.00E+2 6.48E+4

Estimated 1.49E+1 3.36E+4

Figure 16 shows the estimated flood wave, which presents an irregular shape and two main peaks, as it could be expected

from the observed stage hydrograph. Moreover, an additional small intermediate peak is captured that was not so evident from

the registered water levels in Fig. 16, even if a local maximum can be seen around 3 p.m. of the 24th December 2009. The15

resulted flood wave is included in the 95% credibility interval, and moreover the solution presents neither instabilities nor

oscillations. During the computation, the variance of the epistemic error was assumed equal to 10−3 m2; as shown in Sect. 4,
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this means considering the observed water levels corrupted with random errors with maximum deviations of ±0.05 m. In Fig.

16, the flood wave estimated reducing the variance of half an order of magnitude is also depicted (dotted line): the solution

appears slightly smoothed in a few points but substantially similar to the inflow resulting with the higher variance, which is

thus considered as the estimated inflow of the studied event. The comparison between modeled and measured water levels is

presented in Fig. 17: it is relevant to notice that the residuals between the two trends are mostly less than 2 cm and only in a few5

points of the first rising limb they reach the highest value of 18 cm. This real field application further confirms the capability

of the proposed inverse procedure of estimating irregular inflow hydrographs in real rivers.

Figure 16. Secchia 2009 event: estimated inflow hydrographs assuming the epistemic variance equal to 10−3 m2 and 5·10−3 m2, respectively.

Figure 17. Secchia 2009 event: observed vs modeled water levels. The residuals between reference and estimated values are also reported.
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6 Conclusions

In this work the inverse problem of estimating the unknown inflow hydrograph in an upstream-ungauged section, having

water level information only in downstream sites has been solved by means of a Bayesian methodology. The key aspects

in the solution of this problem have been the adoption of a parallel 2D-SWE code running on GPUs and the performance

of the simulations over a HPC cluster. The parallelization of the runs useful for the Jacobian matrix computation and the5

implementation of an ad hoc procedure, which allows taking advantage of any HPC cluster with GPUs, by means of the

protocol SSH, have provided a remarkable reduction of the computational costs: the more GPUs are available on the cluster, the

less time is required for the parameter estimation. For a considered case, this parallel procedure reduced the computational time

of a factor 8 against running the 2D-SWE code on a single GPU. Furthermore, the analysis of the runtimes has highlighted that

the use of a parallel hydraulic forward routing model is the sine qua non for solving this type of inverse problem, whereas the10

adoption of a serial code would lead to inadmissible computational times. The inverse procedure has been validated considering

two different natural rivers; in both tests, no instabilities, due to the adopted inverse procedure or to the availability of a

stable, fast and accurate forward hydraulic model, arose. Moreover, the obtained results have highlighted that the implemented

procedure well estimates the unknown inflow hydrographs with different and irregular shapes and in presence of corrupted

observations: quantitative indicators have proved the accuracy of the methodology. In all the presented tests, the resulted Nash-15

Sutcliff efficiency criterion exceeded the 99%, the error in the peak discharge was less than 3% and the RMSE error less than

2%. Finally, the proposed inverse procedure allowed the estimation a historical flood wave characterized by the presence of

two peaks, without reaching instabilities in the solution. Future development of the methodology will focus on the possibility

of reconstructing the flood waves also in presence of levee breaches and flooding outside the river region.
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