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RESPONSE TO REFEREE #1: Dr. A. D. Koussis 
 

The authors gratefully acknowledge the positive and constructive review of Dr. A.D. Koussis. In this 

document the comments provided by Dr. A.D. Koussis are reported in italic, whereas the authors’ 

response and indications about the original paper modification are marked in bold fonts.  

Estimating an unknown discharge hydrograph at an upstream cross-section is useful in flood hydrology both 

as a forensic activity (to find the inflow that caused a flood event observed at a certain downstream section) 

as well as operationally (to determine the operational mode of a reservoir in order to protect a downstream 

area). Such (rather special, but not rare) problems are tackled either by reverse routing the observed 

hydrograph to the upstream cross-section (an inverse problem, the solution of which exists, but is not unique 

and must be regularised; the authors should note, in their relevant section, that the solution does exist), or via 

optimisation. Both inversion approaches are subject to instabilities that must be controlled (e.g., smoothing). 

Past research has been referenced properly. 

We thank the Referee for this comment and we agree that the solution of this kind of inverse problems 

exists. As a consequence, we have reformulated the sentence about the ill-posedness of the inverse 

problem in the Introduction, clarifying that the challenges we are dealing with are the non-uniqueness 

and the instabilities of the solution and not its existence, as follows:  

“In the literature, this approach is known as reverse flow routing (D’Oria and Tanda (2012)), an ill-

posed inverse problem that presents two main challenges: the solution may be non-unique, and 

instabilities may arise during the inversion.” 

The submitted research opts for an optimisation approach: the procedure applies a Bayesian geostatistical 

methodology coupled with forward routing that solves the full 2-D shallow water equations. Using a 2-D flow 

model in the context of inverse flood routing is an advance beyond the state of the art. But the computational 

load caused by the necessary multiple 2-D flow runs is heavy. Therefore, the authors have carried out their 

inversion procedure by parallelising the evaluation of the Jacobian matrix (it assesses the solution sensitivity 

to each unknown flow value), taking advantage of the floating point calculation capabilities of an array of 

Graphical Processing Units grouped in a remote High Performance Computing cluster. 

The testing and validation of the method is sound and thorough; it includes simulations of generic floods with 

perfect (error-free) and with corrupted data, as well as of real flood events. The achieved accuracy is very 

good, including the peak region. Large oscillations of the inverted flow (recovered inflow) hydrograph 

occurring near its end are explained (Figs. 10 and 16); oscillations occurring at the start of the flood (e.g., 

Fig. 9a) seem to be due to the somewhat abrupt initiation of the transient from the steady state, while 

oscillations in the peak region are likely due to the change from a rising to a falling flood flow (Figs. 13a and 

14a). The largest oscillations of the stage hydrograph occur at the start of the flood (Figs. 9b and 17) and 

should be also attributable to the somewhat abrupt initiation of the transient from the steady state (please 



comment). These oscillations are, of course, stronger in the simulations with corrupted data. Relevant 

comments by the authors would be appreciated; they would help the reader, too.  

We thank the Referee for his comment since this is an excellent point to discuss. In the Bayesian 

Geostatistical Approach, the main mechanism by which soft knowledge about the unknown parameter 

function is imparted is through the prior information. In our approach, this soft knowledge is 

intentionally limited to the choice of a parameterized covariance model (the structural parameters, 

which control the balance between smoothness and misfit, are also estimated during the process) such 

that significant flexibility is available to the algorithm. Nevertheless, the behaviour raised by the Referee 

in correspondence of abrupt changes of the inflow hydrograph is due to the regularization imposed by 

the prior-information. In order to comment and justify this behaviour, in Sect. 4.1 we have added the 

following sentences:  

“In addition to this behaviour at the end of the discharge hydrograph (that can be postponed extending 

the hydrograph total duration), very small differences between the observed and modelled variables 

appear when abrupt changes in the inflow function are present (e.g. the initial transition from the steady 

state to the flood wave). This behaviour is due to the regularization introduced into the solution by the 

prior information that imposes some degree of continuity and/or smoothness to the estimated 

hydrograph. However, the residuals are practically negligible and abrupt discontinuities in the inflow 

hydrographs are not common in natural floods.” 

It is noted, as an aside, that evidence is not conclusive as to which approach, reverse routing or optimisation, 

is more prone to spurious oscillations; a specific comparative investigation, under identical conditions, is 

required. 

We really thank the Referee for this comment. Due to the fact that the 2D Shallow Water Equations in 

their complete and conservative formulation, which govern the motion of the fluid, cannot be inverted, 

for the 2D applications presented in the paper no comparison between the reverse flow routing technique 

and the Bayesian one can be performed. However, D’Oria et al. (2012a, 2012b) compared the two 

strategies for the level pool routing algorithm used to compute the inflow hydrograph in a reservoir. 

They showed that in presence of corrupted observations, the reverse routing procedure amplifies the 

errors, whereas the regularization provided by the optimization Bayesian procedure avoids spurious 

oscillations in the solution. 

The paper is structured well. The theory is presented succinctly, with adequate mathematics, and contains all 

relevant information; the same holds for the (important) computational aspects of the modelling approach. 

Figures and tables add significantly to the understanding of the textual account, and figures are of good 

quality. The language is generally quite good, yet the paper would benefit from careful editing (e.g., most 

‘which’ should be ‘that’, ‘resulted’ should be ‘resulting’ etc.); some indentations must be corrected. (I will 

mail my marked up manuscript to the corresponding author for the consideration of the team of authors). 



The authors wish to thank the Referee for having provided his marked copy of the manuscript: the 

suggested corrections have been included in the revised paper.  

The Conclusions section could be enhanced. Particularly, given that the computing facilities and arrangements 

required for the inverse modelling approach reported in the manuscript are currently tailored to research 

rather than to the work of professional hydrologists, the authors should comment on how they envision their 

model finding its way to the hydrological practice. 

We really appreciate this useful advice since it allows us to better remark the practical aspects of our 

work. The definition of a discharge hydrograph in an ungauged river section is a relevant issue for 

professional hydrologists involved for example in the design of hydraulic infrastructures as well as for 

engineers working on water resource management (i.e. irrigation system, hydroelectric power stations) 

or forensic activities. With the aim of solving this problem, we propose an application that requires 

supercomputer and High Performing Computer clusters. These tools are mostly used for University 

research activities, but they are not only reserved to these environments. In fact, clouds of GPUs or on-

line mini cluster are now common and thus everyone can manage to access these facilities. Moreover, 

the adopted Bayesian software (bgaPEST) is open access and 2D Shallow Water Equations models are 

nowadays a quite common tools for practitioners. Therefore, in the concluding section the following 

sentences have been added: 

“The test cases were simulated taking advantage of the HPC cluster of the University of Parma. 

However, since the implemented procedure is general, it is possible to adopt clouds of GPUs or on-line 

mini clusters, which are now common and accessible to everyone. The adopted Bayesian software 

(bgaPEST) is open access and 2D-SWE models are a quite common tools for practitioners, even if till 

now few of them are fast enough to perform the necessary simulations with a reasonable computing 

time. Therefore, the 2D coupled methodology here proposed can be adopted in the near future also by 

professional hydrologists involved for example in the design of hydraulic infrastructures as well as for 

engineers working on water resource management (i.e. irrigation systems, hydroelectric power stations, 

etc.) or forensic activities.”  

Assessment: The paper addresses in a novel way an interesting topic (for specialists) that is within the scope 

of HESS, is scientifically sound and methodologically solid. It is very good and should be published after minor 

revision. 

The authors wish to thank Dr. A.D. Koussis for his suggestions and considerations.  

 

 

 

 



RESPONSE TO REFEREE #2: 

The authors gratefully acknowledge the positive and constructive review of the anonymous Referee. In 

this document the comments provided by the Referee are reported in italic, whereas the authors’ 

response and indications about the original paper modification are marked in bold fonts.  

General comments 

The manuscript applies a Bayesian geostatistical methodology to the solution of the inverse problem aiming 

to estimate the upstream flood hydrograph at an un-gauged river section. The downstream routing of the 

hydrograph is pursued by means of a 2D shallow water model. This leads to a computationally intensive 

problem, for which a parallel implementation is designed. The most computationally intensive operation (i.e.: 

the evaluation of the Jacobian matrix) is demanded to a multi-GPU HPC, and also the forward model exploits 

the opportunities of GPU-parallelization.  

The adoption of two-dimensional hydraulic model represents a step forward compared with both the previous 

research developed by the Authors and with the state-of-the-art. The resulting complication arising from the 

increased computational effort is handled properly. Therefore, the research described in the paper appears to 

be sufficiently innovative, well-designed and of interest to the readers of HESS. 

I am rather supportive of the publication of the manuscript, provided that the Authors put some additional 

effort in improving the quality of the presentation (especially of the English) and in addressing some issues in 

order to make their outcomes more conclusive. I provide in the following few specific comments to be 

considered in the revision, as well as some minor issues that could contribute to improve the quality of the 

manuscript. 

The authors wish to thank the anonymous Referee for his positive overview about the manuscript.  

Specific comments 

• I appreciate that the presentation of the Bayesian Geostatistical Approach (BGA) is concise but complete of 

every detail: however I found it not very clear at some points, detailed below: 

1. The “prior mean” defined in eq. (9) should be better commented, explaining why the vector reduces 

to “a single value” (do the Authors mean the same value for each parameter?), and why the matrix X 

reduces to “a single vector of ones”. 

We appreciate this comment and we agree with the Referee that more information about the prior 

mean is needed to facilitate the readers in figuring out the Bayesian Geostatistical Approach 

philosophy. As a result, at Sect. 2.1.2 of the revised paper, the involved paragraph commenting the 

terms that form the prior mean has been reword as follows: 



 “The prior mean is defined as:   Xβs E , where E is the expected value, β  is the vector of drift 

coefficients, and X  is a known matrix of basis functions. In our case β  is a single unknown scalar, 

but different drift coefficients can be used to introduce discontinuities in the stochastic function to 

be estimated (e.g. when the unknown parameters are likely to form distinct populations). For 

example, in the context of reverse flow routing problems, multiple values of β are adopted if more 

than one inflow hydrograph must be estimated at the same time (e.g. the inflow on both the upstream 

branches of a river confluence). The matrix of basis function, X , links each unknown parameter 

with the corresponding element of β and, at the same time, specifies the model of the mean (e.g. 

constant mean, mean with a trend, etc.); in our case the mean is constant and therefore X  is a single 

vector of ones (Fienen et al., 2008).” 

2. The separation distance d should be defined explicitly. 

We really appreciate this comment and we acknowledge the potential confusion that arises from the 

use of the term separation distance. This is a legacy from the fact that geostatistics is manly used in 

estimating spatial parameter fields rather than time functions. In Sect. 2.1.2 of the revised paper we 

have explicitly defined the variable as follows:   

“… d represents the vector of the separation times between all the parameter pairs (𝒅𝒊,𝒋 = 𝒕𝒊 −

𝒕𝒋 with 𝒊, 𝒋 = 𝟏, … , 𝑵𝒑, t denoting the time associated with each parameter and Np the total number 

of unknowns).” 

3. I wonder about the opportunity of defining Qss as Qss(θ) since the r.h.s. of eq. (6) does not contain θ. 

We acknowledge the mistake in the original version of our manuscript. The prior covariance matrix 

in Eq. (6) is not influenced by the slope parameter θ but by the variance 𝝈𝒔
𝟐 and the integral scale l; 

we have corrected Qss(θ) as Qss(𝝈𝒔
𝟐, l).  

4. I could not find the definition of ξ appearing in eq. (9) and eq. (13). 

We agree with the Referee and the definition of ξ, which was missing in the original paper, has been 

included at Sect. 2.1.3 as follows:  

“In case a linear relationship between parameters and observations (linear forward model) holds, a 

computationally efficient method to find the best estimate 𝐬̂ of vector s (and 𝛃̂ of β) is obtained 

introducing the vector 𝛏 = (𝐇𝐐𝐬𝐬𝐇𝐓 + 𝐑)−𝟏(𝐲 − 𝐇𝐗𝛃̂) and solving the following linear system of 

equations (Fienen et al. (2009)):” 

5. The Authors should better explain what they mean with “a flat solution”. 



We thank the Referee for this comment and we agree that the term “flat” should be better explained. 

For this reason, we completely reworded the sentence making clear what we mean with “a flat 

solution” as follows:  

“… the starting values for the structural parameters are assigned so that the variability between 

contiguous parameters is small (flat solution, with a high degree of correlation); complexity is then 

introduced during the optimization process if supported by the data. The variance of the epistemic 

errors is assumed close to the expected one.” 

• In the scheme depicting the BGA in figure 3, I could not find the condition corresponding to the parameters 

convergence, which is claimed in the text. According to the scheme, the inner cycle terminates only when the 

maximum number of iterations Ni is reached. The Authors should clarify this point and modify accordingly the 

manuscript and/or the figure. Assuming that also convergence causes termination, the Authors should explain 

how did they check the convergence. 

The Referee is right. We confirm that both the inner loop to estimate the model parameter and the outer 

one to estimate the structural parameters iterate until convergence or the assumed maximum number 

of iterations is reached. Therefore, the 2nd (inner > Ni) and 3rd (outer > No) decision blocks in Fig. 3 of 

the manuscript do not only check if the maximum number of iterations is reached, but also verify if 

convergence is achieved. The flow chart in Fig. 3 has been corrected. Additionally, we have included in 

Sect. 2.1.3 the definition about convergence, as follows:  

“Recalling that the aim of the inverse procedure is to obtain the vector of the unknown parameters s, as 

well as to quantify the uncertainty in the estimation, the solution is found by maximizing the posterior 

pdf or, more conveniently, minimizing its negative logarithm (objective function) (Fienen et al., 2013).” 

“The linearization process ends if the improvement (absolute difference between two successive 

iterations) in the objective function is below a user defined value or if the  maximum number of iterations 

Ni is reached. The structural parameter iteration loop (outer loop) progresses until the L2-norm of the 

differences between structural parameter values at consecutive iterations is below a user defined value 

or if the maximum number of iterations No is reached (Fienen et al. 2013).” 

• The Authors should explain how the credibility intervals may be evaluated based on the results of the BGA 

algorithm, or at least provide a reference to previous literature. 

We really appreciate this suggestion and accordingly we have modified the involved paragraph at the 

end of Sect. 2.1.3 as follows: 

“The diagonal elements of this matrix represent the posterior variance (σ2) of the estimated parameters 

and thus, the 95% credibility interval of the solution is evaluated as ±2σ2.”  

• About the core of the research described in the manuscript, I am mostly concerned about three issues. They 

should hopefully be addressed in the revised version of the manuscript. 



1. Since the principal innovation comes from the adoption of a 2D forward hydraulic model, the 

improvement in terms of the quality of the estimated hydrograph deriving from the use of a more 

detailed (but also demanding) schematization of the hydraulic process should be explicitly assessed. 

For instance, how wrong is the estimated hydrograph if one uses a 1D model as the forward routing 

model in one of the presented examples? 

We really thank the Referee for this comment since it allows us to discuss the motivations that led 

to enhance the serial Bayesian procedure introduced by D’Oria and Tanda (2012) for 1D cases, to 

2D forward models. The choice between 1D and 2D models concerns the classical forward 

propagation rather than the Bayesian application. In fact, in literature the advantages of 2D-SWEs 

in comparison with 1D schematizations have been thoroughly discussed  (e.g. Costabile et al., 2015), 

assessing that if river reaches present several floodable areas, meanders and floodplains, as it is 

typical for lowland streams, only 2D models can properly describe the flood propagation. As shown 

for example in Fig. 7 of the manuscript, in such rivers the low flow at the beginning of the event 

follows the meanders and water is contained in the main channel, whereas for high discharge the 

flow involves the river banks and a continuous mass and momentum exchange occurs between the 

main channel and the river banks and thus the assumptions of 1D models do not hold. 

Therefore in our opinion, since the physical phenomena can be only accurately simulated by a 2D 

numerical scheme, no accurate upstream discharge hydrograph can be obtained by adopting 1D 

models. Finally, coupling the Bayesian approach with a fast, stable and accurate 2D forward model 

is the first step for reconstructing the discharge hydrograph during a levee failure and/or 

overtopping that causes the flooding of the nearest lowlands; the authors are also working in this 

direction that clearly requires the adoption of a 2D model.  

2. Could the Authors discuss (hopefully with the aid of some additional results) the effects of the 

resolution of the DEM and/or of the values of the roughness parameters on the estimated hydrograph? 

We thank the Referee for this useful comment that allows us to clarify some further aspects of the 

forward numerical modelling.  

The mesh design is an issue related to create an accurate forward model. As for every numerical 

method that aims at describing a physical phenomenon in a spatial domain, the mesh must be chosen 

considering both the needed accuracy and the required computational effort. Firstly, the mesh must 

be defined in such a way that the bathymetry of the rivers is adequately resolved. Figure 1 below 

shows that the adopted mesh (with Δx=10 m inside the river) is able to accurately reproduce the 

river geometry.  

 



 

Figure 1. Ponte Alto section on the Secchia River: comparison between the sections extracted from a 5 m and 

10 m resolution DTM. 

Secondly, the grid size must guarantee that the numerical solution is close to the “exact solution” of 

the SWEs. Convergence analysis can be proficiently performed for simple test cases, in which the 

mesh can be progressively halved many times with a reasonable computational effort. A similar 

analysis was done in a previous study conducted by some of the present authors (Aureli et al., 2008) 

and it is beyond the scope of this work. Anyhow, grid size, roughness estimation and numerical 

discretization of SWEs, all play an interlaced role on the solution results. First order accurate 

models, for example, intrinsically introduce more dissipation into the solution and this behaviour 

must be counterbalanced during the calibration phase, for example reducing the dissipation term 

due to friction, since a part of the dissipation is already embedded in the intrinsic numerical viscosity 

of the model. Despite the calibration of the considered river (grid size, roughness and numerical 

discretization) was already assessed in previous studies (Vacondio et al., 2016), according to the 

Referee’ suggestion we performed an additional inverse Bayesian estimation with a different 

roughness coefficient for the real field test case in Sect. 5 (please refer also to the next comment 

answer). Particularly, the Manning coefficient originally set equal to 0.05 s/m1/3 was decreased by 

15% and assumed equal to 0.0425 s/m1/3, as for example can happen due to seasonal changes in 

vegetation. As shown in Fig. 18 of the revised paper, the estimated flood waves are similar and the 

highest difference, which is in correspondence with the second peak, is less than 6%. Therefore, the 

influence of assuming a “wrong” roughness coefficient is less than linear in the discharge estimation. 

However, we want to stress that the same issue holds for any model setup.  

3. I understand the role of the simulations based on synthetic data-sets, with or without accounting for 

measure corruption in the validation of the procedure. On the other hand, as far as the “real field 

application” is concerned, I think that a different test case should have been considered, namely one 

for which the measured hydrograph was available, in order to compare the estimated with the actual 

one. This not being the case, the evaluation of the procedure performance cannot go further than the 

“credibility” (in a statistical sense), and the claims by the Authors in the comments (“This real field 



application further confirms the capability of the proposed inverse procedure of estimating irregular 

inflow hydrographs in real rivers”) may sound excessive and not fully supported. Could the Authors 

take into consideration the addition of such an example? 

We really appreciate this comment and the suggestion pointed out by the Referee. Since the 

upstream section A is located immediately downstream a flood control reservoir equipped with 

water level sensors, we have adopted the classic hydraulic theory of sluice gates and spillways to 

calculate the “reference” solution. As a result, Sect. 5 has been improved by validating the inflow 

hydrograph resulted from the inverse procedure as follows: 

“With the aim of validating the methodology for this real application, it is noteworthy that the 

upstream section of the river is located immediately downstream a flood control reservoir equipped 

with water level sensors. Therefore, the "reference" discharge hydrograph has been obtained from 

the dam geometrical data (i.e. number and dimension of the bottom openings, crest length of the 

spillway, etc.) and the recorded water levels adopting the classic hydraulic theory of sluice gates and 

spillways. Due to the uncertainty in evaluating the discharge coefficients and to the fact that during 

flood events a large amount of wood debris reduces the outflow discharge from the bottom openings 

(especially during the depletion phase) and interferes with the overflow spillway, the discharge 

hydrograph has been calculated adopting equally likely coefficients (Fig. 18). The flood wave 

estimated by the inverse procedure is in good agreement with the one calculated using the flood 

reservoir data; the main differences are after the highest peak, which is well reproduced, although 

the inverse methodology provides a smoother solution. For this real application, even if the river 

roughness coefficient was already calibrated in previous studies (Vacondio et al. (2016)), an 

additional inverse Bayesian estimation was performed with a different value, in order to assess the 

effect of this coefficient on the solution. Particularly, the Manning coefficient originally set to 

0.05 s/m1/3 was decreased by 15% (0.0425 s/m1/3), as for example can happen due to seasonal changes 

in vegetation. As shown in Fig. 18, the estimated flood waves are similar and the highest difference, 

which is in correspondence with the main peak, is less than 6%. Therefore, the influence of assuming 

a “wrong” roughness coefficient is less than linear in the discharge estimation.” 

• English should be carefully revised throughout the entire manuscript to match the standards of scientific 

communication. 

We thank the Reviewer for his suggestion. The entire manuscript has been carefully revised and the 

language corrections kindly provided by Dr. A. D. Koussis (first Referee) have been integrated in the 

revised manuscript.  

technical corrections 

• Please refer to eq. (5) and (6) as to linear or Gaussian variogram, just the way you did in section 4.2 



We thank the Reviewer for his technical corrections. The formula reported in eq. (5) and (6) express the 

linear and Gaussian covariance function, respectively, and not the variogram. Accordingly, at Sect. 4.2 

of the revised paper we have referred to covariance functions and not variogram.  

• Probably in r.h.s. of eq. (14) a “+” sign is missing. Please check. 

The Referee is right: this has been corrected in the revised paper. 

• Throughout the manuscript, “non linear” should better read “non-linear” 

We thank the Reviewer for this suggestion: this has been corrected in the revised manuscript. 

• Please note that actually the r.h.s. of eq. (12) is not a fraction, therefore referring to “denominator of Eq. 

(12)” makes sense if you are considering the discrete approximation of the Jacobian. 

We totally agree with the Referee and, as consequence, we have reformulated the involved paragraph 

in the revised version of the manuscript. In Sect. 2, where the theory of the Bayesian approach is 

described, Eq. (12) defines the Jacobian matrix computation, which is not a fraction but a partial 

derivative. Therefore, in Sect. 3 we have reworded the paragraph as follows: 

“The simulation of a base run, once a particular set of parameters has been assumed (deriving from the 

initialization or from previous estimation steps), represents a mandatory step for the Jacobian matrix 

evaluation, which is performed at this point of the procedure in order to quantify how each observation 

is influenced by the variation of each estimable parameter. Particularly, Eq. (12) is approximated using 

a finite difference method, and hence each element of the matrix is evaluated as the ratio between the 

variation of each observation (numerator) for given variation of each parameter (denominator) with 

respect to the base run.” 

• The description of fig. 6 and the figure itself refer to four cross-sections along the river: an upstream un-

gauged one (A), two intermediate (B and C) where water levels are measured, and a fourth one (D) for 

downstream boundary condition assignment. However, in the presented examples, only a single intermediate 

measuring cross section is used, so maybe the description and the figure should be consistently simplified. 

We really thank the Referee for this comment and we acknowledge that the role of the section D was not 

clear in the manuscript. However, the presence of section D plays a specific role in setting up the 

synthetic case to use as benchmark for the inverse procedure. In the revised manuscript the following 

sentences have been added: 

“The information in sub-reach C-D is only preparatory for setting up the synthetic cases and it is not 

used in the inverse procedure. Imposing a rating curve in D allows to obtain water levels with a non-

unique stage-discharge relationship in section C, which is more close to the real circumstances when 

applying the inverse procedure.” 
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Abstract. In this This paper presents a novel methodology for estimating the unknown discharge hydrograph at the entrance

of a river reach, where when no information is available, is presented. The methodology is obtained by coupling couples an

optimization procedure, based on the Bayesian Geostatistical Approach (BGA), with a forward self-developed 2D hydraulic

model of the stream. In order to accurately describe the flow propagation in real rivers characterized by large floodable areas,

the forward model solves the 2D Shallow Water Equations (SWEs) by means of a Finite Volume explicit shock-capturing5

algorithm. The 2D-SWE forward code exploits the computational power of Graphics Processing Units (GPUs), achieving ratio

of physical to computational time up to 1000. With the aim of enhancing the computational efficiency of the inverse estimation,

the Bayesian technique is parallelized developing a procedure based on the Secure Shell (SSH) protocol that allows to take

advantage of remote High Performance Computing clusters (including those available on the Cloud) equipped with GPUs.

The capability of the coupled models methodology is assessed by estimating irregular and synthetic inflow hydrographs in real10

river reaches, taking into account also the presence of downstream corrupted observations. Finally, the capability to adopt this

methodology for real cases is demonstrated by reconstructing procedure is applied to reconstruct a real flood wave in a river

reach located in Northern Italy.

1 Introduction

The definition of discharge hydrographs in specific river sections is still a relevant hydraulic problem not only for flood mod-15

elling purposes, but also for more practical issues related to flood protection measures, hydropower plants, water resource

management, design of new structures, etc. Flood routing techniques, either hydrological or hydraulic, are extensively studied

and widely used to estimate discharge hydrographs in downstream ungauged sites based on data available at upstream gauged

stations (forward propagation). However, often, the flow hydrograph is required in a river section which that is completely un-

gauged and does not have upstream useful information for its definition. In these cases, discharge hydrographs at specific sites20

can be estimated by coupling rainfall-runoff and forward flood propagation models. However, rainfall-runoff models (Beven

(2011)) present several uncertainties associated, for example, with the choice of the model for the basin schematization, with
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the evaluation of the effective rainfall, and with the calibration procedure. An alternative approach is to assess the upstream

unknown flow hydrograph using only the information, in terms of discharge values or water levels, available downstream

the selected site and, possibly, the characteristics of the river reach. In the literature, this approach is known as reverse flow

routing (D’Oria and Tanda (2012)), an ill-posed inverse problem that presents three main challenges: the solution may not

exist, or it may be non-unique, and instabilities may arise during the inversion. an ill-posed inverse problem that presents two5

main challenges: the solution may be non-unique, and instabilities may arise during the inversion. The traditional attempts

of solving the reverse flow routing problem are based on two main approaches: the solution of a reverse form of the Saint

Venant equations (e.g. Eli et al. (1974), Szymkiewicz (1993), Dooge and Bruen (2005), Bruen and Dooge (2007)) and the

back oriented application of hydrological routing schemes (e.g. Das (2009), Koussis et al. (2012), Koussis and Mazi (2016)).

Beyond the approximations introduced by the hydrological routing schemes, the above procedures were applied to simplified10

reach geometries and flow conditions. In almost all cases, especially considering downstream information affected by errors,

instabilities and spurious oscillations appeared; low-pass filters, with subjective parameters, were sometime used to damp the

estimated inflow fluctuations. D’Oria and Tanda (2012) and Zucco et al. (2015) provide additional references and details on

the reverse flow routing problem.

In addition to the above procedures, the estimation of an unknown upstream flow hydrograph, based only on downstream15

information (observations), can be performed via optimization methods. These techniques aim at finding the upstream flow

hydrograph that, routed downstream, best matches the available observations. D’Oria and Tanda (2012) solved the reverse

flow routing problem adopting, as optimization procedure, a novel Bayesian Geostatistical Approach (BGA) as optimization

procedure, which that considers the flow hydrograph as a statistical continuous random function that presents autocorrelation

and accounts for uncertainties. The authors showed the capability of the BGA methodology, in combination with a forward20

hydraulic model, to estimate the discharges in an upstream ungauged section based only on an available downstream flow

hydrograph: the solution was stable procedure evidenced no instabilities, also in the presence of corrupted downstream flow

values. The forward model, which solves the 1D Saint Venant equations, was considered already implemented and calibrated

and able to describe, with sufficient accuracy, the hydraulic routing process. The BGA method was further extended in order to

adopt, as downstream observations, stage hydrographs instead of discharge ones (D’Oria et al. (2014)). Saghafian et al. (2015)25

identified the upstream hydrograph of a river reach, given the downstream one, by using a Genetic Algorithm coupled with a

forward hydraulic model , which that solves the 1D Saint-Venant equations under the kinematic wave approximations. Only

some minor oscillations and instabilities occurred during the inversion, but the Authors applied the procedure to a rectangular

prismatic channel and no errors were added to the downstream observations. Zucco et al. (2015) investigated the reverse flow

routing process in natural channels, and estimated the discharge hydrograph in ungauged sections, by means of a Genetic Al-30

gorithm coupled with a simplified routing model. The parametric forward model was based on the continuity equation written

in a characteristic form, lumped over the entire river reach, and on simplified rating curves at the channel ends. In addition,

the unknown inflow hydrograph was assumed distributed in time as a Pearson type III function with three parameters, thus

preventing the possibility of estimating of real flood waves with irregular shapes (e.g. multi-peak hydrographs).
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All the previously cited works adopted 1D hydraulic models or simplified hydrological routing models schemes, in com-

bination with different optimization procedures. Nevertheless, in many real cases, the complex hydrodynamic field generated

by the flood propagation cannot be accurately described under 1D assumptions and it is necessary to adopt schemes based on

the 2D Shallow Water Equations, even if this poses the drawback of the computational burden efficiency and requires a de-

tailed terrain survey. However, nowadays, bathymetric data can be easily obtained from high-resolution Digital Terrain Models5

(DTM) and fast 2D numerical models have been developed. With the purpose of estimating the discharge hydrograph in an

upstream ungauged river section, having water level information only in a downstream observation site, this paper extends the

BGA methodology for reverse flow routing of D’Oria and Tanda (2012) and D’Oria et al. (2014) to a 2D forward modelization

algorithm in order to model natural rivers with complex geometry, including flood plains and floodable areas. With this aim, the

stable, accurate and fast PARFLOOD GPU code (Vacondio et al. (2014),Vacondio et al. (2017),Vacondio et al. (2016)), which10

solves the conservative form of the 2D Shallow Water Equations on a finite volume scheme, is adopted as forward model and

coupled to the inverse estimation procedure. In order to reduce the computational times, the Jacobian matrix estimation proce-

dure, which is the key point of the BGA method, has been parallelized. Additionally, a host-server data management procedure

has been implemented, so as to exploit the computational power of remote large modern supercomputer and/or cloud HPC

resources. The capability of the optimization procedure has been tested by estimating real or pseudo-real inflow hydrographs15

in natural river reaches, where 1D models cannot accurately describe the flood propagation. Moreover, during the discharge es-

timation, the presence of downstream corrupted observations has also been taken into account, since registered data at gauging

stations are quite often affected by instrumental errors. Dealing with real recorded data and real field application, the discharge

parameter values have been estimated in a logarithmic space, in order to prevent the rise of negative values.

The paper is organized as follows: in Sect. 2 the theory of the Bayesian Geostatistical Approach is illustrated. A step-by-step20

description of the inverse procedure is provided in Sect. 3: the parallel implemented scheme, the forward model optimization

for reducing the run times and the iteration management between the local host and the remote server are detailed described

in detail. Section 4 is dedicated to the procedure validation application of the procedure to synthetic test cases concerning,

which concerns the estimation of inflow hydrographs with different shapes in two rivers in Northern Italy. The application

practicability of the inverse procedure for reconstructing a historical flooding event is presented in Sect. 5. Some concluding25

remarks are finally outlined in Sect. 6.

2 Theory of the Bayesian Geostatistical Approach

The optimization software adopted to solve the reverse flow routing problem is the bgaPEST (Fienen et al. (2013)), which

implements the Bayesian Geostatistical Approach of Kitanidis (1995) and it is developed according to the PEST (Model

Independent Parameter Estimation) parameter estimation software (Doherty (2016)). The bgaPEST is appropriate to solve for30

solving inverse problems (in a context of a highly parametrized inversion), which are characterized by unknown parameters

that are correlated one another in space or time, as for example the discharge values of a flow hydrograph. The first applications

of the inverse methodology are were related to the estimation of spatial parameter fields in a groundwater context (Kitanidis
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and Vomvoris (1983), Hoeksema and Kitanidis (1984), among others) but later the method has been was adopted to evaluate

unknown time functions in different areas (e.g. Snodgrass and Kitanidis (1997), Michalak et al. (2004), Butera et al. (2013),

D’Oria and Tanda (2012), D’Oria et al. (2015), Leonhardt et al. (2014)).

2.1 The Bayes’ theorem

The crux of the adopted bgaPEST, as well as other methods based on the Bayesian Approach, is the Bayes’ theorem, which5

reads:

p(s|y)∝ L(y|s)p(s) , (1)

where s is the vector of the unknown parameters, y is the vector of the measured data, p(s|y) is the posterior probability density

function (pdf) of s given y, L(y|s) is the likelihood function and p(s) is the prior probability density function of s. Since the

present work aims at estimating an upstream hydrograph in an ungauged section, assuming the knowledge of downstream water10

levels, s represents the discharge values over time of the unknown inflow hydrograph, whereas y denotes the downstream water

level observations. Following Eq.(1), the posterior pdf , which represents the parameter knowledge after the observations, can

be seen as a combination between a priori knowledge on the parameters (prior pdf), where a priori means that the observed data

are still not considered, and information about parameters contained in the measured data (likelihood function) (Glickman and

Van Dyk (2007)). In the BGA method proposed by Kitanidis (1995), the prior pdf and the likelihood function are described by15

means of Gaussian distributions and the best set of parameter s is obtained by maximizing the posterior pdf.

2.1.1 The likelihood function

Focusing on the terms of the Bayes theoremThe likelihood function L(y|s) in Eq. (1) characterizes the misfit deviation between

observed data and model results (Fienen et al. (2013)). Starting from the results of the forward model, L(y|s) delineates how

a particular set of parameters s is able to reproduce the observations y in space and/or time, therefore thus accounting for the20

epistemic errors. The investigated inverse problem presents different sources of errors that , which are related to the conceptual

schematization of the inverse procedure, to the numerical forward model and to the data measurement. In the likelihood

function, the errors are assumed to be independent and identically distributed, with null zero mean and covariance matrix

expressed as follows:

R = σ2
RI, (2)25

where σ2
R denotes the variance that regulates expresses the misfit between observed and modeled data, and I is the identity

matrix.

2.1.2 The prior probability density function

The prior knowledge about s (p(s) in Eq.(1)) is limited to the definition assignment of a mean value (unknown and estimated

during the procedure) and a characteristic about the continuity and/or smoothness of the parameter field described through a30
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covariance function implemented as covariance matrix. It furnishes a soft knowledge about the structure/shape of the unknowns

and provides a regularization of the solution; the prior pdf can also be used to enforce non-negativity to the parameters (D’Oria

and Tanda (2012)). The prior mean is defined as:

E [s] = Xβ, (3)

where E is the expected value, β is the vector of drift coefficients, and X is a known matrix of basis functions. In our case β is5

a single unknown scalar, but different drift coefficients can be used to introduce discontinuities in the stochastic function to be

estimated (e.g. when the unknown parameters are likely to form distinct populations). For example, in the context of reverse

flow routing problems, multiple values of β are adopted if more than one inflow hydrograph must be estimated at the same

time (e.g. the inflow on both the upstream branches of a river confluence). The matrix of basis function, X, links each unknown

parameter with the corresponding element of β and, at the same time, specifies the model of the mean (e.g. constant mean,10

mean with a trend, etc.); in our case the mean is constant and therefore X is a single vector of ones (Fienen et al. (2008)). (a

single vector of ones, in this case), which link each value of s with the appropriate element of β.

The prior covariance matrix of the unknown parameters Qss is then defined as:

Qss = E
[
(s−Xβ)(s−Xβ)

T
]
. (4)

In the context of geostatistics, the covariance matrix Qss is a function of the separation distance (in time in this case) between15

the parameters and describes their deviations from the mean behavior. Different functions models can be adopted to describe

the covariance; for example, it can be assumed as a linear function, represented through a limiting case of the exponential

covariance function model (Fienen et al. (2008)), according to the following relation:

Qss(θ) = θlexp

(
−|d|
l

)
, (5)

where d represents the vector of the separation distances in time between the parameters,times between all the parameter pairs20

(di,j = ti− tj with i,j=1,. . . ,Np, t denoting the time associated with each parameter and Np the total number of unknowns),

l a fixed integral scale (l = 10max(d)) and θ the slope (structural parameter) , which influences that governs the correlation

between the discharge values of the unknown hydrograph. A different formulation (D’Oria et al. (2014)) defines the prior

covariance matrix Qss by means of a Gaussian function model characterized by two structural parameters (σ2
s and l):

Qss(σ
2
s , l) = σ2

s exp

(
−
∣∣d2
∣∣

l2

)
, (6)25

where σ2
s denotes the variance. The linear function (Eq.(5)) enforces only continuity to the solution whereas the Gaussian

function model (Eq.(6)) adds also some degree of smoothness, but the final solution is still driven by the observations.
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2.1.3 The posterior probability density function

With the assumptions made, the likelihood and prior terms that compose the posterior pdf of Eq.(1) can be rewritten as follows

(Fienen et al. (2009); D’Oria and Tanda (2012); D’Oria et al. (2014)):

L(y|s) = exp

(
−1

2
(y−h(s))T R−1 (y−h(s))

)
(7)

5

p(s) = exp

(
−1

2
(s−Xβ)

T Q−1
ss (s−Xβ))

)
. (8)

The term h(s), in the likelihood function, represents the modeled values in the same place and time of as the available

observations y. Therefore, to evaluate h(s), a forward model of the considered river reach that is able to describe the hydraulic

routing process is required in order to provide, for a given set of parameter s, the corresponding downstream water levels.

Recalling that the aim of the inverse procedure is to obtain the vector of the unknown parameters s, as well as to quantify10

the uncertainty in the estimation, the solution is found by maximizing the posterior pdf or, more conveniently, minimizing its

negative logarithm (objective function) (Fienen et al. (2013)).

In case a linear relationship between parameters and observations (linear forward model) holds, a computationally efficient

method to find the best estimate ŝ of vector s (and β̂ of β) is obtained introducing the vector ξ = (HQssHT +R)−1(y−HXβ̂)

and solving the following linear system of equations (Fienen et al. (2009)): In case a linear relationship between parameters15

and observations (linear forward model) holds, the best estimate ŝ of vector s (and β̂ of β) is obtained by solving the following

linear system of equations
ŝ = Xβ̂ + QssHT ξ HQssHT + R HX

XT HT 0

 ξ

β̂

=

 y

0

 , (9)

where H is the sensitivity (Jacobian) matrix, representing how the observations y are influenced by a single each unknown

parameter si (D’Oria et al. (2015)). However, for this particular problem the particular problem under investigation, h(s) is20

non-linear and therefore matrix H depends on s. Following the quasi-linear geostatistical approach (Kitanidis (1995)), the rela-

tionship between observations and parameters can be successively linearized about a candidate solution sk, where k represents

each iteration for each iteration k, the relationship between observations and parameters is successively linearized about a

candidate solution:

h(s)≈ h(sk) + H̃k (s− sk) , (10)25

and then a correction to the measurements is applied according to the following relation:

yk = y−h(sk) + H̃ksk. (11)
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Therefore, the sensitivity matrix is evaluated at each iteration as follows (D’Oria et al. (2014)):

H̃k =
∂h(s)
∂s

∣∣∣∣
sk
. (12)

Analogously to the linear system in Eq. (9), the linearized system is solved according to: H̃kQssH̃
T

k + R H̃kX

XT H̃
T

k 0

 ξk+1

β̂k+1

=

 yk

0

 , (13)

and the next estimate of the parameters is evaluated by means of:5

s̃k+1 = Xβ̂k+1 + QssH̃
T

k ξk+1. (14)

A proper selection of the covariance function model structural parameters (θ, σ2
s and l) and optionally of the epistemic

error variance σ2
R is important in order to reach a good solution. However, tThe structural parameters are estimated from

the data using a Bayesian adaptation of the Restricted Maximum Likelihood (RML) method of Kitanidis (1995) that , which

adopts probability functions and allows reaching the best compromise between the fitting of the modeled data and with the10

observations and the prior information (Fienen et al. (2013)). Dealing with non-linear problems, unknowns (s) and structural

parameters must be iteratively estimated in successive steps. The linearization process ends if the improvement (absolute

difference between two successive iterations) in the objective function is below a user defined value or if the maximum number

of iterations Ni is reached. The structural parameter iteration loop (outer loop) progresses until the L2-norm of the differences

between structural parameter values at consecutive iterations is below a user defined value or if the maximum number of15

iterationsNo is reached (Fienen et al. (2013)). Finally, at the end of the estimation, the linearized uncertainties of the unknowns

can be evaluated in terms of the posterior covariance matrix of the estimated parameters (Fienen et al. (2013)). The diagonal

elements of this matrix represent the posterior variance (σ2) of the estimated parameters and thus, the 95% credibility interval

of the solution is evaluated as ±2σ2.

3 Description of the Bayesian estimation procedure20

After having described the theory of the Bayesian Geostatistical Approach in Sect. 2, some operational information about

the BGA inverse procedure is now illustrated. As mentioned in the Introduction and sketched in Fig. 1-a, the goal of the

adopted BGA methodology is the estimation of the discharge hydrograph in an upstream-ungauged river section (identified by

a question mark in Fig. 1-a), having information about water levels observed in a downstream section (intermediate site in Fig.

1-a). A boundary condition, downstream of the observation site, must also be specified; this can be based on observed data or25

can be approximated extending the computational domain faraway from the intermediate section. The inverse method estimates

Np parameters (the vector of the unknown parameters s in Eq. (1)) that originates , which derive from the discretization of the

upstream discharge hydrograph by means of time intervals, regular in this case (Fig.1-b).

The BGA algorithm solves the inverse problem by means of the following steps.

First ly, the unknown parameters and the structural ones are initialized. The first ones may be all assumed equal to a constant30
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(a) (b)

Figure 1. Definition of the reverse flood routing problem (a) and of the unknown parameters (b).

discharge value coherent with the considered river, whereas the starting values for the structural parameters are assigned so

that the variability between contiguous parameters is small (flat solution, with a high degree of correlation); complexity is then

introduced during the optimization process if supported by the data. The variance of the epistemic errors is assumed close to

the expected one. the structural parameters are usually set so as to guarantee a flat solution (complexity is introduced during the

optimization process only if supported by the data) and the variance of the epistemic errors is assumed close to the expected5

one.

Assuming the first guess of the unknown parameters as upstream boundary condition, the hydraulic forward model is run

and the resulting resulted water levels are extracted at the observation site. The simulation of a base run, once assumed a

particular set of parameters has been assumed (deriving from the initialization or from previous estimation steps), represents

a mandatory step for the Jacobian matrix evaluation, which is performed at this point of the procedure in order to quantify10

how each observation is influenced by the variation of each estimable parameter. The Jacobian matrix quantifies how each

observation is influenced by the variation of each estimable parameter, and it is calculated using a finite differences method.

According to Eq. (12), each element is evaluated as the ratio between the variation of each observation for given variation of

each parameter (numerator) and the variation of the parameter value with reference to the base run (denominator). Particularly,

Eq. (12) is approximated using a finite difference method, and hence each element of the matrix is evaluated as the ratio15

between the variation of each observation (numerator) for given variation of each parameter (denominator) with respect to the

base run. Therefore, additionally to the base run, the hydraulic forward model is further run as many times as the number of

parameters to estimate Np. At each run, a single value of the upstream boundary condition is modified by a known quantity

with respect to the previous value, and the hydraulic forward model is run again. ThereforeAs a consequence, each simulation

tests the sensitivity of the resulted water levels (all the observations at once) to the variation of a single parameter i.20

In order to exemplify this step, Fig. 2-a shows the discharge imposed as upstream boundary condition for a base run of an

intermediate set of parameters: after the propagation, the resulting resulted water levels extracted at the observation site are

shown in Fig. 2-c. To test the sensitivity to parameter i Assuming that the Jacobian matrix is testing the sensitivity, in Fig. 2-b
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the considered parameter is varied with changed by a known quantity and a new upstream boundary condition is defined (solid

line); it is worth noting that the solid and the dotted lines differ only for the parameter i. The water levels resulting resulted

from this single parameter variation are shown in Fig. 2-d (solid line): they are identical to the base run ones until time i-1,

whereas after that time they differ from those of the base run (dotted line). The computation of the differences between the

resulting resulted water levels of the simulation i and of the base run (solid and dotted lines) and the variation of parameter i5

allows computing the column i of the Jacobian matrix, which is a Nobs×Np matrix, where Nobs represents the number of the

observations. After having collected all the perturbed observations Np runs, the Jacobian/sensitivity matrix is evaluated and a

new set of parameters s is estimated (Eq. (14)).

Figure 2. Example of the base run (a) and of the run i for the Jacobian matrix evaluation (b).

Then, the first set of resulted parameters is used for evaluating a new Jacobian matrix and as a result, a second set of pa-

rameters is estimated.This procedure is repeated until convergence or the maximum number of iteration Ni is reached. Then,10

the structural parameters are estimated using the last set of parameters s. holding the last set of parameters s constant, the

structural parameters are estimated. Due to the non-linearity of the forward problem, the model and the structural parameter

estimation is repeated until convergence of the lasts (or the maximum number of iterationsNo is reached ). Therefore, the BGA

implementation requires running the forward model Nt times, according to the following relation (Fienen et al. (2013)):

Nt = (Np + 1)NoNi + 1. (15)15

The whole BGA procedure previously described is sketched in Fig. 3-a.

3.1 Parallelization of the Jacobian matrix evaluation

The most relevant contribution to Focusing on the total computational time required by the inverse estimation procedure, it

emerges that the most relevant contribution is ascribed to the run of the forward model runs (i.e. the computation of each
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(a) (b)

Figure 3. Scheme of BGA algorithm in the serial (a) and parallel (b) version.

element of the Jacobian matrix), rather than to the bgaPEST operations. However, since each of the Np runs in Eq. (15) checks

the sensitivity of the observations to the variation of a single parameter, the solution of a run test does not affect the solution of

the other ones. Therefore, in order to reduce the computational burden, the independent Np runs can be potentially performed

in parallel.

In this work, the PARFLOOD 2D-GPU numerical model presented in Vacondio et al. (2014) and Vacondio et al. (2017)5

has been adopted for routing the inflow hydrograph. Therefore, the bgaPEST routine to evaluate the Jacobian matrix has

been parallelized in order to run simulations taking take advantage of the computational capability of modern High Perfor-

mance Computing (HPC) clusters, which are usually equipped with many GPUs. The implemented parallel procedure, which

is sketched in the flow chart of Fig. 3-b, handles the parallelism among host and GPUs by means of the Secure Shell network

protocol (SSH) and manages the most operative parts of the parallelism (login, run, etc.) outside the bgaPEST code. In the serial10

version (Fig. 3-a), the crucial part of the Jacobian matrix evaluation implementation consists in a do-loop over the parameters.

Considering the parameter i, first ly the input file that will be read by the forward model is written, then the model is run and
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finally the resulting resulted values are read. In the modified version (Fig. 3-b), this main loop is split in three parts: first ly, all

the input files (equal to Np), inside in each of which a particular parameter is modified, are written, then the forward model is

run (Np times), and finally a second loop is performed to read all the resulted values.

3.2 The forward model5

In the parallel bgaPEST (Fig. 3-b), the “Run forward model” instruction actually runs a shell script , which that controls the

file transfer between the host (a standard classical PC or a single node of a cluster) , and the HPC platform, the creation of the

Np simulations for the Jacobian matrix evaluation, and the run of the 2D-SWE GPU code on the device (GPU). In the present

work, a cluster with 10 NVIDIA ® Tesla ® P100 GPUs hosted by the University of Parma was adopted. As shown in Fig. 4,

the bgaPEST algorithm runs on the CPU of a computer, where the Np simulations (in Fig. 4 assumed equal to three for the10

sake of simplicity) are first ly created and then sent to the server user partition, by means of the SSH protocol. Here, the cluster

access node schedules all the jobs submitted by the users, using the HPC scheduler Portable Batch System (PBS). Then, each

simulation is assigned to a specific GPU node. At the end of the computation, the observations are extracted and the output

files remain on the cluster partition, until the CPU verifies via SSH the end of the simulation and copies the results back. The

procedure sketched in Fig. 4 and following described represents the parallelization of the Jacobian matrix computation one of15

the Nt iterations.

Figure 4. Schematization of the data transfer assuming three parameters and thus three parallel simulations.

Listing 1 provides a detailed description of the “Run forward model” shell file.With the aim of describing in detail the

Run forward model, after having clarified the data transfer procedure (Fig.4), in Listing 1 the structure of the shell file is pre-

sented. In order to use the Algorithm for different test cases and potentially on different HPC clusters, all the paths are first

ly declared together with the involved variables (number of parameters to estimate, time interval among parameters, start/end20

of the simulation) (line 2). Then, the algorithm (line 3) checks if the considered run is one useful for the Jacobian matrix
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evaluation, where a given parameter varies, or if it is the base run. Considering the first if condition as true (line 3), the script

generates and copies all the input files for all the Np simulations to the server (lines 5-7). These files tests contain the same

bathymetrical, initial conditions (water level and velocity) and roughness configuration, but a different upstream boundary

condition; each simulation tests the sensitivity of the observations to the variation of a given model parameter. Moreover,

all the simulations adopt the same grid (Cartesian or multiresolution), which is generated only once at the beginning of the5

procedure. It is relevant to note notice that all the Np simulations have not to be run from time tstart to time tend; in fact, . In

effect the variation of parameter i causes effects affects the observations only after time ti−1 and thus the results until ti are

still identical to the base run (see Fig. 2). The PARFLOOD model guarantees the possibility of using the results of the base run

and starting simulations from time ti−1. The theoretical physical time T required to evaluate the Jacobian matrix simulating

each of the Np runs of simulations run from tstart to tend is equal to evaluated as follows:10

T =Np (Np− 1)∆t, (16)

where Np denotes the parameter number and ∆t denotes the constant time interval between two consecutive parameters i and

i+ 1.

Conversely, the physical time T ∗ required to simulate all the Np runs restarting the i-th simulation from time ti−1 instead of

tstart of simulations run from trestart to tend is equal to reads:15

T ∗ = (Np− 1)∆t+

Np∑
i=2

[Np− (i− 1)]∆t. (17)

As pointed out by Eq. (16)-(17) and exemplified in Fig. 5 for a test case with 20 parameters, this simple operation allows

reaching a relevant decrease of the total computational time. Therefore, at line 8, the algorithm computes the time useful to

restart the simulation.

Figure 5. Time reduction T ∗/T as a function of the number of estimable parameters (the x-axis is in logarithmic scale). Comparison of the

cumulative computational times obtained simulating the Np runs from time tstart until tend or with restart option.
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In order to perform the simulation, the host logins logs in to the HPC cluster server by means of the SSH protocol (line

9) and a sleep condition ensures the login procedure (line 10). Then the job is submitted to the queue of the cluster using

external parameters for passing the name of the simulation folder and the time for restart (line 11): the submitted job contains

the reference to the PBS queue and the link to the executable 2D-SWE GPU code. At the end of the simulation, the water

levels at the observation site are automatically extracted. Once the job is submitted, the SSH login is closed (line 12). After5

having submitted all the simulations, for each parameter (line 15) the code regularly (line 18) tests via SSH the presence of

the end_file, which states the end of the simulation (line 20), and waits in case it is missing (line 25). Once the simulation is

finished, the resulting ed observations are copied back to the CPU Host client (line 28) and the folder is removed from the

server (line 29).

On the other sideConversely, the else condition (line 30) is true for the base run, which is necessary for the Jacobian matrix10

computation. The simulation folder with, which contains all the necessary input files is copied to the server (line 31) and the

job is submitted (line 34). Then, the algorithm periodically verifies the end of the simulation and copies the results back to the

CPU Host client (lines 39-49). It is relevant to note that the base run is firslty performed first, whereas the other Np ones can

be performed in parallel performed.

Listing 1. “Run forward model” for the parallel bgaPEST scheme
1 # ! / bin / bash15

2 V a r i a b l e and p a t h d e c l a r a t i o n

3 i f [ p a r a m e t e r run ] ;

4 then

5 f o r ( ( i =1 ; i <=Np ; i ++ ) )

6 do20

7 C r e a t e and copy t h e s i m u l a t i o n f o l d e r t o t h e s e r v e r ( s i m u l a t i o n _ i )

8 Compute t h e t ime from which r e s t a r t i n g t h e s i m u l a t i o n

9 ssh s e r v e r name << EOF

10 s l e e p 15

11 ssh s u b m i s s i o n : f rame number f o r r e s t a r t , name of t h e t e s t case , j o b t o s ubm i t25

12 e x i t

13 EOF

14 done

15 f o r ( ( i =1 ; i <=Np ; i ++ ) )

16 do30

17 e n d _ f i l e =0

18 whi le [ e n d _ f i l e −eq 0 ] ;

19 do

20 ssh s e r v e r name f i n d s e r v e r _ p a t h −iname e n d _ f i l e . t x t | wc − l > e n d _ f i l e

21 i f [ e n d _ f i l e ] ;35

22 then

23 c o n t i n u e

24 e l s e

25 s l e e p 10
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26 f i

27 done

28 Copy t h e f i l e w i th o b s e r v a t i o n from s e r v e r t o CPU

29 Remove t h e s i m u l a t i o n f o l d e r on t h e c l u s t e r

30 e l s e5

31 C r e a t e and copy t h e s i m u l a t i o n f o l d e r t o s e r v e r

32 s sh s e r v e r name << EOF

33 s l e e p 15

34 s sh s u b m i s s i o n : f rame number f o r r e s t a r t , name of t h e t e s t case , j o b t o s ubm i t

35 e x i t10

36 EOF

37 e n d _ f i l e =0

38 whi le [ e n d _ f i l e −eq 0 ] ;

39 do

40 ssh s e r v e r name f i n d s e r v e r _ p a t h −iname e n d _ f i l e . t x t | wc − l > e n d _ f i l e15

41 i f [ e n d _ f i l e ] ;

42 then

43 c o n t i n u e

44 e l s e

45 s l e e p 1020

46 f i

47 done

48 Copy t h e f i l e w i th o b s e r v a t i o n from s e r v e r t o CPU

49 f i

4 Validation of the inverse methodologyApplication of the inverse methodology to synthetic test cases25

With the purpose In the context of applying validating the BGA method described above before, it is worth noting that reference

solutions for inverse problems are by definition unavailable, since the goal of the methodology is the estimation of an upstream

inflow hydrograph that is unknown at the beginning of the process. Therefore, in this section the inflow hydrographs in two

natural rivers in Northern Italy are estimated and the reference solutions, which are necessary in order to validate the inverse

procedure, are obtained as follows (D’Oria et al. (2014)). Considering the domain in Fig. 6, a selected inflow discharge Qref30

is routed from the upstream section A to until the downstream boundary D, where a rating curve is imposed far away from

C. The resulting ed water level hydrographs is are extracted in at sites B and C. The inverse procedure is then applied to the

sub-domain sketched with solid line in Fig. 6, by assuming the water levels in sites B and C (resulted from derived in step 1)

as observations and downstream boundary condition, respectively. The information in sub-reach C-D is only preparatory for

setting up the synthetic cases and it is not used in the inverse procedure. Imposing a rating curve in D allows to obtain water35

levels with a non-unique stage-discharge relationship in section C, which is more close to the real situations when applying the

inverse procedure. The methodology estimates the inflow Qest assuming that no information is available on the discharge (or

water stage) at the inflow section A.
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Figure 6. Exemplification of a test case definition.

Quantitative information about the accuracy of the inverse methodology is here provided evaluating the differences between

the reference Qref and the estimated Qest hydrographs by means of three different indicators. Firstly, the Nash-Sutcliffe

efficiency criterion (Nash and Sutcliffe (1970)) Eh was adopted, according to the following relation:

Eh =

[
1−

∑Np

i=1(Qi
ref −Qi

est)2∑Np

i=1(Qi
ref −Qref

)2

]
· 100, (18)

where Np is the number of parameters, Qref
i and Qest

i are the i-th reference and estimated inflow values, respectively, and5

Q
ref

is the mean value of the reference hydrograph. Then, the root mean square error, RMSE, was evaluated as follows:

RMSE =

√∑N
i=1(Qi

ref −Qi
est)2

Np
. (19)

Finally, the estimation error in the peak discharge Ep was assessed as:

Ep =

[
Qest

p

Qref
p

− 1

]
· 100, (20)

where Qest
p and Qref

p denote the peak discharge value of the estimated and reference hydrographs, respectively.10

4.1 Inflow hydrograph estimation on the Parma River

The first test concerns the estimation of a Synthetic hypothetical discharge hydrograph at the entrance of the Parma River

(Northern Italy). Figure 7-a illustrates the studied domain and the locations of the upstream boundary condition A, of the

observation site B and of the downstream boundary section C. The domain includes a 20-km long embanked reach that , which

is characterized by several meanders and flood plains. As shown in Fig. 7, the flow field significantly varies at low and high15
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Figure 7. Map of the maximum simulated water depths for in the Parma River (a): the upstream (A) and downstream (C) boundary conditions

and the intermediate observation site (B) are indicated. With reference to the area marked with dotted white line in (a), (b) and (c) represent

the water depths and (d) and (e) the velocity field at low and high discharge values, respectively.

discharge values due to the river morphology. At the beginning of the flood wave, the flow is characterized by both low water

depths (7-b) and velocity (7-d). Conversely, at the arrival of the flood peak pick, most of the meanders are cut by the flow,

as shown in Fig. (7-c) and Fig. (7-e) for water depths and velocity, respectively. This makes the adoption of 1D numerical

schemes not suitable difficult to accurately describe the flood propagation.

The bathymetry was derived from a 1-m resolution DTM obtained through a LiDAR survey carried out in drought condition.5

The domain was discretized by means of a Cartesian grid with cell sizes ∆x= ∆y = 4 m and about 275 · 103 computing cells

were adopted. The Manning roughness coefficient was assumed equal to 0.05 s/m1/3. The steady-state values of water depth

and velocity fields, obtained considering the initial discharge value of the hydrograph, were adopted as initial conditions.

The inflow condition to be estimated concerns a Synthetic Discharge Hydrograph with gamma distribution that was calcu-

lated was assumed as follows (D’Oria et al. (2015)):10

Q(t) =A+B · f(t,b,k), (21)

where t denotes the time,A the base flow (constant value),B the volume above the base flow (constant value) and f the gamma

distribution, which states:

f(t,b,k) =
1

kbΓ(b)
tb−1e−

t
k , (22)
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where Γ(b) represents the gamma function defined through the parameters b and k that denote the shape and the scale parameter,

respectively. The parameters of the gamma distribution were set as follows: A = 100 m3/s, B =3·107 m3, b = 6 and k = 10000

s. The resulted flood wave presented a peak value of about 630 m3/s at time (b-1)k ≈ 14 hours (Fig. 8-a).

(a) (b)

Figure 8. Parma River inflow: flow and stage hydrographs at referred to sections A and C, respectively (a) and observation error distribution

(b).

During the estimation, when the sensitivity to the first parameter p1 is investigated, the steady-state flow for the initial

discharge is also recomputed. This means that parameter p1 determines not only the first value of the estimated flood wave but5

also it governs the initial condition of the river reach.

The inflow hydrograph duration was limited to 40 hours and it was discretized using 2 hours time interval steps (Np=21),

whereas the observation stage hydrographs were discretized every 0.5 hours (80 water levels). The prior pdf was defined by

means of a Gaussian covariance function model, and the initial structural parameters were set as reported in Table 1. In order

to avoid non-physical discharge values during the computations, non-negativity was enforced to the unknown parameters by10

performing the estimation in a logarithmic space. The initial model parameter values were defined by applying the linesearch

tool of the bgaPEST, which damps the solution between successive iterations (Fienen et al. (2013)), and avoids numerical

instabilities that may occur starting from a worse first choice of the parameters too far from the true one.

The inflow hydrograph was estimated first ly considering true observations (the variance was set equal to 10−8 m2 to

take into account the truncation error)free of errors and with truncation error resulting in a variance of 10−8 m2. Then, the15

same discharge hydrograph was defined corrupting the observed water levels with random errors uniformly distributed with

maximum deviations of ±0.05 m and variance 10−3 m2 (Fig. 8-b).

Qualitative assessment of the inverse methodology is achieved by comparing the reference with the estimated inflow hydro-

graph, as well as the observed with the modeled water levels in the observation site. Considering the simulation without errors

in the observations, Fig. 9 shows that the estimated flood wave overlaps the reference one (a), and the modeled water levels20
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agree almost perfectly with the measured ones (b). Particularly, with reference to the peak value, the estimated flood wave

presents the maximum misfit of 0.2%, whereas the modeled water levels differ from the observed ones less than the 0.01%.

(a) (b)

Figure 9. Parma Riverinflow and uncorrupted observations: reference and vs estimated inflow hydrograph (a) and observed (uncorrupted)

and vs modeled water levels (b). The residuals between reference and estimated values are also reported.

The results of the simulation with random errors corrupting the observations are depicted in Fig. 10. The estimated flood

wave well matches again the reference one, presenting a misfit referred relative to the peak value lower than the 5%, and simi-

larly the modeled water levels reproduce the reference ones with residual less than 1%. Only the last value of the reconstructed5

flood wave it is slightly overestimated, since the more the tested parameter nears the end of the wave, the fewer observations

contain information about the related effects, as illustrated by the increasing range of the 95% credibility interval. However,

the "true" discharge values are estimated wave is inside the 95% credibility interval, thus confirming the good accuracy results

of the solution. In addition to this behaviour at the end of the discharge hydrograph (that can be postponed extending the hy-

drograph total duration), very small differences between the observed and modelled variables appear when abrupt changes in10

the inflow function are present (e.g. the initial transition from the steady state to the flood wave). This behaviour is due to the

regularization introduced into the solution by the prior information that imposes some degree of continuity and/or smoothness

to the estimated hydrograph. However, the residuals are practically negligible and abrupt discontinuities in the inflow hydro-

graphs are not common in natural floods. The structural parameters and the epistemic error variance estimated in the presence

and absence of corrupted observations are reported in Table 1.15

Quantitative assessment Assessment of the methodology accuracy has been quantified achieved by means of the Nash-

Sutcliffe Eh, root mean square error RMSE and error in the peak discharge Ep values reported in Table 2. The Eh values are

greater than over the 99%, the Ep ones values are almost negligible and the RMSE error is less than 0.5 m3/s without random

errors and reaches the maximum value of 6 m3/s with corrupted observations.
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(a) (b)

Figure 10. Parma Riverinflow and corrupted observations: reference and vs estimated (with 95% credibility interval) inflow hydrograph (a)

and observed (corrupted) and vs modeled water levels (b). The residuals between reference and estimated values are also reported.

Table 1. Parma Riverinflow: initial and estimated structural parameters and epistemic error variance.

No random errors Random errors

σ2
R (m2) Initial - 1.00E-4

Estimated - 1.09E-3

σ2
S (m6s−2) Initial 5.00E+2 5.00E+2

Estimated 1.07E+3 5.36E+1

l(s) Initial 6.48E+4 6.48E+4

Estimated 2.90E+4 5.28E+4

4.2 Inflow hydrograph estimation on the Secchia River

The second test case concerns both a different river reach and shape of the inflow hydrograph. The studied domain includes

a 25 km-long reach of the Secchia River (Northern Italy) between the outflow of the flood control reservoir of Rubiera-

Campogalliano located at west of Modena town (point A) and the gauging station of Ponte Bacchello (point C) and referring

the water level observations to the gauging station of Ponte Alto (point B) (Fig. 11). The modeled river reach is characterized5

by the presence of many flood plains and floodable areas that influence the flood propagation. The bathymetry was derived

from a 1-m resolution DTM obtained through a LiDAR survey carried out in drought condition.
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Table 2. Parma inflowRiver: Nash-Sutcliffe Eh, root mean square error RMSE and error in the peak discharge Ep values.

Eh (-) RMSE (m3/s) Ep (%)

No random errors 99.99 0.49 -0.04

Random errors 99.88 6.65 0.15

Figure 11. Map of the water depths at the flood peak occurrence on the Secchia River, with indication of the upstream (A) and downstream

(C) boundary conditions and the intermediate observation site (B).

The domain was discretized by means of a non-uniform BUQ grid (Vacondio et al. (2017)), resulting in 77 · 103 computing

cells. The Manning roughness coefficient in the riverbed was assumed equal to 0.05 s/m1/3 (Vacondio et al. (2016)).

The discharge hydrograph to be estimated is the synthetic flood wave of 20-years-return period of the Secchia River with a

peak value of about 780 m3/s after 18 hours. In order to increase the non-smoothness of the wave, a quite abrupt increment

that separates the initial steady-state condition (100 m3/s) from the rising limb was introduced (Fig. 12-a). It is noteworthy that5

this flow hydrograph is characterized by a pseudo-real irregular shape, that cannot be properly approximated by an analytical

parametric function (i.e.e.g., Gamma distribution, Pearson function). The inflow hydrograph ended in 72 hours and it was

discretized using 2-hours time interval steps (Np=37), whereas the observed ation stage hydrograph was discretized every 0.5

hours (144 water level values). The inflow hydrograph was first ly estimated assuming the true water levels extracted at section

B free of errors ( with only a truncation error resulting in a variance of 10−8 m2 ), and thensecondly considering corrupted10

observations with random errors uniformly distributed with maximum deviations of±0.05 m and variance 10−3 m2 (Fig. 12-b).

Besides the discharge and stage hydrographs Figure 12-a depicts also the discharge hydrograph resulted in at the downstream

boundary condition section C, in order to highlight the attenuation effect exerted by the flood plains and floodable areas.
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(a) (b)

Figure 12. Secchia Riverinflow: flow and stage hydrographs referred to sections A and C, respectivelyflow hydrograph at section A and flow

and stage hydrographs at section C (a) and observation error distribution (b).

As before, the parameters were estimated in a logarithmic space and their initial values were calculated adopting the line-

search tool of the bgaPEST (Fienen et al. (2013)). The prior pdf was described by means of a linear and Gaussian covariance

function variogram, in the configuration with and without corrupted observations, respectively (Table 3). The initial model pa-

rameter values were calculated adopting the linesearch tool of the bgaPEST, and the estimation was performed in a logarithmic

space.5

As shown in Fig. 13 for the simulation without corrupted observations, the estimated flood wave matches almost perfectly the

reference one, as well as and the modeled water levels agree with the measured ones. With reference to the peak value, the

flood wave is estimated with less than the 0.03% difference against the reference one, and similarly, the residuals between

modeled and observed water levels are less than the 0.01%.

The results of the simulation with corrupted observations depicted in Fig. 14 highlight that both the shape and the peak value10

are well captured. The residual between reference and estimated discharge, referred to the peak value, is about 8%, whereas

the misfit between observed and modeled water levels is less than 0.3%. The small discrepancies of the estimated peak flood

wave from the reference one are essentially caused by the fact that the portion with the peak is discretized with only a few

parameters and the adopted covariance function variogram smooths the solution.

The structural parameters and the epistemic error variance estimated in the presence and absence of corrupted observations15

are reported in Table 3.

The resulted indicators used for evaluating the accuracy of the methodology are reported in Table 4. The Nash-Sutcliff

efficiency Eh values exceed the 99%, the errors in the peak flow Ep are almost negligible and the RMSE error is less than 1

m3/s without random errors and reaches the maximum value of 16 m3/s with corrupted observations: these values highlight the

accuracy of the procedure in estimating the overall shape and peak of the inflow hydrograph.20
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(a) (b)

Figure 13. Secchia River inflow and uncorrupted observations: reference and vs estimated inflow hydrograph (a) and observed (uncorrupted)

and vs modeled water levels (b). The residuals between reference and estimated values are also reported.

(a) (b)

Figure 14. Secchia River inflow and corrupted observations: reference and vs estimated (with 95% credibility interval) inflow hydrograph

(a) and observed (corrupted) and vs modeled water levels (b). The residuals between reference and estimated values are also reported.

With the aim of exemplifying the efficiency of the proposed parallel inverse procedure, some For this case, some details

about the computational characteristics times are furnished for this test case, whose main features are reported in Table 5.

The computational time of the whole inflow hydrograph simulation (72 hours) is 9.62 minutes, whereas the simulations

for evaluating the Jacobian matrix and testing parameters from 2 till 37 required a computational time progressively lower

than 9.62 minutes, thanks to the restart option illustrated in the Sect. 3. In order to evaluate the total time required by the5
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Table 3. Secchia River inflow: initial and estimated structural parameters and epistemic error variance.

No random errors Random errors

θ (m6s−3) Initial 1.00E-10 -

Estimated 3.97E-6 -

σ2
R (m2) Initial - 1.00E-4

Estimated - 1.11E-3

σ2
S (m6s−2) Initial - 5.00E+2

Estimated - 1.38E+1

l(s) Initial - 4.32E+4

Estimated - 3.88E+4

Table 4. Secchia River inflow: Nash-Sutcliffe Eh, root mean square error RMSE and error in the peak discharge Ep values.

Eh (-) RMSE (m3/s) Ep (%)

No random errors 99.99 0.13 -0.02

Random errors 99.44 16.57 2.89

inverse procedure, it is noteworthy that dealing with an HPC cluster the global run time depends on the number of the available

GPUs. However, this test was performed using 10 GPUs and the computational cost of the 609 runs was about 13 hours. Since

the implemented procedure that manages the interaction between host and server can be used for different HPC cluster, the

availability of a cluster equipped with Np GPUs would have allowed the estimation of the flood wave in about 8 hours. On

the other side, the adoption of the serial bgaPEST procedure and the PARFLOOD code as routing model would have required5

about 4 days of computations that means about 8 times higher slower than the parallel procedure here proposed. Particularly

interesting is the hypothetical evaluation of the computational time for a serial BGA procedure and the adoption of a serial

CPU code as forward hydraulic model. Vacondio et al. (2014) pointed out that the PARFLOOD code led to speedup up to

two order of magnitude if compared to a serial CPU code. Therefore, if a serial BGA procedure and the GPU forward model

would have required about 4 computational days, the inverse problem solution with a serial forward code would ended in 40010

computational days, making the use of the inverse procedure practically iunfeasible.
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Table 5. Secchia River inflow: characteristics of the simulation.

Number of parameters Np 37

Physical total time of the inflow hydrograph 72 hours

Physical total time of the run testing the 1st parameter p1, assuming 100 hours for reaching the steady state condition 172 hours

Computational time of the whole inflow hydrograph simulation (72 hours) 9.62 minutes

Computational time of the run testing the 1st parameter (172 hours) 19.38 minutes

Number of the BGA iterations Ni for the model parameter estimation 4

Number of the BGA iterations No for the structural parameter estimation 4

Total number of simulations Nt (Eq. 15) 609

5 Reconstruction of a historical event: the December 2009 flood wave on the Secchia River

After the model validation assessed in the previous section, The inverse procedure is now validated adopted in the framework

of a real field application, by investigating the December 2009 flooding event on the Secchia River, which is one of the three

most significant events occurred in the last ten years in this river. The Interregional Agency for the Po River (AIPo) monitored

the river and provided the water stage hydrographs recorded in the two gauging stations indicated in Fig. 11 with letters B and5

C, respectively. As shown in Fig. 15, the recorded registered water levels present more than a one rising and recession limb,

and thus, besides the challenges related to a real field application, this test aims at addressing also the estimation of an inflow

with multiple two peaks. In order to estimate the discharge at section A (Fig. 11), the water levels registered recorded at point

B and C were assumed as observations and downstream boundary condition, respectively. The event was simulated from 9 p.m.

of the 22nd December 2009, till 12 a.m. of the 26th December, for a total duration of 87 hours. The water levels were recorded10

every 0.5 hours, and thus the observations consist of 174 values. Conversely, whereas the unknown inflow hydrograph was

discretized into 88 parameters (one per hour, Np=88). every hour, in a result of 88 parameters to be estimated (Np=88). The

stage hydrographs, adopted as observations and downstream boundary condition, respectively, are shown in Fig. 15.

The studied domain is analogous to the one the same previously adopted for a syntethic inflow, and thus, the reader is kindly

referred to Sect. 4.2 for the information about bathymetry, initial condition, and roughness configuration.15

As before, the parameters were estimated in a logarithmic space and their initial values were calculated adopting the line-

search tool of the bgaPEST (Fienen et al. (2013)). The prior pdf was described by means of a Gaussian variogram covariance

function; the initial and estimated structural parameters are reported in Table 6.

Figure 16 shows the estimated flood wave (and the 95% credibility interval), which presents an irregular shape and two main

peaks, as it could be expected from the observed stage hydrograph. Moreover, an additional small intermediate peak is captured20
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Figure 15. December 2009 registered recorded stage hydrographs on the Secchia River at, referred to sections B and C, respectively.

Table 6. Secchia 2009 event: initial and estimated structural parameters.

σ2
S (m6s−2) l(s)

Initial 5.00E+2 6.48E+4

Estimated 1.49E+1 3.36E+4

that was not so evident from the registered water levels at section B (Fig. 15), even if a little pronounced local maximum can

be seen around 3 p.m. of the 24th December 2009. The resulting ed flood wave is included in the 95% credibility interval, and

moreover the solution presents neither instabilities nor oscillations. During the computation, the variance of the epistemic error

was assumed equal to 10−3 m2; as shown in Sect. 4, this means considering the observed water levels corrupted with random

errors with maximum deviations of ±0.05 m. In Fig. 16, the flood wave estimated by increasing reducing the variance of half5

an order of magnitude is also depicted (dotted line): the solution appears slightly smoothed in a few points, but substantially

similar to the inflow resulting with the highersmaller variance, which is thus considered as the estimated inflow of the studied

event. The comparison between modeled and measured water levels at section B is presented in Fig. 17: it is relevant to note

that the residuals between the two hydrographs trends are mostly less than 2 cm and only in a few points of the first rising limb

they reach the highest value of 18 cm.10

With the aim of validating the methodology for this real application, it is noteworthy that the upstream section of the river

is located immediately downstream a flood control reservoir equipped with water level sensors. Therefore, the "reference" dis-

charge hydrograph has been obtained from the dam geometrical data (i.e. number and dimension of the bottom openings, crest

length of the spillway, etc.) and the recorded water levels adopting the classic hydraulic theory of sluice gates and spillways.

Due to the uncertainty in evaluating the discharge coefficients and to the fact that during flood events a large amount of wood15

debris reduces the outflow discharge from the bottom openings (especially during the depletion phase) and interferes with the

overflow spillway, the discharge hydrograph has been calculated adopting equally likely coefficients (Fig. 18). The flood wave
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Figure 16. Secchia 2009 event: estimated inflow hydrographs assuming the epistemic error variance equal to 10−3 m2 and 5·10−3 m2,

respectively. The 95% credibility interval is referred to the simulation with the epistemic variance equal to 10−3 m2.

Figure 17. Secchia 2009 event: observed and vs modeled water levels at section B. The residuals between recorded reference and estimated

values are also reported.

estimated by the inverse procedure is in good agreement with the one calculated using the flood reservoir data; the main differ-

ences are after the highest peak, which is well reproduced, although the inverse methodology provides a smoother solution. For

this real application, even if the river roughness coefficient was already calibrated in previous studies (Vacondio et al. (2016)),

an additional inverse Bayesian estimation was performed with a different value, in order to assess the effect of this coefficient

on the solution. Particularly, the Manning coefficient originally set to 0.05 s/m1/3 was decreased by 15% (0.0425 s/m1/3), as5

for example can happen due to seasonal changes in vegetation. As shown in Fig. 18, the estimated flood waves are similar and

the highest difference, which is in correspondence with the main peak, is less than 6%. Therefore, the influence of assuming

a “wrong” roughness coefficient is less than linear in the discharge estimation. Despite all the involved approximations, this

26



comparison confirms that the proposed inverse procedure is capable of estimating inflow hydrographs with multiple peaks and

irregular shapes in real rivers.

Figure 18. Secchia 2009 event: comparison among the inflow hydrographs obtained from the inverse procedure using two different Manning

coefficients, and the envelope of different solutions obtained using the records at the flood control reservoir.

6 Conclusions

In this work the inverse problem of estimating the unknown inflow hydrograph in an upstream-ungauged section, having5

water level information only in downstream sites, has been solved by means of a Bayesian methodology. The key aspects

in the solution of this problem have been the adoption of a parallel 2D-SWE code running on GPUs and the performance

of the simulations over a HPC cluster. The parallelization of the runs useful for the Jacobian matrix computation and the

implementation of an ad hoc procedure, which allows taking advantage of any HPC cluster with GPUs, by means of the

protocol SSH, have provided a remarkable reduction of the computational costs: the more GPUs are available on the clus-10

ter, the less time is required for the parameter estimation. For a considered test case, this parallel procedure reduced the

computational time by of a factor of 8 against running the 2D-SWE code on a single GPU. Furthermore, the analysis of the

runtimes has highlighted that the use of a parallel hydraulic forward routing model is the conditio sine qua non for solving this

type of inverse problem, whereas the adoption of a serial code would lead to inadmissible computational times. The inverse

procedure has been validated considering two different natural rivers; in both tests, no instabilities, due to the adopted inverse15

procedure or to the availability of a stable, fast and accurate forward hydraulic model, arose. Moreover, the obtained results

have highlighted that the implemented procedure well estimates the unknown inflow hydrographs with different and irregular

shapes and in presence of corrupted observations: quantitative indicators have proved the accuracy of the methodology. In all

the presented tests, the resulting ed Nash-Sutcliff efficiency criterion exceeded 99%, the error in the peak discharge was less

than 3% and the RMSE error less than 2%. Finally, the proposed inverse procedure allowed the estimation of a historical flood20

wave characterized by the presence of multiple peaks, without reaching causing instabilities in the solution. The test cases
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were simulated taking advantage of the HPC cluster of the University of Parma. However, since the implemented procedure is

general, it is possible to adopt clouds of GPUs or on-line mini clusters, which are now common and accessible to everyone. The

adopted Bayesian software (bgaPEST) is open access and 2D-SWE models are a quite common tools for practitioners, even if

till now few of them are fast enough to perform the necessary simulations with a reasonable computing time. Therefore, the 2D

coupled methodology here proposed can be adopted in the near future also by professional hydrologists involved for example in5

the design of hydraulic infrastructures as well as for engineers working on water resource management (i.e. irrigation systems,

hydroelectric power stations, etc.) or forensic activities. Future development of the methodology will focus on the possibility

of reconstructing the flood waves also in presence of levee breaches and flooding outside the river region, where the adoption

of a 2D-SWE model is mandatory.
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