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Abstract – The European Centre for Medium Range Weather Forecast (ECMWF) recently released

a first  7-year  segment  of  its  latest  atmospheric  reanalysis:  ERA-5 over  2010-2016. ERA-5 has

important changes relative to ERA-Interim former atmospheric reanalysis including a higher spatial

and temporal resolution as well as a  more recent model and data assimilation system. ERA-5 is

foreseen to replace ERA-Interim reanalysis and one of the main goals of this study is to assess

whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is

used to force a Land-Surface-Model (LSM). To that end, both ERA-5 and ERA-Interim are used to

force the ISBA (Interactions between Soil, Biosphere, and Atmosphere) LSM fully coupled with the

Total  Runoff  Integrating Pathways (TRIP) scheme adapted for  the  CNRM (Centre  National  de

Recherches  Météorologiques)  continental  hydrological  system  within  the  SURFEX  (SURFace

Externalisée) modelling platform of Météo-France. Simulations cover the 2010-2016 period at half

a degree spatial resolution. 

ERA-5 impact on ISBA LSM relative to ERA-Interim is evaluated using remote sensing and in-situ

observations covering a substantial part of the land surface storage and fluxes over the CONtinuous

US (CONUS) domain. The remote sensing observations include: (i) satellite-driven model estimates

of land evapotranspiration , (ii) upscaled ground-based observations of gross primary production,

(iii) satellite derived estimates of surface soil moisture as well as (iv) satellite derived estimates of

Leaf Area Index (LAI). The in-situ observations cover (i) soil moisture, (ii) turbulent heat fluxes,

(iii) river discharges and (iv) snow depth.  ERA-5 leads to a consistent improvement over ERA-

Interim as verified with the use of these 8 independent observations of different land status and of

the model simulations forced by ERA-5 when compared with ERA-Interim. This is particularly

evident for the land surface variables linked to the terrestrial hydrological cycle while variables

linked to vegetation are less impacted. Results also indicate that while precipitation provides, to a

large extent, improvements in surface fields (e.g. large improvement in the representation of river

discharge and snow depth), the other atmospheric variables play an important role, contributing to
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the  overall  improvements.  These  results  highlight  the  importance  of  enhanced  meteorological

forcing  quality  provided  by  the  new  ERA-5  reanalysis,  which  will  pave  the  way  for  a  new

generation of land-surface developments and applications.

1. Introduction

Observing and simulating the response of land biophysical variables to extreme events is a major

scientific  challenge  in  relation  to  the  adaptation  to  climate  change.  To that  end,  Land  Surface

Models (LSMs) constrained by high quality gridded atmospheric variables and coupled with river

routing models are essential (Schellekens et al., 2017,  Dirmeyer et al., 2006). Such LSMs should

represent land surface biogeophysical variables like surface and root zone soil moisture (SSM and

RZSM, respectively), biomass and Leaf Area Index (LAI) in a way that is fully consistent with the

representation  of  surface  and energy flux  as  well  as  river  discharge  simulations.  Land  surface

simulations, such as those from the Global Soil Wetness Project (GSWP, Dirmeyer et al., 2002,

2006;  Dirmeyer,  2011),  combined  with  seasonal  forecasting  systems  have  been  of  paramount

importance in triggering progress in land-related predictability as documented in the Global Land–

Atmosphere Coupling Experiments (GLACE, Koster et al., 2009a, 2011). The land surface state

estimates  used  in  those  studies  were  generally  obtained  with  offline  (or  stand-alone)  model

simulations,  forced  by  3-hourly  meteorological  fields  from atmospheric  reanalysis.  In  the  past

decade, several improved global atmospheric reanalysis of the satellite era (1979-onwards) have

been produced that enable new applications of offline land surface simulations. Amongst them are

NASA’s Modern Era Retrospective-analysis for Research and Applications (MERRA; Rienecker et

al., 2011 and MERRA2; Gelaro et al. 2016,) as well as ECMWF’s (European Centre for Medium-

Range Weather Forecasts) Interim reanalysis (ERA-Interim; Dee et al., 2011). Their offline use in

either LSMs or Land Data Assimilation System (LDAS), with or without meteorological corrections

(e.g.,  precipitations)  led  to  global  Land  Surface  Variables  (LSVs)  reanalysis  datasets  that  can

support e.g. water resources analysis (Schellekens et al., 2017), like MERRA-Land and MERRA2-

Land (Reichle,  2011; 2017),  ERA-Interim/Land (Balsamo et al.,  2015),  the forthcoming ERA5-

Land (Muñoz-Sabater et al., 2018), the North American LDAS (NLDAS, Mitchel et al., 2004), the

Global LDAS (GLDAS, Rodell et al., 2004) and LDAS-Monde (Albergel et al., 2017).The quality

of those offline land surface simulations relies on the accuracy of the forcing and of the realism of

the land surface model itself (Balsamo et al., 2015). 

ECMWF recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 over

2010-2016. ERA-5 has important changes relative to ERA-Interim former atmospheric reanalysis

including a higher spatial and temporal resolution as well as a better global balance of precipitation
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and evaporation.  As ERA-5 will eventually replace ERA-Interim reanalysis assessing its ability to

force a LSM with respect to ERA-Interim is highly relevant. In this study, ERA-5, ERA-Interim as

well as a combination of both (ERA-5 with precipitation of ERA-Interim) are used to constrain the

CO2-responsive  version  of  the  Interactions  between  Soil,  Biosphere,  and  Atmosphere  (ISBA,

Noilhan and Mahfouf, 1996; Calvet et al., 1998, 2004 ; Gibelin et al., 2006) LSM fully coupled

with the CNRM (Centre  National  de Recherches Météorologiques) version of the Total  Runoff

Integrating Pathways (TRIP, Oki et al., 1998) continental hydrological system (CTRIP hereafter,

Decharme et al., 2010) within the SURFEX (SURFace Externalisée, Masson et al., 2013) modeling

system of Météo-France. ISBA models leaf-scale physiological processes and plant growth, while

transfer of water and heat through the soil rely on a multilayer diffusion scheme.

In this study SURFEX is applied over a data-rich area: North America (longitudes from 130.0ºW to

60.0ºW, latitudes from 20.0º to 55.0º N) for the period 2010-2016. ERA-5 added values with respect

to ERA-Interim is assessed by providing verification and diagnostics comparing ISBA land surface

variables  outputs  when  forced  by  either  ERA-5,  ERA-Interim,  ERA-5  with  ERA-Interim

precipitations to several in-situ measurement data sets as well as satellite-derived estimates of Earth

Observations. Namely, In-situ measurements of (i) soil moisture from the USCRN network (US

Climate Reference Network, Bell et al., 2013) spanning all over the United States of America and

(ii)  of  turbulent  heat  fluxes  from  FLUXNET-2015  (http://fluxnet.fluxdata.org/data/fluxnet2015-

dataset/)  are  used in  the evaluation,  together  with (iii)  river  discharges  from the United States

Geophysical Survey (USGS, https://waterwatch.usgs.gov/) and (iv) snow depth measurements from

the Global Historical Climatology Network (GHCN, Menne et al., 2012a, 2012b). Are also used: (i)

satellite-driven  model  estimates  of  land  evapotranspiration  from  the  Global  Land  Evaporation

Amsterdam Model (GLEAM, Martens et al., 2017) project, (ii) upscaled ground-based observations

of gross primary production from the FLUXCOM project (Jung et al., 2017), (iii) satellite derived

estimates of SSM from the Climate Change Initiative (CCI) program of the European Space Agency

(ESA-CCI SSMv4 Dorigo et al., 2015, 2017) as well as (iv) satellite derived estimates of LAI from

the Copernicus Global Land Service program (CGLS, http://land.copernicus.eu/global/).

Section 2 presents the details of two atmospheric reanalyses data sets, ERA-Interim and ERA-5, the

SURFEX model configuration as well as the evaluation strategy with the observational data sets.

Section 3 provides a set of statistical diagnostics to assess and evaluate ERA-5 impact in ISBA with

respect to ERA-Interim. Finally, section 4 provides perspectives and future research directions.

2. Methodology

2.1. ERA-Interim and ERA-5 reanalysis
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ERA-Interim is a global atmospheric reanalysis produced by ECMWF (Dee et al. 2011). It uses

Integrated  Forecast  System  (IFS)  version  31r1  (more  information  at

https  ://www.ecmwf.int/  en/forecasts/documentation-and-support/changes-ecmwf-model/ifs  -  

documentation) with a spatial resolution of about 80 km (T255) and with analyses available for

0000, 0600, 1200, and 1800 UTC. It covers the period from 1 January 1979 onward and continues

to be extended forward in near-real time (with a delay of approximately 1 month).  Reanalyses

merge observations and model forecasts in data assimilation methods to provide an accurate and

reliable description of the climate over the last  few decades.  Berrisford et  al.  (2009) provide a

detailed description of the ERA-Interim product archive. ERA-5 (Hersbach, 2016) is the latest and

fifth generation of European reanalyses produced by the ECMWF and a key element of the EC-

funded  Copernicus  Climate  Change  Service  (C3S).  It  is  expected  that  ERA-5 will  replace  the

production of the current ERA-Interim reanalysis (Dee et al., 2011) before the end of 2018, from

1979 to close to Near  Real  Time (NRT) period,  i.e.,  in  ERA-5 regular routine updates will  be

conducted to keep close to NRT. In a second phase, an extension back to 1950 is also expected.

ERA-5 adds different characteristics to ERA-Interim reanalysis, which makes it richer in term of

climate information. 

ERA-5 uses  one  of  the  most  recent  versions  of  the  Earth  system model  and data  assimilation

methods  applied  at  ECMWF,  which  makes  it  able  to  use  modern  parameterizations  of  Earth

processes compared to older versions used in ERA-Interim. For instance, developments were done

at ECMWF, which allows it to use a variational bias scheme not only to satellite observations, but

also to ozone, aircraft and surface pressure data. ERA-5 benefits also of reprocessed data sets that

were not ready yet during the production of ERA-Interim. Two other important features of ERA-5

are the improved temporal and spatial resolution, from 6-hourly in ERA-Interim to hourly analysis

in ERA-5, and from 79 km in the horizontal dimension and 60 levels in the vertical, to 31 km and

137 levels in ERA-5. Finally, ERA-5 also provides an estimate of uncertainty through the use of a

10-member  Ensemble  of  Data  Assimilations  (EDA)  at  a  coarser  resolution  (63  km  horizontal

resolution) and 3-hourly frequency. 

2.2. SURFEX modeling system

2.2.1. The ISBA Land-Surface-Model

This study makes use of the CO2-responsive version of the ISBA LSM included in the open-access

SURFEX modelling platform of Météo-France (Masson et al., 2013). The most recent version of

SURFEX (version 8.1) is used with the “NIT” biomass option for ISBA. The latter  simulates the

diurnal cycle of water and carbon fluxes, plant  growth and key vegetation variables like LAI and

above ground biomass on a daily basis. It can be coupled to the CTRIP river routing model in order
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to  simulate  the  streamflow.  In  this  version  of  ISBA,  a  single-source  energy  budget  of  a  soil–

vegetation  composite  is  computed.  Also,  the  ISBA parameters  are  defined for  12 generic  land

surface patches, which include nine plant functional types (needle leaf trees, evergreen broadleaf

trees,  deciduous  broadleaf  trees,  C3  crops,  C4  crops,  C4  irrigated  crops,  herbaceous,  tropical

herbaceous,  and  wetlands),  bare  soil,  rocks,  and  permanent  snow  and  ice  surfaces.  A more

comprehensive model description can be found in Masson et al. (2013).

ISBA accounts for the atmospheric CO2 concentration on stomatal aperture (Calvet et al., 1998,

2004; Gibelin et al., 2006). Also, photosynthesis and its coupling with stomatal conductance at a

leaf level are accounted for. The vegetation net assimilation of CO2 is estimated and used as an

input  to  a  simple  vegetation  growth  sub-model  able  to  predict  LAI:  photosynthesis  drives  the

dynamic evolution of the vegetation biomass and LAI variables in response to atmospheric and

climate  conditions.  During  the  growing  phase,  enhanced  photosynthesis  corresponds  to  a  CO2

uptake,  which  leads  to  vegetation  growth.  In  contrast,  lack  of  photosynthesis  leads  to  higher

mortality rates.  The gross primary production (GPP) is  defined as the carbon uptake while the

ecosystem respiration (RECO) is the release of CO2, the difference between these two quantities

being the net ecosystem CO2 exchange (NEE). Evaporation due to (i) plant transpiration, (ii) liquid

water intercepted by leaves, (iii) liquid water contained in top soil layers, and (iv) the sublimation of

the snow and soil ice are combined to represent the total evaporative flux.

ISBA 12-layers explicit snow scheme (Boon et Etchevers, 2001, Decharme et al., 2016) as well as

its multi-layer soil diffusion scheme (ISBA-Dif) are used. The later is based on the mixed form of

the Richards equation (Richards, 1931) and explicitly solves the one-dimensional Fourier law. It

also incorporates soil freezing processes developed by Boone et al.  (2000) and Decharme et al.

(2013). The total soil profile is vertically discretized; both the temperature and moisture of each soil

layer are computed accordingly to their textural and hydrological characteristics. The Brookes and

Corey model  (Brooks and Corey,  1966) determines  the closed-form equations  between the soil

moisture and the soil hydrodynamic parameters, including the hydraulic conductivity and the soil

matrix potential (Decharme et al., 2013). The defaults discretization with 14 layers over 12 m depth

is used. The lower boundary of each layer being: 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5,2, 3, 5, 8

and 12 m deep (see Fig. 1 of Decharme et al., 2011). Amounts of clay, sand and organic carbon in

the soil determine the by thermal and hydrodynamic soil properties (Decharme et al., 2016). They

are  taken  from  the  Harmonised  World  Soil  Database  (HWSD,  Wieder  et  al.,  2014).  As  for

hydrology, the infiltration, surface evaporation and total runoff are accounted for in the soil water

balance. The infiltration rate defines the discrepancy between the surface runoff and the throughfall

rate. The later being defined as the sum of rainfall not intercepted by the canopy, dripping from the
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canopy (i.e., interception reservoir) as well as snow melt water. The soil evaporation affects only the

superficial layer (top 1 cm) and is proportional to its relative humidity. Transpiration water from the

root  zone  (the  region  where  the  roots  are  asymptotically  distributed)  follows  the  equations  in

Jackson et al. (1996). Canal et al. (2014) provide more information on the root density profile.

Both the surface runoff (the lateral subsurface flow in the topsoil) and a free drainage condition at

the bottom soil layer contribute to ISBA total runoff. The Dunne runoff (i.e. when no further soil

moisture  storage  is  available)  and  lateral  subsurface  flow  from  a  sub-grid  distribution  of  the

topography  are  computed  using  a  basic  TOPMODEL approach.  The  Horton  runoff  (i.e.  when

rainfall has exceeded infiltration capacity) is estimated from the maximum soil infiltration capacity

and a sub-grid exponential distribution of the rainfall intensity.

2.2.2. The CTRIP hydrological system

CTRIP is driven by three prognostic equations corresponding to (i) the groundwater, (ii) the surface

stream water and (ii) the seasonal floodplains. Streamflow velocity is computed using the Manning

formula  as described in Decharme et al. (2010). When the river water level overtops the river-bank,

it fills up the floodplain reservoir which empties when the water level drops below this threshold

(Decharme  et  al.,  2012).  Occurrence  of  flooding  impacts  the  ISBA soil  hydrology  through

infiltration  and  it  influences  the  overlying  atmosphere  via  free  surface  water  evaporation  and

precipitation  interception,  also.  The  groundwater  scheme  is  based  on  the  two-dimensional

groundwater flow equation for the piezometric head (Vergnes and Decharme,2012). Its coupling

with ISBA enables accounting for the presence of a water table under the soil moisture column. It

allows upward capillary fluxes  into the soil  (Vergnes  et  al.,  2014).  CTRIP is  coupled to  ISBA

through OASIS-MCT (Voldoire et al., 2017). Once a day, ISBA provides CTRIP with updates on

runoff, drainage, groundwater and floodplain recharges, and CTRIP feedbacks to ISBA the water

table depth or rise, floodplain fraction, and flood potential infiltration. The current CTRIP version

consists of a global streamflow network at 0.5°x0.5° spatial resolution.

2.3. Evaluation strategy and data sets

Three  experiments  are  considered  for  the  evaluation;  (i)  SURFEX forced  by  ERA-Interim,  all

atmospheric  variables interpolated to 0.5ºx0.5º spatial  resolution (referred as ei_S hereafter,  the

benchmark experiment), (ii) SURFEX forced by ERA-5 all atmospheric variables interpolated at

0.5ºx0.5º spatial resolution except precipitation (rain and snow interpolated to hourly time steps

assuming  a  constant  flux)  that  comes  from  ERA-Interim  (referred  as  e5ei_S  hereafter).  (iii)

SURFEX forced by ERA-5, all atmospheric variables interpolated at 0.5ºx0.5º spatial resolution

(referred as e5_S hereafter). A bi-linear interpolation from the native reanalysis grid to the regular

grid has been used. For all three experiments, the first year (2010) was spun up 20 times to allow
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the model to reach equilibrium. Comparing e5_S to ei_S provides the overall improvements from

ERA-Interim to  ERA-5.  The idealized  e5ei_S simulation  was carried  out  to  assess  the  role  of

precipitation changes from ERA-Interim to ERA-5.

This study makes use of several in-situ measurement data sets as well as satellite-derived estimates

of Earth Observations that are described in the next two sections. The different performance metrics

used for the evaluation are described, also. Their choice is of crucial interest; it is governed by the

nature of the variable itself and is influenced by the purpose of the investigation and its sensitivity

to the considered variables (Stanski et al. 1989). No single metric or statistic can capture all the

attributes of environmental variables. Some are robust in respect to some attributes while insensitive

to  others  (Entekhabi  et  al.  2010).  While  performance  metrics  like  the  correlation  coefficient,

unbiased root mean squared differences, root mean squared differences, efficiency score (depending

on the considered variable) are first applied to the three simulations independently, metrics like the

Normalized  Information  Contribution (NIC,  e.g.  Kumar et  al.,  2009)  are  then  used to  quantify

improvement or degradation from a data set to another. Table I summarises the different dataset

used for the evaluation as well as the performance metrics used.

2.3.1. In situ measurement of soil moisture, river discharges, snow depth and fluxes

USCRN is  a  network  of  climate-monitoring  stations  maintained  and  operated  by  the  National

Oceanic and Atmospheric  Administration (NOAA).  It  aims at  providing climate-science-quality

measurements  of  air  temperature  and  precipitation.  To  increase  the  network’s  capability  of

monitoring soil processes and drought, soil observations were added to USCRN instrumentation. In

2011, the USCRN team completed at each USCRN station in the conterminous United States the

installation of triplicate-configuration soil moisture and soil temperature probes at five standards

depths (5, 10, 20, 50, and 100 cm) as prescribed by the World Meteorological Organization. 111

stations present data between 2009 and 2016. Stations provide data at an hourly time step. Similar

to prior study, datasets potentially affected by frozen conditions were masked out using an observed

temperature threshold of 4ºC (e.g. Albergel et al., 2013a). The second layer of soil of ISBA between

1 and 4 cm depth (the diffusion scheme is used in this study) is compared to in situ measurements at

5 cm depth at a three hourly time step (model output) between April and September in order to

avoid as much as possible frozen conditions. The ability of ei_S, e5ei_S and e5_S to reproduce

surface soil moisture variability is first assessed using the correlation coefficient (R) and unbiased

Root  Mean Square Differences  (ubRMSD).  Climatology differences  between model  and in-situ

observations make a direct comparison difficult (Koster et al., 2009b).  Soil moisture time series

usually show a strong seasonal pattern possibly increasing the skill values between modeled and

observed data sets. To avoid seasonal effects, monthly anomaly time-series are calculated. At each
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grid and observation point, the difference from the mean is produced for a sliding window of five

weeks, and the difference is scaled to the standard deviation as in Albergel et al., (2013b). For each

surface soil moisture estimate at day (i), a period F is defined, with F= [i−17,i+17](corresponding to

a five-week window). If at least five measurements are available in this period, the average soil

moisture value and the standard deviation are calculated.  Anomaly time series reflect the time-

integrated impact of antecedent meteorological forcing. The latter is mainly reflected in the upper

layer  of  soil.  The  correlation  coefficient  is  also  computed  for  anomaly  time-series  (Rano).  For

correlations, the p-value (a measure of the correlation significance) is also calculated indicating the

significance of the test (as in Albergel et al. 2010), and only cases where the p-value is below 0.05

(i.e., the correlation is not a coincidence) are retained. Stations with non-significant R values can be

considered suspect and are excluded from the computation of the network average metrics. This

process  may  remove  some  reliable  stations  too  (e.g.,  in  areas  where  the  model  might  not

realistically represent soil moisture).

Over 2010-2016 river discharge from ei_S, e5ei_S and e5_S are compared to daily streamflow data

from the U.S. Geological Survey (USGS; http://nwis.waterdata.usgs.gov/nwis). Data are chosen for

sub-basins with large drainage areas (10,000km2 or greater) and with a long observation time series

(4 years or more). Smaller basins are excluded due to the low resolution of CTRIP (0.5°x0.5°). It is

common  to  express  observed  and  simulated  river  discharge  (Q)  data  in  m3s−1.  Given  that  the

observed drainage areas may differ slightly from the simulated ones, specific discharge in mm.d−1

(the ratio of Q to the drainage area) is used in this study, similarly to Albergel et al., 2017. Stations

with drainage areas differing by more than 20% from the simulated ones are also discarded.  This

criterion aims to ensure a meaningful comparison between observed and simulated values. It is

necessary for coping with the significant distortions in the model representation of the river network

that are  caused by the coarse spatial  resolution of the CTRIP global river  network (0.5°x0.5°).

Impact on Q is evaluated using the efficiency score (NSE) (Nash and Sutcliff, 1970). NSE evaluates

the model ability to represent the monthly discharge dynamics and is given by:

NSE=1−
∑
t=1

T

(Q s
t −Qo

t
)
2

∑
t=1

T

(Qo
t −Qo

t )
2

(1)

where Qs
t  is the simulated river discharge (by either ei_S, e5ei_S or e5_S) at time t and Qo

t  is

observed river discharge at time t, T is the total number of days and Qo
t  is the average observed

discharge. NSE can vary between –∞ and 1. A value of 1 corresponds to identical model predictions

and observed data. A value of 0 implies that the model predictions have the same accuracy as the
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the mean of the observed data. Negative values indicate that the observed mean is a more accurate

predictor than the model simulation. Only stations with a NSE greater than -1 for the benchmark

experiment, ei_S, are considered, leading to 172 stations over the considered domain. A Normalized

Information Contribution (NIC as in Kumar et al. ; 2009) measure is then computed to quantify the

improvement or degradation due to the specific atmospheric reanalysis used to force ISBA. The

NICNSE  values are computed for both e5_S and e5ei_S with respect to ei_S as:

NICNSE (e5 ;5ei)=
NSE(e5 ;e 5ei)−NSE(ei)

1−NSE(ei )
(2)

The NICNSE metric provides a normalized measure of the improvement through the use of either

NSEe5ei or NSEe5 as a fraction of the maximum possible skill improvement (1-NSEei). Positive and

negative NICNSE values indicate improvements and degradations in either e5_S or e5ei_S relative to

ei_S river discharges estimates, respectively. NICs along with their 95% confidence interval of the

median derived from a 10000 samples bootstrapping are provided for e5_S, e5ei_S. The ratio of

simulated and observed river discharges is computed also  (Qs
t
/Qo

t
) , the closer to one it is, the

better the simulated river discharges are. 

The Global Historical Climatology Network (GHCN) Daily dataset, developed to meet the needs of

climate analysis and monitoring studies that require data at a daily time resolution contains records

from over 75000 stations in 179 countries and territories (Menne et al., 2012a, b). Numerous daily

variables are provided, including maximum and minimum temperature,  total  daily precipitation,

snowfall, and snow depth. In this study, over North America, stations with daily snow depth data

from 2010-2016, with less than 10% missing and at least 15 days of snow presences per year on

average (to avoid using stations always reporting zero snow depth) are used,  it  results  in 1901

stations  out  of  2056.  The  ability  of  ei_S,  e5ei_S  and  e5_S  to  reproduce  snow  depth  and  its

variability is assessed using the bias, correlation coefficient (R) and unbiased Root Mean Square

Difference (ubRMSD).

 Daily observations of sensible and latent heat fluxes from the FLUXNET-2015 dataset with at least

2-yr of data are used over 2010-2016 to evaluate e5_S, e5ei_S and ei_S ability to reproduce flux

variability. The FLUXNET-2015 dataset includes data collected at sites from multiple regional flux

networks  as  well  as  several  improvements  to  the  data  quality  control  protocols  and  the  data

processing pipeline (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/).  37 stations are retained

for the evaluations, two metrics are considered: R and RMSD.

Performance metrics are applied to each individual station of each network; thereafter, network

metrics are computed by providing the median values of the statistics from the individual stations
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within each network. For each metrics, the 95% confidence interval of the median derived from a

10000 samples bootstrapping is provided.

2.3.2. satellite  derived  estimates  of  surface  soil  moisture,  leaf  area  index,  land

evapotranspiration and gross primary production

In  response  to  the  GCOS  endorsement  of  soil  moisture  as  an  essential  climate  variable,  the

European Space Agency Water Cycle Multimission Observation Strategy (WACMOS) project and

Climate Change Initiative (CCI; http://www.esa-soilmoisture-cci.org) have supported the generation

of a surface soil moisture product based on multiple microwave sources (ESA-CCI SSM hereafter).

The first version of the combined product was released in June 2012 by the Vienna University of

Technology (Liu et al. 2011, 2012; Wagner et al., 2012). Several authors (e.g. Albergel et al., 2013a,

b; Dorigo et al., 2015, 2017) have highlighted the quality and stability over time of the product.

Despite some limitations, this data set has already shown potential in assessing model performance

(e.g., Szczypta et al., 2014; van der Schrier et al., 2013). In this study the ESA CCI SM-combined

latest  version  of  the  product  (v4)  which  merges  SSM  observations  from  seven  microwave

radiometers (SMMR, SSM/I, TMI, ASMR-E, WindSat, AMSR2, SMOS) and four scatterometers

(ERS-1 and 2 AMI and MetOp-A and B ASCAT) into a combined data set covering the period

November 1978 to December 2016. Data are in volumetric (m3m-3) units and quality flags (snow

coverage or temperature below 0° and dense vegetation) are provided. For a more comprehensive

overview of the product see Dorigo et al. (2015, 2017). As topographic relief is known to negatively

affect remote sensing estimates of soil moisture (Mätzler and Standley, 2000), the time series for

pixels whose average altitude exceeded 1500 m above sea level were discarded. Data on pixels with

urban land cover fractions larger than 15% were also discarded, to limit the effects of artificial

surfaces. The altitude and urban area thresholds were set  according to Draper et  al.  (2011) and

Barbu et al. (2014), who processed satellite-based SSM retrievals for data assimilation studies with

the ISBA LSM. As for in situ measurements of soil moisture, correlation is applied on both the

volumetric and anomaly time series.

The GEOV1 LAI used in this study is produced by the European Copernicus Global Land Service

project  (http://land.copernicus.eu/global/)  as  evaluated  in  Boussetta  et  al.  (2015).  The  LAI

observations are retrieved from the SPOT-VGT and then PROBA-V (from 1999 to present) satellite

data according to the methodology proposed by Baret et al. (2013). As in Barbu et al. (2014), the 1

km spatial resolution observations are interpolated by an arithmetic average to the 0.5° model grid

points, if at least 50 % of the observation grid points are observed (i.e half the maximum amount).

LAI  observations  have  a  temporal  frequency  of  10  days  at  best  (in  presence  of  clouds  no
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observations are available). Correlation and root mean squared differences are used to assess ei_S,

e5ei_S and e5_S ability to reproduce LAI variability.

The GLEAM product uses a set of algorithms to estimate both terrestrial evaporation and RZSM

based  on  satellite  data  (Miralles  et  al.,  2011).  It  is  a  useful  validation  tool  to assess  model

performance  given that such quantities are difficult to measure directly on large scales. Potential

evaporation rates are constrained by satellite-derived SSM data while the global evaporation model

in GLEAM is mainly driven by various microwave remote-sensing observations. It is now a well-

established dataset that has been widely used to study land–atmosphere feedbacks (e.g. Miralles et

al., 2014b; Guillod et al., 2015) as well as trends and spatial variability in the hydrological cycle

(e.g. Jasechko et al., 2013; Greve et al., 2014; Miralles et al., 2014a; Zhang et al., 2016). This study

makes use of the latest version available, v4.0 It is a 37-year dataset spanning from 1980 to 2016

and is derived from a variety of sources, such as vegetation optical depth (VOD) and snow water

equivalent (SWEs),  satellite-derived SSM estimates,  reanalysis  air  temperature and radiation,  as

well  as  a  multi  source  precipitation  product  (Martens  et  al.,  2017).  It  is  available  at  a  spatial

resolution of 0.25°0.25°. A full description of the dataset, including an extensive validation using

measurements from 64 eddy-covariance towers worldwide is provided by Martens et al. (2017). As

for LAI, correlation and root mean squared differences are the two performance metrics used to

evaluate the representation of evapotranspiration from the three datasets.

The final product used in this study is a daily Gross Primary Production (GPP) estimate from, the

FLUXCOM project  (Jung et  al.,  2017).  It  is  an upscaled product  derived from the FLUXNET

network. In FLUXCOM selected machine learning-based regression tools that span the full range of

commonly applied algorithms (from model tree ensembles, multiple adaptive regression splines,

artificial neural networks, to kernel methods), with several representatives of each family are used

to provide a spatial upscaling of GPP at regional to global scales. It is limited to a 0.5°x0.5° spatial

resolution and a daily temporal resolution over 1982–2013 (Tramontana et al., 2016). FLUXCOM

fluxes can be used as a way of benchmarking LSMs on large scales (Jung et al., 2009, 2010; Beer et

al., 2010; Bonan et al., 2011; Jung et al., 2011; Slevin et al., 2017). Product can be found in the Max

Planck  Institute  for  Biogeochemistry  Data  Portal  (https://www.bgc-

jena.mpg.de/geodb/projects/Home.php). Correlation and root mean squared differences are the two

performance metrics used to evaluate the representation of carbon uptake from the three datasets.

3. Results

Seasonal time-series of the six main land surface variables evaluated in this study over the whole

domain  for  2010-2016  are  illustrated  on  figure  1,  they  are  (fig1.a)  river  discharge  (although

averaging  this  variable  over  the  whole  domain  has  no  real  meaning,  it  is  certainly  useful  to
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appreciate the differences between the three data set), (fig1.b) snow depth, (fig1.c) leaf area index,

(fig1.d) liquid soil moisture in the second layer of soil (1-4 cm depth), (fig1.e) evapotranspiration

and (fig1.f) gross primary production. Land surface variables simulated with the ISBA LSM forced

by ERA-Interim (ei_S) are in blue, by ERA-5 with precipitation from ERA-Interim (e5ei_S) in

green and by ERA-5 (e5_S) in red. From figure 1 one can see that river discharge, snow depth and

surface soil moisture are the most impacted by the use of ERA-5, suggesting that precipitation is the

main driver of the differences.

3.1. Evaluations using in situ measurements

This  section  presents  the  results  of  the  comparison versus  in  situ  observations  of  land surface

variables from model simulations using either ei_S, e5ei_S or e5_S starting with soil moisture. The

statistical scores for 2010–16 surface soil moisture from ei_S, e5ei_S and e5_S are presented in

Table II.  Median R values on volumetric time-series (anomaly time series) along with their 95%

confidence intervals are 0.66±0.02 (0.53±0.02), 0.69±0.02 (0.54±0.04) and 0.71±0.02 (0.58±0.03)

while median ubRMSD are 0.052±0.003, 0.052±0.002 and 0.050±0.003 for ei_S, e5ei_S and and

e5_S,  respectively.  These results  underline  the  better  capability  of  the  ISBA LSM to represent

surface soil moisture variability when forced by ERA-5 reanalysis. Also the latest configuration

(e5_S) presents more stations with better R values on volumetric time-series (anomaly time series)

than both ei_S and e5ei; respectively 60% and 75% (out of 110 and 107 stations, respectively). This

is also reflected on figure 2 illustrating correlations values on volumetric time-series (fig.2a) and

anomaly  time-series  (fig.2b)  on  maps.  Stars  symbols  represent  stations  for  which  ISBA LSM

performs best when forced ERA-Interim, circles when it is forced by ERA-5 with ERA-Interim

precipitations  and  downward  pointing  triangles  when  it  is  forced  by  all  ERA-5  atmospheric

variables. Both maps on figure 2 are dominated by downward pointing triangles. Fig.2c(d) shows

histograms of R differences on volumetric (anomaly) time-series, for soil moisture from e5_S (in

red) e5ei_S (in green) with respect to ei_S, median values of the differences are reported, also.

172 out of 344 gauging stations retained for the evaluation according to the criteria described in the

methodology section presents NSE scores in the [-1, 1] interval. Figure 3 represents performance of

each dataset for this pool of stations. Fig3.a is a scatterplot of  NSE scores between in situ and

simulated river discharges  Q;  NSE scores for  Q simulated with either ERA-5 but ERA-Interim

precipitations (e5ei_S, green crosses) or ERA-5 (e5_S, red dots)  function of  NSE scores for  Q

simulated using ERA-Interim (ei_S). When considering e5_S, almost all the red dots are above the

1:1 diagonal suggesting a general improvement from the use of e5_S. For a large part, e5ei_S green

crosses are above this diagonal, suggesting that the improvement in e5_S does not only comes from

precipitation  but  from other  variables,  also.  Median  NSE values  are  0.06±0.06,  0.12±0.07 and
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0.24±0.05 for ei_S, e5ei_S and e5_S, respectively. Fig.3b shows an histogram of river discharges

ratio for ei_S (Qr_ei in blues), e5ei_S (Qr_e5ei in green) and e5_S (Qr_e5 in red), median values

are 0.67, 075 and 0.77, respectively. While all three experiments underestimate  Q  (a value of 1

being  a  perfect  match),  the  use  of  e5ei_S  and  e5_S  leads  to  better  results.  Finally,  figure  3c

illustrates hydrographs for a river station in Lousiana (33.08°N, -93.85°W) representing scaled  Q

(using either observed or simulated drainage areas), in situ data (black crosses), simulated river

discharges from ei_S (blue solid line), e5ei_S (green solid line) and e5_S (red solid line). From this

hydrograph, the added value of e5_S is clear, particularly for the 2011 and 2015 main events. NSE

scores are 0.47, 0.61 and 0.76 for ei_S, e5ei_S and e5_S, respectively. Figure 4 illustrates the added

value of using e5_S (a) or e5ei_S (b) with respect to ei_S. For 156 out of the pool of 172 stations

NICNSE values computed using e5_S with respect to ei_S are positive (large blue circles) showing an

general improvement from the use of e5_S (representing 91% of the stations) with a median NICNSE

value of 14%±0.05. When considering e5ei_S versus ei_S, they are still 118 (69%) with a median

NICNSE value of  4%±0.02 suggesting that  the improvement  in  e5_S does not only comes from

precipitation but from other variables, also. It is also worth-noticing that stations where a score

degradation is observed (large red circles) are located in areas known for irrigation which is not

represented in ISBA. All scores computed for seasons (December-January-Februray, March-April-

May, Jun-July-August, September-October-November) suggest the same ranking (not shown).

The mean snow depth bias of ei_S (see Figure 5) highlights a clear underestimation of winter snow

depth accumulation mainly over the Rocky Mountains. This is likely a result of the underestimation

of snowfall by ei_S associated with an overestimation of snow melt due to the coarse resolution of

the ei_S reflected in a smooth topography. The replacement of all forcing variables by e5_S but

keeping ei_S precipitation  (e5ei_S,  Fig.5b)  shows a  slight  increase  in  snow depth.  This  result

justifies the above hypothesis that part of the snow underestimation is also due to temperature issues

linked with a coarse model orography. Moving to the full e5_S forcing there is a clear increase of

snow depth,  when  compared  with  both  ei_S  and  e5ei_S  forced  simulations  resulting  from an

increase in  snowfall  in  e5_S.  Figure 6 presents the mean seasonal  cycle  of bias and ubRMSD

(fig.6a) and correlations (fig.6b) over 2010-2016. In addition to the added values of e5_S in terms

of the mean snow depth already presented in figure 5, the temporal variability and random errors

are also improved. Comparably with what was discussed for the mean bias, e5ei_S shows some

benefits when compared with ei_S in terms  ubRMSD and correlation (median bias, ubRMSD and

R values  of  e5_ei  over  the  whole  period  are;  -1.70±0.33 cm.,  7.40±0.65 cm.  and 0.77± 0.01,

respectively, for ei_S they are; -2.11±0.33 cm., 7.58±0.65 cm. and 0.75± 0.01, respectively) while

e5_S has a clear improvement, ubRMSD and correlation (median bias, ubRMSD and R values of
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e5_ei over the whole period are; -0.64±0.19 cm., 7.00±0.65 cm. and 0.82± 0.01, respectively). The

improvements on the snow depth simulations are consistent throughout the entire snow covered

season (see Fig.6a and b) with a maximum improvement from January to March. These results

highlight the cumulative effect of the forcing quality on the snow depth simulation. Finally Table III

presents  scores  from the  comparison  of  snow  depth  with  in  situ  measurements,  median  Bias,

ubRMSD and R values  are  given for  the  three  seasons affected  by snow (September-October-

November,  December-January-February  and  Mars-April-May)  and  for  the  whole  period.  e5_S

always presents better scores when compared to ei_S and it is always the configuration presenting

the highest percentage of stations with the best scores. Looking at the 95% confidence interval, for

the correlation and bias it is clear that the changes are significant.

Results  from the  comparisons  between ei_S,  e5ei_S,  e5_S and in  situ  sensible  and latent  flux

measurements are presented in table IV and illustrated by figure 7. 37 stations present significant

correlation values (at p-value < 0.05). For sensible heat flux, median correlation and RMSD values

are 0.62±0.11, 0.62±0.11 and 0.65±0.11, 39.58±3.71 W.m-2, 32.89±3.86 W.m-2 and 32.73±2.61 W.m-

2  for ei_S, e5ei_S and e5_S, respectively. For latent heat flux, they are 0.63±0.05, 0.62±0.07 and

0.70±0.04, 39.00±5.38 W.m-2, 37.12±4.37 W.m-2 and 36.66±4.94 W.m-2. As for surface soil moisture,

river discharge and snow depth, e5_S presents better results than e5ei_S and ei_S. At the station

level, figure 7 illustrates scatter plots of correlations and RMSD for sensible and latent heat flux

from ei_S, e5ei_S, e5_S against in situ measurements of sensible (fig.7a for correlation, fig.7c for

RMSD) and latent (fig.7b for correlation, fig.7d for RMSD) heat flux.  Scores for either e5ei_S

(green  dots)  or  e5_S  (in  red)  are  presented  function  of  those  for  ei_S.  When  looking  at  the

correlations, almost all of e5_S and e5ei_S symbols (in red and green, respectively on fig.7a, fig.7c)

are above the 1:1 diagonal indicating that e5_S and e5ei_S better represent sensible and latent heat

flux than ei_S.  Same tendency is  observed for RMSD with most of the symbol below the 1:1

diagonal. If RMSD values are comparable for e5_S and e5ei_S, R values are clearly higher for

e5_S. 

3.2. Evaluations using satellite derived estimates

Figure 8 illustrates the comparison between ESA CCI SSM_v4 and soil moisture from ISBA second

layer of soil  over  2010-2016. Fig.8a shows seasonal correlations on volumetric  time-series and

fig.8b on anomaly time-series. Scores for ISBA LSM forced by ERA-Interim (ei_S) are in blue,

ERA-5 but with precipitation from ERA-Interim (e5ei_S) green and ERA-5 (e5_S) in red. From

fig8.a one can appreciate the added value of using ERA-5 atmospheric forcing particularly from

April to September. It is also interesting to notice that when using all ERA-5 atmospheric fields

except for the precipitations, a similar added value is noticeable suggesting that all improvements
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from  ERA-5  do  not  only  come  from  precipitation.  However  when  evaluating  the  short-term

variability of soil moisture (i.e. removing the seasonal effect), it is really ERA-5 that provides the

best results. Correlation on volumetric (anomaly) time-series for all grid points put together over

2010-2016  are  0.668  (0.464),  0.682  (0.468)  and  0.689  (0.490)  for  ei_S,  e5ei_S  and  e5_S,

respectively.  Additionally  to  the  global  seasonal  scores,  fig.8c  and  fig.8d  present  maps  of

correlations differences between soil moisture from e5_S and ei_S on volumetric time-series and

anomaly time-series, respectively. Grey areas represent areas that were flagged out for elevation

greater than 1500 m above sea level. As visible on fig.8c and fig.8d the use of ERA-5, mainly leads

to improvements all over the considered domain. Focusing on correlation differences, (Re5-Rei) on

volumetric  (anomaly)  time-series,  68%  (77%)  of  the  values  are  positives  (indicating  an

improvement from e5) with median values of 4.5% (4.11%) and include values up to 40% (45%). It

shows the added value of using ERA-5 to force ISBA LSM compared to ERA-Interim. 

Figure 9 illustrates seasonal scores between ISBA LSM forced by either ERA-Interim (ei_S in blue)

ERA-5 but ERA-Interim precipitation (e5ei in green) or ERA-5 (e5_S in red) for; (fig9.a, fig9.b)

evapotranspiration estimates from the GLEAM project over 2010-2016, (fig9.c, fig9.d) upscaled

GPP from the  FLUXCOM project  over  2010-2013 and (fig9.e,  fig9.f)  LAI  estimates  from the

Copernicus GLS project over 2010-2016. Left column (fig9.a, c and e) are for RMSDs and right

column (fig9.b, d, e) for correlations. For evapotranspiration and to a lesser extend GPP, one can

notice a decrease in RMSD when using ERA-5 atmospheric reanalysis compared to ERA-Interim

atmospheric  reanalysis.  However  it  fails  at  improving  LAI.  Considering  evapotranspiration,

correlation (RMSD) values for all grid points put together over 2010-2016 are 0.786 (0.927 kg.m-

2.d-1), 0.778 (0.917 kg.m-2.d-1) and 0.795 (0.889 kg.m-2.d-1) for ei_S, e5ei_S and e5_S, respectively.

They are 0.726 ( 2.429 kg.m-2.d-1), 0.733 (2.167 kg.m-2.d-1) and 0.734 (2.227 kg.m-2.d-1) for GPP and

0.715 (1.050 m2.m-2), 0.710 (1.026 m2.m-2) and 0.697 (1.079 m2.m-2) for LAI. 

Improvements (in red) and degradations (in blue) from the use of ERA-5 in the ISBA LSM with

respect to ERA-Interim for evapotranspiration, Gross Primary Production and Leaf Area Index are

illustrated by figure 10 (respectively from top to bottom). Fig.10a, c and e show RMSD differences

while Fig.10b, d and f show R differences. Both differences on RMSDs and R values suggest an

improvement from the use of ERA-5 as the two figures are mainly dominated by red colors, they

represent 56% and 53% of the domain, respectively for evapotranspiration (fig.10a, b), 60% and

69% for GPP (fig.10c, d) but only 47% and 44% for LAI (fig.10e, f). 

4. Discussion and conclusions

This study assesses the ability of ECMWF recently released ERA-5 atmospheric reanalysis to force

the ISBA LSM with respect to ERA-Interim reanalysis over North America for 2010-2016. The
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results presented above using the three atmospheric reanalysis data set (ERA-Interim -ei_S-, ERA-5

but with precipitation from ERA-Interim -e5ei_S- and ERA-5 -e5_S- all meteorological variables)

to force the ISBA LSM provide two important  insights ;  (i)  firstly  the use of ERA-5 leads  to

significant improvements in the representation of the LSVs linked to the terrestrial  water cycle

assessed in this study (surface soil moisture, river discharges, snow depth and turbulent fluxes) but

failed impacting LSVs linked to the vegetation cycle (carbon uptake and LAI). Even when they are

are  small,  improvements  are  systematic  when  using  ERA-5.  (ii)  Secondly  if  most  of  the

improvements seems to come from a better representation of the precipitation in ERA-5, the e5ei_S

experiment also present improvements with respect to the ei_S experiment suggests that the other

meteorological forcing from ERA-5 are better represented too. It is however acknowledged that the

use of 3-hourly ERA-Interim liquid and solid precipitations re-scaled at  an hourly time step in

ERA-5 might have sometimes led to inconsistent configurations (e.g., precipitations while having a

very strong net radiation). 

ERA-5 has a great potential to further improve the representation of land surface variables if used to

force offline LDAS. In the past recent years, several LDAS have emerged at different spatial scales,

(i)  regional  like  the  Coupled  Land  Vegetation  LDAS  (CLVLDAS,  Sawada  and  Koike,  2014,

Sawada et al., 2015), the Famine Early Warning Systems Network (FEWSNET) LDAS (FLDAS,

McNally et al.,  2017), (ii) continental like the North American LDAS (NLDAS, Mitchell et al.,

2004; Xia etal., 2012), the National Climate Assessment LDAS (NCA-LDAS Kumar et al., 2018) as

well as at (iii) global scale like the Global Land Data assimilation (GLDAS, Rodell et al., 2004) and

more  recently  LDAS-Monde  (Albergel  et  al.,  2017,  2018  in  prep).  LDAS-Monde  is  a  global

capacity system able to sequentially assimilate satellite derived estimates of surface soil moisture

and  LAI. Albergel  et  al.  (2017)  found that  the  main  improvements  of  their  analysis  (i.e.  with

assimilation)  when  compared  to  an  open-loop  experiment  (simple  model  run)  were  linked  to

vegetation variables and the assimilation of vegetation estimates. They have also proposed further

advances  on a  better  use  of  satellite-based microwave data  in  the  assimilation  system.  Having

LDAS-Monde analysis forced by ERA-5 atmospheric forcing should both combined the strengths

of an improved atmospheric  reanalysis  on the terrestrial  water cycle  and of the assimilation of

satellite derived products on the vegetation cycle.  Effort will now be concentrate on the use of

ERA-5  and  strengthening  LDAS-Monde  through  the  direct  assimilation  of  satellite-based  soil

moisture and vegetation properties from microwave remote sensing. It will enable fostering links

with potential applications like climate reanalysis of the LSVs as well as going from a monitoring

system  of  the  LSVs  and  extreme  events  (like  agricultural  drought)  to  a  forecasting  system.

Preliminary results suggest that a LSVs forecast initialized by an analysis is more robust than one
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initialized by a simple model run (Albergel et al., 2018, in prep). Preliminary tests over Europe also

indicate similar benefits from the use of ERA-5 (not shown). When the whole ERA-5 period will be

available (1979-present), in addition with the availability of the ERA-5 10-member Ensemble of

Data Assimilation (at lower spatial and temporal resolution though), it will be possible to develop a

global long term ensemble of land surface variables reanalysis forced by high quality atmospheric

data.  It  will  make  it  possible  providing  uncertainties  in  the  representation  of  the  atmospheric

forcing, while land surface variables may require special considerations and perturbation methods.

Capturing those uncertainties coming from the simplifications and assumptions in the LSM is of

paramount interest for many applications from monitoring to forecasting.
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Tables and Illustrations

Table I : Evaluation datasets and associated metrics used in this study.
Datasets used for the evaluation Source Metrics associated

In situ measurements of soil
moisture 

(USCRN, Bell et al., 2013)
https://www.ncdc.noaa.gov/crn

R (on both volumetric and
anomaly time-series) 

ubRMSD

In situ measurements of
streamflow (USGS)

https://nwis.waterdata.usgs.gov/
nwis

Nash Efficiency (NSE),
Normalized Information

Contribution (NIC) based on
NSE, Ratio of simulated and

observed streamflow (Q)

In situ measurements of snow
depth (GHCN, Menne et al.,

2012a, b)

https://www.ncdc.noaa.gov/cli
mate-monitoring/

R, bias and ubRMSD

In situ measurements of
sensible and latent heat fluxes

(FLUXNET-2015)

http://fluxnet.fluxdata.org/data/f
luxnet2015-dataset/

R, RMSD 

Satellite derived surface soil
moisture (ESA CCI SSM v4,

Dorigo et a., 2015, 2017) 

http://www.esa-soilmoisture-
cci.org

R (on both volumetric and
anomaly time-series) 

Satellite derived Leaf Area
Index (GEOV1, Baret et al.,

2013)

http://land.copernicus.eu/global
/

R and RMSD

Satellite-driven model estimates
of land evapotranspiration

(GLEAM, Martns et al., 2017) 

http://www.gleam.eu R and RMSD

Upscaled estimates of Gross
Primary Production (GPP, Jung

et al., 2017)

https://www.bgc-
jenna.mpg.de/geodb/projects/H

ome.php

R and RMSD
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Table II: Comparison of surface soil moisture with in situ observations for ei_S, e5ei_S and
e5_S over 2010-2016 (April to September months are considered). Median correlations R (on
volumetric and anomaly time series) and ubRMSD are given for the USCRN. Scores are given
for significant correlations with p-values <0.05. 

Median R* on
volumetric time series,

95 % Confidence
Interval** ( % of

stations for which this
configuration is the

best)

Median R*** on
anomalies time series,

95 % Confidence
Interval**

( % of stations for
which this

configuration is the
best)

Median ubRMSD*
(m3m-3), 95 %

Confidence Interval**
( % of stations for

which this
configuration is the

best)

ei_S 0.66±0.02 (20 %) 0.53±0.02 (15 %) 0.052±0.003 (19 %)

e5ei_S 0.69±0.02 (20 %) 0.54±0.04 (10 %) 0.052±0.002 (24 %)

e5_S 0.71±0.02 (60 %) 0.58±0.03 (75 %) 0.050±0.003 (57 %)
* only for stations presenting significant R values on volumetric time series (p-value<0.05): 110 stations
** 95% confidence interval of the median derived from a 10000 samples bootstrapping
*** only for stations presenting significant R values on anomaly time series (p-value<0.05): 107 stations

Table III: Comparison of snow depth with in situ measurements, median Bias, ubRMSD and
R values are given for the three seasons affected by snow (SON, DJF, MAM) and for the whole
period  (All).  SON,  DJF  and  MAM  stand  for  September-October-November,  December-
January-February and Mars-April-May, respectively. 

Median bias (cm)*, 95 % 
Confidence Interval** 
( % of stations for which 
this configuration is the 
best)

Median ubRMSD (cm)*, 
95 % Confidence Interval**
( % of stations for which 
this configuration is the 
best)

Median R*, 95 % 
Confidence 
Interval**
( % of stations for 
which this 
configuration is 
the best)

ei_S

SON -0.27±0.04 (13 %) 2.05±0.17 (13 %) 0.70±0.01 (21 %)

DJF -6.28±0.86 (11 %) 10.34±0.63 (17 %) 0.72± 0.01 (20 %)

MAM -1.90±0.33 (15 %) 7.82±0.79 (17 %) 0.65± 0.01 (18 %)

All -2.11±0.33 (11 %) 7.58±0.65 (14 %) 0.75± 0.01 (19 %)

e5ei_S

SON -0.25±0.04 (12 %) 2.03±0.15 (10 %) 0.74± 0.01 (23 %)

DJF -4.84±0.80 (14 %) 9.98±0.50 (14 %) 0.75± 0.01 (21 %)

MAM -1.49±0.33 (14 %) 7.61±0.76 (13 %) 0.69±0.02 (22 %)

All -1.70±0.33 (14 %) 7.40±0.65 (14 %) 0.77± 0.01 (20 %)

e5_S

SON -014±0.03(76 %) 1.83±0.14 (77 %) 0.79± 0.01 (56 %)

DJF -1.70±0.44 (75 %) 9.64±0.46 (69 %) 0.80± 0.01 (59 %)

MAM -0.57±0.22 (71 %) 7.43±0.79 (70 %) 0.76± 0.01 (60 %)

All -0.64±0.19 (75 %) 7.00±0.65 (72 %) 0.82± 0.01 (61 %)
* only for stations presenting more than 80% of (daily) data; 1901 out of 2056 stations.
** 95% confidence interval of the median derived from a 10000 samples bootstrapping
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Table IV: Comparison of sensible (H) and latent (LE) heat flux with in situ observations for
ei_S, e5ei_S and e5_S. Median correlations (R) and median RMSD are given for the fluxnet
stations. Scores are given for significant correlations with p-values <0.05. 

H Median R*, 
95 % Confidence 
Interval** 
( % of stations for 
which this 
configuration is 
the best)

H Median 
RMSD* W.m-2, 
95 % Confidence 
Interval**
( % of stations for 
which this 
configuration is 
the best)

LE Median R*, 
95 % Confidence 
Interval** 
( % of stations for 
which this 
configuration is 
the best)

LE Median 
RMSD* W.m-2, 
95 % Confidence 
Interval** ( % of 
stations for which 
this configuration 
is the best)

ei_S 0.62±0.11 (8 %) 39.58±3.71 (5 %) 0.63±0.05 (8 %) 39.00±5.38 (16 %)

e5ei_S 0.62±0.11(27 %) 32.89±3.86 (27%) 0.62±0.07 (11 %) 37.12±4.37 (22 %)

e5_S 0.65±0.11 (65 %) 32.73±2.61 (68 %) 0.70±0.04 (81 %) 36.66±4.94 (62 %)
* only for stations presenting significant R values (p-value<0.05): 37 stations
** 95% confidence interval of the median derived from a 10000 samples bootstrapping
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Figure 2 : Maps of correlation (R) on volumetric time-series (a) and anomaly time-series (b) between
in situ measurements at 5 cm depth from the USCRN network and the ISBA Land Surface Model
within  the  SURFEX modeling  platform  forced  by  either  ERA-Interim  (ei_S),  ERA-5  with  ERA-
Interim precipitations (e5ei_S) and ERA-5 (e5_S). For each stations presenting significant R (p-values
< 0.05)  simulation that  presents  the better R values  is  represented.  Stars  symbols  are when ei_S,
presents the best value, circles when it e5ei_S and downward pointing triangles when it is e5_S. (c)
Shows histograms of R differences on volumetric time-series, R(e5_S)-R(ei_S) in red and R(e5ei_S)-
R(ei_S) in green, median values of the differences are reported, also. (d) Same as (c) for R values on
anomaly time-series.
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Figure  3:  (a)  Scatterplots  of  efficiency  scores  between  in  situ  and  simulated  river  discharges  Q;
efficiency  scores  for  Q simulated  with  SURFEX  forced  either  by  ERA-5  but  ERA-Interim
precipitations (e5ei_S,  green crosses) or ERA-5 (e5_S, red dots)  function of efficiency scores for  Q
simulated using ERA-Interim (ei_S). (b) Histograms of river discharges ratio for ei_S (Qr_ei in blues),
e5ei_S (Qr_e5ei in green) and e5_S (Qr_e5 in red). (c) Hydrograph for a river station in Lousiana
(33.08°N, 1.52°W) representing scaled Q (using either observed or simulated drainage areas), in situ
data (black crosses), simulated river discharges from ei_S (blue solid line), e5ei_S (green solid line) and
e5_S (red solid line).

32

890

895

900



Figure 4: Normalized Information Contribution scores based on efficiency scores (NICNSE) (a) e5_S
with respect to ei_S and (b) e5ei_S with respect to ei_S. Small dots represent station for which the
benchmark experiment (ei_S) present efficiency scores smaller than -1, large circles when it presents
values higher than -1. Positive values (blue large circles) suggest an improvement over ei_S, negative
values (red large circles) a degradation. For sack of clarity, a factor 100 has been applied on NIC.

Figure 5: Mean snow depth bias for December-January-February in ei_S (a) and differences between
e5ei_S and ei_S (b), e5_S and e5ei_S (c), e5_S and ei_5 (d). 
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Figure 6: (a) Mean seasonal cycle of the bias (dashed lines) and ubRMSD (solid lines) averaged over all
stations  and (b) the mean seasonal cycle of the correlations for ei_S (in blue), e5ei_S (in green) and
e5_S (in red).
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Figure 7: Scatterplots illustrating evaluation of ei_S,  e5ei_S,  e5_S against in situ measurements of
sensible (a for correlation, c for RMSD) and latent (b for correlation, d for RMSD) heat flux. Scores
for either e5ei_S (green dots) or e5_S (in red) are presented as function of those for ei_S. 
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Figure 8 : Seasonal correlations on (a) volumetric time-series and (b) anomaly time-series between
surface soil moisture estimates from the ESA CCI project (ESA-CCI SSM v4) and soil moisture from
the second layer of soil  of  the ISBA LSM forced by ERA-Interim (ei_S in blue),  ERA-5 but with
precipitation from ERA-Interim (e5ei_S in green) and ERA-5 (e5_S in red) over 2010-2016. Maps of
correlations differences between soil moisture from e5_S and ei_S on volumetric time-series (c) and
anomaly time-series (d), areas in red represent an improvement from the use of ERA-5. Grey areas
represents areas that where flagged out for elevation greater than 1500 m above sea level.
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Figure 9: Seasonal scores between ISBA LSM within SURFEX forced by either ERA-Interim (ei_S in
blue)  ERA-5 but  ERA-Interim precipitation (e5ei_S  in  green)  or ERA-5 (e5_S  in  red)  and  (a,  b)
evapotranspiration estimates from the GLEAM project over 2010-2016, (c, d) upscaled GPP from the
FLUXCOM project over 2010-2013 and (e, f) LAI estimates from the Copernicus GLS project over
2010-2016. Left column (a, c and e) are for RMSD and right column (b, d, e) for correlations.
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Figure 10: RMSD differences (a, c, e) and Correlation differences (b, d, f)  for e5_S simulations with
respect  to  ei_S  simulations  for  three  land  surface  variables:  evapotranspiration,  Gross  Primary
Production and Leaf Area Index from top to bottom. Areas in red represent an improvement from the
use of ERA-5.
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