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Abstracts 

Hydrometric networks play a vital role in providing information for decision-making in water resources management. They 

should be set up optimally to provide as much and as accurate information as possible, and at the same time, be cost-effective. 

We propose a new measure, based on complex network analysis, to support the design and redesign of hydrometric station 15 

networks. The science of complex networks is a relatively young field and has gained significant momentum in the last years 

in different areas such as brain networks, social networks, technological networks or climate networks. The identification of 

influential nodes in complex networks is an important field of research. We propose a new node ranking measure, the weighted 

degree-betweenness, to evaluate the importance of nodes in a network. It is compared to previously proposed measures on 

synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to 20 

check its applicability in the optimal design of hydrometric networks. The proposed measure is evaluated using the decline 

rate of network efficiency and the kriging error. The results suggest that it effectively quantifies the importance of rain stations. 

The new measure is very useful in identifying influential stations which need high attention and expendable stations which 

can be removed without much loss of information provided by the station network.  

Keywords: Rainfall network, complex networks, event synchronization, kriging error. 25 

1 Introduction  

Hydrometric networks monitor a wide range of water quantity and water quality parameters such as precipitation, streamflow, 

groundwater, or surface water temperature (Keum et al., 2017; Langbein, 1979). Adequate hydrometric monitoring is one of 

the first and primary tasks towards efficient water resources management. Information from hydrometric stations plays a 

crucial role in, among other things, flood estimation, water budget analysis, hydraulic design and assessing climate change. 30 

Even after the advent of remote sensing based information, such as precipitation products, in-situ observations are considered 

as an essential source of information on hydrometeorology.  
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The basic characteristics of hydrometric networks comprise the number of stations, their locations, observation periods and 

sampling frequency (Keum et al., 2017). The general understanding is that the higher the number of monitoring stations, the 

more reliable the quantification of areal average estimates and point estimates at any ungauged location. However, a higher 

station number increases the cost of installation, operation, and maintenance, but may provide redundant information and, 

therefore, not increase the information content obtained from the network. Globally, there is a decreasing trend in the number 5 

of hydrometric stations in the last decades (Mishra and Coulibaly, 2009). Against the background of shrinking monetary 

support for hydrometric networks, their optimal design is gaining importance.  

The design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention 

(Mishra and Coulibaly, 2009). For example, Putthividhya and Tanaka (2012) made an effort to design an optimal rain gauge 

network based on the station redundancy and the homogeneity of the rainfall distribution. Adhikary et al. (2015) proposed a 10 

kriging based geostatistical approach for optimizing rainfall networks, and Chacon-Hurtado et al. (2017) provided a 

generalized procedure for optimal rainfall and streamflow monitoring in the context of rainfall-runoff modelling. Yeh et al. 

(2017) optimized a rain gauge network applying the entropy method on radar datasets. Several approaches have been developed 

for optimal network design, such as statistical analysis which include variance and dimension reduction methods (Amorim et 

al., 2012; Wadoux et al., 2017), spatial interpolation which includes kriging methods (Adhikary et al., 2015) and various 15 

interpolation techniques (Kassim and Kottegoda, 1991), information theory-based methods (Stosic et al., 2017; Taormina et 

al., 2015), optimization techniques such as simulated annealing (Barca et al., 2008; Mishra and Coulibaly, 2009; Pardo-

Igúzquiza, 1998; Yoo et al., 2003), physiographic analysis (Laize, 2004), multivariate factor analysis (Hargrove and Hoffman, 

2004; Yeh et al., 2006), sampling strategies (Tsintikidis et al., 2002), and user surveys or expert recommendations (Rani and 

Moreira, 2010). Combinations of methods have also been introduced in the last decade (Chacon-Hurtado et al., 2017; Keum 20 

et al., 2017; Mishra and Coulibaly, 2009; Sehgal et al., 2016).  

Most of these studies inherently assume that a more optimal network is achieved through expanding the network with 

supplementary stations. However, a higher number of stations does not necessarily decrease the uncertainty (Stosic et al., 

2017). Hence, a network can be optimized either by eliminating expendable stations from the network to minimize the cost or 

by expanding the network with the installation of additional stations to reduce the estimation uncertainty. Mishra and Coulibaly 25 

(2009) argued that the expendable stations in a network that contribute little or even nothing should be identified and removed, 

and at the same time, the most valuable or influential stations should be maintained and protected.  

In the recent past, the science of complex networks has gained great momentum and have attracted many researchers from 

different disciplines and application fields, e.g., transportation networks (Bell and Lida, 1997), power grid analysis (Menck et 

al., 2014; Schultz et al., 2014), streamflow networks (Halverson and Fleming, 2015) and climate networks (Boers et al., 2014; 30 

Jha et al., 2015; Malik et al., 2012; Paluš, 2018; Stolbova et al., 2016). A complex network is a collection of nodes 

interconnected with links in a non-trivial manner. In a functional network, links are set up between each pair of nodes based 

on how the nodes interact with each other. The investigation of the topology of such complex networks helps in better 

understanding the mechanisms of highly complex systems with many components (Donges et al., 2009a; Stolbova et al., 2014). 
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Motivated by the encouraging results obtained by the above mentioned studies on climate networks, we develop a node ranking 

measure, based on complex network analysis that can be used to identify influential and expendable stations in large 

hydrometric station networks. Our aim is not to question the credibility of operating stations, but to propose an alternative 

evaluation procedure for the optimal design and redesign of observational networks.  

In section 2, we introduce the basic concepts of complex networks. The proposed node ranking measure is presented and 5 

compared with existing measures in section 3 using synthetic networks. In section 4, the new measure is applied to a rain gauge 

network consisting of 1229 stations across Germany and compared with state-of-the-art methods.   

2 Basics of Complex Networks 

2.1 Network Construction  

A network or a graph is a collection of entities (nodes, vertices) interconnected with lines (links, edges) as shown in Fig. 1. 10 

These entities could be anything, such as humans defining a social network (Arenas et al., 2008), computers constructing a 

web network (Zlatić et al., 2006), neurons forming brain networks (Bullmore and Sporns, 2012; Pfurtscheller and Lopes da 

Silva, 1999; Rubinov and Sporns, 2011), streamflow stations creating a hydrological network (Halverson and Fleming, 2015; 

Sivakumar and Woldemeskel, 2014) or climate stations describing a climate network (Stolbova et al., 2014; Malik et al., 2012; 

Rheinwalt et al., 2016).  15 

Formally, a network or graph is defined as an ordered pair 𝑍 = (𝑁, 𝐸); containing a set 𝑁 = {𝑁1, 𝑁2, … . 𝑁𝑁}, of vertices 

together with a set E of edges, {𝑖, 𝑗} which are 2-element subsets of N. In this work we consider undirected and unweighted 

simple graphs, where only one edge can exist between a pair of vertices and self-loops of the type {𝑖, 𝑖} are not allowed. This 

type of graph can be represented by the symmetric adjacency matrix 

𝐴𝑖,𝑗 = {
0 {𝑖, 𝑗} ∉ 𝐸
1 {𝑖, 𝑗} ∈ 𝐸

 
 

(1) 

Figure 1 is a simple representation of such a network, i.e., one with a set of identical nodes connected by identical links. In 20 

general, (large) graphs of real-world entities with irregular topology are called complex networks. The links represent similar 

evolution or variability at different nodes and can be identified from data using a similarity measure such as Pearson correlation 

(Donges et al., 2009a; Jha et al., 2015), synchronization (Agarwal et al., 2017a; Conticello et al., 2017; Malik et al., 2012; 

Stolbova et al., 2016) or mutual information (Paluš, 2018).  

 25 
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Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 with four nodes and three 

links; (b) network N2 with four nodes and six links. 

2.2 Node Ranking Measures 

A large number of measures have been defined to characterize the behaviour of complex networks. We focus here on those 5 

measures which have been proposed to quantify the importance of nodes in a network: degree k, betweenness centrality B 

(Stolbova et al., 2016), bridgeness Bri (Jensen et al., 2016) and degree and influence of line DIL (Liu et al., 2016). 

The degree k of a node in a network counts the number of connections linked to the node directly. For example, the degree of 

nodes 1, 2 and 4 in network N1 (Fig. 1a) is 1 and for node 3 is 3. In the network N2 (Fig.1b), all nodes have degree 3. The 

degree can explain the importance of nodes to some extent, but nodes that own the same degree may not play the same role in 10 

a network. For instance, a bridging node connecting two important nodes might be very relevant though its degree could be 

much lower than the value of less important nodes.  

The betweenness centrality B is a measure of control that a particular node exerts over the interaction between the remaining 

nodes. In simple words, B describes the ability of nodes to control the information flow in networks. To calculate betweenness 

centrality, we consider every pair of nodes and count how many times a third node can interrupt the shortest paths between the 15 

selected node pair. In network N1, B of node 3 is 3, i.e., node 3 can disturb three pairs 1-2, 1-4, 2-4, and for other nodes 𝐵 = 0. 

In the network N2, all nodes have 𝐵 = 0 because no node can interrupt the information flow. So node 3 is a critical node in 

the network N1 but not in the network N2.  

Jensen et al. (2016) developed the Bridgeness measure 𝐵𝑟𝑖  to distinguish local centres, i.e. nodes that are central to a part of 

the network, from hybrid nodes, i.e. nodes that connect different parts of a network. Bri is a decomposition of betweenness 20 

centrality B into a local and a global contribution. Therefore, the 𝐵𝑟𝑖 value of a node 𝑖 is always smaller or equal to the 

corresponding 𝐵 value and they only differ by the local contribution of the first neighbours. To calculate 𝐵𝑟𝑖 we consider the 

shortest path between nodes not in the neighbourhood of node 𝑖, 𝑁𝐺(𝑖) (Table 1). For example, in the networks N1 and N2, all 

nodes have 𝐵 = 0, hence 𝐵𝑟𝑖 = 0, except node 3 in the network N1 for which all the nodes are in direct neighbourhood hence 

it also has 𝐵𝑟𝑖 = 0. 25 

The degree and influence of line (𝐷𝐼𝐿), introduced by Liu et al. (2016), considers the node degree 𝑘 and importance of line 𝐼 

to rank the nodes in network. The mathematical equation of 𝐷𝐼𝐿 measure is presented in table 1, where the line between node 

𝑖 and j is 𝑒𝑖𝑗 and its importance is defined as 𝐼𝑒𝑖𝑗 =
𝑈

𝜆
 where 𝑈 = (𝑘𝑖 − 𝑝 − 1). (𝑘𝑗 − 𝑝 − 1) reflects the connectivity ability 
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of a line (link), p is the number of triangles having one edge 𝑒𝑖𝑗  and 𝜆 =
𝑝

2
+ 1 is defined as an alternative index of line 𝑒𝑖𝑗 . 

𝑁𝐺(𝑖)) is the set of neighbours of node 𝑖 (for detailed explanation refer Liu et al. (2016)). 𝐷𝐼𝐿 equation (Table 1) suggests that 

all the nodes having 𝑘𝑖 = 1, will have 𝐷𝐼𝐿𝑖 = 1, since the second term of the equation will be zero. Hence, in the network N1 

all nodes, except node 3, have 𝐷𝐼𝐿 = 1. Node 3 has 𝐷𝐼𝐿 = 3 equal to its degree, since the second term is zero (all the 

connected nodes 1, 2 and 4 have 𝑘𝑗 = 1, hence 𝐼𝑒𝑖𝑗 = 0). 5 

Table 1: Network measures.  N: total number of nodes in a network. 𝒌𝒊: Degree of node 𝒊. 𝑩𝒊: Betweenness of node 𝒊, where 𝝈(𝒋, 𝒌) 

represents the number of links along the shortest path between 𝒋 and 𝒌; while 𝜎𝑖(𝑗, 𝑘) is the number of links of the shortest path 

running through node 𝒊. In bridgeness, we consider the shortest path between nodes not in the neighbourhood of node 𝒊 (𝑵𝑮(𝒊)).   

Degree Betweenness centrality Bridgeness DIL 

𝑘𝑖 =
∑ 𝐴𝑖,𝑗
𝑁
𝑗=1

𝑁 − 1
 𝐵𝑖 = ∑

𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑖≠𝑗≠𝑣∈{𝑉}

 𝐵𝑟𝑖𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑗∉𝑁𝐺(𝑖) ∨ 𝑘∉𝑁𝐺(𝑖) 

 
𝐷𝐼𝐿𝑖 = 𝑘𝑖 + ∑ 𝐼𝑒𝑖𝑗 .

𝑘𝑖 − 1

𝑘𝑖 + 𝑘𝑗 − 2
𝑗=𝑵𝑮(𝒊))

 

3 Methodology 

We propose a new node ranking measure that we call weighted degree-betweenness (WDB). We further compare the efficacy 10 

of the proposed measure with the existing node ranking methods using two synthetic networks. 

3.1 Weighted Degree-Betweenness   

WDB is a combination of the network measures degree and betweenness centrality. We define WDB of a particular node i as 

the sum of the betweenness centrality of node 𝑖  and all directly connected nodes j, 𝑗 = 1,2,3… . n in proportion to their 

contribution to node 𝑖. Mathematically, the WDB of a node 𝑖 is given by  15 

𝑊𝐷𝐵𝑖 = 𝐵𝑖 + 𝐼i          (2) 

𝑤ℎ𝑒𝑟𝑒 𝐵𝑖  is the betweenness centrality of node 𝑖, and 𝐼𝑖  stands for the influence or contribution of the directly connected node 

j, 𝑗 = 1,2,3… . 𝑛 to node 𝑖. It is defined for node 𝑖 as 

𝐼𝑖 =∑
𝐵𝑖 ∗ 𝑘𝑗

 𝑘𝑖 + 𝑘𝑗 

𝑛

𝑗=1

 
 

(3) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑖  is the degree of node i, 𝑘𝑗  is the degree of the nodes j which are directly connected to node ii, and 𝑛  is the total 

number of directly connected nodes to node 𝑖.  

3.2 Comparison with Existing Node Ranking Measures Using Synthetic Networks 
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In this section, we motivate the development of the new node ranking measure WDB by comparing it to existing measures. 

Identifying nodes that occupy interesting positions in a real-world network using node ranking helps to extract meaningful 

information from large datasets with little cost. Usually, the measures degree or betweenness centrality are used for node 

ranking (Gao et al., 2013; Okamoto et al., 2008; Saxena et al., 2016). However, these measures have certain disadvantages 

which are explained using a simple network, the undirected and unweighted network 𝑍 = (𝑁, 𝐸) with 8 nodes and 11 edges 5 

shown in Figure 2. The network measures 𝑘𝑖, 𝐵𝑖  and 𝑊𝐷𝐵𝑖  of each node are given in Table 2. 

Degree is limited as node ranking measure since it cannot distinguish between different roles in the network. For example, 

nodes 5, 7, and 8 have the same degree (ki=2), but node 5 serves as bridge node linking the two parts of the network. Information 

between several nodes in this network can flow through this node only. In a large complex network, such nodes have strategic 

relevance as most of the information can be accessed quickly just by capturing those nodes. For example, in a social network, 10 

the spreading of a disease could be slowed down or hindered by identifying these nodes. In climate networks, an early warning 

signal could be generated by capturing the flow of information (Donges et al., 2009a, 2009b). 

Betweenness centrality has a higher power in discriminating different roles. For example, nodes 4 and 5 have the highest 

betweenness centrality 𝐵 = 24 followed by node 6. Their importance for the information flow in the network is obvious, as 

such high B nodes can be used to control the flow of information in any network. However, betweenness B gives equal scores 15 

to local centers (nodes 4, 6), i.e., nodes of high degree central to a single region, and to global bridges (node 5), which connect 

different regions. This distinction is important because the roles of these nodes are different. For example, in climate networks, 

local centers correspond to nodes which are important for local climate phenomena, while bridges correspond to nodes which 

connect different subsystems of climate, such as monsoon and El-Nino, leading to teleconnections (Paluš, 2018).  

 20 

Figure 2: Synthetic network to explain the betweenness (𝑩) and weighted degree-betweenness (𝑾𝑫𝑩) measures, with node number 

(1 to 8) followed by the betweenness value (a) and 𝑾𝑫𝑩 value (b) in brackets. Betweenness does not distinguish centers from bridges 

(marked in red), as it attributes the same value to the local center (node 4) and to the global bridge node (node 5). In contrast, WDB 

assigns the highest importance to node 5 that plays the role of a global bridge. Further, betweenness does not differentiate between 

the nodes 1, 2, 3, 7 and 8, while 𝑾𝑫𝑩 provides a nuanced picture of the influence of all nodes. 25 
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Table 2: Network measures for the synthetic network shown in Figure 2. Ranking of the nodes is based on the proposed WDB 

measure. 

Node no. (𝒊) 𝒌𝒊 𝑩𝒊 𝑾𝑫𝑩𝒊 Rank Role of nodes 

1 3 0 14.4 4 node 

2 3 0 14.4 4 node 

3 3 0 14.4 4 node 

4 4 24 30 2 local center 

5 2 24 55.3 1 global bridge 

6 3 20 28 3 local center 

7 2 0 13.3 5 node 

8 2 0 13.3 5 node 

 

The proposed measure WDB has an even higher discrimination power compared to betweenness centrality and effectively 

ranks the nodes in the network. Node 5 has the highest WDB score and is ranked as the most influential node. This reflects its 5 

role as global bridge node, as losing node 5 would disconnect the two parts of the network. WDB is also able to distinguish 

between the nodes 1, 2, 3 (WDB = 14.4) and the nodes 7, 8 (WDB = 13.3) which is important in case of we need sequentially 

ranking of nodes. 

To further evaluate the proposed measure, we compare WDB with other network measures recently published, namely the 

bridgeness developed by Jensen et al. (2016) and degree and influence of line DIL by Liu et al. (2016). For this comparison, 10 

we use the same synthetic network as Jensen et al. (2016) shown in Figure 3. The corresponding network measure values are 

given in Table 3. 
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Figure 3: Synthetic network used to compare the network measures betweenness, bridgeness, and DIL with the proposed measure 

WDB. Number 1 to 11 are node counts, and values in brackets represent the network measure values in order of 

[𝑩, 𝑩𝒓𝒊, 𝑫𝑰𝑳, 𝒂𝒏𝒅 𝑾𝑫𝑩]. 

Fig. 3 illustrates that betweenness does not distinguish between the local centers (nodes 4, 7) and the global bridge node (node 5 

6). It even assigns a smaller value to the global bridge node. Bridgeness expresses the higher importance of the global bridge 

node compared to local centers, however, it does not distinguish between all other nodes. Although DIL assigns different 

values to almost very node, these numbers do not represent the different roles of the nodes and are therefore hardly suitable as 

node ranking measure. WDB outperforms the existing measures in effectively ranking nodes in the network, such as the global 

bridge nodes, local centers and dead-end nodes (nodes 5, 10, 11) by assigning highest to lowest values. For example, WDB is 10 

sensitive to rank nodes 4 and 7 for which the bridgeness measure provides equally score. 

This comparison of the proposed measure WDB with other measures that have been developed to express the importance of 

nodes within a network shows that WDB is able to provide a nuanced picture. The resulting node ranking reflects the different 

roles, such as global bridge, local center, dead-end node, hub (high degree), non-hub (low degree) (shown in Table 3) of the 

individual nodes. 15 

 

 Table 3: Measures for the synthetic network shown in Figure 3. Ranking of the nodes is based on the proposed WDB measure. 

Node no. (𝒊) 𝑩𝒊 𝑩𝒓𝒊𝒊 𝑫𝑰𝑳𝒊 𝑾𝑫𝑩𝒊 Rank Role of the node 

1 0 0 2 7.3 10 non-hub node 

2 0 0 3.5 28.6 6 non-hub node 

3 0 0 3.5 28.6 6 non-hub node 

4 27 5 4.8 48.4 3 hub node 

5 0 0 3.5 28.6   4 dead-end ode 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-113
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 13 March 2018
c© Author(s) 2018. CC BY 4.0 License.



9 

 

6 25 16 3 58 1 global bridge 

7 27 5 3 48.5 2 hub node 

8 0 0 2 28 7 non-hub node 

9 9 0 3 27 8 non-hub node 

10 0 0 1 30 5 dead-end node 

11 0 0 1 12 9 dead-end node 

 

3.3 Evaluation of the Proposed Measure for a Rain Gauge Network 

In the context of hydrometric station networks, we hypothesise that higher ranking stations are more influential nodes in the 

network. Loosing such stations would more strongly reduce the network efficiency, i.e., the flow of information within the 

network, compared to lower ranking stations. Stations with the lowest ranks in the network are the least influential and are 

seen as expendable stations. To test this hypothesis, we apply the proposed node ranking measure to a rain gauge network 5 

consisting of more than 1000 stations in Germany. The information loss caused by removing stations is quantified via two 

measures: (a) decline rate of network efficiency, and (b) relative kriging error.  

3.3.1 Decline Rate of Network Efficiency  

The decline rate of network efficiency, as proposed by Liu et al. (2016), quantifies the loss in efficiency with which information 

flows within a network when nodes are removed from the network. Network efficiency is defined as  10 

𝜂 =
1

𝑁(𝑁 − 1)
∑ 𝜂𝑖𝑗
𝑛𝑖≠𝑛𝑗

 
 (4) 

where 𝜂𝑖𝑗 is the efficiency between nodes 𝑛𝑖 and 𝑛𝑗. 𝜂𝑖𝑗 is inversely related to the shortest path length: 𝜂𝑖𝑗 = 1 𝑑𝑖𝑗⁄ , where  𝑑𝑖𝑗  

is the shortest path between nodes 𝑛𝑖  and 𝑛𝑗 . The average path length L measures the average number of links along the 

shortest paths between all possible pairs of network nodes. It is a measure of the efficiency of information or mass transport 

in a network. A network with small 𝐿 is highly efficient, because two nodes are likely to be separated by a few links only. The 

decline rate of network efficiency 𝜇 is defined as    15 

𝜇 = 1 −
𝜂𝑛𝑒𝑤
𝜂𝑜𝑙𝑑

 
 (5) 

where 𝜂𝑛𝑒𝑤 is the efficiency of the network after removing nodes, and 𝜂𝑜𝑙𝑑 is the efficiency of the complete network.  

We hypothesise that the network efficiency reduces more strongly if high ranking stations are removed. This implies higher 

decline rates of efficiency when removing higher ranking stations from the network.   
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3.3.2 Relative Kriging Error 

As second measure to evaluate the information loss when stations are removed from the network, we use a kriging based 

geostatistical approach (Adhikary et al., 2015; Keum et al., 2017). Kriging is an optimal surface interpolation technique 

assuming that the variance in a sample of observations depends on their distance (Adhikary et al., 2015). It is the best linear 

unbiased estimator of unknown variable values at unsampled locations in space where no measurements are available, based 5 

on the known sampling values from the surrounding areas (Hohn, 1991; Webster and Oliver, 2007). The Ordinary Kriging 

technique is used in this study for interpolating rainfall data and estimating the kriging error. The kriging estimator is expressed 

as 

𝑍∗(𝑥𝑜) = ∑𝑤𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 
 (6) 

where 𝑍∗(𝑥0)  refers to the estimated value of Z at the desired location 𝑥0 ; 𝑤𝑖  represents weights associated with the 

observation at the location xi with respect to x0; and n indicates the number of observations within the domain of the search 10 

neighborhood of x0 for performing the estimation of 𝑍∗(𝑥0) . Ordinary Kriging is implemented through ArcGISv10.4.1 

(Redlands, CA, USA) (ESRI, 2009) and its geostatistical analyst extension (Johnston et al., 2001). 

To evaluate the performance of the WDB measure in identifying influential and expandable stations in a large network, we 

calculate the increase in the interpolation error of when stations are removed. The relative kriging error before and after 

removing the stations is denoted as  15 

ℜ(%) =
𝐾𝑆𝐸𝑛𝑒𝑤 − 𝐾𝑆𝐸𝑜𝑙𝑑

𝐾𝑆𝐸𝑜𝑙𝑑
× 100 

    (7) 

 

where 𝐾𝑆𝐸𝑛𝑒𝑤  denotes the standard kriging error after removing stations, and 𝐾𝑆𝐸𝑜𝑙𝑑  is the error for the original network. We 

hypothesise that the relative kriging error is higher when removing high ranking stations. To cover a broad range of rainfall 

characteristics, the error is calculated for different statistics, i.e. the mean, 90th, 95th and 99th percentile rainfall and the number 

of wet days (precipitation > 2.5mm).  

4 Application to an Extensive Rain Gauge Network 20 

4.1 Rainfall Data 

To evaluate the proposed measure in the context of the optimal design of hydrometric networks, we apply it to an extensive 

network of rain stations in Germany and adjacent areas (Figure 4). The data covers 110 years at daily resolution (1 January 

1901 to 31 December 2010). The 1229 rain stations inside Germany (red dots in Fig. 4) are operated by the German Weather 

Service. Data processing and quality control were performed according to Österle et al. (2006). 211 stations from different 25 

sources outside Germany (green dots in Fig. 4) were included in the analysis to minimize spatial boundary effects in the 

network construction, however, these stations were excluded from the node ranking analysis.   
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Figure 4: Location of rain stations in Germany and adjacent areas. Red dots indicate stations lying inside Germany that are used in 

the analysis. Green dots indicate stations outside of Germany that are used for network construction only to minimize the boundary 

effect. 

4.2 Network Construction 5 

We begin the network construction by extracting event time series from the 1440 daily rainfall time series. The event series 

represent heavy rainfall events, i.e., precipitation exceeding the 95th percentile at that station (Rheinwalt et al., 2016). The 95th 

percentile is a good compromise between having a sufficient number of rainfall events at each location and a rather high 

threshold to study heavy precipitation. All rainfall event series are compared with each other using event synchronization (see 

Appendix A; Agarwal et al., 2017a; Malik et al., 2012; Stolbova et al., 2014). This results in the similarity matrix Q, whereas 10 

the entry at index pair (i,j) defines synchronization in the occurrence of heavy rainfall events at station i and station j. Applying 

a certain threshold to the 𝑄 matrix (see Appendix A) yields an adjacency matrix  

𝐴𝑖,𝑗 = {
1, 𝑖𝑓 𝑄𝑖,𝑗 ≥ 𝜃𝑖,𝑗

𝑄

0,                       𝑒𝑙𝑠𝑒,
 

 

(8) 

Here, 𝜃𝑖,𝑗
𝑄 = 95𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙 is chosen in such a way to capture only highly synchronized stations. 𝐴𝑖,𝑗 = 1 denotes a link 

between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  station and 0 denotes otherwise. The adjacency matrix represents the connections in the rainfall 

network. Although the constructed network is based on all 1440 stations (to minimize the boundary effect), the subsequent 15 

topological analysis is performed only for the 1229 stations lying inside Germany. 
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4.3 Decline Rate of Network Efficiency  

In this section, we evaluate the ranking of stations derived from the proposed WDB measure using the decline rate of network 

efficiency. The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked rain gauges are 

interpreted as the most influential stations, and low ranked as expendable stations. 

Firstly, we analyze the decline rate of network efficiency 𝜇 when one station is removed from the network. In each trial, we 5 

remove only one station (starting with the highest rank). After n=1229 (number of nodes) trials, we investigate the relationship 

between 𝜇 and the node ranking measured by WDB. We expect an inverse relationship between 𝜇 and WDB: the higher the 

node ranking, the more important is that node, leading to a higher loss in network efficiency. Figure 5 confirms this behavior. 

𝜇 is high for high-ranking stations and decays with node ranking. Interestingly, 𝜇 < 0 for very low ranking stations, i.e. the 

network efficiency increases when single, low ranking stations are removed. This is explained by the decrease of the 10 

redundancy in the network when such stations are removed. 

  

 

Figure 5: Decline rate of network efficiency corresponding to the removal of each node in the rainfall network. In each 

implementation, only one node is removed from the network according to the ranking with replacement (bootstrapping). 15 

Secondly, we remove successively a larger number of stations, from 1 to 123 stations (10%), considering three cases. In case 

I, we remove up to the 10% highest ranking stations. This implies that in the first iteration we remove the top-ranked station 

and in the second iteration we remove the top two stations and so on. Figure 6 shows a clear increase in 𝜇 when more and more 

influential stations are removed. In case II, up to the 10% lowest ranking stations are successively removed. It can be seen in 

Figure 6 that this affects the network efficiency in a positive way: The efficiency increases when the lowest ranking stations 20 

are removed. In case III, up to 10% stations are randomly removed. Case III is repeated ten times to understand the effect of 

random sampling. In general, 𝜇 increases with removing random stations. However, the effect is much lower (in absolute 

terms) compared to the effect of removing high or low ranking stations, respectively. The variation in 𝜇 between the ten trials 
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and within one trial is caused by randomness. For example, 𝜇 rises instantaneously when the algorithm picks up a high ranking 

station.   

 

 

Figure 6: Decline rate of network efficiency as a function of the number of stations removed from the network. Case I: up to the 5 

10% highest ranking stations are removed (black), case II: up to the 10% lowest ranking stations are removed (red), case III: up to 

10% randomly drawn stations are removed (10 trials) (blue). 

4.4 Relative Kriging Error 

As the second approach to assess the suitability of WDB for identifying influential and expandable stations, we analyse the 

change in the kriging error when stations are removed from the network. Similarly to the evaluation using the decline rate of 10 

network efficiency in section 4.3, three cases are investigated: removing the 10% highest ranking stations, removing the 10% 

lowest ranking stations, and ten trials of removing 10% of the stations randomly. The change in the kriging error is calculated 

for five characteristics, i.e., mean, 90%-, 95%-, 99%-percentile, and number of wet days (Table 4. 

 Removing the 10% high-ranking stations (case I) leads to positive and high (ℜ > 5%) values for all five statistics considered. 

The kriging error increases substantially when these stations are removed. When the 10% lowest ranking stations (case II) are 15 

not considered, the ℜ values are small compared to those obtained by removing high ranking stations. The relative errors in 

estimating the mean, percentile rainfall characteristics (90th and 95th) and number of wet days at ungauged locations are low 

(<5%) for the 10% lowest ranking stations, suggesting that these stations do not contribute much information. For two out of 

five statistics, i.e., mean and number of wet days, removing the 10% lowest ranking stations actually improves the kriging 

model. Case III, i.e. removing stations randomly, shows positive and high (ℜ > 5%) values except for the number of wet days 20 

because by doing so we remove high ranking nodes as well which lead to higher rates of ℜ(%). 
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Table 4: Relative kriging error for the three different cases. The relative kriging error for case III is the average across ten trials. 

Stars indicate a high relative error >5%. 

Case Removal of stations 

Relative kriging error ℜ(%) 

Mean 90th 

percentile 

95th 

percentile 

99th 

percentile 

Wet 

days 

I 10% highest ranking 7.2* 35.9* 72.3* 59.1* 71.1* 

II 10% lowest ranking  -5.1 4.1 3.8 11.4* -1.5 

III 10% randomly selected  6.6* 28.5* 60.8* 51.9* 4.8 

5 Discussion 

Building on the young science of complex networks, a novel node ranking measure, the weighted degree-betweenness WDB, 

is proposed. It is based on degree and betweenness centrality measure of nodes in a network. The comparison of the WDB 5 

measure with the existing node ranking measures suggests that it is more informative since it is better able to consider the 

different role of nodes in a complex network. The WDB measure provides a unique value to each node depending on its 

importance and influence in the network.  

Further, this study proposes to use WDB for supporting the optimal design of large hydrometric networks. It is able to rank 

the nodes in a large network in relation to their importance for the flow of information, mass or energy. This ranking can be 10 

used to identify highly influential and expandable hydrometric stations. For example, removing low ranking stations in the 

German rain gauge network increases the network efficiency considerably, and may even decrease the error of estimating 

rainfall at ungauged locations. This is explained by the redundancy in the information that those stations provide, which in 

turn is attributed to the similarity between the gauges due to the common driving mechanisms or spatial similarity as advocated 

by Tobler’s Law of Geography (Tobler, 1970). The results of our analysis suggests that WDB identifies the expandable nodes 15 

correctly as shown by decline rate of efficiency and relative kriging error. On the other hand, awards stations which provide 

unique information which cannot be generated from other stations in the network. Based on our analysis, we argue that, ranking 

of all nodes in large networks has the major benefit that the new measure adds to the optimal design of hydrometric networks 

or redesign of existing hydrometric networks. 

The proposed node ranking approach differs from the existing approaches as it considers different aspects of the spatio-20 

temporal relationships in observation networks. This measure is not only useful for optimizing observational networks, but has 

also potential to support the selection of an optimal number of stations for the prediction in ungauged basins (PUBs) and 

estimating missing values by identifying influential stations in the region,. For example, from a set of N potential stations to 
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be used for PUBs the proposed approach can be applied to select the M influential stations which, when used, reduce the 

uncertainty (Villarini et al., 2008). Similarly, the proposed method can be applied to gridded satellite data (rainfall, soil 

moisture), to locate the strategic points where stations should be installed to ensure a highly efficient observation network. For 

instance, identifying influential grid points in the network of satellite data (rainfall, soil-moisture) will guide where to install 

monitoring stations.  5 

An advantage of the proposed method is its capability to differentiate between the different roles played by individual stations. 

For example, global bridge nodes are able to control the flow of information, energy or mass between different parts of a 

network. Hence, they are of highest importance. This capability opens new possibilities for its use in complex networks. For 

instance, in climate networks an early warning signal could be generated by capturing the flow of information at such points 

(Donges et al., 2009b; Hlinka et al., 2014; Stolbova et al., 2016). 10 

6 Conclusions 

This study proposes a novel node ranking measure for identifying the influential and expendable nodes in a complex network. 

The new network measure weighted degree-betweenness (WDB) combines the existing measures degree and betweenness 

centrality and considers the neighbourhood of a node. The proposed measure is compared to other measures using synthetic 

networks. WDB is more sensitive to the different roles of nodes, such as global connecting nodes, hybrid nodes, and local 15 

centers, and provides a more informative ranking than the existing node ranking measures.  

We propose to use this measure for the optimal design of hydrometric networks. Applying this measure to a network of 1229 

rain gauges in Germany allows identifying influential and expendable stations. Two criteria, the decline rate of network 

efficiency and the kriging error, are used to evaluate the performance of the proposed node ranking measure. The results 

suggest that the proposed measure is indeed capable of effectively ranking the stations in large hydrometric networks. 20 

We argue that the proposed measure is not only useful for optimizing observational networks, but has the potential to support 

the selection of an optimal number of stations (by determining influential station of the region) to be used in the prediction in 

ungauged basins, or to support the estimation of missing values, regionalization, and regional flood frequency analysis. When 

applied to gridded satellite data, it can be used to locate the strategic points where stations should be installed to ensure a highly 

efficient network. Furthermore, the new network measure has large potentials in other fields where science complex networks 25 

are used, such as in social networks, infrastructure networks, disease spreading networks, and brain networks. 
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Data availability  

The precipitation data was provided by the German Weather Service. The data is publicly accessible at 

https://opendata.dwd.de/. The data was preprocessed by the Potsdam Institute for Climate Impact Research (Conradt et al., 

2012). 

Appendix 5 

A. Event synchronization 

Event synchronization (ES) has been very specifically designed to calculate nonlinear correlations among bivariate timeseries 

with events defined on them (Malik et al., 2012; Quian Quiroga et al., 2002; Stolbova et al., 2014). This method has advantages 

over other time-delayed correlation techniques (e.g., Pearson lag correlation), as it allows us to define extreme event series of 

the signal, depending on the kind of extreme, and uses a dynamic time delay. The latter refers to a time delay that is adjusted 10 

according to the two timeseries being compared, which allows for better adaptability to the region of interest. Another 

advantage of this method is that it can also be applied to a non-Gaussian and event-like data sets (Stolbova et al., 2014; Tass 

et al., 1998). 

In last decade, various modification has been proposed in the basic algorithm, citing various issues such as boundary effect 

(Rheinwalt et al., 2016)., and bias toward number of events (Donges et al., 2009a), etc. thus modified basic algorithm proposed 15 

by (Agarwal et al., 2017a; Rheinwalt et al., 2016), can be explained as, let us say an event above threshold 𝛼 percentile occurs 

in the signal 𝑥(𝑡) and 𝑦(𝑡) at time 𝑡𝑙
𝑥 and 𝑡𝑚

𝑦
 where 𝑙 = 1,2,3,4… 𝑆𝑥, 𝑚 = 1,2,3,4……𝑆𝑦 and within a time lag ±𝜏𝑙𝑚

𝑥𝑦
  which 

is defined as following  

𝜏𝑙𝑚
𝑥𝑦
= 𝑚𝑖𝑛{𝑡𝑙+1

𝑥 − 𝑡𝑙
𝑥 , 𝑡𝑙

𝑥 − 𝑡𝑙−1
𝑥 , 𝑡𝑚+1

𝑦
− 𝑡𝑚

𝑦
, 𝑡𝑚
𝑦
− 𝑡𝑚−1

𝑦
} 2⁄  (A1) 

where  𝑆𝑥  and 𝑆𝑦  are the total number of such events (greater then threshold 𝛼 ) that occurred in the signal 𝑥(𝑡)   and 

𝑦(𝑡) respectively. The above definition of the time lag help to separates of independent events which in turn allows to take 20 

into account the fact that different processes responsible for generation of events. We need to count the number of times an 

event occurs in the signal 𝑥(𝑡) after it appears in the signal 𝑦(𝑡) and vice versa and, this is achieved by defining quantities 

𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥) where 

𝐶(𝑥|𝑦) =∑∑ 𝐽𝑥𝑦

𝑆𝑦

𝑚=1

𝑆𝑥

𝑙=1

 

and 

 

(A2) 

 

𝐽𝑥𝑦 =

{
 

 
1       𝑖𝑓    0 < 𝑡𝑙

𝑥 − 𝑡𝑚
𝑦
< 𝜏𝑙𝑚

𝑥𝑦

1

2
                         𝑖𝑓     𝑡𝑙

𝑥 = 𝑡𝑚
𝑦

0                                         𝑒𝑙𝑠𝑒,

 

 

(A3) 
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Similarly, we can define 𝐶(𝑦|𝑥) and from these quantities we, can, obtain  

𝑄𝑥𝑦 =
𝐶(𝑥|𝑦) + 𝐶(𝑦|𝑥)

√(𝑆𝑥 − 2)(𝑆𝑦 − 2)

 
 

(A4) 

𝑄𝑥𝑦  is a measure of strength of event synchronization between signal 𝑥(𝑡) and 𝑦(𝑡). Also it is normalized to 0 ≤ 𝑄𝑥𝑦 ≤ 1. 

This implies 𝑄𝑥𝑦 = 1 for perfect synchronization between signal 𝑥(𝑡) and 𝑦(𝑡). (For detailed explanation refer Agarwal et al., 

2017a).  
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