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Abstract 15 

Hydrometric networks play a vital role in providing information for decision-making in water resources 

management. They should be set up optimally to provide as much and as accurate information as possible, and at the 

same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in 

hydrometeorology and has received considerable attention, yet there is scope for further advancement. In this study, 

we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure 20 

that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric 

station networks. The science of complex networks is a relatively young field and has gained significant momentum 

in the last years in different areas such as brain networks, social networks, technological networks, or climate 

networks. The identification of influential nodes in complex networks is an important field of research. We propose 

a new node ranking measure, the weighted degree-betweenness (WDB), to evaluate the importance of nodes in a 25 

network. It is compared to previously proposed measures on synthetic sample networks and then applied to a real-

world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed 

measure is evaluated using the decline rate of network efficiency and the kriging error. The results suggest that WDB 

effectively quantifies the importance of rain gauges, although the benefit of the method needs to be investigated in 

more detail. 30 
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1 Introduction  

Hydrometric observation networks monitor a wide range of water quantity and water quality parameters such as 

precipitation, streamflow, groundwater, or surface water temperature (Keum et al., 2017). Designing adequate 

hydrometric monitoring is key in water resources management; e.g., flood estimation, water budget analysis, 

hydraulic design, and monitoring climate change. Even after the advent of remote sensing based information, such as 5 

satellite precipitation estimates, in-situ observations are considered as an essential source of information in 

hydrometeorology (Rossi et al., 2017).  

The basic characteristics of hydrometric networks comprise the number of stations, their locations, observation 

periods, and sampling frequency (Keum et al., 2017). The general understanding is that the higher the number of 

monitoring stations, the more reliable the quantification of areal average estimates and point estimates at any 10 

ungauged location. However, a higher station number elevates the cost of installation, operation, and maintenance, 

but may provide redundant information and, therefore, not increase the information content obtained from the 

observation network. Scarcity of funds for hydrometric monitoring has led to a slow but steady teardown of 

hydrometric stations in the last decades globally, raising the need for cost-effective design (Mishra and Coulibaly, 

2009). For example, Putthividhya and Tanaka (2012) made an effort to design an optimal rain gauge network based 15 

on the station redundancy and the homogeneity of the rainfall distribution. Adhikary et al. (2015) proposed a kriging 

based geostatistical approach for optimizing rainfall networks, and Chacon-Hurtado et al. (2017) provided a 

generalized procedure for optimal rainfall and streamflow monitoring in the context of rainfall-runoff modelling. Yeh 

et al. (2017) optimized a rain gauge network applying the entropy method on radar datasets. Most of the 

aforementioned studies inherently assume that expanding the gauge network with supplementary stations aids more 20 

information that ultimately leads to less uncertainty (Wadoux et al., 2017). However, increasing the number of 

stations does not necessarily decrease uncertainty (Stosic et al., 2017). There may be expendable (little significant) 

stations contributing little to no information though having the same maintenance cost as influential (highly 

significant) stations (Mishra and Coulibaly, 2009). 

This study aims to discriminate influential and expendable stations in hydrometric station networks based on their 25 

relative information content. We propose complex networks as a suitable tool for this optimization problem. A 

complex network is defined as a collection of nodes, such as rain gauge stations, interconnected with links, where a 

link represents statistical similarity of the connected rain gauge stations. Complex networks are powerful tools in 

extracting information from large high-dimensional datasets (Donges et al., 2009; Kurths et al., 2019). This non-

parametric method allows investigating the topology of local and non-local statistical interrelationships. An example 30 
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for non-local connections in a climate network, i.e., a complex network using climate variables, are the global 

influence of El Niño Southern Oscillation (ENSO) on regional rainfall (Agarwal, 2019; Ferster et al., 2018), and of the 

Atlantic Meridional Overturning Circulation (AMOC) on air surface temperature (Agarwal et al., 2019) via 

teleconnections and ocean circulation, respectively. Once the spatial network of stations has been constructed, 

statistical network measures (e.g., degree, betweenness centrality) are used to quantify the behaviour of the network 5 

and its components for a range of applications. Examples are the identification of the community structure of stations 

or homogeneous regions to unravel dominant climate modes (Agarwal et al., 2018a; Halverson and Fleming, 2015), 

catchment classification indicating hydrologic similarity (Fang et al., 2017), short and long-range spatial connections 

in rainfall (Agarwal et al., 2018a; Boers et al., 2014; Jha et al., 2015) and spatio-temporal hydrologic patterns 

(Halverson and Fleming, 2015; Konapala and Mishra, 2017). Complex network analysis complements classical Eigen 10 

techniques, such as empirical orthogonal functions (EOFs) or coupled patterns (CP) maximum covariance analysis 

(Donges et al., 2015). EOFs, CPs, and related methods rely on dimensionality reduction, whereas complex network 

approach allows studying the full complexity and different aspects of the statistical interdependence structure and 

are not limited to linear and spatial-proximity connections. Also, higher-order complex network measures 

(betweenness centrality, closeness centrality, participation coefficient) provide additional information on the hidden 15 

structure of statistical interrelationships in climatological data (Donges et al., 2015).  

In this study, we propose a complex network-based method to identify the influential and expendable stations in a 

rainfall network. Several methods in the field of complex networks have been proposed to evaluate the importance 

of nodes (Chen et al., 2012; Hou et al., 2012; Jensen et al., 2016a; Kitsak et al., 2010; Zhang et al., 2013), however, the 

application and interpretation of complex network in hydrology (or meteorological observations) is in its infancy. 20 

Degree (k), betweenness centrality (B), and closeness centrality (CC) are  measures commonly used in complex 

networks (Gao et al., 2013). Studies in different disciplines have shown that degree and betweenness centrality often 

outperform other node-ranking measures (Gao et al., 2013; Liu et al., 2016). We propose a novel measure, the 

weighted degree-betweenness (WDB), which combines 𝑘  and 𝐵 , to identify the stations providing the largest 

information to the network. Our main objective is to develop a node ranking method using complex network theory 25 

that can be used to identify not only influential but also the expendable stations in large hydrometric station 

networks. Our study is a first effort to explore the benefit of complex networks in hydrology, and we acknowledge 

that further studies are necessary before the methodology can be considered a trustworthy optimization tool for 

measurement networks. Our aim is not to question the credibility of operating stations, but to propose an alternative 

evaluation procedure towards optimal design and redesign of observational hydrometric monitoring networks based 30 

on complex networks. 
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2 Basics of Complex Networks 

2.1 Network Construction  

A network or a graph is a collection of entities (nodes, vertices) interconnected with lines (links, edges) as shown in 

Fig. 1. These entities could be anything, such as humans defining a social network (Arenas et al., 2008), computers 

constructing a web network (Zlatić et al., 2006), neurons forming brain networks (Bullmore and Sporns, 2012), 5 

streamflow stations creating a hydrological network (Halverson and Fleming, 2015) or climate stations describing a 

climate network (Agarwal et al., 2018b). Formally, a network or graph is defined as an ordered pair 𝑍 = {N, E}; 

containing a set 𝑁 = {𝑁1, 𝑁2, … . 𝑁𝑁}, of nodes together with a set E of link {𝑖, 𝑗}, which are 2-element subsets of N. In 

this work, we consider undirected and unweighted simple networks, where only one link can exist between a pair of 

vertices and self-loops of the type {𝑖, 𝑖} are not allowed. This type of network can be represented by the symmetric 10 

adjacency matrix (Eq..1).  

𝐴𝑖,𝑗 = {
0 {𝑖, 𝑗} ∉ 𝐸
1 {𝑖, 𝑗} ∈ 𝐸

 
 

(1) 

𝐴𝑖,𝑗 = 1 denotes a link between the 𝑖𝑡ℎ and 𝑗𝑡ℎ station, and 0 denotes otherwise. The adjacency matrix represents the 

connections in the network. Fig. 1 is a simple representation of such a network, i.e., one with a set of identical nodes 

(𝑁𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 4) connected by identical links. In general, (large) networks of real-world entities with irregular 

topology are called complex networks. The links represent similar evolution or variability at different nodes and can 15 

be identified from data using a similarity measure such as Pearson correlation (Ekhtiari et al., 2019), synchronization 

(Agarwal et al., 2017; Boers et al., 2019; Conticello et al., 2018) or mutual information (Paluš, 2018).  

 

Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 

with four nodes and three links; (b) network N2 with four nodes and six links. 20 

2.2 Event synchronization 

Event synchronization (ES) has been specifically designed to calculate nonlinear correlations among bivariate time 

series with events defined on them (Quiroga et al., 2002). This method has advantages over other time-delayed 
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correlation techniques (e.g., Pearson lag correlation), as it allows us to investigate extreme event series (such as non-

Gaussian and event-like data sets) and uses a dynamic time delay (Ozturk et al., 2018). The latter refers to a time 

delay that is adjusted according to the two time series being compared, which allows for better adaptability to the 

variable and region of interest. Various extensions for ES have been proposed, addressing, for instance, boundary 

effects (Rheinwalt et al., 2016) and bias by varying event rates.  5 

In the following, we define events by applying an 𝛼 percentile threshold at the signals 𝑥(𝑡) and 𝑦(𝑡). The 𝛼 percentile 

threshold is selected to trade-off between a sufficient number of rainfall events at each location and a rather high 

threshold to study heavy precipitation. Events occur then at times 𝑡𝑙
𝑥  and 𝑡𝑚

𝑦
 where  𝑙 = 1,2,3,4… 𝑆𝑥 , 𝑚 =

1,2,3,4……𝑆𝑦 . Events in 𝑥(𝑡) and 𝑦(𝑡)  are considered to coincide if they occur within a time lag ±𝜏𝑙𝑚
𝑥𝑦

, which is 

defined as follows 10 

𝜏𝑙𝑚
𝑥𝑦
= 𝑚𝑖𝑛{𝑡𝑙+1

𝑥 − 𝑡𝑙
𝑥 , 𝑡𝑙

𝑥 − 𝑡𝑙−1
𝑥 , 𝑡𝑚+1

𝑦
− 𝑡𝑚

𝑦
, 𝑡𝑚
𝑦
− 𝑡𝑚−1

𝑦
} 2⁄  (2) 

where 𝑆𝑥 and 𝑆𝑦 are the total number of such events (greater than threshold 𝛼) that occurred in the signal 𝑥(𝑡) and 

𝑦(𝑡), respectively. The above definition of the time lag helps to separate independent events, which in turn allows to 

take into account the fact that different processes may be responsible for the generation of events. We need to count 

the number of times an event occurs in the signal 𝑥(𝑡) after it appears in the signal 𝑦(𝑡), and vice versa, and this is 

achieved by defining quantities 𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥) where 15 

𝐶(𝑥|𝑦) =∑∑ 𝐽𝑥𝑦

𝑆𝑦

𝑚=1

𝑆𝑥

𝑙=1

 

and 

 
(3) 

 

𝐽𝑥𝑦 =

{
 

 
1       𝑖𝑓    0 < 𝑡𝑙

𝑥 − 𝑡𝑚
𝑦
< 𝜏𝑙𝑚

𝑥𝑦

1

2
                         𝑖𝑓     𝑡𝑙

𝑥 = 𝑡𝑚
𝑦

0                                         𝑒𝑙𝑠𝑒,

 

 
(4) 

This definition of 𝐽𝑥𝑦 prevents counting a synchronized event twice. When two synchronized events match exactly 

(𝑡𝑙
𝑥 = 𝑡𝑚

𝑦
), we use a factor 1/2 since they double count in 𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥). Similarly, we can define 𝐶(𝑦|𝑥) and from 

these quantities we obtain  

𝑄𝑥𝑦 =
𝐶(𝑥|𝑦) + 𝐶(𝑦|𝑥)

√(𝑆𝑥 − 2)(𝑆𝑦 − 2)

 
 

(5) 

𝑄𝑥𝑦  is a normalized measure of the strength of event synchronization between signal 𝑥(𝑡) and 𝑦(𝑡). This implies 

𝑄𝑥𝑦 = 1 for perfect synchronization and 𝑄𝑥𝑦 = 0  if no events are synchronized.  After repeating this procedure for 20 
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all pairs (𝑥 ≠ 𝑦 ) of stations, we obtain a similarity matrix. In this case, the similarity matrix for precipitation data is 

a square, symmetric matrix, which represents the strength of synchronization of the extreme rainfall events between 

each pair of stations.   

 

2.3 Node Ranking Measures 5 

A large number of measures have been defined to characterize the behaviour of complex networks. We focus here on 

those traditional and contemporary network measures, which have been proposed to quantify the importance of 

nodes in a network:  degree k, betweenness centrality B (Agarwal et al., 2018a), bridgeness Bri (Jensen et al., 2016), 

and degree and influence of line DIL (Liu et al., 2016).  

Traditional network measures  10 

The degree k of a node in a network counts the number of connections linked to the node directly. The degree of any 

𝑖 node is calculated as   

𝑘𝑖 =  ∑𝐴𝑖,𝑗

𝑁

𝑗=1

  
 (6) 

where N is the total number of nodes in a network. For example, the degree of nodes 1, 2, and 4 in network N1 (Fig. 

1a) is 1 and for node 3 is 3. In the network N2 (Fig. 1b), all nodes have degree 3. The degree can explain the importance 

of nodes to some extent, but nodes that own the same degree may not play the same role in a network. For instance, 15 

a bridging node connecting two important nodes might be very relevant though its degree could be much lower than 

the value of less important nodes.  

The betweenness centrality B is a measure of control that a particular node exerts over the interaction between the 

remaining nodes. In simple words, B describes the ability of nodes to control the information flow in networks. To 

calculate betweenness centrality, we consider every pair of nodes and count how many times a third node can 20 

interrupt the shortest paths between the selected node pair. Mathematically, betweenness centrality B of any 𝑖 node 

is 

𝐵𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑖≠𝑗≠𝑣∈{𝑉}

 
 (7) 

where 𝜎(𝑗, 𝑘)  represents the number of links along the shortest path between node 𝑗 and 𝑘 ; while 𝜎𝑖(𝑗, 𝑘) is the 

number of links of the shortest path running through node 𝑖. In network N1 (Fig. 1a), B of node 3 is 3, i.e., node 3 can 

disturb the information transfer between all of the three pairs 1-2, 1-4, 2-4, and for other nodes 𝐵 = 0. In the network 25 



7 

 

N2 (Fig. 1b), all nodes have 𝐵 = 0 because no node can interrupt the information flow. Thus, node 3 is a critical node 

in the network N1 but not in the network N2.  

Contemporary network measures  

Jensen et al. (2016) developed the Bridgeness measure 𝐵𝑟𝑖  to distinguish local centres, i.e. nodes that are highly 

connected to a part of the network (e.g. highly correlated stations in a homogeneous region), from global bridges, i.e., 5 

nodes that connect different parts of a network (Fig. 2, e.g., teleconnection between Indian rainfall and climate 

indices).  

Bri is a decomposition of betweenness centrality B into a local and a global contribution. Therefore, the 𝐵𝑟𝑖 value of 

node 𝑖 is always smaller or equal to the corresponding 𝐵 value, and they only differ by the local contribution of the 

first direct neighbours. To calculate 𝐵𝑟𝑖 we consider the shortest path between nodes outside the neighbourhood of 10 

node 𝑖, 𝑁𝐺(𝑖). Mathematically, it is represented as  

𝐵𝑟𝑖𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑗∉𝑁𝐺(𝑖) ∨ 𝑘∉𝑁𝐺(𝑖) 

 
 (8) 

The neighbourhood of node 𝑖 (𝑁𝐺(𝑖)) consists of all direct neighbours of node i. For example, in the networks N1 and 

N2, all nodes (except node 3 in N1) have 𝐵 = 0 hence 𝐵𝑟𝑖 = 0. However, node 3 in the network N1 has all the nodes 

in direct neighbourhood hence, it also has 𝐵𝑟𝑖 = 0. 

The degree and influence of line (𝐷𝐼𝐿), introduced by Liu et al. (2016), considers the node degree 𝑘 and importance 15 

of line 𝐼 to rank the nodes in a network:   

𝐷𝐼𝐿𝑖 = 𝑘𝑖 + ∑ 𝐼𝑒𝑖𝑗 .
𝑘𝑖 − 1

𝑘𝑖 + 𝑘𝑗 − 2
𝑗=𝑵𝑮(𝒊))

 
 (9) 

where the line between node 𝑖 and j is 𝑒𝑖𝑗  and its importance is defined as 𝐼𝑒𝑖𝑗 =
𝑈

𝜆
 where 𝑈 = (𝑘𝑖 − 𝑝 − 1). (𝑘𝑗 − 𝑝 −

1) reflects the connectivity ability of a line (link), p is the number of triangles having one edge 𝑒𝑖𝑗   and 𝜆 =
𝑝

2
+ 1 is 

defined as an alternative index of line 𝑒𝑖𝑗 . 𝑁𝐺(𝑖)) is the set of neighbours of node 𝑖 (for detailed explanation see Liu et 

al., 2016). The equation for 𝐷𝐼𝐿 suggests that all the nodes having 𝑘𝑖 = 1 will have 𝐷𝐼𝐿𝑖 = 1, since the second term 20 

of the equation will be zero. Hence, in the network N1 all nodes, except node 3, have 𝐷𝐼𝐿 = 1. Node 3 has 𝐷𝐼𝐿 = 3 

equal to its degree, since the second term is zero (all the connected nodes 1, 2 and 4 have 𝑘𝑗 = 1, hence 𝐼𝑒𝑖𝑗 = 0). All 

the nodes in the network N2 have 𝐷𝐼𝐿 = 3.  
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3 Methodology 

We will first propose a new node ranking measure that we call weighted degree-betweenness (WDB). We will then 

compare the efficacy of this measure with the existing traditional and contemporary node ranking methods using 

two synthetic networks. 

3.1 Weighted Degree-Betweenness   5 

WDB is a combination of two network measures, degree and betweenness centrality. We define WDB of a particular 

node i as the sum of the betweenness centrality of node 𝑖  and all directly connected nodes j, 𝑗 = 1,2,3… . 𝑘𝑖  in 

proportion to their contribution to node 𝑖. The WDB of a node 𝑖 is given by  

𝑊𝐷𝐵𝑖 = 𝐵𝑖 + 𝐼i          (10) 

𝑤ℎ𝑒𝑟𝑒 𝐵𝑖  is the betweenness centrality of node 𝑖 , and 𝐼𝑖  stands for the cumulative effect of the influence or 

contribution of the directly connected nodes of 𝑖, which are 𝑗 = 1,2,3, … , 𝑘𝑖 , as 10 

𝐼𝑖 =∑
Bj ∗ (𝑘𝑗 − 1)

 (𝑘𝑖 + 𝑘𝑗 − 2)

𝑘𝑖

𝑗=1

 

 
(11) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑖  is the degree of node 𝑖, 𝑘𝑗  is the degree of the nodes 𝑗 which are directly connected to node 𝑖. 

3.2 Comparison with Existing Node Ranking Measures Using Synthetic Networks 

In this section, we motivate the development of the new node ranking measure WDB by comparing it to existing 

measures. Identifying nodes that occupy interesting positions in a real-world network using node ranking helps to 

extract meaningful information from large datasets with little cost. Usually, the measures degree ( 𝑘𝑖 ) and 

betweenness centrality (𝐵𝑖) are common node ranking metrics (Gao et al., 2013; Okamoto et al., 2008; Saxena et al., 15 

2016). The network measures 𝑘𝑖, 𝐵𝑖  and 𝑊𝐷𝐵𝑖  of each node are given for an undirected and unweighted network 

𝑍 = (𝑁, 𝐸) with 8 nodes and 11 edges shown in Fig. 2 along with the node number.  

In general, high degree nodes represent most connected (highly correlated) nodes in a network. Rheinwalt et al. 

(2015) considered these highly correlated nodes of homogeneous precipitation community as local centres 

representing homogenous precipitation patterns for that particular community. Agarwal et al., (2018) defined local 20 

centres as the nodes having maximum intra-community links and minimum inter-community links based on the Z-P 

space approach. However, degree alone cannot distinguish the roles of nodes in the sample network as seen for nodes 

5, 7, and 8, which have the same degree (ki=2), though node 5 serves as a bridge node linking the two parts of the 
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network. In a larger complex network, such bridge nodes have strategic relevance as most of the information can be 

accessed quickly just by capturing those nodes. For example, Kurths et al. (2019) quantified the spatial diversity of 

Indian rainfall teleconnections at different timescales by identifying linkages between climatic indices (e.g., El 

Niño/Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation, and Atlantic 

Multidecadal Oscillation) and seven Indian rainfall stations (bridge nodes). 5 

Betweenness centrality has a higher power in significantly discriminating different roles compared to 𝑘𝑖 . For 

example, nodes 4 and 5 have the highest 𝐵𝑖  (𝐵4 = 𝐵5 = 24) followed by node 6 (𝐵6 = 20). On the other hand, 𝐵𝑖  gives 

equal scores to local centers (node 4), i.e., nodes of high 𝑘𝑖  to a single region, and to global bridges (node 5), which 

connect detached regions. As mentioned, global bridges connect different parts of a network (e.g., teleconnection 

between Indian rainfall and ENSO). Measuring and interpretation of large spatial variability, process identification, 10 

interpolation of measurements and transferability of precipitation measurements across locations, would be limited 

in the absence of high 𝐵𝑖  nodes. 

 

Figure 2: Synthetic network to explain the degree (k), betweenness centrality (𝑩)  and weighted degree-

betweenness (𝑾𝑫𝑩) measures, with node number (1 to 8) followed by the degree, betweenness centrality 15 

value and 𝑾𝑫𝑩 value in brackets [k, B, WDB]. Degree and betweenness are limited in distinguishing the role 

of different nodes in the network and centers from bridges, respectively.  

The proposed measure WDB has higher discrimination power compared to betweenness centrality. Node 5 has the 

highest WDB score and is ranked as the most influential node, which reflects its role as a global bridge node. WDB 
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distinguishes between nodes 1, 2, 3 (WDB = 14.4), and nodes 7, 8 (WDB = 13.3), which is important in case we need 

to sequentially rank nodes.  

We further evaluate WDB with the network measures Bri. For this comparison, we use the same synthetic network 

as Jensen et al. (2016) shown in Fig. 3. Betweenness centrality once again assigns a smaller value to the global bridge 

(node 6) than to the local centers (nodes 4, 7). Bridgeness expresses the higher importance of node 6 compared to 5 

nodes 4, 7, however, it does not distinguish between all other nodes in the network (nodes 1, 2, 3…have 𝐵𝑟𝑖 = 0). 

Similarly, DIL misses representing the bridge nodes by assigning higher values to local centres. WDB ranks the nodes, 

preferably following their role in the network as global bridges, local centers, and end nodes. For example, WDB is 

also able to differentiate between nodes 4 and 7 for which the bridgeness measure provides equal scores. 

 10 

 

Figure 3: Synthetic network used to compare the network measures betweenness centrality, bridgeness, and 

DIL with the proposed measure WDB. Numbers 1 to 11 are node counts, and values in brackets represent the 

network measure values in order of [𝑩, 𝑩𝒓𝒊, 𝑫𝑰𝑳, 𝒂𝒏𝒅 𝑾𝑫𝑩]. Node 6 is a global bridge node that connects two 

sub-networks. Node 4 and 7 are hubs that are connected to most of the nodes in the sub-networks. Node 5, 

10, and 11 are the dead-end nodes. 

 

3.3 Evaluation of the Proposed Measure for a Rain Gauge Network 
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In the context of hydrometric station networks, we hypothesize that higher ranking nodes are more influential 

stations in the complex network and also in the observation network. Losing such stations could reduce the network 

stability and efficiency given their role as bridging different communities (processes), capturing detailed process 

information compared to lower ranking stations. Stations with the lowest ranks in the network are the least 

influential and are seen as expendable stations. For example, a bridging node would be located between two regions 5 

of different variability and plays, therefore, an important role in estimating the spatial border between these regions. 

A low ranked node would be located within a (more or less) homogenous region and would not provide additional 

knowledge about the spatial variability. To test this hypothesis, we apply the proposed node ranking measure to a 

hydrometric station network, consisting of more than 1000 stations in Germany. The benefit of WDB is to capture 

the bridge nodes in the hydrometric station network that are adequate to quantify the local and non-local rainfall 10 

variability for process identification, for interpolation of measurements and for transferability of precipitation 

measurements across locations. In contrast, expandable stations correspond to sites of spatially extended coherent 

rainfall, surrounding a local centre which represents the variability of such regions. Stations within such regions of 

coherent rainfall provide redundant information and can be removed (except the local centre) without loss of 

information. The information loss caused by removing stations is quantified by two measures: (a) decline rate of 15 

network efficiency, and (b) relative kriging error.  

Decline Rate of Network Efficiency  

The decline rate of network efficiency quantifies the decrease in information flows within a network when nodes are 

removed as,  

𝜂 =
1

𝑁(𝑁 − 1)
∑ 𝜂𝑖𝑗
𝑛𝑖≠𝑛𝑗

 
 (12) 

where N is the total number of nodes in a network. 𝜂𝑖𝑗  is the efficiency between nodes 𝑛𝑖  and 𝑛𝑗 . 𝜂𝑖𝑗  is inversely 20 

related to the shortest path length: 𝜂𝑖𝑗 = 1 𝑑𝑖𝑗⁄ , where  𝑑𝑖𝑗  is the shortest path between nodes 𝑛𝑖  and 𝑛𝑗 . The average 

path length L measures the average number of links along the shortest paths between all possible pairs of network 

nodes. A network with small 𝐿 is highly efficient, because two nodes are likely to be separated by a few links only. 

The decline rate of network efficiency 𝜇 is defined as,    

𝜇 = 1 −
𝜂𝑛𝑒𝑤
𝜂𝑜𝑙𝑑

  (13) 

where 𝜂𝑛𝑒𝑤  is the efficiency of the network after removing nodes, and 𝜂𝑜𝑙𝑑  is the efficiency of the complete network. 25 
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We hypothesise that the network efficiency decreases more strongly when higher ranking stations are removed, i.e., 

bridge nodes.  

Relative Kriging Error 

As second measure to evaluate the information loss, when stations are removed from the network, we use a kriging 

based geostatistical approach (Adhikary et al., 2015; Keum et al., 2017). Kriging is an optimal surface interpolation 5 

technique assuming that the variance in a sample of observations depends on their distance (Adhikary et al., 2015). 

The algorithm estimates unknown variable values at unsampled locations in space, where no measurements are 

available, based on the known sampling values from the surrounding areas (Hohn, 1991; Webster and Oliver, 2007). 

Ordinary Kriging is used in this study for interpolating rainfall data and estimating the kriging error. The kriging 

estimator is expressed as 10 

𝑍∗(𝑥𝑜) = ∑𝑤𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 
 (14) 

where 𝑍∗(𝑥0) refers to the estimated value of Z at the desired location 𝑥0; 𝑤𝑖  represents weights associated with the 

observation at the location 𝑥𝑖  with respect to 𝑥𝑜 , and n indicates the number of observations within the domain of 

the search neighbourhood of x0 for performing the estimation of 𝑍∗(𝑥0). Ordinary Kriging is implemented through 

ArcGISv10.4.1 (Redlands, CA, USA) and its geostatistical analyst extension (Johnston et al., 2001). 

The kriging variance 𝜎𝑧
2(𝑥𝑜) in the Ordinary Kriging can be computed as (Adhikary et al., 2015; Xu et al., 2018) 15 

𝜎𝑧
2 = 𝜇𝑧 +∑𝑤𝑖𝛾(ℎ𝑜𝑖)      𝑤𝑖𝑡ℎ ∑𝑤𝑖 = 1

𝑛

𝑖=1

𝑛

𝑖=1

 

where γ(h) is the variogram value for the distance h; h0i is the distance between observed data points 𝑥𝑖  and 𝑥𝑗; 𝜇𝑧 is 

the Lagrangian multiplier in the 𝑍 scale; h0j is the distance between the unsampled location x0 (where the estimation 

is desired) and sample locations xi; and n is the number of sample locations. 

The square root of the kriging variance, also named as kriging standard error (KSE), is used as a gauge network 20 

evaluation factor. We estimate the increase in the kriging standard error across the study area when stations are 

removed to evaluate the performance of the WDB measure in identifying influential and expendable stations in a 

large network.  

The relative kriging error before and after removing the stations is denoted as  

ℜ(%) =
𝐾𝑆𝐸𝑛𝑒𝑤 − 𝐾𝑆𝐸𝑜𝑙𝑑

𝐾𝑆𝐸𝑜𝑙𝑑
× 100 

    (15) 
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where 𝐾𝑆𝐸𝑛𝑒𝑤  denotes the standard kriging error after removing stations, and 𝐾𝑆𝐸𝑜𝑙𝑑  is the error for the original 

network. We hypothesise that the increase in the relative kriging error is higher when removing high ranking 

stations. To cover a broad range of rainfall characteristics, the error is calculated for different statistics, i.e., the mean, 

90th, 95th, and 99th percentile rainfall and the number of wet days (precipitation > 2.5mm).  

4 Application to an Extensive Rain Gauge Network 5 

4.1 Rainfall Data 

To evaluate the proposed measure in the context of the optimal design of hydrometric networks, we apply it to an 

extensive network of rain stations in Germany and adjacent areas (Fig. 4). The data covers 110 years at daily 

resolution (1 January 1901 to 31 December 2010). The 1229 rain stations in Germany (blue dots in Fig. 4) are 

operated by the German Weather Service. Data processing and quality control were performed according to Österle 10 

et al. (2006), and in this study, we assume that data is free from measurement errors. 211 stations from different 

sources outside Germany (red dots in Fig. 4) were included in the analysis to minimize spatial boundary effects in 

the network construction; however, these stations were excluded from the node ranking analysis. For parts of France, 

precipitation data on a 0.22° x 0.22° rotated pole grid from E-OBS is used (Haylock 217 et al., 2008). 
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Figure 4: Location of rain stations in Germany and adjacent areas. Black dots indicate stations lying inside 

Germany that are used in the analysis. Red dots indicate stations outside of Germany that are used for 

network construction only to minimize the boundary effect. © Esri, USGS, NOAA 

 5 

4.2 Network Construction 

We begin the network construction by extracting event time series from the 1229 daily rainfall time series. The event 

series represent heavy rainfall events, i.e., precipitation exceeding the 𝛼 = 95𝑡ℎ percentile at that station (Rheinwalt 

et al., 2016). The 95th percentile is a trade-off between having a sufficient number of rainfall events at each location 

and a rather high threshold to study heavy precipitation. All rainfall event series are compared with each other using 10 

event synchronization (section 2.2), which is the base for deriving a complex network. This results in the similarity 
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matrix Q, where the entry at index pair (i,j) defines synchronization in the occurrence of heavy rainfall events at 

station i and station j (Eq. 5).  

Applying a certain threshold (𝜃) to the 𝑄 matrix yields the adjacency matrix (Eq. 1). Here, 𝜃𝑥𝑦
𝑄  is a chosen threshold, 

and 𝐴𝑖𝑗 = 1  denotes a link between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ sites, and 𝐴𝑖𝑗 = 0  denotes otherwise. The adjacency matrix 

represents a rain gauge network, and complex network theory can subsequently be employed to reveal properties of 5 

the given network.  

Two criteria have been proposed to generate an adjacency matrix from a similarity matrix, such as the fixed amount 

of link density (Agarwal et al., 2018b, 2019) or global fixed thresholds (Jha et al., 2015; Sivakumar and Woldemeskel, 

2014). However, both criteria are subjective and may lead to the presence of weak and non-significant links in the 

complex network. These non-significant links might obscure the topology of strong and significant connections. To 10 

minimize these threshold effects, we choose the threshold 𝜃𝑖,𝑗
𝑄  objectively by considering all links in the network that 

are significant. A link is significant (i.e., two stations are significantly synchronized) if the synchronization value 

exceeds the 𝜃𝑖,𝑗
𝑄 =95th percentile (corresponding to a 5% significance level) of the synchronization obtained by two 

synthetic variables that have the same number of events but distributed randomly in the time series (i.e., both event 

series are independent). We calculate ES for 100 pairs of such random time series and derive the 95th percentile of 15 

the resulting ES distribution. Using this 5% significance level, we assume that synchronization cannot be explained 

by chance if the ES value between two stations is larger than the 95th percentile of the test distribution. Here, we 

select the 5% significance level since it is a well-accepted criterion in general in statistics. To validate the results, we 

repeated the analysis for the 90-99th percentile threshold range and observed that the node ranking is robust against 

the threshold selection.  For the sake of brevity, detailed results are presented for the 95th percentile threshold only.  20 

4.3 Decline Rate of Network Efficiency  

In this section, we evaluate the ranking of stations derived from the proposed WDB measure using the decline rate 

of network efficiency. The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked 

rain gauges are interpreted as the most influential stations, and low ranked as expendable stations. 

Firstly, we analyze the decline rate of network efficiency 𝜇 when one station is removed from the network. In each 25 

trial, we remove only one station (starting with the highest rank). After n=1229 (number of nodes) trials, we 

investigate the relationship between 𝜇 and the node ranking measured by WDB. We expect an inverse relationship 

between 𝜇 and WDB: the higher the node ranking, the more important is that node, leading to a higher loss in network 

efficiency (Fig. 5). 𝜇 is high for high-ranking stations and decays with node ranking. Interestingly, 𝜇 < 0 for very low 
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ranking stations, i.e., the network efficiency increases when single, low ranking stations are removed. This is 

explained by the decrease of the redundancy in the network when such stations are removed. 

 

Figure 5: Decline rate of network efficiency corresponding to the removal of each node in the rainfall 

network. In each implementation, only one node is removed from the network according to the ranking with 5 

replacement (bootstrapping). 

Secondly, we remove successively a larger number of stations, from 1 to 123 stations (10%), considering three cases. 

In case I, we remove up to the 10% highest ranking stations. This implies that in the first iteration, we remove the 

top-ranked station, and in the second iteration, we remove the top two stations and so on. Fig. 6 shows an apparent 

increase in 𝜇 when more and more influential stations are removed. In case II, up to the 10% lowest ranking stations 10 

are successively removed. The efficiency increases when the lowest ranking stations are removed. In case III, up to 

10% stations are randomly removed. Case III is repeated ten times to understand the effect of random sampling. In 

general, 𝜇 increases with removing random stations. However, the effect is much lower (in absolute terms) compared 

to the effect of removing high or low ranking stations, respectively. The variation in 𝜇 between the ten trials and 

within one trial is caused by randomness. For example, 𝜇 rises instantaneously when the algorithm picks up a high 15 

ranking station.   
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Figure 6: Decline rate of network efficiency as a function of the number of stations removed from the 

network. Case I: up to the 10% highest ranking stations are removed (black), case II: up to the 10% lowest 

ranking stations are removed (red), case III: up to 10% randomly drawn stations are removed (10 trials) 

(blue). 5 

4.4 Relative Kriging Error (𝕽) 

As the second approach to assess the suitability of WDB for identifying influential and expendable stations, we 

analyse the change in the kriging error (ℜ) when stations are removed from the network. We first estimate the kriging 

standard error 𝐾𝑆𝐸𝑜𝑙𝑑  across the study area for all 1229 stations. Then, we measure the kriging standard error across 

the study area when stations are removed (𝐾𝑛𝑒𝑤),  and calculate the change in the error (eq.15). The variogram is 10 

kept constant during the network modifications. Similar to the evaluation using the decline rate of network efficiency 

in section 4.3, three cases are investigated: removing the 10% highest ranking stations, removing the 10% lowest 

ranking stations, and ten trials of removing 10% of the stations randomly.  

The change in the kriging error is calculated for five characteristics, i.e., mean, 90%-, 95%-, 99%-percentile, and 

number of wet days (Table 1). For each case and rainfall characteristics, we run the model 100 times; the mean value 15 

of ℜ is reported in Table 1.  

Removing the 10% high-ranking stations (case I) leads to positive and high (between 12 and 73%) relative kriging 

errors for all five statistics considered, i.e., the kriging error increases substantially when these stations are removed. 

In contrast, when the 10% lowest ranking stations (case II) are not considered, the ℜ values are small. The relative 
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errors in estimating the mean, percentile rainfall characteristics (90th and 95th) and number of wet days at ungauged 

locations are lower than 5%, suggesting that these stations do not contribute much information. Case III, i.e., 

removing stations randomly, results in rather high errors (between 5 and 51%), however, they are much smaller 

than case I. 

Table 1: Relative kriging error for the three different cases. The relative kriging error for case III is the 5 

average across ten trials. Stars indicate a high relative error >5%. 

Case Removal of stations Relative kriging error ℜ(%) 

Mean 90th percentile 95th percentile 99th percentile Wet days 

I 10% highest ranking 11.7* 29.9* 73.3* 58.1* 62.1* 

II 10% lowest ranking  0.09 4.2 3.7 8.1* 2.9 

III 10% randomly selected  6.4* 23.3* 51.3* 46.6* 4.7 

5 Discussion 

Building on the young science of complex networks, a novel node ranking measure, the weighted degree-

betweenness WDB, is proposed. The proposed method based on degree and betweenness centrality does not only 

account for the local (captured by degree) and global (captured by betweenness centrality) characteristics of nodes 10 

but also for the cumulative contribution of the directly connected (localized) nodes. We compared WDB with other 

traditional (i.e. degree and betweenness centralities) and contemporary (i.e., Bridgeness and DIL) measures by 

applying it to prototypical situations. The results show that degree and betweenness centrality are unable to 

differentiate between different roles of a node in a network. Although the contemporary network measures 

Bridgeness and DIL showed higher power in discriminating different roles, they do not provide a nuanced picture of 15 

marginal differences, for example, between a local centre and a global bridge. Hence, our tests with synthetic 

networks suggest that WDB is superior in distinguishing different roles, compared to existing measures, and provides 

a unique value to each node depending on its importance and influence in our test networks.  
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Besides this methodological development, this study proposes to use WDB for supporting the optimal design of large 

hydrometric networks. Its preliminary application to the German rain gauge network shows its ability to rank the 

nodes in such large hydrometric networks. For example, removing low ranking stations does not have an adverse 

impact on network efficiency, and kriging errors are hardly increasing. This is explained by the redundancy in the 

information that those stations provide, which in turn is attributed to the similarity between the gauges due to 5 

common driving mechanisms or spatial similarity, as advocated by Tobler’s Law of Geography (Tobler, 1970). Our 

analysis suggests that WDB identifies the expendable nodes correctly, as shown by the decline rate of efficiency and 

the insignificant change in the relative kriging error. On the other hand, WDB awards stations that provide unique 

information as it considers different aspects of the spatio-temporal relationships in the observation network.  

We further analyse the characteristics of the stations with the highest ranks. We plot the network (Fig. 7a) 10 

corresponding to the 10% (~122) highest ranking stations, i.e., all the links originating only from these 122 stations. 

The size and colour of each diamond-shaped rain gauge mark their degree and betweenness centrality. All other 

stations are plotted in the background without highlighting their degree and betweenness. We further plot the 

connections corresponding to two high ranking stations (Fig. 7b) and two low ranking stations (Figure 7c) to ease 

interpretation. Although the degree of these four stations is roughly the same, the connections of low ranking stations 15 

are regionally confined, and they rather reflect the similarity in rainfall variability within (homogenous) regions. 

Highest ranked stations are not governed by only local or global features but rather by the combination of both 

(Figure 7a). This observation could reflect the critical nodes in pathways of atmospheric moisture transport, extreme 

rainfall propagation or in case of high betweenness centrality, it indicates to a handful of stations, which are 

positioned in-between the large communities and unlike most stations, they tend to possess intercommunity 20 

connections (Halverson and Fleming, 2015; Molkenthin et al., 2015; Tupikina et al., 2016). We plot the median (Fig. 

7d) and 95th percentile (Fig. 7e) of the geographical distance between all the connected rain gauges to test whether 

the long-range connections of the selected nodes in Fig. 7b are a typical feature of high ranked stations. There is a 

clear association between rank and distance: High ranked stations tend to show longer connections, implicitly 

affirming that the WDB measure has the potential to capture highly influential nodes in the network. 25 

The results presented (Fig. 7) supports the conclusion derived from the kriging error analysis in section 4.4. 

Removing an influential station (Fig. 7b) fosters higher kriging errors than removing a random low ranking station 

(Fig. 7c). Hence, the new measure could support the optimal design of large hydrometric networks or redesign of 

existing hydrometric networks by ranking nodes. The influence of the similarity measure, number of stations present 

in the network, spatial boundary, data length, and threshold has to be further investigated before the method can 30 

become fully operational. Acknowledging the infancy state of complex network science in hydrology, we emphasize 
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the need for more intensive application, new interpretable network measures and visualization tools to find the 

modern solutions of traditional hydrological problems.  

 

Figure 7: Connections and location of 10% (~122) highest ranking rain gauges (a). The size and colour of the diamond 

marker indicate the degree and betweenness centrality of the rain gauges, respectively. Connections corresponding 5 

to two high ranking stations (b, station ID: 21320, 16149) and two low ranking stations (c, station ID: 26132, 20356). 

Median (d) and 95th percentile (e) geographical distance plotted against node ranking. 
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6 Conclusions  

This study proposes to apply complex networks to the optimization of hydrometric monitoring networks. In addition, 

it proposes a novel node ranking measure for identifying influential and expendable nodes in a complex network. 

The new network measure, weighted degree-betweenness (WDB), combines the measures degree and betweenness 

centralities. It does not only account for the local and global characteristics of nodes but also the cumulative 5 

contribution of the directly connected (localized) nodes. Its comparison to existing measures demonstrates that WDB 

is more sensitive to the different roles of nodes, such as global connecting nodes or local centres as it considers 

various aspects of the Spatio-temporal relationships in observation network.  

We propose to use WDB for ranking rain gauges in hydrometric networks. Applying WDB to a network of 1229 rain 

gauges in Germany allows identifying influential and expendable stations. Two criteria, the decline rate of network 10 

efficiency and the kriging error, are used to evaluate the performance of the proposed node ranking measure. The 

results suggest that the proposed measure is indeed capable of effectively ranking the stations in large hydrometric 

networks. 

We suggest that the proposed measure is not only useful for rain gauge networks but also has the potential to support 

the selection of an optimal number of stations for the prediction in ungauged basins (PUBs) and estimating missing 15 

values by identifying influential stations in the region. Similarly, the proposed method can be applied to gridded 

satellite data (e.g. rainfall, soil moisture), to locate the strategic points where stations should be installed to ensure a 

highly efficient observation network. However, acknowledging the rarity of complex network studies in hydrology 

and the preliminary work of our study, the advantages and disadvantages of this new measure need to be further 

investigated. This includes addressing threshold and spatial boundary issues of the network, developing new physical 20 

interpretable measures, and visualization tools. More studies are needed to prove the benefits of complex networks 

science in hydrometric network design. 

Data availability  

The precipitation data was provided by the German Weather Service. The data is publicly accessible at 

https://opendata.dwd.de/. The data was pre-processed by the Potsdam Institute for Climate Impact Research 25 

(Conradt et al., 2012). 

Appendix 

A. Spatially embedded network construction  
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We randomly select 11 rain gauge stations in Germany to illustrate the network construction (section 2.1) from 

observations (Fig. A1). We first compute the cross-correlation between each pair of stations (Table A1) and apply the 

90th percentile threshold (0.44), i.e., only links between stations with values higher than 0.44 are shown. 

We compute the WDB score for each station using Eq. 10. Station 3 shows the highest WDB score (Fig. A1). This 

station accounts for the local and global characteristics of the network, besides the cumulative effect of its direct 5 

neighbors, i.e., stations 2, 5, 7, 8, and 10. We infer two groups (stations 1, 2, 3, 6, 8, and 3, 4, 5, 7, 9, 10, 11) in the 

network that are bridged by station 3. This node is particularly crucial in the context of measuring process, process 

identification, or interpolation of measurements (Jensen et al., 2016).  

Table A1: Cross-correlation values along with the geographical location of eleven rain gauges selected for 
illustrative purposes.  10 

Nodes Long. Lat. 1 2 3 4 5 6 7 8 9 10 11 

1 6.55 50.42 1.00 0.46 0.50 0.32 0.33 0.59 0.41 0.42 0.27 0.32 0.24 

2 8.83 50.52 0.46 1.00 0.58 0.38 0.38 0.43 0.39 0.54 0.30 0.40 0.27 

3 9.42 50.13 0.50 0.58 1.00 0.41 0.51 0.45 0.49 0.48 0.35 0.50 0.36 

4 10.73 51.28 0.32 0.38 0.41 1.00 0.45 0.27 0.30 0.31 0.27 0.41 0.29 

5 11.57 50.12 0.33 0.38 0.51 0.45 1.00 0.30 0.41 0.33 0.40 0.64 0.46 

6 6.27 49.93 0.59 0.43 0.45 0.27 0.30 1.00 0.39 0.44 0.24 0.30 0.22 

7 8.52 48.62 0.41 0.39 0.49 0.30 0.41 0.39 1.00 0.39 0.52 0.45 0.41 

8 8.03 49.88 0.42 0.54 0.48 0.31 0.33 0.44 0.39 1.00 0.29 0.37 0.25 

9 10.33 48.68 0.27 0.30 0.35 0.27 0.40 0.24 0.52 0.29 1.00 0.46 0.51 

10 10.9 49.72 0.32 0.40 0.50 0.41 0.64 0.30 0.45 0.37 0.46 1.00 0.50 

11 12 48.97 0.24 0.27 0.36 0.29 0.46 0.22 0.41 0.25 0.51 0.50 1.00 
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Figure A1: Location of eleven randomly selected rain stations used to construct a complex network based on the 

cross-correlation similarity measure and 90th percentile threshold. Diagonal values (autocorrelation) in Table 1 have 

been ignored in network construction. Numbers 1 to 11 are node counts, and values in brackets represent the WDB 

values. 5 

 

B. Variogram modelling 

The kriging modelling assumes a theoretical variogram function that is fitted with an experimental variogram of the 

observed data. The experimental variogram (γ(h)) is calculated from the observed data as a function of the distance 

of separation (h) (Adhikary et al., 2015), and is given by 10 
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𝛾(ℎ) =  
1

2𝑁(ℎ)
 ∑ [(𝑌(𝑖) − 𝑌(𝑗))

2
] ,

𝑁(ℎ)

𝑖=1

 

 (A1) 

where 𝑁(ℎ)  is the number of sample data points separated by distance ℎ ; 𝑖 and j  represent sampling locations 

separated by h; 𝑌(𝑖) and 𝑌(𝑗) indicate values of the observed variable 𝑌, measured at the corresponding locations 𝑖 

and 𝑗, respectively. The theoretical variogram function (γ*(h)) allows the analytical estimation of variogram values 

for any distance and provides the unique solution for weights with intermediate steps required for kriging 

interpolation (Adhikary et al., 2015). 5 

The variogram models are a function of three parameters; the range, the sill, and the nugget (Fig. A2 (a)). The range 

is the distance, where the models first flatten out, i.e., station locations within the range distance are spatially 

correlated, whereas locations farther apart are not. The value of γ at the range is called the sill, which is estimated by 

the variance of the sample. The nugget represents measurement errors and/or microscale variation at very small 

spatial scales and is seen as a discontinuity at the origin of the variogram model. The ratio of the nugget to the sill is 10 

known as the nugget effect and may be interpreted as the percentage of variation in the data that is not related to 

space. The difference between the sill and the nugget is known as the partial sill (Adhikary et al., 2015; Keum et al., 

2017). 

The values of all parameters and the resulting variogram for daily mean, 90th, 95th, and 99th percentile precipitation 

and number of wet days are reported in Table A2 and Fig. A2 (b-d), respectively. The variogram has been kept 15 

constant during network reductions. 

(a) Typical variogram model 

 

(b) Mean 

 

(c) 90th percentile  (d) 95th percentile  
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(e) 99th percentile 

 

(f) wet days 

 

Figure A2: Typical variogram model (a) and fitted variogram models for daily mean (b), 90th (c), 95th (d),  and 99th (e) 

percentile precipitation and number of wet days (f).  

Table A2: Parameters values for the fitted variogram. 

Parameters Mean 90th percentile 95th percentile 99th 

percentile 

Wet days 

Nugget 0.0056 0 0 0 0.805 

Range 0.0781 0.0782 0.0782 0.0782 2.361 
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Partial sill 0.102 1.055 2.140 6.808 2.761 
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