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Abstract 

Hydrometric networks play a vital role in providing information for decision-making in water resources management. 

They should be set up optimally to provide as much and as accurate information as possible, and at the same time, be 15 

cost-effective. Although, the design of hydrometric networks is a well-identified problem in hydrometeorology and has 

received considerable attention still it has scope for further advancement. In this study, we use complex network 

analysis, defined as collection of nodes interconnected by links, to propose a new measure that identifies critical nodes 

of station networks. The approach can support the design and redesign of hydrometric station networks. The science of 

complex networks is a relatively young field and has gained significant momentum in the last years in different areas 20 

such as brain networks, social networks, technological networks or climate networks. The identification of influential 

nodes in complex networks is an important field of research. We propose a new node ranking measure, the weighted 

degree-betweenness, to evaluate the importance of nodes in a network. It is compared to previously proposed 

measures on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations 

across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of network 25 

efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges. 

Although, this is a first step and the real benefit of the method needs to be investigated in more detail. 
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1 Introduction  

Hydrometric networks monitor a wide range of water quantity and water quality parameters such as precipitation, 

streamflow, groundwater, or surface water temperature (Keum et al., 2017). Designing adequate hydrometric 

monitoring is key in water resources management; e.g., flood estimation, water budget analysis, hydraulic design, and 

monitoring climate change. Even after the advent of remote sensing based information, such as satellite precipitation 5 

estimates, in-situ observations are considered as an essential source of information in hydrometeorology (Rossi et al., 

2017).  

The basic characteristics of hydrometric networks comprise the number of stations, their locations, observation 

periods and sampling frequency (Keum et al., 2017). The general understanding is that the higher the number of 

monitoring stations, the more reliable the quantification of areal average estimates and point estimates at any 10 

ungauged location. However, a higher station number elevates the cost of installation, operation, and maintenance, but 

may provide redundant information and, therefore, not increase the information content obtained from the network. 

Scarcity of funds for hydrometric monitoring has led to slow but steady teardown of hydrometric stations in the last 

decades globally, raising the need for cost-effective design (Mishra and Coulibaly, 2009). For example, Putthividhya and 

Tanaka (2012) made an effort to design an optimal rain gauge network based on the station redundancy and the 15 

homogeneity of the rainfall distribution. Adhikary et al. (2015) proposed a kriging based geostatistical approach for 

optimizing rainfall networks, and Chacon-Hurtado et al. (2017) provided a generalized procedure for optimal rainfall 

and streamflow monitoring in the context of rainfall-runoff modeling. Yeh et al. (2017) optimized a rain gauge network 

applying the entropy method on radar datasets. Most of the aforementioned studies inherently assume that expanding 

the gauge network with supplementary stations aids more information that ultimately leads to less uncertainty 20 

(Wadoux et al., 2017). However, increasing the number of stations does not necessarily decrease the uncertainty (Stosic 

et al., 2017), and the expendable (relatively little significance) stations contribute little to no information though having 

the same maintenance cost as influential (significant) stations (Mishra and Coulibaly, 2009). 

This study aims to discriminate influential and expendable stations in hydrometric station networks based on their 

relative information content. We propose complex networks as a suitable tool for this optimization problem. A complex 25 

network is defined as a collection of nodes, such as rain gauge stations, interconnected with links. Complex networks 

are powerful tools in extracting information from large high-dimensional datasets (Donges et al., 2009a; Cohen and 

Havlin 2010, Kurths et al., 2019). This non-parametric method allows investigating the topology of local and non-local 

statistical interrelationships. An example for non-local connections in a climate network are the global influence of El 

Niño Southern Oscillation (ENSO) on regional rainfall (Agarwal, 2019; Ferster et al., 2018), and of the Atlantic 30 

Meridional Overturning Circulation (AMOC) on air surface temperature (Caesar et al., 2018) via teleconnections and 
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ocean circulation, respectively. Once the spatial network of stations has been constructed, statistical network measures 

(e.g. degree, betweenness centrality) are used to quantify the behaviour of the network and its components for a range 

of applications. Examples are the identification of the community structure of stations or homogeneous regions to 

unravel dominant climate modes (Agarwal et al., 2018a; Halverson and Fleming, 2015;), catchment classification 

indicating hydrologic similarity (Fang et al., 2017), short and long-range spatial connections in rainfall (Agarwal et al., 5 

2018a; Boers et al., 2014b; Jha et al., 2015) and spatio-temporal hydrologic patterns (Halverson and Fleming, 2015; 

Konapala and Mishra, 2017). Complex network analysis complements classical Eigen techniques, such as empirical 

orthogonal functions (EOFs) or coupled patterns (CP) maximum covariance analysis (Donges et al., 2015). EOFs, CPs 

and related methods rely on dimensionality reduction, whereas network techniques allow studying the full complexity 

of the statistical interdependence structure and are not limited to linear and spatial-proximity connections. Also, 10 

higher-order complex network measures (betweenness centrality, closeness centrality, participation coefficient) 

provide additional information on the hidden structure of statistical interrelationships in climatological data (Donges et 

al., 2015).  

In this study, we propose a complex network-based method to identify the influential and expendable stations in a 

rainfall network. Several methods in the field of complex networks have been proposed to evaluate the importance of 15 

nodes (Chen et al., 2012; Hou et al., 2012; Jensen et al., 2016; Kitsak et al., 2010; Zhang et al., 2013 and Hu et al., 2013), 

however, the application and interpretation of complex network in hydrology is in infancy state. Degree (k), 

betweenness centrality (B), and closeness centrality (CC) are the measures commonly used in complex networks (Gao 

et al., 2013). Studies in different disciplines have shown that degree and betweenness centrality often outperform other 

node-ranking measures (Gao et al., 2013; Liu et al., 2016). We propose a novel measure, weighted degree-betweenness 20 

(WDB), which combines 𝑘 and 𝐵, to identify the stations providing the largest information to the network. Our main 

objective is to develop a node ranking method using complex network theory that can be used to identify not only 

influential but also the expendable stations in large hydrometric station networks. We do acknowledge that this study 

is preliminary efforts to explore complex networks application in hydrology and many further studies are necessary 

before the methodology can be considered a trustworthy optimization tool for measurement networks. Our aim is not 25 

to question the credibility of operating stations, but to propose an alternative evaluation procedure towards optimal 

design and redesign of observational hydrometric monitoring networks based on complex networks. 
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2 Basics of Complex Networks 

2.1 Network Construction  

A network or a graph is a collection of entities (nodes, vertices) interconnected with lines (links, edges) as shown in Fig. 

1. These entities could be anything, such as humans defining a social network (Arenas et al., 2008), computers 

constructing a web network (Zlatić et al., 2006), neurons forming brain networks (Bullmore and Sporns, 2012), 5 

streamflow stations creating a hydrological network (Halverson and Fleming, 2015) or climate stations describing a 

climate network (Agarwal et al., 2018). Formally, a network or graph is defined as an ordered pair 𝑍 = {N, E}; 

containing a set 𝑁 = {𝑁1, 𝑁2, … . 𝑁𝑁}, of nodes together with a set E of links, {𝑖, 𝑗} which are 2-element subsets of N. In 

this work, we consider undirected and unweighted simple networks, where only one link can exist between a pair of 

vertices and self-loops of the type {𝑖, 𝑖} are not allowed. This type of network can be represented by the symmetric 10 

adjacency matrix (Eq..1).  

𝐴𝑖,𝑗 = {
0 {𝑖, 𝑗} ∉ 𝐸
1 {𝑖, 𝑗} ∈ 𝐸

 
 

(1) 

𝐴𝑖,𝑗 = 1 denotes a link between the 𝑖𝑡ℎ and 𝑗𝑡ℎ station and 0 denotes otherwise. The adjacency matrix represents the 

connections in the network. Fig. 1 is a simple representation of such a network, i.e., one with a set of identical nodes 

(𝑁𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 4) connected by identical links. In general, (large) networks of real-world entities with irregular 

topology are called complex networks. The links represent similar evolution or variability at different nodes and can be 15 

identified from data using a similarity measure such as Pearson correlation (Ekhtiari et al., 2019), synchronization 

(Agarwal, 2019; Boers et al., 2019; Conticello et al., 2018) or mutual information (Paluš, 2018).  

 

Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 with 

four nodes and three links; (b) network N2 with four nodes and six links. 20 

2.2 Event synchronization 

Event synchronization (ES) has been specifically designed to calculate nonlinear correlations among bivariate time 

series with events defined on them (Quiroga et al., 2002). This method has advantages over other time-delayed 
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correlation techniques (e.g., Pearson lag correlation), as it allows us to investigate extreme event series (such as non-

Gaussian and event-like data sets) and uses a dynamic time delay (Ozturk et al., 2019). The latter refers to a time delay 

that is adjusted according to the two time series being compared, which allows for better adaptability to the variable 

and region of interest. Various extensions for ES have been proposed, addressing, for instance, boundary effects 

(Rheinwalt et al., 2016) and bias by varying event rates.  5 

In the following, we define events by applying an 𝛼 percentile threshold at the signals 𝑥(𝑡) and 𝑦(𝑡). Threshold 𝛼 

percentile is selected to trade-off between a sufficient number of rainfall events at each location and a rather high 

threshold to study heavy precipitation. Events occur then at times 𝑡𝑙
𝑥 and 𝑡𝑚

𝑦
 where 𝑙 = 1,2,3,4… 𝑆𝑥 , 𝑚 = 1,2,3,4……𝑆𝑦 . 

Events in 𝑥(𝑡) and 𝑦(𝑡) are considered to coincide if they occur within a time lag ±𝜏𝑙𝑚
𝑥𝑦

  which is defined as following 

𝜏𝑙𝑚
𝑥𝑦
= 𝑚𝑖𝑛{𝑡𝑙+1

𝑥 − 𝑡𝑙
𝑥 , 𝑡𝑙

𝑥 − 𝑡𝑙−1
𝑥 , 𝑡𝑚+1

𝑦
− 𝑡𝑚

𝑦
, 𝑡𝑚
𝑦
− 𝑡𝑚−1

𝑦
} 2⁄  (2) 

where 𝑆𝑥 and 𝑆𝑦 are the total number of such events (greater then threshold 𝛼) that occurred in the signal 𝑥(𝑡) and 10 

𝑦(𝑡), respectively. The above definition of the time lag helps to separate independent events, which in turn allows to 

take into account the fact that different processes may be responsible for the generation of events. We need to count the 

number of times an event occurs in the signal 𝑥(𝑡) after it appears in the signal 𝑦(𝑡), and vice versa, and this is achieved 

by defining quantities 𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥) where 

𝐶(𝑥|𝑦) =∑∑ 𝐽𝑥𝑦

𝑆𝑦

𝑚=1

𝑆𝑥

𝑙=1

 

and 

 
(3) 

 

𝐽𝑥𝑦 =

{
 

 
1       𝑖𝑓    0 < 𝑡𝑙

𝑥 − 𝑡𝑚
𝑦
< 𝜏𝑙𝑚

𝑥𝑦

1

2
                         𝑖𝑓     𝑡𝑙

𝑥 = 𝑡𝑚
𝑦

0                                         𝑒𝑙𝑠𝑒,

 

 
(4) 

This definition of 𝐽𝑥𝑦 prevents counting a synchronized event twice. When two synchronized events match exactly (𝑡𝑙
𝑥 =15 

𝑡𝑚
𝑦

), we use a factor 1/2 since they double count in 𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥). Similarly, we can define 𝐶(𝑦|𝑥) and from these 

quantities we obtain  

𝑄𝑥𝑦 =
𝐶(𝑥|𝑦) + 𝐶(𝑦|𝑥)

√(𝑆𝑥 − 2)(𝑆𝑦 − 2)

 
 

(5) 

𝑄𝑥𝑦  is a normalized measure of the strength of event synchronization between signal 𝑥(𝑡) and 𝑦(𝑡). This implies 𝑄𝑥𝑦 =

1 for perfect synchronization and 𝑄𝑥𝑦 = 0  if no events are synchronized.  After repeating this procedure for all pairs 

(𝑥 ≠ 𝑦 ) of grid sites, we obtain a similarity matrix. In this case, the similarity matrix for precipitation data is a square, 20 
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symmetric matrix, which represents the strength of synchronization of the extreme rainfall events between each pair of 

grid sites.  

 

2.3 Node Ranking Measures 

A large number of measures have been defined to characterize the behaviour of complex networks. We focus here on 5 

those traditional and contemporary network measures which have been proposed to quantify the importance of nodes 

in a network:  degree k, betweenness centrality B (Stolbova et al., 2014), bridgeness Bri (Jensen et al., 2016), and degree 

and influence of line DIL (Liu et al., 2016).  

Traditional network measures  

The degree k of a node in a network counts the number of connections linked to the node directly. The degree of any 𝑖 10 

node is calculated as   

𝑘𝑖 =
∑ 𝐴𝑖,𝑗
𝑁
𝑗=1

𝑁 − 1
 

 (6) 

where N is the total number of nodes in a network. For example, the degree of nodes 1, 2 and 4 in network N1 (Fig. 1a) 

is 1 and for node 3 is 3. In the network N2 (Fig. 1b), all nodes have degree 3. The degree can explain the importance of 

nodes to some extent, but nodes that own the same degree may not play the same role in a network. For instance, a 

bridging node connecting two important nodes might be very relevant though its degree could be much lower than the 15 

value of less important nodes.  

The betweenness centrality B is a measure of control that a particular node exerts over the interaction between the 

remaining nodes. In simple words, B describes the ability of nodes to control the information flow in networks. To 

calculate betweenness centrality, we consider every pair of nodes and count how many times a third node can interrupt 

the shortest paths between the selected node pair. Mathematically, betweenness centrality B of any 𝑖 node is 20 

𝐵𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑖≠𝑗≠𝑣∈{𝑉}

 
 (7) 

where 𝜎(𝑗, 𝑘) represents the number of links along the shortest path between node 𝑗 and 𝑘; while 𝜎𝑖(𝑗, 𝑘) is the number 

of links of the shortest path running through node 𝑖. In network N1, B of node 3 is 3, i.e., node 3 can disturb the 

information transfer between all of the three pairs 1-2, 1-4, 2-4, and for other nodes 𝐵 = 0. In the network N2, all nodes 

have 𝐵 = 0 because no node can interrupt the information flow. Thus, node 3 is a critical node in the network N1 but 

not in the network N2.  25 

Contemporary network measures  
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Jensen et al. (2016) developed the Bridgeness measure 𝐵𝑟𝑖  to distinguish local centres, i.e. nodes that are highly 

connected to a part of the network (e.g. highly correlated station in homogeneous region), from global bridge, i.e. nodes 

that connect different parts of a network (Fig. 2, e.g. teleconnection between Indian rainfall and climate indices).  

Bri is a decomposition of betweenness centrality B into a local and a global contribution. Therefore, the 𝐵𝑟𝑖 value of 

node 𝑖 is always smaller or equal to the corresponding 𝐵 value and they only differ by the local contribution of the first 5 

direct neighbours. To calculate 𝐵𝑟𝑖 we consider the shortest path between nodes outside the neighbourhood of 

node 𝑖, 𝑁𝐺(𝑖). Mathematically, it is represented as  

𝐵𝑟𝑖𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑗∉𝑁𝐺(𝑖) ∨ 𝑘∉𝑁𝐺(𝑖) 

 
 (8) 

The neighbourhood of node 𝑖 (𝑁𝐺(𝑖)) consists of all direct neighbours of node i. For example, in the networks N1 and 

N2, all nodes (except node 3 in N1) have 𝐵 = 0 hence 𝐵𝑟𝑖 = 0. However, node 3 in the network N1 has all the nodes in 

direct neighbourhood hence, it also has 𝐵𝑟𝑖 = 0. 10 

The degree and influence of line (𝐷𝐼𝐿), introduced by Liu et al. (2016), considers the node degree 𝑘 and importance of 

line 𝐼 to rank the nodes in a network:   

𝐷𝐼𝐿𝑖 = 𝑘𝑖 + ∑ 𝐼𝑒𝑖𝑗 .
𝑘𝑖 − 1

𝑘𝑖 + 𝑘𝑗 − 2
𝑗=𝑵𝑮(𝒊))

 
 (9) 

where the line between node 𝑖 and j is 𝑒𝑖𝑗  and its importance is defined as 𝐼𝑒𝑖𝑗 =
𝑈

𝜆
 where 𝑈 = (𝑘𝑖 − 𝑝 − 1). (𝑘𝑗 − 𝑝 − 1) 

reflects the connectivity ability of a line (link), p is the number of triangles having one edge 𝑒𝑖𝑗   and 𝜆 =
𝑝

2
+ 1 is defined 

as an alternative index of line 𝑒𝑖𝑗 . 𝑁𝐺(𝑖)) is the set of neighbours of node 𝑖 (for detailed explanation see Liu et al., 2016). 15 

The equation for 𝐷𝐼𝐿 suggests that all the nodes having 𝑘𝑖 = 1 will have 𝐷𝐼𝐿𝑖 = 1, since the second term of the equation 

will be zero. Hence, in the network N1 all nodes, except node 3, have 𝐷𝐼𝐿 = 1. Node 3 has 𝐷𝐼𝐿 = 3 equal to its degree, 

since the second term is zero (all the connected nodes 1, 2 and 4 have 𝑘𝑗 = 1, hence 𝐼𝑒𝑖𝑗 = 0). All the nodes in the 

network N2 have 𝐷𝐼𝐿 = 3.  

3 Methodology 20 

We will first propose a new node ranking measure that we call weighted degree-betweenness (WDB). We will then 

compare the efficacy of this measure with the existing traditional and contemporary node ranking methods using two 

synthetic networks. 
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3.1 Weighted Degree-Betweenness   

WDB is a combination of two network measures, degree and betweenness centrality We define WDB of a particular 

node i as the sum of the betweenness centrality of node 𝑖 and all directly connected nodes j, 𝑗 = 1,2,3… . 𝑘𝑖  in 

proportion to their contribution to node 𝑖. The WDB of a node 𝑖 is given by  

𝑊𝐷𝐵𝑖 = 𝐵𝑖 + 𝐼i          (10) 

𝑤ℎ𝑒𝑟𝑒 𝐵𝑖  is the betweenness centrality of node 𝑖, and 𝐼𝑖  stands for the cumulative effect of the influence or contribution 5 

of the directly connected nodes of 𝑖, which are 𝑗 = 1,2,3, … , 𝑘𝑖 , as 

𝐼𝑖 =∑
Bj ∗ (𝑘𝑗 − 1)

 (𝑘𝑖 + 𝑘𝑗 − 2)

𝑘𝑖

𝑗=1

 

 
(11) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑖  is the degree of node 𝑖, 𝑘𝑗  is the degree of the nodes 𝑗 which are directly connected to node 𝑖. 

3.2 Comparison with Existing Node Ranking Measures Using Synthetic Networks 

In this section, we motivate the development of the new node ranking measure WDB by comparing it to existing 

measures. Identifying nodes that occupy interesting positions in a real-world network using node ranking helps to 

extract meaningful information from large datasets with little cost. Usually, the measures degree (𝑘𝑖) and betweenness 10 

centrality (𝐵𝑖) are common node ranking metrics (Gao et al., 2013; Okamoto et al., 2008; Saxena et al., 2016). The 

network measures 𝑘𝑖 , 𝐵𝑖  and 𝑊𝐷𝐵𝑖  of each node are given for an undirected and unweighted network 𝑍 = (𝑁, 𝐸) with 

8 nodes and 11 edges shown in Fig. 2 along with the node number.  

In general, high degree nodes represent most connected (highly correlated) nodes in a network. Rheinwalt et al., (2015) 

considered these highly correlated nodes of homogeneous precipitation community as local centre representing 15 

homogenous precipitation patterns for that particular community. Agarwal et al., (2018) defined local centres as the 

nodes having maximum intra-community links and minimum inter-community links based on the Z-P space approach. 

However, degree alone cannot distinguish the roles of nodes in the sample network as seen for nodes 5, 7, and 8, which 

have the same degree (ki=2), though node 5 serves as a bridge node linking the two parts of the network. In a larger 

complex network, such bridge nodes have strategic relevance as most of the information can be accessed quickly just by 20 

capturing those nodes. For example, Kurths et al., (2019) quantified the spatial diversity of Indian rainfall 

teleconnections at different timescale by identifying linkages between climatic indices (e.g. El Niño/Southern 

Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation, and Atlantic Multidecadal 

Oscillation) and seven Indian rainfall stations (bridge nodes). 
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Betweenness centrality has a higher power in significantly discriminating different roles compared to 𝑘𝑖 . For example, 

nodes 4 and 5 have the highest 𝐵𝑖  (𝐵4 = 𝐵5 = 24) followed by node 6 (𝐵6 = 20). On the other hand, 𝐵𝑖  gives equal 

scores to local centers (node 4), i.e., nodes of high 𝑘𝑖  to a single region, and to global bridges (node 5), which connect 

detached regions. As mentioned, global bridges connect different parts of a network (e.g. teleconnection between 

Indian rainfall and ENSO) and measuring and interpretation of spatially large variations, process identification, 5 

interpolation of measurements and transferability of precipitation measurements across locations, would be restricted 

in the absence of high 𝐵𝑖  nodes. 

 

Figure 2: Synthetic network to explain the degree (k), betweenness centrality (𝑩) and weighted degree-

betweenness (𝑾𝑫𝑩) measures, with node number (1 to 8) followed by the degree, betweenness centrality 10 

value and 𝑾𝑫𝑩 value in brackets [k, B, WDB]. Degree and betweenness are limited in distinguishing the role of 

different nodes in the network and centers from bridges, respectively.  

The proposed measure WDB has higher discrimination power compared to betweenness centrality. Node 5 has the 

highest WDB score and is ranked as the most influential node, which reflects its role as a global bridge node. WDB 

distinguishes between nodes 1, 2, 3 (WDB = 14.4) and nodes 7, 8 (WDB = 13.3), which is important in case we need to 15 

sequentially rank nodes.  

We further evaluate WDB with the network measures Bri. For this comparison, we use the same synthetic network as 

Jensen et al. (2016) shown in Fig. 3. Betweenness centrality once again assigns a smaller value to the global bridge 

(node 6) than to the local centers (nodes 4, 7). Bridgeness expresses the higher importance of node 6 compared to 

nodes 4, 7, however, it does not distinguish between all other nodes in the network (nodes 1, 2, 3…have 𝐵𝑟𝑖 = 0). 20 

Similarly, DIL misses representing the bridge nodes by assigning higher values to local centres. WDB ranks the nodes 
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preferably following their role in the network as global bridges, local centers, and end nodes. For example, WDB is also 

able to differentiate between nodes 4 and 7 for which the bridgeness measure provides equal scores. 

 

 

Figure 3: Synthetic network used to compare the network measures betweenness centrality, bridgeness, and 

DIL with the proposed measure WDB. Numbers 1 to 11 are node counts, and values in brackets represent the 

network measure values in order of [𝑩, 𝑩𝒓𝒊, 𝑫𝑰𝑳, 𝒂𝒏𝒅 𝑾𝑫𝑩]. Node 6 is a global bridge node that connects two 

sub-networks. Node 4 and 7 are hubs that are connected to most of the nodes in the sub-networks. Node 5, 10 

and 11 are the dead-end nodes. 

 

3.3 Evaluation of the Proposed Measure for a Rain Gauge Network 

In the context of hydrometric station networks, we hypothesize that higher ranking nodes are more influential stations 5 

in the network. Losing such stations could reduce the network stability and efficiency given their role as bridging 

different communities (processes), capturing detailed process information compared to lower ranking stations and 

among others. Stations with the lowest ranks in the network are the least influential and are seen as expendable 

stations. To test this hypothesis, we apply the proposed node ranking measure to a hydrometric station network, 

consisting of more than 1000 stations in Germany. The benefit of WDB is to capture the bridge nodes in the 10 

hydrometric station network that are adequate to quantify the local and non-local rainfall variability, process 

identification, interpolation of measurements and transferability of precipitation measurements across locations. In 
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contrast, expandable stations correspond to sites of spatially extended coherent rainfall, surrounding a local centre 

which represents the variability of such regions. Stations within such regions of coherent rainfall provide redundant 

information and can be removed (except the local centre) without loss of information. The information loss caused by 

removing stations is quantified via two measures: (a) decline rate of network efficiency, and (b) relative kriging error.  

Decline Rate of Network Efficiency  5 

The decline rate of network efficiency quantifies the decrease in information flows within a network when nodes are 

removed as,  

𝜂 =
1

𝑁(𝑁 − 1)
∑ 𝜂𝑖𝑗
𝑛𝑖≠𝑛𝑗

 
 (12) 

where N is the total number of nodes in a network. 𝜂𝑖𝑗  is the efficiency between nodes 𝑛𝑖  and 𝑛𝑗 . 𝜂𝑖𝑗  is inversely related 

to the shortest path length: 𝜂𝑖𝑗 = 1 𝑑𝑖𝑗⁄ , where  𝑑𝑖𝑗  is the shortest path between nodes 𝑛𝑖  and 𝑛𝑗 . The average path 

length L measures the average number of links along the shortest paths between all possible pairs of network nodes. A 10 

network with small 𝐿 is highly efficient, because two nodes are likely to be separated by a few links only. The decline 

rate of network efficiency 𝜇 is defined as,    

𝜇 = 1 −
𝜂𝑛𝑒𝑤
𝜂𝑜𝑙𝑑

  (13) 

where 𝜂𝑛𝑒𝑤  is the efficiency of the network after removing nodes, and 𝜂𝑜𝑙𝑑  is the efficiency of the complete network. 

We hypothesise that the network efficiency reduces more strongly, when higher ranking stations are removed, e.g. 

bridge nodes.  15 

Relative Kriging Error 

As second measure to evaluate the information loss, when stations are removed from the network, we use a kriging 

based geostatistical approach (Adhikary et al., 2015; Keum et al., 2017). Kriging is an optimal surface interpolation 

technique assuming that the variance in a sample of observations depends on their distance (Adhikary et al., 2015). The 

algorithm estimates unknown variable values at unsampled locations in space, where no measurements are available, 20 

based on the known sampling values from the surrounding areas (Hohn, 1991; Webster and Oliver, 2007). Ordinary 

Kriging is used in this study for interpolating rainfall data and estimating the kriging error. The kriging estimator is 

expressed as 

𝑍∗(𝑥𝑜) = ∑𝑤𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 
 (14) 
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where 𝑍∗(𝑥0) refers to the estimated value of Z at the desired location 𝑥0; 𝑤𝑖  represents weights associated with the 

observation at the location xi with respect to x0; and n indicates the number of observations within the domain of the 

search neighbourhood of x0 for performing the estimation of 𝑍∗(𝑥0). Ordinary Kriging is implemented through 

ArcGISv10.4.1 (Redlands, CA, USA) (ESRI, 2009) and its geostatistical analyst extension (Johnston et al., 2001). 

The kriging variance 𝜎𝑧
2(𝑥𝑜) in the Ordinary Kriging can be computed as (Adhikary et al., 2015; Xu et al., 2018) 5 

𝜎𝑧
2 = 𝜇𝑧 +∑𝑤𝑖𝛾(ℎ𝑜𝑖)      𝑓𝑜𝑟 ∑𝑤𝑖 = 1

𝑛

𝑖=1

𝑛

𝑖=1

 

where γ(h) is the variogram value for the distance h; h0i is the distance between observed data points 𝑥𝑖  and 𝑥𝑗; 𝜇𝑧 is 

the Lagrangian multiplier in the 𝑍 scale; h0j is the distance between the unsampled location x0 (where the estimation is 

desired) and sample locations xi; and n is the number of sample locations. 

The square root of the kriging variance, also named as kriging standard error (KSE), is used as a gauge network 10 

evaluation factor. We estimate the increase in the kriging standard error across the study area when stations are 

removed to evaluate the performance of the WDB measure in identifying influential and expendable stations in a large 

network. Goovaerts (1997, p. 179) states.  

The relative kriging error before and after removing the stations is denoted as  

ℜ(%) =
𝐾𝑆𝐸𝑛𝑒𝑤 − 𝐾𝑆𝐸𝑜𝑙𝑑

𝐾𝑆𝐸𝑜𝑙𝑑
× 100 

    (15) 

 

where 𝐾𝑆𝐸𝑛𝑒𝑤  denotes the standard kriging error after removing stations, and 𝐾𝑆𝐸𝑜𝑙𝑑  is the error for the original 15 

network. We hypothesise that the increase in the relative kriging error is higher when removing high ranking stations. 

To cover a broad range of rainfall characteristics, the error is calculated for different statistics, i.e. the mean, 90th, 95th 

and 99th percentile rainfall and the number of wet days (precipitation > 2.5mm).  

4 Application to an Extensive Rain Gauge Network 

4.1 Rainfall Data 20 

To evaluate the proposed measure in the context of the optimal design of hydrometric networks, we apply it to an 

extensive network of rain stations in Germany and adjacent areas (Fig. 4). The data covers 110 years at daily resolution 

(1 January 1901 to 31 December 2010). The 1229 rain stations in Germany (blue dots in Fig. 4) are operated by the 

German Weather Service. Data processing and quality control were performed according to Österle et al. (2006), and in 

this study, we assume that data is free from measurement errors. 211 stations from different sources outside Germany 25 

(red dots in Fig. 4) were included in the analysis to minimize spatial boundary effects in the network construction; 

however, these stations were excluded from the node ranking analysis.   
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Figure 4: Location of rain stations in Germany and adjacent areas. Blue dots indicate stations lying inside 

Germany that are used in the analysis. Red dots indicate stations outside of Germany that are used for network 

construction only to minimize the boundary effect. 

4.2 Network Construction 5 

We begin the network construction by extracting event time series from the 1229 daily rainfall time series. The event 

series represent heavy rainfall events, i.e., precipitation exceeding the 𝛼 = 95𝑡ℎ percentile at that station (Rheinwalt et 

al., 2016). The 95th percentile is a compromise between having a sufficient number of rainfall events at each location 

and a rather high threshold to study heavy precipitation. All rainfall event series are compared with each other using 

event synchronization (section 2.2) which is the base for deriving a complex network. This results in the similarity 10 

matrix Q, whereas the entry at index pair (i,j) defines synchronization in the occurrence of heavy rainfall events at 

station i and station j (Eq. 5).  
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Applying a certain threshold (𝜃) to the 𝑄 matrix yields the adjacency matrix (Eq. 1). Here, 𝜃𝑥𝑦
𝑄  is a chosen threshold, and 

𝐴𝑖𝑗 = 1 denotes a link between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ sites, and 𝐴𝑖𝑗 = 0 denotes otherwise. The adjacency matrix represents a 

rain gauge network, and complex network theory can subsequently be employed to reveal properties of the given 

network.  

Two criteria have been proposed to generate an adjacency matrix from a similarity matrix, such as fixed amount of link 5 

density (Agarwal et al., 2018a; Stolbova et al., 2014) or global fixed thresholds (Jha et al., 2015; Sivakumar and 

Woldemeskel, 2014). However, both criteria are subjective and may lead to the presence of weak and non-significant 

links in the complex network. These non-significant links might obscure the topology of strong and significant 

connections. To minimize these threshold effects, we choose the threshold 𝜃𝑖,𝑗
𝑄  objectively by considering all links in the 

network that are significant. A link is significant (i.e. two stations are significantly synchronized) if the synchronization 10 

value exceeds the 𝜃𝑖,𝑗
𝑄 =95th percentile (corresponding to a 5% significance level) of the synchronization obtained by 

two synthetic variables that have the same number of events but distributed randomly in the time series (i.e., both 

event series are independent). We calculate ES for 100 pairs of such random time series and derive the 95th percentile 

of the resulting ES distribution. Using this 5% significance level, we assume that synchronization cannot be explained 

by chance, if the ES value between two stations is larger than the 95th percentile of the test distribution. Here, we select 15 

5% significance level since it is a well-accepted criterion in general in statistics.  To validate the results, we have 

performed analysis for certain threshold range 90-99th percentile and observe that node rankings are robust for 

comparatively high threshold.  A detailed analysis has been presented in this study for 95th percentile for the sake of 

brevity. 

4.3 Decline Rate of Network Efficiency  20 

In this section, we evaluate the ranking of stations derived from the proposed WDB measure using the decline rate of 

network efficiency. The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked rain 

gauges are interpreted as the most influential stations, and low ranked as expendable stations. 

Firstly, we analyze the decline rate of network efficiency 𝜇 when one station is removed from the network. In each trial, 

we remove only one station (starting with the highest rank). After n=1229 (number of nodes) trials, we investigate the 25 

relationship between 𝜇 and the node ranking measured by WDB. We expect an inverse relationship between 𝜇 and 

WDB: the higher the node ranking, the more important is that node, leading to a higher loss in network efficiency (Fig. 

5). 𝜇 is high for high-ranking stations and decays with node ranking. Interestingly, 𝜇 < 0 for very low ranking stations, 

i.e. the network efficiency increases when single, low ranking stations are removed. This is explained by the decrease of 

the redundancy in the network when such stations are removed. 30 
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Figure 5: Decline rate of network efficiency corresponding to the removal of each node in the rainfall network. 

In each implementation, only one node is removed from the network according to the ranking with 

replacement (bootstrapping). 

Secondly, we remove successively a larger number of stations, from 1 to 123 stations (10%), considering three cases. In 5 

case I, we remove up to the 10% highest ranking stations. This implies that in the first iteration we remove the top-

ranked station and in the second iteration we remove the top two stations and so on. Fig. 6 shows a clear increase in 𝜇 

when more and more influential stations are removed. In case II, up to the 10% lowest ranking stations are successively 

removed. The efficiency increases when the lowest ranking stations are removed. In case III, up to 10% stations are 

randomly removed. Case III is repeated ten times to understand the effect of random sampling. In general, 𝜇 increases 10 

with removing random stations. However, the effect is much lower (in absolute terms) compared to the effect of 

removing high or low ranking stations, respectively. The variation in 𝜇 between the ten trials and within one trial is 

caused by randomness. For example, 𝜇 rises instantaneously when the algorithm picks up a high ranking station.   
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Figure 6: Decline rate of network efficiency as a function of the number of stations removed from the network. 

Case I: up to the 10% highest ranking stations are removed (black), case II: up to the 10% lowest ranking 

stations are removed (red), case III: up to 10% randomly drawn stations are removed (10 trials) (blue). 

4.4 Relative Kriging Error 5 

As the second approach to assess the suitability of WDB for identifying influential and expendable stations, we analyse 

the change in the kriging error when stations are removed from the network. We first estimate the kriging standard 

error across the study area for all 1229 stations termed as 𝐾𝑆𝐸𝑜𝑙𝑑 . Then, we measure the increase or decrease in the 

kriging standard error across the study area when stations are removed terms as 𝐾𝑛𝑒𝑤 . The variogram is kept constant 

during the network modifications. Similarly, to the evaluation using the decline rate of network efficiency in section 4.3, 10 

three cases are investigated: removing the 10% highest ranking stations, removing the 10% lowest ranking stations, 

and ten trials of removing 10% of the stations randomly.  

The change in the kriging error is calculated for five characteristics, i.e., mean, 90%-, 95%-, 99%-percentile, and 

number of wet days (Table 1). For each case and rainfall characteristics we run model 100 times and the mean value of 

ℜ has been reported in Table 1.  15 

Removing the 10% high-ranking stations (case I) leads to positive and high (ℜ > 5%) relative kriging errors for all five 

statistics considered, i.e. the kriging error increases substantially when these stations are removed. When the 10% 

lowest ranking stations (case II) are not considered, the ℜ values are small compared to those obtained by removing 

high ranking stations. The relative errors in estimating the mean, percentile rainfall characteristics (90th and 95th) and 



17 

 

number of wet days at ungauged locations are low (<5%) for the 10% lowest ranking stations, suggesting that these 

stations do not contribute much information. Case III, i.e. removing stations randomly, shows mostly positive and high 

(ℜ > 5%) values, because high ranking nodes are removed as well, which leads to higher rates of ℜ(%). However, in 

future, to further advance the model weighted kriging method could be used. 

Table 1: Relative kriging error for the three different cases. The relative kriging error for case III is the average 5 

across ten trials. Stars indicate a high relative error >5%. 

Case Removal of stations Relative kriging error ℜ(%) 

Mean 90th percentile 95th percentile 99th percentile Wet days 

I 10% highest ranking 11.7* 29.9* 73.3* 58.1* 62.1* 

II 10% lowest ranking  0.09 4.2 3.7 8.1* 2.9 

III 10% randomly selected  6.4* 23.3* 51.3* 46.6* 4.7 

5 Discussion 

Building on the young science of complex networks, a novel node ranking measure, the weighted degree-betweenness 

WDB, is proposed. The proposed method based on degree and betweenness centrality not only account the local 

(captured by degree) and global (captured by betweenness centrality) characteristics of nodes but also the cumulative 10 

effect of the influence or contribution of the directly connected (localized) nodes.  

Further, this study proposes to use WDB for supporting the optimal design of large hydrometric networks. We 

compared our proposed measure WDB with other traditional (i.e. degree and betweenness centralities) and 

contemporary (i.e. Bridgeness and DIL) measures by applying it to prototypical situations. The results show that degree 

and betweenness centrality are unable in differentiating between different roles of a node in a network. Whereas 15 

contemporary network measure Bridgeness and DIL showed higher power in discriminating different roles of nodes 

but are restricted to provide a nuanced picture of marginal differences, for example between a local centre and a global 

bridge. In our test framework, WDB seems to be comparatively more informative to distinguish the different roles of 

nodes and provides a unique value to each node depending on its importance and influence in our test network.  
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The preliminary application of the WDB to the hydrometric monitoring network shows its ability to rank the nodes in a 

large hydrometric network in relation to their different roles, such as global bridge, local center, dead-end node, hub 

(high degree), or non-hub (low degree). The resulting ranking can be used to identify influential and expendable 

hydrometric stations. For example, removing low ranking stations in the German rain gauge network does not have 

adverse impact on the network efficiency, and errors are within the permissible limit. This is explained by the 5 

redundancy in the information that those stations provide, which in turn is attributed to the similarity between the 

gauges due to the common driving mechanisms or spatial similarity as advocated by Tobler’s Law of Geography 

(Tobler, 1970). The results of our analysis suggest that WDB identifies the expendable nodes correctly as shown by the 

decline rate of efficiency and the insignificant change in relative kriging error. On the other hand, WDB awards stations 

that provide unique information as it considers different aspects of the spatio-temporal relationships in the observation 10 

network. However, this could be further strengthen using weighted kriging method or evaluating the results at 

individual locations rather than for entire layer.  

We further analyzed the characteristics of the stations with the highest ranks. We plot the network (Fig. 7a) 

corresponding to the 10% (~122) high ranking stations, i.e. all the links originating only from these 122 stations. The 

size and color of each diamond-shaped rain gauge mark their degree and betweenness centrality. All other stations are 15 

plotted in the background without highlighting their degree and betweenness. We further plot the connections 

corresponding to two high ranking stations (Fig. 7b) and two low ranking stations (Figure 7c) to ease interpretation. 

Although the degree of these four stations is roughly the same, the connections of low ranking stations are regionally 

confined, and they rather reflect the similarity in rainfall variability within (homogenous) regions. Highest ranked 

stations are not governed by only local or global features but rather the quantitative combination of both (Figure 7a). 20 

This observation could reflect the critical nodes in pathways of moisture transport, extreme rainfall propagation, or (in 

case of betweenness centrality) a handful of stations which are positioned in-between the large communities and unlike 

most stations they tend to possess intercommunity connections (Halverson and Fleming, 2015; Molkenthin et al., 2015; 

Tupikina et al., 2016). We computed the geographical distance between all the connected raingauges and plot its 

median (Fig. 7d) and 95th percentile (Fig. 7e) against the node ranking to test whether the long-range connections of 25 

the selected nodes in Fig. 7b are a typical feature of high ranking stations. There is a clear association between rank and 

distance: High ranking stations tend to show longer connections, implicitly affirming that the WDB measure has the 

potential to capture highly influential nodes in the network. 

Further, Fig. 7 is also in congruence with the results reported by the declining rate of kriging error in section 4.4 and 

Table 1. Intuitively, “the kriging variance is expected to be greater at a location surrounded by data that are very 30 

different from one another (Fig. 7b) than at a location surrounded by similarly valued (Fig. 7c) data” (Goovaerts, 1997; 

Heuvelink and Pebesma, 2002). Hence, we notice higher kriging errors (Table 1) when removing influential stations 
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compared to randomly selected and low ranking stations. Based on our analysis, we suggest that ranking of nodes in 

large networks has the major benefits that the new measure could add to the optimal design of hydrometric networks 

or redesign of existing hydrometric networks. However, the impact of similarity measure, number of stations present in 

the network, spatial boundary, data length and threshold needs to be investigated in detail before the method could be 

used further. Acknowledging that fact that complex network science is in infancy state at least in hydrology but had 5 

grown manifold in other domains and offered powerful solutions. This showed the need that more intensive 

application, new interpretable network measures and visualization tools are needed to find the modern solutions of 

traditional hydrological problems.  

 

Figure 7: Connections and location of 10% (~122) highest ranking rain gauges (a). The size and colour of the diamond 10 

marker indicate the degree and betweenness centrality of the rain gauges, respectively. Connections corresponding to 
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two high ranking stations (b, station ID: 21320, 16149) and two low ranking stations (c, station ID: 26132, 20356). 

Median (d) and 95th percentile (e) geographical distance plotted against node ranking. 

6 Conclusions  

This study proposes to apply complex networks to the optimization of hydrometric monitoring networks. In addition, it 

proposes a novel node ranking measure for identifying influential and expendable nodes in a complex network. The 5 

new network measure weighted degree-betweenness (WDB) combines the measures degree and betweenness 

centralities and not only account the local and global characteristics of nodes but also the cumulative effect of the 

influence or contribution of the directly connected (localized) nodes. Its comparison to existing measures demonstrates 

that WDB is more sensitive to the different roles of nodes, such as global connecting nodes or local centres as it 

considers different aspects of the spatio-temporal relationships in observation network.  10 

We propose to use WDB for ranking rain gauges in hydrometric networks. Applying WDB to a network of 1229 rain 

gauges in Germany allows identifying influential and expendable stations. Two criteria, the decline rate of network 

efficiency and the kriging error, are used to evaluate the performance of the proposed node ranking measure. The 

results suggest that the proposed measure is indeed capable of effectively ranking the stations in large hydrometric 

networks. 15 

We suggest that the proposed measure is not only useful for rain gauge networks but has also potential to support the 

selection of an optimal number of stations for the prediction in ungauged basins (PUBs) and estimating missing values 

by identifying influential stations in the region. Similarly, the proposed method can be applied to gridded satellite data 

(rainfall, soil moisture), to locate the strategic points where stations should be installed to ensure a highly efficient 

observation network. For instance, identifying influential grid points in the network of satellite data (rainfall, soil-20 

moisture) will guide where to install monitoring stations. However, acknowledging the preliminary work done in this 

study, WDB application needs to be investigated in detail and this is currently out of the scope of the study domain. In 

addition, follow-up studies addressing threshold and spatial boundary issues of the network, physical interpretable 

measures and visualization are needed to prove the benefit of complex networks science in hydrometric network 

design. 25 
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Data availability  

The precipitation data was provided by the German Weather Service. The data is publicly accessible at 

https://opendata.dwd.de/. The data was pre-processed by the Potsdam Institute for Climate Impact Research (Conradt 

et al., 2012). 

Appendix 5 

A. Spatially embedded network construction  

Further, to illustrate the network construction from observations of a very reduced measurement network to a complex 

network, we select randomly 11 rain gauge stations spread across the Germany. The geographical locations of these 

stations (Table A1) are shown in Fig. A1 (a). We first compute the cross-correlation between each pair of two stations 

(Table A1) and then apply 90th percentile threshold. Links exist between pair of stations having correlation value 10 

greater than threshold (Fig. A1 (a)). 

We further compute the WDB score for each station using Eq. 10 (Fig. A1 (b)). Stations 3 shows the highest WDB score 

in this particular network consisting of 11 stations which signifies that station 3 not only account the local and global 

characteristics of this particular stations but also the cumulative effect of the influence or contribution of the directly 

connected stations. For instance, it seems like two strong modular (homogeneous) regions (stations 1,2,3, 6 & 8 and 15 

3,4,5,7,9,10 & 11) are present within the network bridged by station 3. This node particularly very important in a 

measurement network in the context of measuring process, process identification or interpolation of measurements. 

For instance, at the particular location two different processes might be dominating (snow and rainfall). Other 

interpretation could be that the implicit assumption of the complex network is that station 3 is representative for a 

larger area than other stations. But again, it is challenging to quantify at this stage and indeed follow up studies are 20 

needed to prove the benefit of complex networks science in hydrometric network design. 

Table A1: Cross-correlation values along with the geographical location of ten rain gauges selected for network 
illustrative purposes.  

Nodes Lat. Long. 1 2 3 4 5 6 7 8 9 10 11 

1 1.00 0.46 0.50 0.32 0.33 0.59 0.41 0.42 0.27 0.32 0.24 1.00 0.46 

2 0.46 1.00 0.58 0.38 0.38 0.43 0.39 0.54 0.30 0.40 0.27 0.46 1.00 

3 0.50 0.58 1.00 0.41 0.51 0.45 0.49 0.48 0.35 0.50 0.36 0.50 0.58 

4 0.32 0.38 0.41 1.00 0.45 0.27 0.30 0.31 0.27 0.41 0.29 0.32 0.38 

5 0.33 0.38 0.51 0.45 1.00 0.30 0.41 0.33 0.40 0.64 0.46 0.33 0.38 
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6 0.59 0.43 0.45 0.27 0.30 1.00 0.39 0.44 0.24 0.30 0.22 0.59 0.43 

7 0.41 0.39 0.49 0.30 0.41 0.39 1.00 0.39 0.52 0.45 0.41 0.41 0.39 

8 0.42 0.54 0.48 0.31 0.33 0.44 0.39 1.00 0.29 0.37 0.25 0.42 0.54 

9 0.27 0.30 0.35 0.27 0.40 0.24 0.52 0.29 1.00 0.46 0.51 0.27 0.30 

10 0.32 0.40 0.50 0.41 0.64 0.30 0.45 0.37 0.46 1.00 0.50 0.32 0.40 

11 0.24 0.27 0.36 0.29 0.46 0.22 0.41 0.25 0.51 0.50 1.00 0.24 0.27 

 

(a) 
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(b) 

Figure A1: Sample rain gauge network constructed using cross-correlaton similairy measure and 90th percentile 

threshold only for illustrative purproses. Autocorrelation (digonal) has been ignored in the network costruction. 

Numbers 1 to 11 are node counts, and values in brackets represent the WDB values. 

 

B. Kriging variogram modelling 

The kriging modelling mandates a theoretical variogram function that is to be fitted with an experimental variogram of 

the observed data. The experimental variogram (γ(h)) is calculated from the observed data as a function of the distance 

of separation (h) and is given by (Adhikary et al., 2015) 5 

𝛾(ℎ) =  
1

2𝑁(ℎ)
 ∑[(𝑌(𝑖) − 𝑌(𝑗))

2
]

𝑁(ℎ)

𝑖=1

 

 (A1) 

where 𝑁(ℎ) is the number of sample data points separated by a distance ℎ; , 𝑖 and j represent sampling locations 

separated by a distance h; 𝑌(𝑖) and 𝑌(𝑗) indicate values of the observed variable 𝑌, measured at the corresponding 

locations 𝑖 and 𝑗 respectively. The theoretical variogram function (γ * (h)) allows the analytical estimation of variogram 

values for any distance and provides the unique solution for weights required for kriging interpolation.   

The variogram models are a function of three parameters, known as the range, the sill, and the nugget (Fig. A2 (a)). The 10 

range is typically the distance where the models first flattens out, i.e. station locations separated by distances closer 

than the range are spatially auto-correlated, whereas locations farther apart than the range are not. The value of γ at 

the range is called the sill. The variance of the sample is used as an estimate of the sill. Nugget represents measurement 

error and/or microscale variation at spatial scales that are too fine to detect and is seen as a discontinuity at the origin 
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of the variogram model. The ratio of the nugget to the sill is known as the nugget effect, and may be interpreted as the 

percentage of variation in the data that is not spatial. The difference between the sill and the nugget is known as the 

partial sill. 

The values of all parameters and resulting variograms for daily mean, 90th percentile, 95th percentile, 99th percentile 

precipitation and number of wet days are reported in Table A2 and Fig. A2 (b-d), respectively. The variogram has been 5 

kept constant during network reductions. 

(a) Typical variogram model 

 

(b) Mean 

 

(c) 90th percentile  

 

(d) 95th percentile  

 

(e) 99th percentile (f) wet days 
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Figure A2: Typical variogram model (a) and fitted variogram models for mean (b), 90th percentile (c), 95th percentile 

(d), 99th percentile (e) precipitation and number of wet days (f).  

Table A2: Parameters values for the fitted variogram. 

Parameters Mean 90th percentile 95th percentile 99th 

percentile 

Wet days 

Nugget 0.0056 0 0 0 0.805 

Range 0.0781 0.0782 0.0782 0.0782 2.361 

Partial sill 0.102 1.055 2.140 6.808 2.761 
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