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Abstracts 10 

Hydrometric networks play a vital role in providing information for decision-making in water resources management. They 

should be set up optimally to provide as much and as accurate information as possible, and at the same time, be cost-

effective. We propose a new measure that identifies critical nodes of station networks, based on complex network analysis. 

The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a 

relatively young field and has gained significant momentum in the last years in different areas such as brain networks, social 15 

networks, technological networks or climate networks. The identification of influential nodes in complex networks is an 

important field of research. We propose a new node ranking measure, the weighted degree-betweenness, to evaluate the 

importance of nodes in a network. It is compared to previously proposed measures on synthetic sample networks and then 

applied to a real-world rain gauge network comprising 1229 stations across Germany to check its applicability in the optimal 

design of hydrometric networks. The proposed measure is evaluated using the decline rate of network efficiency and the 20 

kriging error. The results suggest that it effectively quantifies the importance of rain stations. The new measure is very useful 

in identifying influential stations which need high attention and expendable stations which can be removed without much 

loss of information provided by the station network.  

Keywords: Rainfall network, complex networks, event synchronization, kriging error. 

1 Introduction  25 

Hydrometric networks monitor a wide range of water quantity and water quality parameters such as precipitation, 

streamflow, groundwater, or surface water temperature (Keum et al., 2017). Adequate hydrometric monitoring is one of the 

first and primary tasks towards efficient water resources management. Information from hydrometric stations plays a crucial 

role in, among other things, flood estimation, water budget analysis, hydraulic design and assessing climate change. Even 

after the advent of remote sensing based information, such as precipitation products, in-situ observations are considered as 30 

an essential source of information in hydrometeorology.  
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The basic characteristics of hydrometric networks comprise the number of stations, their locations, observation periods and 

sampling frequency (Keum et al., 2017). The general understanding is that the higher the number of monitoring stations, the 

more reliable the quantification of areal average estimates and point estimates at any ungauged location. However, a higher 

station number increases the cost of installation, operation, and maintenance, but may provide redundant information and, 

therefore, not increase the information content obtained from the network. Globally, there is a decreasing trend in the 5 

number of hydrometric stations in the last decades (Mishra and Coulibaly, 2009). Against the background of shrinking 

monetary support for hydrometric networks, their optimal design is gaining importance.  

The design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable 

attention (Mishra and Coulibaly, 2009). For example, Putthividhya and Tanaka (2012) made an effort to design an optimal 

rain gauge network based on the station redundancy and the homogeneity of the rainfall distribution. Adhikary et al. (2015) 10 

proposed a kriging based geostatistical approach for optimizing rainfall networks, and Chacon-Hurtado et al. (2017) 

provided a generalized procedure for optimal rainfall and streamflow monitoring in the context of rainfall-runoff modelling. 

Yeh et al. (2017) optimized a rain gauge network applying the entropy method on radar datasets. Several approaches have 

been developed for optimal network design, such as statistical analysis which include variance and dimension reduction 

methods (Wadoux et al., 2017), spatial interpolation which includes kriging methods (Adhikary et al., 2015) and various 15 

interpolation techniques (Kassim and Kottegoda, 1991), information theory-based methods (Stosic et al., 2017), optimization 

techniques such as simulated annealing (Mishra and Coulibaly, 2009; Pardo-Igúzquiza, 1998; Yoo et al., 2003), 

physiographic analysis (Laize, 2004), multivariate factor analysis (Hargrove and Hoffman, 2004), sampling strategies 

(Tsintikidis et al., 2002), and user surveys or expert recommendations (Rani and Moreira, 2010). Combinations of methods 

have also been introduced in the last decade (Chacon-Hurtado et al., 2017; Keum et al., 2017; Mishra and Coulibaly, 2009).  20 

Most of these studies inherently assume that a more optimal network is achieved through expanding the network with 

supplementary stations. However, increasing the number of stations does not necessarily decrease the uncertainty (Stosic et 

al., 2017). Mishra and Coulibaly (2009) argued that the expendable stations in a network that contribute little or even nothing 

should be identified and removed, and at the same time, the most valuable or influential stations should be maintained and 

protected. Hence, a network can also be optimized by eliminating expendable stations from the network. 25 

Against this background, this study aims to identify influential and expendable stations based on their relative information 

content by developing a new node ranking measure for hydrometric station networks. We use complex networks which are a 

collection of nodes interconnected with links in a non-trivial manner. Complex network techniques have recently gained 

great momentum and have attracted many researchers from different disciplines and application fields, e.g., transportation 

networks (Bell and Lida, 1997), power grid analysis (Schultz et al., 2014), streamflow networks (Halverson and Fleming, 30 

2015) and climate networks (Agarwal et al., 2018b). However, the application of complex networks in hydrology is still in 

its infancy.  
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In this study, we approach a complex network based method to identify the influential and expendable stations in a rainfall 

network. The novelty of this study is twofold: 1) We propose a new measure for identifying the most influential nodes in a 

network, and 2) we use event synchronization as a similarity measure. Several methods in the field of complex networks 

have been proposed to evaluate the importance of nodes (Chen et al., 2012; Hou et al., 2012; Jensen et al., 2016; Kitsak et 

al., 2010; Zhang et al., 2013 and Hu et al., 2013). Degree (k), betweenness centrality (B) and closeness centrality (CC) are 5 

the methods commonly used in complex networks (Gao et al., 2013). Studies in different disciplines have shown that degree 

and betweenness centrality often outperform other node-ranking measures (Gao et al., 2013; Liu et al., 2016). We propose a 

novel measure called weighted degree-betweenness (WDB), combining degree (k) and betweenness centrality (B), which 

combines the advantages of both. Our case studies show that the proposed measure WDB has an even higher discrimination 

power compared to other existing methods and that it effectively ranks the nodes in the network. Additionally, WDB is more 10 

sensitive to the different roles of nodes, such as global connecting nodes, hybrid nodes, and local centers, and provides a 

more informative ranking than the existing node ranking measures. 

Further, we use event synchronization as a similarity measure. In a complex network, links are set up between each pair of 

nodes based on how the nodes interact with each other. This interactions is measured through statistical measures such as 

zero-lag correlation or time-delayed correlation (Agarwal et al., 2018b). However, these measures are limited by the 15 

underlying assumptions, e.g. measuring linear relations. Further, they give equal weight to high and low rainfall values, 

whereas the main information content in a rainfall time series is embedded in the larger values. In contrast, event 

synchronization (ES) is a suitable measure for event-like, non-Gaussian data such as precipitation (Stolbova et al., 2014; 

Tass et al., 1998). It has advantages over other time-delayed correlation techniques (e.g., Pearson lag correlation), as it 

allows us to define the event time series by determining the threshold, and as it uses a dynamic time delay (not fixed). The 20 

latter refers to a time delay that is adjusted according to the two time series being compared, which allows for better 

adaptability to the variable and region of interest. 

Therefore, the main objective of the study is to develop a node ranking measure, based on complex network analysis that can 

be used to identify influential and expendable stations in large hydrometric station networks. Our aim is not to question the 

credibility of operating stations, but to propose an alternative evaluation procedure for the optimal design and redesign of 25 

observational networks.  

In section 2, we introduce the basic concepts of complex networks. The proposed node ranking measure is presented and 

compared with existing measures in section 3 using synthetic networks. In section 4, the new measure is applied to a rain 

gauge network consisting of 1229 stations across Germany and compared with state-of-the-art methods.   
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2 Basics of Complex Networks 

2.1 Network Construction  

A network or a graph is a collection of entities (nodes, vertices) interconnected with lines (links, edges) as shown in Fig. 1. 

These entities could be anything, such as humans defining a social network (Arenas et al., 2008), computers constructing a 

web network (Zlatić et al., 2006), neurons forming brain networks (Bullmore and Sporns, 2012) , streamflow stations 5 

creating a hydrological network (Halverson and Fleming, 2015) or climate stations describing a climate network (Agarwal et 

al., 2018a).  

Formally, a network or graph is defined as an ordered pair 𝑍 = {N, E}; containing a set 𝑁 = {𝑁1, 𝑁2, … . 𝑁𝑁}, of vertices 

together with a set E of edges, {𝑖, 𝑗} which are 2-element subsets of N. In this work we consider undirected and unweighted 

simple graphs, where only one edge can exist between a pair of vertices and self-loops of the type {𝑖, 𝑖} are not allowed. This 10 

type of graph can be represented by the symmetric adjacency matrix (Fig.1) 

𝐴𝑖,𝑗 = {
0 {𝑖, 𝑗} ∉ 𝐸
1 {𝑖, 𝑗} ∈ 𝐸

 
 

(1) 

Figure 1 is a simple representation of such a network, i.e., one with a set of identical nodes connected by identical links. In 

general, (large) graphs of real-world entities with irregular topology are called complex networks. The links represent similar 

evolution or variability at different nodes and can be identified from data using a similarity measure such as Pearson 

correlation (Donges et al., 2009a), synchronization (Agarwal et al., 2017; Conticello et al., 2017) or mutual information 15 

(Paluš, 2018).  

 

Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 with four nodes and 

three links; (b) network N2 with four nodes and six links. 

2.2 Event synchronization 20 

Event synchronization (ES) has been specifically designed to calculate nonlinear correlations among bivariate time series 

with events defined on them (Quiroga et al., 2002). This method has advantages over other time-delayed correlation 

techniques (e.g., Pearson lag correlation), as it allows us to define extreme event series of the signal, depending on the kind 

of extreme, and as it uses a dynamic time delay. The latter refers to a time delay that is adjusted according to the two time 
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series being compared, which allows for better adaptability to the variable and region of interest. Another advantage of this 

method is that it can also be applied to a non-Gaussian and event-like data sets (Stolbova et al., 2014; Tass et al., 1998). 

In the last decade, various modifications have been proposed, related to, for instance, boundary effects (Rheinwalt et al., 

2016) and bias toward the number of events which can be explained as, let us say an event above threshold 𝛼 percentile 

occurs in the signal 𝑥(𝑡) and 𝑦(𝑡) (Fig. 2, step 1) at time 𝑡𝑙
𝑥 and 𝑡𝑚

𝑦
 where 𝑙 = 1,2,3,4…𝑆𝑥, 𝑚 = 1,2,3,4 ……𝑆𝑦 and within a 5 

time lag ±𝜏𝑙𝑚
𝑥𝑦

  which is defined as following (Fig. 2, step 2) 

𝜏𝑙𝑚
𝑥𝑦
= 𝑚𝑖𝑛{𝑡𝑙+1

𝑥 − 𝑡𝑙
𝑥 , 𝑡𝑙

𝑥 − 𝑡𝑙−1
𝑥 , 𝑡𝑚+1

𝑦
− 𝑡𝑚

𝑦
, 𝑡𝑚
𝑦
− 𝑡𝑚−1

𝑦
} 2⁄  (2) 

where 𝑆𝑥 and 𝑆𝑦  is the total number of such events (greater then threshold 𝛼) that occurred in the signal 𝑥(𝑡)  and 𝑦(𝑡), 

respectively. The above definition of the time lag helps to separate independent events which in turn allows to take into 

account the fact that different processes may be responsible for the generation of events. We need to count the number of 

times an event occurs in the signal 𝑥(𝑡) after it appears in the signal 𝑦(𝑡), and vice versa, and this is achieved by defining 10 

quantities 𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥) where 

𝐶(𝑥|𝑦) =∑∑ 𝐽𝑥𝑦

𝑆𝑦

𝑚=1

𝑆𝑥

𝑙=1

 

and 

 

(3) 

 

𝐽𝑥𝑦 =

{
 

 
1       𝑖𝑓    0 < 𝑡𝑙

𝑥 − 𝑡𝑚
𝑦
< 𝜏𝑙𝑚

𝑥𝑦

1

2
                         𝑖𝑓     𝑡𝑙

𝑥 = 𝑡𝑚
𝑦

0                                         𝑒𝑙𝑠𝑒,

 

 

(4) 

This definition of 𝐽𝑥𝑦 prevents counting a synchronized event twice. When two synchronized events match exactly (𝑡𝑙
𝑥 =

𝑡𝑚
𝑦

), we use a factor 1/2 since they double count in 𝐶(𝑥|𝑦) and 𝐶(𝑦|𝑥). Similarly, we can define 𝐶(𝑦|𝑥) and from these 

quantities we obtain  

𝑄𝑥𝑦 =
𝐶(𝑥|𝑦) + 𝐶(𝑦|𝑥)

√(𝑆𝑥 − 2)(𝑆𝑦 − 2)

 
 

(5) 

𝑄𝑥𝑦  is a normalized measure of the strength of event synchronization between signal 𝑥(𝑡) and 𝑦(𝑡). This implies 𝑄𝑥𝑦 = 1 15 

for perfect synchronization and zero if no events are synchronized.  
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Figure 2: Schematic of network construction using event synchronization (ES). Equations and symbols have been explained in the 

main text. 

2.3 Node Ranking Measures 

A large number of measures have been defined to characterize the behaviour of complex networks. We focus here on those 5 

measures which have been proposed to quantify the importance of nodes in a network: degree k, betweenness centrality B 

(Stolbova et al., 2016), bridgeness Bri (Jensen et al., 2016b) and degree and influence of line DIL (Liu et al., 2016). 

The degree k of a node in a network counts the number of connections linked to the node directly. The degree of any 𝑖 node 

is calculated as   

𝑘𝑖 =
∑ 𝐴𝑖,𝑗
𝑁
𝑗=1

𝑁 − 1
 

 (6) 

Where N is the total number of nodes in a network. For example, the degree of nodes 1, 2 and 4 in network N1 (Fig. 1a) is 1 10 

and for node 3 is 3. In the network N2 (Fig. 1b), all nodes have degree 3. The degree can explain the importance of nodes to 

some extent, but nodes that own the same degree may not play the same role in a network. For instance, a bridging node 

connecting two important nodes might be very relevant though its degree could be much lower than the value of less 

important nodes.  

The betweenness centrality B is a measure of control that a particular node exerts over the interaction between the remaining 15 

nodes. In simple words, B describes the ability of nodes to control the information flow in networks. To calculate 

betweenness centrality, we consider every pair of nodes and count how many times a third node can interrupt the shortest 

paths between the selected node pair. Mathematically, betweenness centrality B of any 𝑖 node is 

𝐵𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑖≠𝑗≠𝑣∈{𝑉}

 

 (7) 

where 𝜎(𝑗, 𝑘) represents the number of links along the shortest path between node 𝑗 and 𝑘; while 𝜎𝑖(𝑗, 𝑘) is the number of 

links of the shortest path running through node 𝑖. In network N1, B of node 3 is 3, i.e., node 3 can disturb three pairs 1-2, 1-4, 20 
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2-4, and for other nodes 𝐵 = 0. In the network N2, all nodes have 𝐵 = 0 because no node can interrupt the information flow. 

So node 3 is a critical node in the network N1 but not in the network N2.  

Jensen et al. (2016) developed the Bridgeness measure 𝐵𝑟𝑖  to distinguish local centres, i.e. nodes that are central to a part of 

the network, from hybrid nodes, i.e. nodes that connect different parts of a network. Bri is a decomposition of betweenness 

centrality B into a local and a global contribution. Therefore, the 𝐵𝑟𝑖 value of a node 𝑖 is always smaller or equal to the 5 

corresponding 𝐵 value and they only differ by the local contribution of the first neighbours. To calculate 𝐵𝑟𝑖 we consider the 

shortest path between nodes outside the neighbourhood of node 𝑖, 𝑁𝐺(𝑖). Mathematically, it is represented as  

𝐵𝑟𝑖𝑖 = ∑
𝜎𝑖(𝑗, 𝑘)

𝜎(𝑗, 𝑘)

𝑁

𝑗∉𝑁𝐺(𝑖) ∨ 𝑘∉𝑁𝐺(𝑖) 

 

 (8) 

The neighbourhood of node 𝑖 (𝑁𝐺(𝑖)) consists of all direct neighbours of node i. For example, in the networks N1 and N2, all 

nodes have 𝐵 = 0, hence 𝐵𝑟𝑖 = 0, except node 3 in the network N1 for which all the nodes are in direct neighbourhood. 

Hence, it also has 𝐵𝑟𝑖 = 0. 10 

The degree and influence of line (𝐷𝐼𝐿), introduced by Liu et al. (2016), considers the node degree 𝑘 and importance of line 𝐼 

to rank the nodes in a network:   

𝐷𝐼𝐿𝑖 = 𝑘𝑖 + ∑ 𝐼𝑒𝑖𝑗 .
𝑘𝑖 − 1

𝑘𝑖 + 𝑘𝑗 − 2
𝑗=𝑵𝑮(𝒊))

 
 (9) 

where the line between node 𝑖 and j is 𝑒𝑖𝑗  and its importance is defined as 𝐼𝑒𝑖𝑗 =
𝑈

𝜆
 where 𝑈 = (𝑘𝑖 − 𝑝 − 1). (𝑘𝑗 − 𝑝 − 1) 

reflects the connectivity ability of a line (link), p is the number of triangles having one edge 𝑒𝑖𝑗  and 𝜆 =
𝑝

2
+ 1 is defined as 

an alternative index of line 𝑒𝑖𝑗 . 𝑁𝐺(𝑖)) is the set of neighbours of node 𝑖 (for detailed explanation refer Liu et al., 2016). The 15 

equation for 𝐷𝐼𝐿 suggests that all the nodes having 𝑘𝑖 = 1 will have 𝐷𝐼𝐿𝑖 = 1, since the second term of the equation will be 

zero. Hence, in the network N1 all nodes, except node 3, have 𝐷𝐼𝐿 = 1. Node 3 has 𝐷𝐼𝐿 = 3 equal to its degree, since the 

second term is zero (all the connected nodes 1, 2 and 4 have 𝑘𝑗 = 1, hence 𝐼𝑒𝑖𝑗 = 0). 

3 Methodology 

We propose a new node ranking measure that we call weighted degree-betweenness (WDB). We further compare the 20 

efficacy of the proposed measure with the existing node ranking methods using two synthetic networks. 

3.1 Weighted Degree-Betweenness   

WDB is a combination of the network measures degree and betweenness centrality. We define WDB of a particular node i as 

the sum of the betweenness centrality of node 𝑖 and all directly connected nodes j, 𝑗 = 1,2,3… . 𝑛 in proportion to their 

contribution to node 𝑖. Mathematically, the WDB of a node 𝑖 is given by  25 
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𝑊𝐷𝐵𝑖 = 𝐵𝑖 + 𝐼i          (10) 

𝑤ℎ𝑒𝑟𝑒 𝐵𝑖  is the betweenness centrality of node 𝑖, and 𝐼𝑖  stands for the influence or contribution of the directly connected 

node j, 𝑗 = 1,2,3… . 𝑛 to node 𝑖. It is defined for node 𝑖 as 

𝐼𝑖 =∑
Bj ∗ (𝑘𝑗 − 1)

 (𝑘𝑖 + 𝑘𝑗 − 2)

𝑛

𝑗=1

 
 

(11) 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑖  is the degree of node i, 𝑘𝑗  is the degree of the nodes j which are directly connected to node ii, and 𝑛  is the total 

number of directly connected nodes to node 𝑖.  

3.2 Comparison with Existing Node Ranking Measures Using Synthetic Networks 

In this section, we motivate the development of the new node ranking measure WDB by comparing it to existing network 5 

measures. Identifying nodes that occupy interesting positions in a real-world network using node ranking helps to extract 

meaningful information from large datasets with little cost.  

Usually, the measures degree or betweenness centrality are used for node ranking (Gao et al., 2013; Okamoto et al., 2008; 

Saxena et al., 2016). However, these measures have certain limitations which are explained using a simple network, the 

undirected and unweighted network 𝑍 = (𝑁, 𝐸) with 8 nodes and 11 edges shown in Figure 3. The calculated network 10 

measures 𝑘𝑖, 𝐵𝑖  and 𝑊𝐷𝐵𝑖  of each node are given in same Fig. 3 along with the node number. 

Degree is limited as node ranking measure since it cannot distinguish between different roles in the network. For example, 

nodes 5, 7, and 8 have the same degree (ki=2), but node 5 serves as bridge node linking the two parts of the network. 

Information between several nodes in this network can flow through this node only. In a large complex network, such nodes 

have strategic relevance as most of the information can be accessed quickly just by capturing those nodes. For example, in a 15 

social network, the spreading of a disease could be slowed down or hindered by identifying these nodes. In climate networks, 

an early warning signal could be generated by capturing the flow of information (Donges et al., 2009a, 2009b). 

Betweenness centrality has a higher power in discriminating different roles. For example, nodes 4 and 5 have the highest 

betweenness centrality 𝐵 = 24 followed by node 6. Their importance for the information flow in the network is obvious, as 

such high B nodes can be used to control the flow of information in any network. However, betweenness B gives equal 20 

scores to local centers (nodes 4, 6), i.e., nodes of high degree central to a single region, and to global bridges (node 5), which 

connect different regions. This distinction is important because the roles of these nodes are different. For example, in climate 

networks, local centers correspond to nodes which are important for local climate phenomena, while bridges correspond to 

nodes which connect different climatic subsystems, such as Indian monsoon and El Niño/Southern Oscillation, leading to 

teleconnections (Paluš, 2018). Bridge nodes spread a process to the entire region globally whereas the effect of a local center 25 

is confined to a region (community) (Lawyer, 2015).  
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In temperature based climate networks it is the energy that is transported, and with this, some kind of information about the 

atmospheric state in a region (Hlinka et al., 2017). For rainfall networks in general, the links reflect the major propagation 

path ways of moisture, for extreme precipitation it is even more specific and reflects certain weather conditions, e.g.  a 

specific “Großwetterlage” in central Europe. Ozturk et al., (2018) proposed a complex network based approach to estimate 

the tendency of extreme rainfall movement over Japan during typhoons. They iteratively approximated likely tracks of the 5 

extreme precipitation for each grid cell, many of which present redundant information, and hence the computation is time 

inefficient (computing took several days). We suggest that by applying their method only on global bridges and local centers, 

we can deduce the likely track of extreme efficiently. 

 

Figure 3: Synthetic network to explain the degree (k), betweenness (𝑩) and weighted degree-betweenness (𝑾𝑫𝑩) measures, with 10 

node number (1 to 8) followed by the degree, betweenness value and 𝑾𝑫𝑩 value in brackets. Degree is limited in distinguishing 

the role of different nodes in the network. Betweenness does not distinguish centers from bridges, as it attributes the same value to 

the local centre (node 4) and to the global bridge node (node 5). In contrast, WDB assigns the highest importance to node 5 that 

plays the role of a global bridge. Further, betweenness does not differentiate between the nodes 1, 2, 3, 7 and 8, while 𝑾𝑫𝑩 

provides a nuanced picture of the influence of all nodes. 15 

The proposed measure WDB has an even higher discrimination power compared to betweenness centrality and effectively 

ranks the nodes in the network. Node 5 has the highest WDB score and is ranked as the most influential node. This reflects 

its role as global bridge node, as losing node 5 would disconnect the two parts of the network. WDB is also able to 

distinguish between the nodes 1, 2, 3 (WDB = 14.4) and the nodes 7, 8 (WDB = 13.3) which is important in case we need to 

sequentially rank nodes. 20 

To further evaluate the proposed measure, we compare WDB with other network measures recently published, namely the 

bridgeness developed by Jensen et al. (2016) and degree and influence of line DIL by Liu et al. (2016). For this comparison, 
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we use the same synthetic network as Jensen et al. (2016) shown in Fig. 4. The corresponding network measure values are 

also given in Fig. 4. 

 

Figure 4: Synthetic network used to compare the network measures betweenness, bridgeness, and DIL with the proposed measure 

WDB. Numbers 1 to 11 are node counts, and values in brackets represent the network measure values in order of 5 

[𝑩, 𝑩𝒓𝒊, 𝑫𝑰𝑳, 𝒂𝒏𝒅 𝑾𝑫𝑩]. Node 6 is a global bridge node which connects two sub-networks. Node 4 and 7 are hubs which are 

connected to most of the nodes in the sub-networks. Node 5, 10 and 11 are the dead-end nodes. 

Fig. 4 illustrates that betweenness does not distinguish between the local centers (nodes 4, 7) and the global bridge node 

(node 6). It even assigns a smaller value to the global bridge node. Bridgeness expresses the higher importance of the global 

bridge node compared to local centers, however, it does not distinguish between all other nodes. Although DIL assigns 10 

different values to almost very node, these numbers do not represent the different roles of the nodes and are therefore hardly 

suitable as node ranking measure. WDB outperforms the existing measures in effectively ranking nodes in the network, such 

as the global bridge nodes, local centers and dead-end nodes. For example, WDB differentiates between nodes 4 and 7 for 

which the bridgeness measure provides equal scores. 

This comparison of the proposed measure WDB with other measures that have been developed to express the importance of 15 

nodes within a network shows that WDB is able to provide a nuanced picture. The resulting node ranking reflects the 

different roles, such as global bridge, local center, dead-end node, hub (high degree), or non-hub (low degree), of the 

individual nodes. 

There is one situation where our method would require additional care: Let’s imagine a node that is unrelated to other nodes 

(no links). One might imagine this scenario in a meteorological sub-region characterized by fine-scale convective 20 
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thunderstorms with sparse rain gauge coverage. Hence, precipitation event synchronization in that sub-region would be 

poor. This station would not be the part of the constructed network and would not be ranked. However, this station should be 

treated carefully as it provides unique information.  

3.3 Evaluation of the Proposed Measure for a Rain Gauge Network 

In the context of hydrometric station networks, we hypothesise that higher ranking stations are more influential nodes in the 

network. Loosing such stations would more strongly reduce the network efficiency, i.e., the flow of information within the 5 

network, compared to lower ranking stations. Stations with the lowest ranks in the network are the least influential and are 

seen as expendable stations. To test this hypothesis, we apply the proposed node ranking measure to a rain gauge network 

consisting of more than 1000 stations in Germany. The information loss caused by removing stations is quantified via two 

measures: (a) decline rate of network efficiency, and (b) relative kriging error.  

3.3.1 Decline Rate of Network Efficiency  10 

The decline rate of network efficiency, as proposed by Liu et al. (2016), quantifies the loss in efficiency with which 

information flows within a network when nodes are removed from the network. Network efficiency is defined as  

𝜂 =
1

𝑁(𝑁 − 1)
∑ 𝜂𝑖𝑗
𝑛𝑖≠𝑛𝑗

 
 (12) 

Where N is the total number of nodes in a network. 𝜂𝑖𝑗 is the efficiency between nodes 𝑛𝑖 and 𝑛𝑗. 𝜂𝑖𝑗 is inversely related to the 

shortest path length: 𝜂𝑖𝑗 = 1 𝑑𝑖𝑗⁄ , where  𝑑𝑖𝑗  is the shortest path between nodes 𝑛𝑖  and 𝑛𝑗 . The average path length 

L measures the average number of links along the shortest paths between all possible pairs of network nodes. It is a measure 15 

of the efficiency of information or mass transport in a network. A network with small 𝐿 is highly efficient, because two 

nodes are likely to be separated by a few links only. The decline rate of network efficiency 𝜇 is defined as    

𝜇 = 1 −
𝜂𝑛𝑒𝑤
𝜂𝑜𝑙𝑑

 
 (13) 

where 𝜂𝑛𝑒𝑤 is the efficiency of the network after removing nodes, and 𝜂𝑜𝑙𝑑 is the efficiency of the complete network.  

We hypothesise that the network efficiency reduces more strongly if higher ranking stations are removed. This implies 

higher decline rates of efficiency when removing higher ranking stations from the network.   20 

3.3.2 Relative Kriging Error 

As second measure to evaluate the information loss when stations are removed from the network, we use a kriging based 

geostatistical approach (Adhikary et al., 2015; Keum et al., 2017). Kriging is an optimal surface interpolation technique 

assuming that the variance in a sample of observations depends on their distance (Adhikary et al., 2015). It is the best linear 

unbiased estimator of unknown variable values at unsampled locations in space where no measurements are available, based 25 
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on the known sampling values from the surrounding areas (Hohn, 1991; Webster and Oliver, 2007). Ordinary Kriging is 

used in this study for interpolating rainfall data and estimating the kriging error. The kriging estimator is expressed as 

𝑍∗(𝑥𝑜) = ∑𝑤𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 
 (14) 

where 𝑍∗(𝑥0)  refers to the estimated value of Z at the desired location 𝑥0 ; 𝑤𝑖  represents weights associated with the 

observation at the location xi with respect to x0; and n indicates the number of observations within the domain of the search 

neighborhood of x0 for performing the estimation of 𝑍∗(𝑥0). Ordinary Kriging is implemented through ArcGISv10.4.1 5 

(Redlands, CA, USA) (ESRI, 2009) and its geostatistical analyst extension (Johnston et al., 2001). 

The kriging variance σz
2(xo) in the Ordinary Kriging can be computed as (Adhikary et al., 2015; Xu et al., 2018) 

σz
2 = μz +∑wiγ(hoi)      for ∑wi = 1

n

i=1

n

i=1

 

where γ(h) is the variogram value for the distance h; h0i is the distance between observed data points 𝑥𝑖  and 𝑥𝑗; 𝜇𝑧 is the 

Lagrangian multiplier in the Z scale; h0j is the distance between the unsampled location x0 (where the estimation is desired) 10 

and sample locations xi; and n is the number of sample locations. 

The square root of the kriging variance, also named as kriging standard error (KSE), is used as a gauge network evaluation 

factor. We estimate the increase in the kriging standard error across the entire study area when stations are removed to 

evaluate the performance of the WDB measure in identifying influential and expendable stations in a large network.  

The relative kriging error before and after removing the stations is denoted as  15 

ℜ(%) =
𝐾𝑆𝐸𝑛𝑒𝑤 − 𝐾𝑆𝐸𝑜𝑙𝑑

𝐾𝑆𝐸𝑜𝑙𝑑
× 100 

    (15) 

 

where 𝐾𝑆𝐸𝑛𝑒𝑤  denotes the standard kriging error after removing stations, and 𝐾𝑆𝐸𝑜𝑙𝑑  is the error for the original network. 

We hypothesise that the relative kriging error is higher when removing high ranking stations. To cover a broad range of 

rainfall characteristics, the error is calculated for different statistics, i.e. the mean, 90th, 95th and 99th percentile rainfall and 

the number of wet days (precipitation > 2.5mm).  

4 Application to an Extensive Rain Gauge Network 20 

4.1 Rainfall Data 

To evaluate the proposed measure in the context of the optimal design of hydrometric networks, we apply it to an extensive 

network of rain stations in Germany and adjacent areas (Figure 5). The data covers 110 years at daily resolution (1 January 

1901 to 31 December 2010). The 1229 rain stations inside Germany (blue dots in Fig. 5) are operated by the German 

Weather Service. Data processing and quality control were performed according to Österle et al. (2006). 211 stations from 25 
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different sources outside Germany (red dots in Fig. 5) were included in the analysis to minimize spatial boundary effects in 

the network construction, however, these stations were excluded from the node ranking analysis.   

 

Figure 5: Location of rain stations in Germany and adjacent areas. Blue dots indicate stations lying inside Germany that are used 

in the analysis. Red dots indicate stations outside of Germany that are used for network construction only to minimize the 5 

boundary effect. 

4.2 Network Construction 

We begin the network construction by extracting event time series from the 1440 daily rainfall time series. The event series 

represent heavy rainfall events, i.e., precipitation exceeding the 95th percentile at that station (Rheinwalt et al., 2016). The 

95th percentile is a good compromise between having a sufficient number of rainfall events at each location and a rather high 10 

threshold to study heavy precipitation. All rainfall event series are compared with each other using event synchronization 

(Fig. 2). This results in the similarity matrix Q, whereas the entry at index pair (i,j) defines synchronization in the occurrence 

of heavy rainfall events at station i and station j. Applying a certain threshold to the 𝑄 matrix (see Appendix A) yields an 

adjacency matrix (Fig. 2) 

𝐴𝑖,𝑗 = {
1, 𝑖𝑓 𝑄𝑖,𝑗 ≥ 𝜃𝑖,𝑗

𝑄

0,                       𝑒𝑙𝑠𝑒,
 

 

(16) 
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Here, 𝜽𝒊,𝒋
𝑸
 is chosen in such a way to capture only highly synchronized stations. Two stations are significantly synchronized, 

if the synchronization value exceeds the 95th percentile of the synchronization obtained by two synthetic variables that have 

the same number of events positioned randomly in the time series. We calculate synchronization for 100 pairs of random 

time series from which we derive the 95th percentile of synchronization. 

 𝐴𝑖,𝑗 = 1  denotes a link between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  station and 0 denotes otherwise. The adjacency matrix represents the 5 

connections in the rainfall network. Although the constructed network is based on all 1440 stations (to minimize the 

boundary effect), the subsequent topological analysis is performed only for the 1229 stations lying inside Germany. 

4.3 Decline Rate of Network Efficiency  

In this section, we evaluate the ranking of stations derived from the proposed WDB measure using the decline rate of 

network efficiency. The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked rain 10 

gauges are interpreted as the most influential stations, and low ranked as expendable stations. 

Firstly, we analyze the decline rate of network efficiency 𝜇 when one station is removed from the network. In each trial, we 

remove only one station (starting with the highest rank). After n=1229 (number of nodes) trials, we investigate the 

relationship between 𝜇 and the node ranking measured by WDB. We expect an inverse relationship between 𝜇 and WDB: 

the higher the node ranking, the more important is that node, leading to a higher loss in network efficiency. Fig. 6 confirms 15 

this behavior. 𝜇 is high for high-ranking stations and decays with node ranking. Interestingly, 𝜇 < 0 for very low ranking 

stations, i.e. the network efficiency increases when single, low ranking stations are removed. This is explained by the 

decrease of the redundancy in the network when such stations are removed. 

 

Figure 6: Decline rate of network efficiency corresponding to the removal of each node in the rainfall network. In each 20 

implementation, only one node is removed from the network according to the ranking with replacement (bootstrapping). 
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Secondly, we remove successively a larger number of stations, from 1 to 123 stations (10%), considering three cases. In case 

I, we remove up to the 10% highest ranking stations. This implies that in the first iteration we remove the top-ranked station 

and in the second iteration we remove the top two stations and so on. Figure 7 shows a clear increase in 𝜇 when more and 

more influential stations are removed. In case II, up to the 10% lowest ranking stations are successively removed. It can be 

seen in Fig. 7 that this affects the network efficiency in a positive way: The efficiency increases when the lowest ranking 5 

stations are removed. In case III, up to 10% stations are randomly removed. Case III is repeated ten times to understand the 

effect of random sampling. In general, 𝜇 increases with removing random stations. However, the effect is much lower (in 

absolute terms) compared to the effect of removing high or low ranking stations, respectively. The variation in 𝜇 between the 

ten trials and within one trial is caused by randomness. For example, 𝜇 rises instantaneously when the algorithm picks up a 

high ranking station.   10 

 

Figure 7: Decline rate of network efficiency as a function of the number of stations removed from the network. Case I: up to the 

10% highest ranking stations are removed (black), case II: up to the 10% lowest ranking stations are removed (red), case III: up 

to 10% randomly drawn stations are removed (10 trials) (blue). 

4.4 Relative Kriging Error 15 

As the second approach to assess the suitability of WDB for identifying influential and expendable stations, we analyse the 

change in the kriging error when stations are removed from the network. The variogram is kept constant during the network 

modifications. Similarly to the evaluation using the decline rate of network efficiency in section 4.3, three cases are 

investigated: removing the 10% highest ranking stations, removing the 10% lowest ranking stations, and ten trials of 

removing 10% of the stations randomly. The change in the kriging error is calculated for five characteristics, i.e., mean, 20 

90%-, 95%-, 99%-percentile, and number of wet days (Table 1). 
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 Removing the 10% high-ranking stations (case I) leads to positive and high (ℜ > 5%) values for all five statistics 

considered. The kriging error increases substantially when these stations are removed. When the 10% lowest ranking stations 

(case II) are not considered, the ℜ values are small compared to those obtained by removing high ranking stations. The 

relative errors in estimating the mean, percentile rainfall characteristics (90th and 95th) and number of wet days at ungauged 

locations are low (<5%) for the 10% lowest ranking stations, suggesting that these stations do not contribute much 5 

information. For two out of five statistics, i.e., mean and number of wet days, removing the 10% lowest ranking stations 

actually improves the kriging model. Case III, i.e. removing stations randomly, shows mostly positive and high (ℜ > 5%) 

values, because high ranking nodes are removed as well which leads to higher rates of ℜ(%). 

Table 1: Relative kriging error for the three different cases. The relative kriging error for case III is the average across ten trials. 

Stars indicate a high relative error >5%. 10 

Case Removal of stations 

Relative kriging error ℜ(%) 

Mean 90th percentile 95th percentile 99th percentile Wet days 

I 10% highest ranking 9.3* 32.9* 72.3* 57.1* 69.1* 

II 10% lowest ranking  -2.1 4.4 3.1 11.1* -1.7 

III 10% randomly selected  5.4* 27.3* 52.3* 42.6* 4.1 

5 Discussion 

Building on the young science of complex networks, a novel node ranking measure, the weighted degree-betweenness WDB, 

is proposed. It is based on degree and betweenness centrality measure of nodes in a network. The comparison of the WDB 

measure with the existing node ranking measures suggests that it is more informative since it is better able to consider the 

different role of nodes in a complex network. The WDB measure provides a unique value to each node depending on its 15 

importance and influence in the network.  

Further, this study proposes to use WDB for supporting the optimal design of large hydrometric networks. It is able to rank 

the nodes in a large network in relation to their importance for the flow of information, mass or energy. This ranking can be 

used to identify highly influential and expendable hydrometric stations as shown in Fig.8. For example, removing low 

ranking stations in the German rain gauge network (Fig.8) increases the network efficiency considerably, and may even 20 

decrease the error of estimating rainfall at ungauged locations. This is explained by the redundancy in the information that 

those stations provide, which in turn is attributed to the similarity between the gauges due to the common driving 
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mechanisms or spatial similarity as advocated by Tobler’s Law of Geography (Tobler, 1970). The results of our analysis 

suggests that WDB identifies the expendable nodes correctly as shown by decline rate of efficiency and relative kriging 

error. On the other hand, awards stations which provide unique information which cannot be generated from other stations in 

the network. Based on our analysis, we argue that, ranking of all nodes in large networks has the major benefit that the new 

measure adds to the optimal design of hydrometric networks or redesign of existing hydrometric networks. 5 

The proposed node ranking approach differs from the existing approaches as it considers different aspects of the spatio-

temporal relationships in observation networks. This measure is not only useful for optimizing observational networks, but 

has also potential to support the selection of an optimal number of stations for the prediction in ungauged basins (PUBs) and 

estimating missing values by identifying influential stations in the region,. For example, from a set of N potential stations to 

be used for PUBs the proposed approach can be applied to select the M influential stations which, when used, reduce the 10 

uncertainty (Villarini et al., 2008). Similarly, the proposed method can be applied to gridded satellite data (rainfall, soil 

moisture), to locate the strategic points where stations should be installed to ensure a highly efficient observation network. 

For instance, identifying influential grid points in the network of satellite data (rainfall, soil-moisture) will guide where to 

install monitoring stations.  

 15 

Figure 8: Location of 10% highest ranking rain gauges (red) and 10% lowest ranking stations (black) showing on Germany along 

with topography of the area.  

An advantage of the proposed method is its capability to differentiate between the different roles played by individual 

stations. For example, global bridge nodes are able to control the flow of information, energy or mass between different parts 

of a network. Hence, they are of highest importance. This capability opens new possibilities for its use in complex networks. 20 
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For instance, in climate networks an early warning signal could be generated by capturing the flow of information at such 

points (Donges et al., 2009b; Hlinka et al., 2014; Stolbova et al., 2016). 

6 Conclusions 

This study proposes a novel node ranking measure for identifying the influential and expendable nodes in a complex 

network. The new network measure weighted degree-betweenness (WDB) combines the existing measures degree and 5 

betweenness centrality and considers the neighbourhood of a node. The proposed measure is compared to other measures 

using synthetic networks. WDB is more sensitive to the different roles of nodes, such as global connecting nodes, hybrid 

nodes, and local centers, and provides a more informative ranking than the existing node ranking measures.  

We propose to use this measure for the optimal design of hydrometric networks. Applying this measure to a network of 1229 

rain gauges in Germany allows identifying influential and expendable stations. Two criteria, the decline rate of network 10 

efficiency and the kriging error, are used to evaluate the performance of the proposed node ranking measure. The results 

suggest that the proposed measure is indeed capable of effectively ranking the stations in large hydrometric networks. 

We argue that the proposed measure is not only useful for optimizing observational networks, but has the potential to support 

the selection of an optimal number of stations (by determining influential station of the region) to be used in the prediction in 

ungauged basins, or to support the estimation of missing values, regionalization, and regional flood frequency analysis. 15 

When applied to gridded satellite data, it can be used to locate the strategic points where stations should be installed to 

ensure a highly efficient network. Furthermore, the new network measure has large potentials in other fields where science 

complex networks are used, such as in social networks, infrastructure networks, disease spreading networks, and brain 

networks. 

Data availability  20 

The precipitation data was provided by the German Weather Service. The data is publicly accessible at 

https://opendata.dwd.de/. The data was pre-processed by the Potsdam Institute for Climate Impact Research (Conradt et al., 

2012). 

Appendix 

A. Kriging variogram modelling 25 

The kriging modelling mandates a theoretical variogram function that is to be fitted with an experimental variogram of the 

observed data. The experimental variogram (γ(h)) is calculated from the observed data as a function of the distance of 

separation (h) and is given by (Adhikary et al., 2015) 



19 

 

𝛾(ℎ) =  
1

2𝑁(ℎ)
 ∑[(𝑌(𝑖) − 𝑌(𝑗))

2
]

𝑁(ℎ)

𝑖=1

 

 (A1) 

where 𝑁(ℎ) is the number of sample data points separated by a distance ℎ; , 𝑖 and j represent sampling locations separated by 

a distance h; 𝑌(𝑖)  and 𝑌(𝑗)  indicate values of the observed variable 𝑌 , measured at the corresponding locations  𝑖  and 

𝑗 respectively. The theoretical variogram function (γ * (h)) allows the analytical estimation of variogram values for any 

distance and provides the unique solution for weights required for kriging interpolation.   

The variogram models are a function of three parameters, known as the range, the sill, and the nugget (Fig.A1 (a)). The 5 

range is typically the level of h at the correlation between point values is zero (i.e., there is no longer any spatial 

autocorrelation). The value of γ at range is called the sill. The variance of the sample is used as an estimate of the sill. 

Nugget represents measurement error and/or microscale variation at spatial scales that are too fine to detect and is seen as a 

discontinuity at the origin of the variogram model. The ratio of the nugget to the sill is known as the nugget effect, and may 

be interpreted as the percentage of variation in the data that is not spatial. The difference between the sill and the nugget is 10 

known as the partial sill. 

The value of all the parameters and resultant variogram for mean, 90th percentile, 95th percentile, 99th percentile and wet days 

has been reported in the Table A1 and Figure A1 (b-d) respectively. The variogram has been kept constant during network 

reductions. 

(a) Typical variogram model 

 

(b) Mean 

 

(c) 90th percentile  (d) 95th percentile  
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(e) 99th percentile 

 

(f) wet days 

 

Figure A1: Typical variogram models (a) and fitted variogram models for mean (b), 90th percentile (c), 95th percentile 

(d), 99th percentile (e) and wet days (f).  

Table A1: Parameters values for the fitted variogram. 

Parameters Mean 90th percentile 95th percentile 99th percentile Wet days 

Nugget 0.0058 0 0 0 0.905 

Range 0.0782 0.0782 0.0782 0.0782 2.363 

Partial sill 0.103 1.055 2.140 6.808 2.771 
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