Interactive comment on

“Optimal Design of Hydrometric Station Networks Based on Complex Network Analysis” by Ankit

Agarwal et al. (response letter -3)

Editor’s comments

This is the third version of the manuscript. The manuscript has been further improved, but there are still some
issues as mentioned by the reviewer. [ would like to give the authors a chance for a last iteration to improve it.
The paper will be sent again for review. Please make significant changes and give detailed responses to each
point raised by the reviewer.

We greatly appreciate the opportunity to resubmit the study and the referees’ concerning improvement to this
paper. We have revised the manuscript according to reviewer’s comments and provide our responses point to
point as followed.

Major revisions include

1. Inclusion of an example of the transition from observations of a very reduced measurement network to a
complex network, and how the nodes are ranked, using proposed WDB measure, in this network [Appendix
A].

2. Moderating tone of the paper to present the current state of the methodology and the analysis in the
preliminary phase (Highlighting the limitations and future scope of the work at various places as
highlighted in the manuscript and response letter)

3. Explanation of kriging evaluation

4. Avoiding terminology of a physical network and acknowledging the fact complex networks are in infancy
state at least in hydrology and more interpretable measures are needed.

5. Figure modifications

We have responded (in black) to each reviewer's comment (in red).

Anonymous Referee #1

General summary

This is the third version of a manuscript describing how to use network analyses for optimizing the design of
station networks. The manuscript has been further improved, but there are still a few open issues. I'm still not
completely convinced by the methodology, but as also mentioned in my previous reviews, I like the novelty of
the approach and the attempt to think out-of-the-box, and think the authors should get a last chance to convince
us that it deserves publication. | have some suggestions below on how the authors can make this publishable,
even though we are not convinced by the usefulness.

We acknowledge that we haven’t been able to clarify all issues in our previous revisions. We thank the
reviewer(s) for his critical and supportive suggestions. Your feedback is vitally important to increase the
readability of the work.



[ think the authors should present the current state of the methodology and the analysis as less mature than
what they now try to conclude, as I think follow-up studies are necessary before the methodology can be
considered a trustworthy optimization tool for measurement networks.

We very much appreciate the suggestion of the reviewer. In the revised version we have moderated the tone
throughout the paper. For instance,

P1/L24-25: Although, this is the first step and the real benefit of the method needs to be investigated in more detail.
P3/L13: however, the application and interpretation of complex networks in hydrology are in the infancy state.

P3/L19-23: We do acknowledge that this study is preliminary efforts to explore complex networks application in
hydrology and many further studies are necessary before the methodology can be considered a trustworthy
optimization tool for measurement networks.

P20/L15-19: However, acknowledging the preliminary work done in this study, WDB application needs to be
investigated in detail and currently out of scope of the study domain. In addition, follow-up studies addressing
threshold and spatial boundary issues of the network, physical interpretable measures and visualization are
needed to prove the benefit of complex networks science in hydrometric network design.

As mentioned before, [ would like to see an example of the transition from observations of a very reduced
measurement network to a complex network, and how the nodes will be ranked in this network. Ideally, this
should show the locations of (maybe) 6-10 stations with a table indicating their cross-correlations, and the
resulting network. If this adds too much to the paper, it should be added to the appendix. Figure 8 is interesting,
but it does not answer the question I have asked previously. Such a figure would also be an answer to the first
comments of Reviewer #1, who also seems to find it difficult to visualize how the methodology will identify
redundant stations or stations that provide additional information. The analysis of 1229 stations is nice to see
the overall effect, but it does not help us to understand the method.

We thank the reviewer for highlighting the need to show the much reduced spatially embedded network. In the
revised version we have added the reduced network consisting of 11 rain gauges and corresponding locations
and cross-correlations in Appendix A.

A. Spatially embedded network construction

Further, to illustrate the network construction from observations of a very reduced measurement network to
a complex network, we select randomly 11 rain gauge stations spread across the Germany. The geographical
locations of these stations (Table S1) are shown in Fig. S1 (a). We first compute the cross-correlation between
each pair of two stations (Table S1) and then apply 90t percentile threshold. Links exist between pair of

stations having correlation value greater than threshold (Fig. S1 (a)).

We further compute the WDB score for each station using Eq. 10 (Fig. S1 (b)). Stations 3 shows the highest
WDB score in this particular network consisting of 11 stations which signifies that station 3 not only account
the local and global characteristics of this particular stations but also the cumulative effect of the influence or
contribution of the directly connected stations. For instance, it seems like two strong modular (homogeneous)
regions (stations 1,2,3, 6 & 8 and 3,4,5,7,9,10 & 11) are present within the network bridged by station 3. This

node particularly very important in a measurement network in the context of measuring process, process



identification or interpolation of measurements. For instance, at the particular location two different processes
might be dominating (snow and rainfall). Other interpretation could be that the implicit assumption of the
complex network is that station 3 is representative for a larger area than other stations. But again, it is
challenging to quantify at this stage and indeed follow up studies are needed to prove the benefit of complex

networks science in hydrometric network design.

Table S1: Cross-correlation values along with the geographical location of ten rain gauges selected for network

illustrative purposes.

Nodes Lat. Long. 1 2 3 4 5 6 7 8 9 10 11

1 1.00  0.46 050 032 033 059 041 042 027 032 024 100 046
2 0.46  1.00 058 038 038 043 039 054 030 040 027 046 100
3 050  0.58 100 041 051 045 049 048 035 050 036 050 058
4 032 038 041 100 045 027 030 031 027 041 029 032 038
5 033 038 051 045 100 030 041 033 040 064 046 033 038
6 059 0.3 045 027 030 100 039 044 024 030 022 059 043
7 041  0.39 049 030 041 039 100 039 052 045 041 041 039
8 042 0.54 048 031 033 044 039 100 029 037 025 042 054
9 027 030 035 027 040 024 052 029 100 046 051 027 030
10 032  0.40 050 041 064 030 045 037 046 100 050 032 040
1 024 027 036 029 046 022 041 025 051 050 100 024 027
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Figure S1: Sample rain gauge network constructed using cross-correlaton similairy measure and 90t
percentile threshold only for illustrative purproses. Autocorrelation (digonal) has been ignored in the

network costruction. Numbers 1 to 11 are node counts, and values in brackets represent the WDB values.

There is still no information about the evaluation locations for finding the kriging error. The author's response
refers to section 4.4, but no, it is not there. And the fact that there is still a decrease in kriging error for case II
indicates that something in the setup does not follow the standard procedures for estimating the effect of
removing stations on kriging error, even if the authors have now removed the emphasize on this in the text.



We apologize to the reviewer for indicating to the wrong section regarding the kriging evaluation process in
the previous response letter. For finding kriging error for all 3 cases, evaluation has been across the study area.
This has been mentioned clearly in the revised version (section 4.4).

“As the second approach to assess the suitability of WDB for identifying influential and expendable stations, we
analyze the change in the kriging error when stations are removed from the network. We first estimate the kriging
standard error across the study area for all 1229 stations termed as KSE,;;. Then, we measure the increase or
decrease in the kriging standard error across the study area when stations are removed terms as K,,,. “

In our previous version, insignificant negative values were observed for case II. We have thoroughly checked
the model and have run it for 100 times. “P16/L15: For each case and rainfall characteristics we run model
100times and the mean value of R has been reported in Table 1.” We noticed that the outcomes are robust for
the given scenario. However, in the future, to further advance the model weighted kriging method could be
used.

I see that the authors still use phrases as “global bridge nodes are able to control the flow of information” (P20).
Being a measurement network, a node does not control anything. Nodes that are identified as bridge nodes
might be particularly important also in a measurement network, but the authors should manage to describe
the particular usefulness of these nodes in the context of measuring, process identification or interpolation of
measurements, not use the terminology of a physical network. The authors mentions “Information flow, or in
our context, transferability of precipitation measurement across locations, would be restricted in their
absence” on P9L15-17.

This is a start, but should probably be better emphasized, and not only on this location.

The authors again appreciate the detailed comments and suggestions, which have been adopted in the revised
manuscript.

All terminologies related to physical networks are avoided up to much extent. Indeed, as the reviewer
suggested complex network is in infancy state in hydrology and physical interoperation of network measures
is rather crude. This also is in congruence with the reviewer’s first suggestion “authors should present the
current state of the methodology and the analysis as less mature than what they now try to conclude.” Changes in
the revised version are as follows:

P9/L1-11: In general, high degree nodes represent most connected (highly correlated) nodes in a network.
Rheinwalt et al, (2015) considered these highly correlated nodes of homogeneous precipitation community as
local centers representing homogenous precipitation patterns for that particular community. Agarwal et al,
(2018) defined local centres as the nodes having maximum intra-community links and minimum inter-community
links based on the Z-P space approach. However, degree alone cannot distinguish the roles of nodes in the sample
network as seen for nodes 5, 7, and 8, which have the same degree (ki=2), though node 5 serves as a bridge node
linking the two parts of the network. In a larger complex network, such bridge nodes have strategic relevance as
most of the information can be accessed quickly just by capturing those nodes. For example, Kurths et al., (2019)
quantified the spatial diversity of Indian rainfall teleconnections at different timescale by identifying linkages
between climatic indices (e.g. El Nifio/Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific
Decadal Oscillation, and Atlantic Multidecadal Oscillation) and seven Indian rainfall stations (bridge nodes).

P9/L13-17: As mentioned, global bridges connect different parts of a network (e.g. teleconnection between Indian
rainfall and ENSO) and measuring and interpretation of spatially large variations, process identification,
interpolation of measurements and transferability of precipitation measurements across locations, would be
restricted in the absence of high B; nodes.



The discussion and conclusions are mainly a summary of the results, with some very positive interpretations
of the results and the usability for measurement networks. Whereas [ understand why this is done, and I know
that this is a rather typical end of a manuscript, I think the authors need to reflect a bit more about advantages
and disadvantages of testing this methodology within measurement networks. I don’t think the suggested
figures above would completely convince me, so it would be much easier to accept a manuscript that also
includes some doubts and constructive self-criticism. We are two reviewers who have presented the authors
with many uncertainties and doubts. I think the authors would strengthen the manuscript by trying to further
address some of these in the discussion, not necessarily giving a good answer to all, but accept that the
methodology still has its uncertainties in this context. A considerable amount of work would still be necessary
to convince me that this is really the way forward, but I'm happy if the conclusions just prepare the ground for
these in forthcoming work.

We thank the reviewer for suggesting to highlight the limitations and future scope of the work. We have added
most of the details all over the manuscript and in conclusion as well.

P20/L20-25: “However, acknowledging the preliminary work done in this study, WDB application needs to be
investigated in detail and currently this is out of the scope of current study domain. In addition, follow-up studies
addressing threshold and spatial boundary issues of the network, physical interpretable measures and
visualization are needed to prove the benefit of complex networks science in hydrometric network design.”

Seeing Figure 4 again, I wonder if the authors could comment on the following assumption that would be
somewhat intuitive for a geoscientist, although it might not be correct:

Node 7 is correlated with four other stations, and its value could most likely be replaced by the interpolated
value without much loss of information. Stations 5, 10 and 11 are each correlated with one station only, and
might have more unique information than station 7. Maybe the implicit assumption of the complex network is
that station 7 will be representative for a larger area than station 107 But again, it is challenging to understand
the choices and consequences of using this new methodology for measurement networks without a figure as
the one mentioned under 1, further up.

We thank the reviewer for highlighting the need to understand the implicit assumption of the complex network
which I am sure is rather difficult at this stage. We indeed need better understanding of network measures and
visualization tools as highlighted in the conclusion of the revised version (P20/L19-24). Our ultimate argument
is that that WDB quantifies the uniqueness (or redundancy) of the information which a station provides. We
have interpreted this statement directly from the equation the way how WDB is calculated.

P17/L8-12: The proposed WDB method based on degree and betweenness centrality not only account the local
(captured by degree) and global (captured by betweenness centrality) characteristics of nodes but also the
cumulative effect of the influence or contribution of the directly connected (localized) nodes.

[ find it hard to visually compare the values of the measures in Figs 3-4. I think it would be easier if the numbers
were ordered in a column instead of a row. Alternatives would be more space between the commas and next
number, or different color for each measure.

We have modified Fig.1, 2 and 3 as suggested.



Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 with

four nodes and three links; (b) network N2 with four nodes and six links.

[3, 0, 14.4] [2, 0, 13.3]
[5, 24, 55.3]
[3, 0, 14.4] 3 13, 20, 28]
[4, 24, 30]
[degree, Betweenness, WDB]
[2, 0, 13.3]

Figure 2: Synthetic network to explain the degree (k), betweenness centrality (B) and weighted degree-
betweenness (WDB) measures, with node number (1 to 8) followed by the degree, betweenness centrality

value and WDB value in brackets [k, B, WDB]. Degree and betweenness are limited in distinguishing the role of

different nodes in the network and centers from bridges, respectively.



[0, 0, 1, 30] [0, 0, 1, 12]
[0, 0, 3.5, 28.6] @
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Figure 3: Synthetic network used to compare the network measures betweenness centrality, bridgeness, and
DIL with the proposed measure WDB. Numbers 1 to 11 are node counts, and values in brackets represent the
network measure values in order of [B, Bri, DIL,and WDB]. Node 6 is a global bridge node that connects two
sub-networks. Node 4 and 7 are hubs that are connected to most of the nodes in the sub-networks. Node 5, 10

and 11 are the dead-end nodes.

Minor edits

P1L14 though -> although?

Done

P1L26 rain GAUGE stations?

Done

P2L31 “We use complex network which” -> something seems to be missing
We have revised the sentence.

“We propose complex networks as a suitable tool for this optimization problem. A complex network is defined as
a collection of nodes, such as rain gauge stations, interconnected with links. “

P3L5 Check grammar: An example ... are ...

Done

P3L8 comma before respectively

Done

P8L2-3 the term “except node 3” is ambiguous, it could also mean that Bri != 0 for Node 3. Rephrase?

We have revised the sentence.



“The neighbourhood of node i (N (i)) consists of all direct neighbours of node i. For example, in the networks N1
and N2, all nodes (except node 3 in N1) have B = 0 hence Bri = 0. However, node 3 in the network N1 has all the

nodes in direct neighbourhood hence, it also has Bri = 0.”

P19L4 high degree or betweenness stations -> doesn’t read well, something missing?
We have revised the sentence.

“Highest ranked stations are not governed by only local or global features but rather the quantitative combination
of both (Figure 7a).”

P19L6-7 two times “or”
Deleted second repetitive “or”
P19L14 Fig. 8 IS also ...?

Done

P19L15-19 It is not clear how the citation relates to what comes after. Something missing? Is this referring to
two different areas in the same modelling region that, despite different local variance, will have the same
modelled kriging error (function of the variogram model and configuration of neighboring observations), or is
it about two modelling regions with different variogram and different error structure?

We have modified the sentence.
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Abstract

Hydrometric networks play a vital role in providing information for decision-making in water resources management.
They should be set up optimally to provide as much and as accurate information as possible, and at the same time, be
cost-effective. Although, the design of hydrometric networks is a well-identified problem in hydrometeorology and has
received considerable attention still it has scope for further advancement. In this study, we use complex network
analysis, defined as collection of nodes interconnected by links, to propose a new measure that identifies critical nodes
of station networks. The approach can support the design and redesign of hydrometric station networks. The science of
complex networks is a relatively young field and has gained significant momentum in the last years in different areas
such as brain networks, social networks, technological networks or climate networks. The identification of influential
nodes in complex networks is an important field of research. We propose a new node ranking measure, the weighted
degree-betweenness, to evaluate the importance of nodes in a network. It is compared to previously proposed
measures on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations
across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of network
efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges.

Although, this is a first step and the real benefit of the method needs to be investigated in more detail.

Keywords: Rainfall network, complex networks, event synchronization, kriging error.
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1 Introduction

Hydrometric networks monitor a wide range of water quantity and water quality parameters such as precipitation,
streamflow, groundwater, or surface water temperature (Keum et al, 2017). Designing adequate hydrometric
monitoring is key in water resources management; e.g., flood estimation, water budget analysis, hydraulic design, and
monitoring climate change. Even after the advent of remote sensing based information, such as satellite precipitation
estimates, in-situ observations are considered as an essential source of information in hydrometeorology (Rossi et al.,

2017).

The basic characteristics of hydrometric networks comprise the number of stations, their locations, observation
periods and sampling frequency (Keum et al., 2017). The general understanding is that the higher the number of
monitoring stations, the more reliable the quantification of areal average estimates and point estimates at any
ungauged location. However, a higher station number elevates the cost of installation, operation, and maintenance, but
may provide redundant information and, therefore, not increase the information content obtained from the network.
Scarcity of funds for hydrometric monitoring has led to slow but steady teardown of hydrometric stations in the last
decades globally, raising the need for cost-effective design (Mishra and Coulibaly, 2009). For example, Putthividhya and
Tanaka (2012) made an effort to design an optimal rain gauge network based on the station redundancy and the
homogeneity of the rainfall distribution. Adhikary et al. (2015) proposed a kriging based geostatistical approach for
optimizing rainfall networks, and Chacon-Hurtado et al. (2017) provided a generalized procedure for optimal rainfall
and streamflow monitoring in the context of rainfall-runoff modeling. Yeh et al. (2017) optimized a rain gauge network
applying the entropy method on radar datasets. Most of the aforementioned studies inherently assume that expanding
the gauge network with supplementary stations aids more information that ultimately leads to less uncertainty
(Wadoux et al.,, 2017). However, increasing the number of stations does not necessarily decrease the uncertainty (Stosic
etal,, 2017), and the expendable (relatively little significance) stations contribute little to no information though having

the same maintenance cost as influential (significant) stations (Mishra and Coulibaly, 2009).

This study aims to discriminate influential and expendable stations in hydrometric station networks based on their
relative information content. We propose complex networks as a suitable tool for this optimization problem. A complex
network is defined as a collection of nodes, such as rain gauge stations, interconnected with links. Complex networks
are powerful tools in extracting information from large high-dimensional datasets (Donges et al.,, 2009a; Cohen and
Havlin 2010, Kurths et al., 2019). This non-parametric method allows investigating the topology of local and non-local
statistical interrelationships. An example for non-local connections in a climate network are the global influence of El
Nifio Southern Oscillation (ENSO) on regional rainfall (Agarwal, 2019; Ferster et al, 2018), and of the Atlantic

Meridional Overturning Circulation (AMOC) on air surface temperature (Caesar et al.,, 2018) via teleconnections and
Z
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ocean circulation, respectively. Once the spatial network of stations has been constructed, statistical network measures
(e.g. degree, betweenness centrality) are used to quantify the behaviour of the network and its components for a range
of applications. Examples are the identification of the community structure of stations or homogeneous regions to
unravel dominant climate modes (Agarwal et al, 2018a; Halverson and Fleming, 2015;), catchment classification
indicating hydrologic similarity (Fang et al., 2017), short and long-range spatial connections in rainfall (Agarwal et al.,
2018a; Boers et al,, 2014b; Jha et al,, 2015) and spatio-temporal hydrologic patterns (Halverson and Fleming, 2015;
Konapala and Mishra, 2017). Complex network analysis complements classical Eigen techniques, such as empirical
orthogonal functions (EOFs) or coupled patterns (CP) maximum covariance analysis (Donges et al., 2015). EOFs, CPs
and related methods rely on dimensionality reduction, whereas network techniques allow studying the full complexity
of the statistical interdependence structure and are not limited to linear and spatial-proximity connections. Also,
higher-order complex network measures (betweenness centrality, closeness centrality, participation coefficient)
provide additional information on the hidden structure of statistical interrelationships in climatological data (Donges et

al, 2015).

In this study, we propose a complex network-based method to identify the influential and expendable stations in a
rainfall network. Several methods in the field of complex networks have been proposed to evaluate the importance of
nodes (Chen et al.,, 2012; Hou et al,, 2012; Jensen et al., 2016; Kitsak et al., 2010; Zhang et al., 2013 and Hu et al., 2013),
however, the application and interpretation of complex network in hydrology is in infancy state. Degree (k),
betweenness centrality (B), and closeness centrality (CC) are the measures commonly used in complex networks (Gao
et al,, 2013). Studies in different disciplines have shown that degree and betweenness centrality often outperform other
node-ranking measures (Gao et al., 2013; Liu et al., 2016). We propose a novel measure, weighted degree-betweenness
(WDB), which combines k and B, to identify the stations providing the largest information to the network. Our main
objective is to develop a node ranking method using complex network theory that can be used to identify not only
influential but also the expendable stations in large hydrometric station networks. We do acknowledge that this study
is preliminary efforts to explore complex networks application in hydrology and many further studies are necessary
before the methodology can be considered a trustworthy optimization tool for measurement networks. Our aim is not
to question the credibility of operating stations, but to propose an alternative evaluation procedure towards optimal

design and redesign of observational hydrometric monitoring networks based on complex networks.
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2 Basics of Complex Networks
2.1 Network Construction

A network or a graph is a collection of entities (nodes, vertices) interconnected with lines (links, edges) as shown in Fig.
1. These entities could be anything, such as humans defining a social network (Arenas et al., 2008), computers
constructing a web network (Zlati¢ et al, 2006), neurons forming brain networks (Bullmore and Sporns, 2012),
streamflow stations creating a hydrological network (Halverson and Fleming, 2015) or climate stations describing a
climate network (Agarwal et al, 2018). Formally, a network or graph is defined as an ordered pair Z = {N,E};
containing a set N = {N;, N,, .... Ny}, of nodes together with a set E of links, {i, j} which are 2-element subsets of N. In
this work, we consider undirected and unweighted simple networks, where only one link can exist between a pair of
vertices and self-loops of the type {i, i} are not allowed. This type of network can be represented by the symmetric
adjacency matrix (Eq..1).

ay=f0 G0 €

Yo 1 {i,j} e E 1)

A;j = 1denotes a link between the it" and jt" station and 0 denotes otherwise. The adjacency matrix represents the
connections in the network. Fig. 1 is a simple representation of such a network, i.e., one with a set of identical nodes
(N;,where i = 1to 4) connected by identical links. In general, (large) networks of real-world entities with irregular
topology are called complex networks. The links represent similar evolution or variability at different nodes and can be
identified from data using a similarity measure such as Pearson correlation (Ekhtiari et al, 2019), synchronization

(Agarwal, 2019; Boers et al.,, 2019; Conticello et al., 2018) or mutual information (Palus, 2018).
(a) (b)

Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 with

four nodes and three links; (b) network N2 with four nodes and six links.

2.2 Event synchronization

Event synchronization (ES) has been specifically designed to calculate nonlinear correlations among bivariate time

series with events defined on them (Quiroga et al., 2002). This method has advantages over other time-delayed
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correlation techniques (e.g., Pearson lag correlation), as it allows us to investigate extreme event series (such as non-
Gaussian and event-like data sets) and uses a dynamic time delay (Ozturk et al., 2019). The latter refers to a time delay
that is adjusted according to the two time series being compared, which allows for better adaptability to the variable
and region of interest. Various extensions for ES have been proposed, addressing, for instance, boundary effects

(Rheinwalt et al., 2016) and bias by varying event rates.

In the following, we define events by applying an a percentile threshold at the signals x(t) and y(t). Threshold a

percentile is selected to trade-off between a sufficient number of rainfall events at each location and a rather high

Events in x(t) and y(t) are considered to coincide if they occur within a time lag i‘rﬁf{ which is defined as following

T = Min{tfy — 6 =t 1, Gy = Gyt =ty 3/2 (2)
where S, and S, are the total number of such events (greater then threshold «) that occurred in the signal x(t) and
y(t), respectively. The above definition of the time lag helps to separate independent events, which in turn allows to
take into account the fact that different processes may be responsible for the generation of events. We need to count the
number of times an event occurs in the signal x(t) after it appears in the signal y(t), and vice versa, and this is achieved
by defining quantities C (x|y) and C(y|x) where

Sx Sy

CEN =D D Ly )

=1 m=1

and

if 0<tf—ty <ty

(4)

Jxy = if tf=t)

1
1
2
0 else,

This definition of J,, prevents counting a synchronized event twice. When two synchronized events match exactly (t; =

t)), we use a factor 1/2 since they double count in C(x|y) and C(y|x). Similarly, we can define C(y|x) and from these

quantities we obtain
Clxly) + Cylx)

J(sx -2)(Sy-2)

Qyy is a normalized measure of the strength of event synchronization between signal x(t) and y(t). This implies Q,, =

Qxy =

(5)

1 for perfect synchronization and @Q,,, = 0 if no events are synchronized. After repeating this procedure for all pairs

(x # y) of grid sites, we obtain a similarity matrix. In this case, the similarity matrix for precipitation data is a square,
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symmetric matrix, which represents the strength of synchronization of the extreme rainfall events between each pair of

grid sites.

2.3 Node Ranking Measures

A large number of measures have been defined to characterize the behaviour of complex networks. We focus here on
those traditional and contemporary network measures which have been proposed to quantify the importance of nodes
in a network: degree k, betweenness centrality B (Stolbova et al., 2014), bridgeness Bri (Jensen et al., 2016), and degree

and influence of line DIL (Liu et al., 2016).
Traditional network measures

The degree k of a node in a network counts the number of connections linked to the node directly. The degree of any i
node is calculated as

k= =y (6)

N-1

where N is the total number of nodes in a network. For example, the degree of nodes 1, 2 and 4 in network N1 (Fig. 1a)
is 1 and for node 3 is 3. In the network N2 (Fig. 1b), all nodes have degree 3. The degree can explain the importance of
nodes to some extent, but nodes that own the same degree may not play the same role in a network. For instance, a
bridging node connecting two important nodes might be very relevant though its degree could be much lower than the

value of less important nodes.

The betweenness centrality B is a measure of control that a particular node exerts over the interaction between the
remaining nodes. In simple words, B describes the ability of nodes to control the information flow in networks. To
calculate betweenness centrality, we consider every pair of nodes and count how many times a third node can interrupt
the shortest paths between the selected node pair. Mathematically, betweenness centrality B of any i node is

.G, k) )
b= G, 1)

i#j#ve{V}

where o(j, k) represents the number of links along the shortest path between node j and k; while g;(j, k) is the number
of links of the shortest path running through node i. In network N1, B of node 3 is 3, i.e, node 3 can disturb the
information transfer between all of the three pairs 1-2, 1-4, 2-4, and for other nodes B = 0. In the network N2, all nodes
have B = 0 because no node can interrupt the information flow. Thus, node 3 is a critical node in the network N1 but

not in the network N2.

Contemporary network measures
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Jensen et al. (2016) developed the Bridgeness measure Bri to distinguish local centres, i.e. nodes that are highly
connected to a part of the network (e.g. highly correlated station in homogeneous region), from global bridge, i.e. nodes

that connect different parts of a network (Fig. 2, e.g. teleconnection between Indian rainfall and climate indices).

Bri is a decomposition of betweenness centrality B into a local and a global contribution. Therefore, the Bri value of
node i is always smaller or equal to the corresponding B value and they only differ by the local contribution of the first
direct neighbours. To calculate Bri we consider the shortest path between nodes outside the neighbourhood of
node i, N; (i). Mathematically, it is represented as

0; (j' k) (8)

Bril- = .
o(j, k
j&NG(i)VkéNG(i) (] )

The neighbourhood of node i (N;(i)) consists of all direct neighbours of node i. For example, in the networks N1 and
N2, all nodes (except node 3 in N1) have B = 0 hence Bri = 0. However, node 3 in the network N1 has all the nodes in

direct neighbourhood hence, it also has Bri = 0.
The degree and influence of line (DIL), introduced by Liu et al. (2016), considers the node degree k and importance of
line I to rank the nodes in a network:
ki—1 9
j=Ng¢®)
where the line between node i and j is ¢;; and its importance is defined as Iei]. = %Where U=0ki—p—D.(kj—p—1)
reflects the connectivity ability of a line (link), p is the number of triangles having one edge e;; and 1 = g + 1is defined

as an alternative index of line e;;. N; (1)) is the set of neighbours of node i (for detailed explanation see Liu et al., 2016).
The equation for DIL suggests that all the nodes having k; = 1 will have DIL; = 1, since the second term of the equation
will be zero. Hence, in the network N1 all nodes, except node 3, have DIL = 1. Node 3 has DIL = 3 equal to its degree,

since the second term is zero (all the connected nodes 1, 2 and 4 have k; = 1, hence le;; = 0). All the nodes in the

network N2 have DIL = 3.

3 Methodology

We will first propose a new node ranking measure that we call weighted degree-betweenness (WDB). We will then
compare the efficacy of this measure with the existing traditional and contemporary node ranking methods using two

synthetic networks.
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3.1 Weighted Degree-Betweenness

WDB is a combination of two network measures, degree and betweenness centrality We define WDB of a particular
node i as the sum of the betweenness centrality of nodeiand all directly connected nodes j,j = 1,2,3....k; in

proportion to their contribution to node i. The WDB of a node i is given by

where B; is the betweenness centrality of node i, and I; stands for the cumulative effect of the influence or contribution

of the directly connected nodes of i, which are j = 1,2,3, ..., k;, as

ki
Ii_

a L (ki +h=2) ()

where k; is the degree of node i, k; is the degree of the nodes j which are directly connected to node i.

3.2 Comparison with Existing Node Ranking Measures Using Synthetic Networks

In this section, we motivate the development of the new node ranking measure WDB by comparing it to existing
measures. Identifying nodes that occupy interesting positions in a real-world network using node ranking helps to
extract meaningful information from large datasets with little cost. Usually, the measures degree (k;) and betweenness
centrality (B;) are common node ranking metrics (Gao et al, 2013; Okamoto et al.,, 2008; Saxena et al., 2016). The
network measures k;, B; and WDB; of each node are given for an undirected and unweighted network Z = (N, E) with

8 nodes and 11 edges shown in Fig. 2 along with the node number.

In general, high degree nodes represent most connected (highly correlated) nodes in a network. Rheinwalt et al., (2015)
considered these highly correlated nodes of homogeneous precipitation community as local centre representing
homogenous precipitation patterns for that particular community. Agarwal et al., (2018) defined local centres as the
nodes having maximum intra-community links and minimum inter-community links based on the Z-P space approach.
However, degree alone cannot distinguish the roles of nodes in the sample network as seen for nodes 5, 7, and 8, which
have the same degree (ki=2), though node 5 serves as a bridge node linking the two parts of the network. In a larger
complex network, such bridge nodes have strategic relevance as most of the information can be accessed quickly just by
capturing those nodes. For example, Kurths et al, (2019) quantified the spatial diversity of Indian rainfall
teleconnections at different timescale by identifying linkages between climatic indices (e.g. El Nifio/Southern
Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation, and Atlantic Multidecadal

Oscillation) and seven Indian rainfall stations (bridge nodes).
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Betweenness centrality has a higher power in significantly discriminating different roles compared to k;. For example,
nodes 4 and 5 have the highest B; (B, = B; = 24) followed by node 6 (Bs; = 20). On the other hand, B; gives equal
scores to local centers (node 4), i.e., nodes of high k; to a single region, and to global bridges (node 5), which connect
detached regions. As mentioned, global bridges connect different parts of a network (e.g. teleconnection between
Indian rainfall and ENSO) and measuring and interpretation of spatially large variations, process identification,
interpolation of measurements and transferability of precipitation measurements across locations, would be restricted

in the absence of high B; nodes.

[3, 0, 14.4] [2, 0, 13.3]

(5, 24, 55.3]

5

(3, 20, 28]

[3, 0, 14.4]
[4, 24, 30]

[degree, Betweenness, WDB]
[2, 0, 13.3]

Figure 2: Synthetic network to explain the degree (k), betweenness centrality (B) and weighted degree-
betweenness (WDB) measures, with node number (1 to 8) followed by the degree, betweenness centrality
value and WDB value in brackets [k, B, WDB]. Degree and betweenness are limited in distinguishing the role of

different nodes in the network and centers from bridges, respectively.

The proposed measure WDB has higher discrimination power compared to betweenness centrality. Node 5 has the
highest WDB score and is ranked as the most influential node, which reflects its role as a global bridge node. WDB
distinguishes between nodes 1, 2, 3 (WDB = 14.4) and nodes 7, 8 (WDB = 13.3), which is important in case we need to

sequentially rank nodes.

We further evaluate WDB with the network measures Bri. For this comparison, we use the same synthetic network as
Jensen et al. (2016) shown in Fig. 3. Betweenness centrality once again assigns a smaller value to the global bridge
(node 6) than to the local centers (nodes 4, 7). Bridgeness expresses the higher importance of node 6 compared to
nodes 4, 7, however, it does not distinguish between all other nodes in the network (nodes 1, 2, 3...have Bri = 0).

Similarly, DIL misses representing the bridge nodes by assigning higher values to local centres. WDB ranks the nodes
9
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preferably following their role in the network as global bridges, local centers, and end nodes. For example, WDB is also

able to differentiate between nodes 4 and 7 for which the bridgeness measure provides equal scores.

[0, 0, 1, 30] [0, 0, 1, 12]
[0, 0, 3.5, 28.6] @

[27, 5, 4.8, 48.4]

16

[25, 16, 3, 58]

[27, 5, 3, 48.5]
[0, 0, 2, 7.3]

[9, 0, 3, 27]

[B, Bri, DIL, WDB]

[0, 0, 3.5, 28.6] [0, 0, 1, 34] [0, 0, 2, 28]

Figure 3: Synthetic network used to compare the network measures betweenness centrality, bridgeness, and
DIL with the proposed measure WDB. Numbers 1 to 11 are node counts, and values in brackets represent the
network measure values in order of [B, Bri,DIL,and WDB]. Node 6 is a global bridge node that connects two
sub-networks. Node 4 and 7 are hubs that are connected to most of the nodes in the sub-networks. Node 5, 10

and 11 are the dead-end nodes.

3.3 Evaluation of the Proposed Measure for a Rain Gauge Network

In the context of hydrometric station networks, we hypothesize that higher ranking nodes are more influential stations
in the network. Losing such stations could reduce the network stability and efficiency given their role as bridging
different communities (processes), capturing detailed process information compared to lower ranking stations and
among others. Stations with the lowest ranks in the network are the least influential and are seen as expendable
stations. To test this hypothesis, we apply the proposed node ranking measure to a hydrometric station network,
consisting of more than 1000 stations in Germany. The benefit of WDB is to capture the bridge nodes in the
hydrometric station network that are adequate to quantify the local and non-local rainfall variability, process

identification, interpolation of measurements and transferability of precipitation measurements across locations. In
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contrast, expandable stations correspond to sites of spatially extended coherent rainfall, surrounding a local centre
which represents the variability of such regions. Stations within such regions of coherent rainfall provide redundant
information and can be removed (except the local centre) without loss of information. The information loss caused by

removing stations is quantified via two measures: (a) decline rate of network efficiency, and (b) relative kriging error.
Decline Rate of Network Efficiency

The decline rate of network efficiency quantifies the decrease in information flows within a network when nodes are

removed as,

__ 1 Z (12)
77 - N(N _ 1) 7]1]
niinj
where N is the total number of nodes in a network. n;; is the efficiency between nodes n; and n;. n;; is inversely related
to the shortest path length: n;; = 1/d;;, where d;; is the shortest path between nodes n; and n;. The average path
length L measures the average number of links along the shortest paths between all possible pairs of network nodes. A

network with small L is highly efficient, because two nodes are likely to be separated by a few links only. The decline

rate of network efficiency u is defined as,

Nnew (13)
Nota

p=1-

where 7, is the efficiency of the network after removing nodes, and 1,4 is the efficiency of the complete network.

We hypothesise that the network efficiency reduces more strongly, when higher ranking stations are removed, e.g.

bridge nodes.
Relative Kriging Error

As second measure to evaluate the information loss, when stations are removed from the network, we use a kriging
based geostatistical approach (Adhikary et al., 2015; Keum et al., 2017). Kriging is an optimal surface interpolation
technique assuming that the variance in a sample of observations depends on their distance (Adhikary et al., 2015). The
algorithm estimates unknown variable values at unsampled locations in space, where no measurements are available,
based on the known sampling values from the surrounding areas (Hohn, 1991; Webster and Oliver, 2007). Ordinary
Kriging is used in this study for interpolating rainfall data and estimating the kriging error. The kriging estimator is

expressed as
- (14)
2'(i0) = ) wiZ(x)

i=1
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where Z*(x,) refers to the estimated value of Z at the desired location x,; w; represents weights associated with the
observation at the location x; with respect to xo; and n indicates the number of observations within the domain of the
search neighbourhood of xo for performing the estimation of Z*(x,). Ordinary Kriging is implemented through

ArcGISv10.4.1 (Redlands, CA, USA) (ESRI, 2009) and its geostatistical analyst extension (Johnston et al., 2001).

The kriging variance o2 (x,) in the Ordinary Kriging can be computed as (Adhikary et al., 2015; Xu et al., 2018)

n n
07 =, + Z wiy(he)  for Z w; =1
i=1 i=1

where y(h) is the variogram value for the distance h; hy; is the distance between observed data points x; and x;; p; is
the Lagrangian multiplier in the Z scale; h; is the distance between the unsampled location x, (where the estimation is
desired) and sample locations x;; and n is the number of sample locations.

The square root of the kriging variance, also named as kriging standard error (KSE), is used as a gauge network
evaluation factor. We estimate the increase in the kriging standard error across the study area when stations are
removed to evaluate the performance of the WDB measure in identifying influential and expendable stations in a large
network. Goovaerts (1997, p. 179) states.

The relative kriging error before and after removing the stations is denoted as

KSE,,,, — KSE,
R(%) = ";’(WS P old 100 (15)
o]

where KSE,,,,, denotes the standard kriging error after removing stations, and KSE,;, is the error for the original
network. We hypothesise that the increase in the relative kriging error is higher when removing high ranking stations.
To cover a broad range of rainfall characteristics, the error is calculated for different statistics, i.e. the mean, 90t, 95t

and 99t percentile rainfall and the number of wet days (precipitation > 2.5mm).

4 Application to an Extensive Rain Gauge Network

4.1 Rainfall Data

To evaluate the proposed measure in the context of the optimal design of hydrometric networks, we apply it to an
extensive network of rain stations in Germany and adjacent areas (Fig. 4). The data covers 110 years at daily resolution
(1 January 1901 to 31 December 2010). The 1229 rain stations in Germany (blue dots in Fig. 4) are operated by the
German Weather Service. Data processing and quality control were performed according to Osterle et al. (2006), and in
this study, we assume that data is free from measurement errors. 211 stations from different sources outside Germany
(red dots in Fig. 4) were included in the analysis to minimize spatial boundary effects in the network construction;

however, these stations were excluded from the node ranking analysis.

12



Elevation (m)
e High : 2040 77

B Low - -248.71

2 . o‘.'..

. S e . . .
s . . s o 2 .: 0 o . 5 . Legend
. e Pty e D « raingauges used for analysis _
b RT 0. s * raingauges outside study region used
0 30 60 * 1.20 180 240 7 to minimize the boundary effect
- —— — \liles Sources: Esri, USGS, NOAA

Figure 4: Location of rain stations in Germany and adjacent areas. Blue dots indicate stations lying inside
Germany that are used in the analysis. Red dots indicate stations outside of Germany that are used for network

construction only to minimize the boundary effect.

4.2 Network Construction

We begin the network construction by extracting event time series from the 1229 daily rainfall time series. The event
series represent heavy rainfall events, i.e., precipitation exceeding the @« = 95th percentile at that station (Rheinwalt et
al,, 2016). The 95t percentile is a compromise between having a sufficient number of rainfall events at each location
and a rather high threshold to study heavy precipitation. All rainfall event series are compared with each other using
event synchronization (section 2.2) which is the base for deriving a complex network. This results in the similarity
matrix Q, whereas the entry at index pair (i) defines synchronization in the occurrence of heavy rainfall events at

station i and station j (Eq. 5).
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Applying a certain threshold (8) to the Q matrix yields the adjacency matrix (Eq. 1). Here, 99?3, is a chosen threshold, and
A;j = 1denotes a link between the ith and jth sites, and 4;; = 0 denotes otherwise. The adjacency matrix represents a
rain gauge network, and complex network theory can subsequently be employed to reveal properties of the given

network.

Two criteria have been proposed to generate an adjacency matrix from a similarity matrix, such as fixed amount of link

density (Agarwal et al., 2018a; Stolbova et al, 2014) or global fixed thresholds (Jha et al, 2015; Sivakumar and

Woldemeskel, 2014). However, both criteria are subjective and may lead to the presence of weak and non-significant

links in the complex network. These non-significant links might obscure the topology of strong and significant
Q

connections. To minimize these threshold effects, we choose the threshold 6;"; objectively by considering all links in the

network that are significant. A link is significant (i.e. two stations are significantly synchronized) if the synchronization
value exceeds the Hi?j =95t percentile (corresponding to a 5% significance level) of the synchronization obtained by

two synthetic variables that have the same number of events but distributed randomly in the time series (i.e., both
event series are independent). We calculate ES for 100 pairs of such random time series and derive the 95t percentile
of the resulting ES distribution. Using this 5% significance level, we assume that synchronization cannot be explained
by chance, if the ES value between two stations is larger than the 95t percentile of the test distribution. Here, we select
5% significance level since it is a well-accepted criterion in general in statistics. To validate the results, we have
performed analysis for certain threshold range 90-99t percentile and observe that node rankings are robust for
comparatively high threshold. A detailed analysis has been presented in this study for 95t percentile for the sake of
brevity.

4.3 Decline Rate of Network Efficiency

In this section, we evaluate the ranking of stations derived from the proposed WDB measure using the decline rate of
network efficiency. The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked rain

gauges are interpreted as the most influential stations, and low ranked as expendable stations.

Firstly, we analyze the decline rate of network efficiency ¢ when one station is removed from the network. In each trial,
we remove only one station (starting with the highest rank). After n=1229 (number of nodes) trials, we investigate the
relationship between p and the node ranking measured by WDB. We expect an inverse relationship between y and
WDB: the higher the node ranking, the more important is that node, leading to a higher loss in network efficiency (Fig.
5). uis high for high-ranking stations and decays with node ranking. Interestingly, u < 0 for very low ranking stations,
i.e. the network efficiency increases when single, low ranking stations are removed. This is explained by the decrease of

the redundancy in the network when such stations are removed.
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Figure 5: Decline rate of network efficiency corresponding to the removal of each node in the rainfall network.
In each implementation, only one node is removed from the network according to the ranking with

replacement (bootstrapping).

Secondly, we remove successively a larger number of stations, from 1 to 123 stations (10%), considering three cases. In
case I, we remove up to the 10% highest ranking stations. This implies that in the first iteration we remove the top-
ranked station and in the second iteration we remove the top two stations and so on. Fig. 6 shows a clear increase in y
when more and more influential stations are removed. In case I, up to the 10% lowest ranking stations are successively
removed. The efficiency increases when the lowest ranking stations are removed. In case III, up to 10% stations are
randomly removed. Case III is repeated ten times to understand the effect of random sampling. In general, i increases
with removing random stations. However, the effect is much lower (in absolute terms) compared to the effect of
removing high or low ranking stations, respectively. The variation in u between the ten trials and within one trial is

caused by randomness. For example, y rises instantaneously when the algorithm picks up a high ranking station.
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Figure 6: Decline rate of network efficiency as a function of the number of stations removed from the network.
Case I: up to the 10% highest ranking stations are removed (black), case II: up to the 10% lowest ranking

stations are removed (red), case I1I: up to 10% randomly drawn stations are removed (10 trials) (blue).

4.4 Relative Kriging Error

As the second approach to assess the suitability of WDB for identifying influential and expendable stations, we analyse
the change in the kriging error when stations are removed from the network. We first estimate the kriging standard
error across the study area for all 1229 stations termed as KSE, ;4. Then, we measure the increase or decrease in the
kriging standard error across the study area when stations are removed terms as K,,.,,. The variogram is kept constant
during the network modifications. Similarly, to the evaluation using the decline rate of network efficiency in section 4.3,
three cases are investigated: removing the 10% highest ranking stations, removing the 10% lowest ranking stations,

and ten trials of removing 10% of the stations randomly.

The change in the kriging error is calculated for five characteristics, i.e,, mean, 90%-, 95%-, 99%-percentile, and
number of wet days (Table 1). For each case and rainfall characteristics we run model 100 times and the mean value of

R has been reported in Table 1.

Removing the 10% high-ranking stations (case I) leads to positive and high (R > 5%) relative kriging errors for all five
statistics considered, i.e. the kriging error increases substantially when these stations are removed. When the 10%
lowest ranking stations (case II) are not considered, the R values are small compared to those obtained by removing

high ranking stations. The relative errors in estimating the mean, percentile rainfall characteristics (90t and 95%) and
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number of wet days at ungauged locations are low (<5%) for the 10% lowest ranking stations, suggesting that these
stations do not contribute much information. Case III, i.e. removing stations randomly, shows mostly positive and high
(R > 5%) values, because high ranking nodes are removed as well, which leads to higher rates of R(%). However, in

future, to further advance the model weighted kriging method could be used.

Table 1: Relative kriging error for the three different cases. The relative kriging error for case Ill is the average

across ten trials. Stars indicate a high relative error >5%.

Case Removal of stations Relative kriging error R(%)

Mean 90thpercentile 95t percentile 99t percentile Wet days

I 10% highest ranking 11.7*  29.9* 73.3* 58.1* 62.1*
II 10% lowest ranking 0.09 4.2 3.7 8.1* 2.9
111 10% randomly selected  6.4* 23.3* 51.3* 46.6* 4.7

5 Discussion

Building on the young science of complex networks, a novel node ranking measure, the weighted degree-betweenness
WDB, is proposed. The proposed method based on degree and betweenness centrality not only account the local
(captured by degree) and global (captured by betweenness centrality) characteristics of nodes but also the cumulative

effect of the influence or contribution of the directly connected (localized) nodes.

Further, this study proposes to use WDB for supporting the optimal design of large hydrometric networks. We
compared our proposed measure WDB with other traditional (i.e. degree and betweenness centralities) and
contemporary (i.e. Bridgeness and DIL) measures by applying it to prototypical situations. The results show that degree
and betweenness centrality are unable in differentiating between different roles of a node in a network. Whereas
contemporary network measure Bridgeness and DIL showed higher power in discriminating different roles of nodes
but are restricted to provide a nuanced picture of marginal differences, for example between a local centre and a global
bridge. In our test framework, WDB seems to be comparatively more informative to distinguish the different roles of

nodes and provides a unique value to each node depending on its importance and influence in our test network.
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The preliminary application of the WDB to the hydrometric monitoring network shows its ability to rank the nodes in a
large hydrometric network in relation to their different roles, such as global bridge, local center, dead-end node, hub
(high degree), or non-hub (low degree). The resulting ranking can be used to identify influential and expendable
hydrometric stations. For example, removing low ranking stations in the German rain gauge network does not have
adverse impact on the network efficiency, and errors are within the permissible limit. This is explained by the
redundancy in the information that those stations provide, which in turn is attributed to the similarity between the
gauges due to the common driving mechanisms or spatial similarity as advocated by Tobler’s Law of Geography
(Tobler, 1970). The results of our analysis suggest that WDB identifies the expendable nodes correctly as shown by the
decline rate of efficiency and the insignificant change in relative kriging error. On the other hand, WDB awards stations
that provide unique information as it considers different aspects of the spatio-temporal relationships in the observation
network. However, this could be further strengthen using weighted kriging method or evaluating the results at

individual locations rather than for entire layer.

We further analyzed the characteristics of the stations with the highest ranks. We plot the network (Fig. 7a)
corresponding to the 10% (~122) high ranking stations, i.e. all the links originating only from these 122 stations. The
size and color of each diamond-shaped rain gauge mark their degree and betweenness centrality. All other stations are
plotted in the background without highlighting their degree and betweenness. We further plot the connections
corresponding to two high ranking stations (Fig. 7b) and two low ranking stations (Figure 7c) to ease interpretation.
Although the degree of these four stations is roughly the same, the connections of low ranking stations are regionally
confined, and they rather reflect the similarity in rainfall variability within (homogenous) regions. Highest ranked
stations are not governed by only local or global features but rather the quantitative combination of both (Figure 7a).
This observation could reflect the critical nodes in pathways of moisture transport, extreme rainfall propagation, or (in
case of betweenness centrality) a handful of stations which are positioned in-between the large communities and unlike
most stations they tend to possess intercommunity connections (Halverson and Fleming, 2015; Molkenthin et al,, 2015;
Tupikina et al,, 2016). We computed the geographical distance between all the connected raingauges and plot its
median (Fig. 7d) and 95 percentile (Fig. 7e) against the node ranking to test whether the long-range connections of
the selected nodes in Fig. 7b are a typical feature of high ranking stations. There is a clear association between rank and
distance: High ranking stations tend to show longer connections, implicitly affirming that the WDB measure has the

potential to capture highly influential nodes in the network.

Further, Fig. 7 is also in congruence with the results reported by the declining rate of kriging error in section 4.4 and
Table 1. Intuitively, “the kriging variance is expected to be greater at a location surrounded by data that are very
different from one another (Fig. 7b) than at a location surrounded by similarly valued (Fig. 7c) data” (Goovaerts, 1997;

Heuvelink and Pebesma, 2002). Hence, we notice higher kriging errors (Table 1) when removing influential stations

18



compared to randomly selected and low ranking stations. Based on our analysis, we suggest that ranking of nodes in
large networks has the major benefits that the new measure could add to the optimal design of hydrometric networks
or redesign of existing hydrometric networks. However, the impact of similarity measure, number of stations present in
the network, spatial boundary, data length and threshold needs to be investigated in detail before the method could be

5 wused further. Acknowledging that fact that complex network science is in infancy state at least in hydrology but had
grown manifold in other domains and offered powerful solutions. This showed the need that more intensive
application, new interpretable network measures and visualization tools are needed to find the modern solutions of
traditional hydrological problems.
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10 Figure 7: Connections and location of 10% (~122) highest ranking rain gauges (a). The size and colour of the diamond

marker indicate the degree and betweenness centrality of the rain gauges, respectively. Connections corresponding to
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two high ranking stations (b, station ID: 21320, 16149) and two low ranking stations (c, station ID: 26132, 20356).

Median (d) and 95t percentile (e) geographical distance plotted against node ranking.

6 Conclusions

This study proposes to apply complex networks to the optimization of hydrometric monitoring networks. In addition, it
proposes a novel node ranking measure for identifying influential and expendable nodes in a complex network. The
new network measure weighted degree-betweenness (WDB) combines the measures degree and betweenness
centralities and not only account the local and global characteristics of nodes but also the cumulative effect of the
influence or contribution of the directly connected (localized) nodes. Its comparison to existing measures demonstrates
that WDB is more sensitive to the different roles of nodes, such as global connecting nodes or local centres as it

considers different aspects of the spatio-temporal relationships in observation network.

We propose to use WDB for ranking rain gauges in hydrometric networks. Applying WDB to a network of 1229 rain
gauges in Germany allows identifying influential and expendable stations. Two criteria, the decline rate of network
efficiency and the kriging error, are used to evaluate the performance of the proposed node ranking measure. The
results suggest that the proposed measure is indeed capable of effectively ranking the stations in large hydrometric

networks.

We suggest that the proposed measure is not only useful for rain gauge networks but has also potential to support the
selection of an optimal number of stations for the prediction in ungauged basins (PUBs) and estimating missing values
by identifying influential stations in the region. Similarly, the proposed method can be applied to gridded satellite data
(rainfall, soil moisture), to locate the strategic points where stations should be installed to ensure a highly efficient
observation network. For instance, identifying influential grid points in the network of satellite data (rainfall, soil-
moisture) will guide where to install monitoring stations. However, acknowledging the preliminary work done in this
study, WDB application needs to be investigated in detail and this is currently out of the scope of the study domain. In
addition, follow-up studies addressing threshold and spatial boundary issues of the network, physical interpretable
measures and visualization are needed to prove the benefit of complex networks science in hydrometric network

design.
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Data availability

The precipitation data was provided by the German Weather Service. The data is publicly accessible at
https://opendata.dwd.de/. The data was pre-processed by the Potsdam Institute for Climate Impact Research (Conradt
etal, 2012).

Appendix
A. Spatially embedded network construction

Further, to illustrate the network construction from observations of a very reduced measurement network to a complex
network, we select randomly 11 rain gauge stations spread across the Germany. The geographical locations of these
stations (Table A1) are shown in Fig. A1 (a). We first compute the cross-correlation between each pair of two stations
(Table A1) and then apply 90t percentile threshold. Links exist between pair of stations having correlation value

greater than threshold (Fig. A1l (a)).

We further compute the WDB score for each station using Eq. 10 (Fig. A1 (b)). Stations 3 shows the highest WDB score
in this particular network consisting of 11 stations which signifies that station 3 not only account the local and global
characteristics of this particular stations but also the cumulative effect of the influence or contribution of the directly
connected stations. For instance, it seems like two strong modular (homogeneous) regions (stations 1,2,3, 6 & 8 and
3,4,5,7,9,10 & 11) are present within the network bridged by station 3. This node particularly very important in a
measurement network in the context of measuring process, process identification or interpolation of measurements.
For instance, at the particular location two different processes might be dominating (snow and rainfall). Other
interpretation could be that the implicit assumption of the complex network is that station 3 is representative for a
larger area than other stations. But again, it is challenging to quantify at this stage and indeed follow up studies are

needed to prove the benefit of complex networks science in hydrometric network design.

Table A1: Cross-correlation values along with the geographical location of ten rain gauges selected for network
illustrative purposes.

Nodes Lat. Long. 1 2 3 4 5 6 7 8 9 10 11

1 1.00 0.6 050 032 033 059 041 042 027 032 024 100 046
2 0.46  1.00 058 038 038 043 039 054 030 040 027 046 100
3 050  0.58 100 041 051 045 049 048 035 050 036 050 038
4 032 038 041 100 045 027 030 031 027 041 029 032 038
5 033 038 051 045 100 030 041 033 040 064 046 033 038
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[56] [15]

Figure Al: Sample rain gauge network constructed using cross-correlaton similairy measure and 90t percentile
threshold only for illustrative purproses. Autocorrelation (digonal) has been ignored in the network costruction.

Numbers 1 to 11 are node counts, and values in brackets represent the WDB values.

B. Kriging variogram modelling

The kriging modelling mandates a theoretical variogram function that is to be fitted with an experimental variogram of
the observed data. The experimental variogram (y(h)) is calculated from the observed data as a function of the distance
of separation (h) and is given by (Adhikary et al.,, 2015)
N(h)
h—le' Y())* .
Y0 = gy 21O -YO)]
i=

where N(h) is the number of sample data points separated by a distance h; , i and jrepresent sampling locations
separated by a distance h; Y (i) and Y (j) indicate values of the observed variable Y, measured at the corresponding
locations i and j respectively. The theoretical variogram function (y * (h)) allows the analytical estimation of variogram

values for any distance and provides the unique solution for weights required for kriging interpolation.

The variogram models are a function of three parameters, known as the range, the sill, and the nugget (Fig. A2 (a)). The
range is typically the distance where the models first flattens out, i.e. station locations separated by distances closer
than the range are spatially auto-correlated, whereas locations farther apart than the range are not. The value of y at
the range is called the sill. The variance of the sample is used as an estimate of the sill. Nugget represents measurement

error and/or microscale variation at spatial scales that are too fine to detect and is seen as a discontinuity at the origin
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of the variogram model. The ratio of the nugget to the sill is known as the nugget effect, and may be interpreted as the
percentage of variation in the data that is not spatial. The difference between the sill and the nugget is known as the
partial sill.

The values of all parameters and resulting variograms for daily mean, 90t percentile, 95t percentile, 99t percentile
precipitation and number of wet days are reported in Table A2 and Fig. A2 (b-d), respectively. The variogram has been
kept constant during network reductions.

(a) Typical variogram model (b) Mean
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Figure A2: Typical variogram model (a) and fitted variogram models for mean (b), 90t percentile (c), 95t percentile

(d), 99t percentile (e) precipitation and number of wet days (f).

Table A2: Parameters values for the fitted variogram.

Parameters Mean 90t percentile 95th percentile 99th Wet days
percentile

Nugget 0.0056 0 0 0 0.805

Range 0.0781 0.0782 0.0782 0.0782 2.361

Partial sill 0.102 1.055 2.140 6.808 2.761
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