Interactive comment on

“Optimal Design of Hydrometric Station Networks Based on Complex Network Analysis” by Ankit

Agarwal et al. (response letter -2)

Editor’s comments

This is the second version of the manuscript describing how to use network analyses for optimizing the
design of station networks. This is a novel approach for the ranking of stations of a measuring network that
may be used for instance to improve a network structure or reduce the number of stations. Two reviewers
have evaluated this revised version. Reviewer #1 mentioned that the presentation and validation of the
proposed approach presents major defaults and limitations that have not been solved in this revised version,
and asked to reject the manuscript. Reviewer #2 mentioned that the manuscript has been improved, but still
asked for major revisions. The method and results deserve an in-depth critical analysis before they can be
published. I therefore would like to give a third and last chance for the authors to make substantial corrections

in order to give responses to all points raised by both reviewers.

We apologize that we haven’t been able to clarify all issues in our previous revision. We also thank the editor
for his critical and supportive suggestions. Your feedback is vitally important to increase the readability of the

work.
We have responded (in black) to each reviewer comment (in red).

More detailed analysis and discussion on the ranking method and criterions, such as the characteristics of the

stations with the resulting highest ranks (see Reviewer #1).

A detailed analysis on the individual stations resulting from ranking has been added to the revised

manuscript (section 5, Fig.8).
Detailed analysis of the validation procedure (see Reviewer #1).

A detailed analysis of the two validation procedures (a) decline rate of network efficiency and (b) relative
kriging error was presented initially. On being asked by the reviewer, we have further added a detailed
discussion on validation using the leave-one-out approach in the first response letter (submitted on 21 Dec
2018, validated on 02 Jan 2019). We also remarked in the response letter that “the real leave-one-out
approach is different and used mainly for validation of the models. However, here the above-done analysis
(leave-one-out) only mimic what has been already shown by removing a bunch of raingauge from the network.
Hence authors strongly suggest not to include this analysis in the revised version. Otherwise, it might affect the

readability of the manuscript” on which we did, unfortunately, not get any response from the reviewer.

Further, a new detailed analysis regarding the theoretical kriging error has been added in the Appendix B.



Application of complex network analyses to a precipitation network (see Reviewer #2): further analysis on
threshold effects, the methodology for network optimization and the added-value in comparison to other

methods, uncertainty analysis, etc.

We are grateful to the reviewer for the detailed comments and suggestions, which have been adopted in the
revised manuscript. Changes to the manuscript include detailed discussion on the thresholding (section 4.2),
rephrasing text to be more easily comprehensible of methodology (section 2.3), and adding text on the
advantages of the proposed methodology (section 1, p3/L3-25), a statement regarding data uncertainty

(section 4.1). More specific changes are outlined below.

Anonymous Referee #1

The manuscript presents a novel approach for the ranking of stations of a measuring network that may be
used for instance to improve a network structure or reduce the number of stations with the minimum loss of

information.

We thank the reviewer for acknowledging the potential of the method in hydrology and his/her critical and

supportive suggestions.

The presentation and validation of the proposed approach present nevertheless some major defaults and
limitations that have not been solved in this revised version. First, the ranking method and criterions are
defined without explicitly considering the objectives of this ranking procedure: identifying the stations

providing the largest or the least additional information to the network.

We agree with the reviewer that the objective of the node ranking measure was not highlighted explicitly in
the manuscript though it was mentioned several times implicitly with the help of the synthetic networks and

“«

interpreted results, see for example on page 18, line 17: “.. it awards stations which provide unique
information which cannot be generated from other stations in the network ...”. In the revised version we have
highlighted the objective of the node ranking measure explicitly in the abstract (P1—20-23) and in the

introduction (P3-4/L33).

“We propose a new node ranking measure, the weighted degree-betweenness (WDB), to identify the stations
providing the largest additional information to the network. The highest ranks of the WDB-ordered raingauges

correspond to the most influential stations in the network.”

As far as I could understand from the manuscript, the ranking is based to some kind of correlation measure -
event synchronization. A priori, the stations that appear to be “synchronized” with the largest number of
other stations will have the highest ranks. If it is so, the results will contradict the objectives: identify stations

providing additional information. But, the proposed ranking method is more complex.



It seems that the reviewer has misunderstood the proposed WDB measure. The similarity measure event
synchronization is used here to construct the rainfall network, which is the base for various network
measures used to rank the nodes in the network. Hence, event synchronization is not used to derive the
station ranking. To rule out the possibility of misunderstanding, we have added the following sentence to the

manuscript (P14/L13-14):

This question repeats a previous concern of the reviewer in his/her first and second reviews: “If I understand
correctly stations with strong similarities with other stations will have a large number of connections and hence
a high WDB value and conversely”. As we already stated in our previous response, the proposed ranking
measure (WDB) is not simply related to the number of links. The ranking of the nodes will depend on their
information contribution to the network as expressed by the betweenness centrality, see for example, on
page 18, line 17: “... it awards stations which provide unique information which cannot be generated from other
stations in the network ...” The difference between the number of links and our new measure WBD is clearly
presented through the artificial network example in Fig. 3. For instance, node 5 has the highest WDB score
but the lowest decree score. This means that the most important node (according to our measure) has the
lowest number of links in the network. In our revised manuscript, being asked by reviewer 1, we have

highlighted a scenario (Fig. 3) which suggests that ranking is independent of the number of links.

The authors should at least (!!) try to analyze the characteristics of the stations with the resulting highest

ranks. Figure 8 which has been added is one first, but not sufficient step into this direction.

In the revised version, we have analyzed rainfall statistical characteristics and network measures to highlight

the characteristics of 10 % (~122) highest ranking stations (P18-19/L16-25, L1-10).
Characteristics of high and low ranking stations

We further analyse the characteristics of the stations with the highest ranks. We plot the network
(Figure 8a) corresponding to the 10% (~122) high ranking stations, i.e. all the links originating only from these
122 stations. The size and color of each diamond shaped raingauge mark their degree and betweenness. All other
stations are plotted in the background without highlighting their degree and betweenness. This sub-network is
still difficult to interpret, hence we further plot the connections corresponding to two high ranking stations
(Figure 8b) and two low ranking stations (Figure 8c). Although the degree of these four stations is roughly the
same, there is a striking difference in the connections between low and high ranking stations. The connections of
low ranking stations are regionally confined, and they rather reflect the similarity in rainfall variability within
(homogenous) regions. The plot of high ranking stations in Figure 8a highlights that high rank stations are not
limited to high degree or betweenness stations. The latter measures represent the homogeneity (high degree =
many similar nodes of similar dynamics) and the path in the network, respectively, whereas WDB represents the
connectiveness. This could reflect the pathways of moisture transport or extreme rainfall propagation, or (in

case of betweenness) the separation of similarly behaving regions (Molkenthin et al, 2015; Tupikina et al,



2016). To test whether the long-range connections of the selected nodes in Figure 8b are a typical feature of high
ranking stations, we compute the geographical distance between all the connected raingauges and plot its
median (Figure 8d) and 95% percentile (Figure 8e) against the node ranking. There is a clear correlation
between rank and distance: High ranking stations tend to show longer connections, implicitly affirming that the
WDB measure has the potential to capture highly influential nodes in the network.
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Figure 8: Connections and location of 10% (~122) highest ranking rain gauges (a). The size and color of the
diamond marker indicate the degree and betweenness of the raingauge. Connections corresponding to two high
ranking stations (b, station ID: 21320, 16149) and two low ranking stations (c, station ID: 26132, 20356).
Median (d) and 95 percentile (e) geographical distance plotted against node ranking.

Second, the validation procedure, based on estimated kriging standard error variances (or standard

deviation) is not satisfactory (table 1). By the way, the definition of this kriging standard error is missing in

the manuscript.

In the present study, the proposed ranking algorithm has been used on various synthetic and one real-world

rainfall data. The results or specifically the ranking of raingauges has been checked with two different criteria



(i) decline rate of network efficiency, and (ii) relative kriging error in different hydrological parameters
(mean, percentile and wet days). Both the criteria used for validation are in congruence with the interpreted

results.

In the first revision, the reviewer asked to provide a more detailed analysis using the leave-one-out approach,
though the reviewer agreed that leave-one-out is computationally expensive but necessary. In the first
response letter we have performed a leave-one-out approach on the selected variables (mean rainfall,
percentile rainfall and wet days) and described the results. We noticed that all the obtained results with the
leave-one-out approach are in coherence with the previously reported results. However, the leave-one-out
approach does not add new information and, hence, we suggest not to present the leave-one-out approach in

the main text but in the appendix.

The detailed explanation of kriging and kriging standard error with the definition and mathematical formulas
is already given in the first revised version of the manuscript (section 3.3.2, more specifically on page 13, line

10).

Since the variogram do not vary with the network and location, these theoretical kriging errors do only
depend on the network structure (density and distribution of inter-distances between stations) and most
probably also on the variance of the measured field for the considered variable. The authors should verify

what is precisely computed in the kriging software they use.

Removing 10% of the stations from the network, reduces the network density, and should result in
an increase of the “kriging error” with a magnitude provided by the random removal tests. An increase of the
variance, as observed with the removal of the 10% lower ranked stations, is hardly possible except if the
variance of the observed field is decreased. I suspect that the 10% lower ranked stations may correspond to
stations with atypical measurements contributing significantly to the variance of the observed field: i.e.
stations providing important additional information. If this is confirmed, the proposed ranking methods lead

to aresult that is exactly the opposite of its objectives.

We thank the reviewer for highlighting the need for discussion on the theoretical kriging error dependence.
However, we had difficulty in understanding the reviewer’s concern. In the above highlighted sentence “An

increase (!) of the variance....” Does reviewer mean decrease?
However, based on our understanding we have tried to address the concern of the reviewer.

In the revised version we have added new discussion in section 3.3.2 and Appendix B. First, we have shown
that the generated kriging model is spatially stationary and second we confirm that on removing stations
either high ranking, low ranking or randomly selected the variance of the measured field will increase (not
decrease!!). Also, with the help of a new added Fig.8 we have tried to explain why relative kriging error is

insignificant on removing low ranking stations.



Goovaerts (1997, p. 179) states that the theoretical kriging error is dependent on the covariance model and data
configuration whereas it is independent of data values. In a given scenario of constant variogram during
network modifications (as mentioned on P17/L7), theoretical kriging error only depends on data configuration
(density and distribution of inter-distances between stations). To rule the possibility that these theoretical
kriging errors also influenced by data values or spatial variance we double check the spatial stationarity of the
measured field of the considered variable. Spatial stationarity means that local variation doesn’t change in
different areas of the map. For example, 2 data points 5 meters apart in different locations should have similar
differences in your measured value. Kriging is not optimal for spatial abrupt changes and breaks lines. In
literature, two methods have been proposed to check data’s spatial stationarity with a Voronoi map symbolizing

by entropy (variation between neighbours) or standard deviation and look for randomness in the measured field.

The first check has been performed in the ArcGIS (Geostatistical Analysis >Explore Data —>Voronoi
Map) on all the considered variables (mean, wet days, 90th-, 95th-, 99th percentile). The corresponding results
for entropy Voronoi maps show the data set is looking adequately stationary (Appendix B). However to quantify
it, the second check has been performed in the Matlab using run test for randomness with the null hypothesis
that the values in the data vector come in random order, against the alternative that they do not. The run test for
randomness on all the considered variables rejects the null hypothesis with a p-value less than .0001. Hence, both

methods confirm that kriging model used is spatially stationary, one of the mandatory condition to perform
kriging.
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Figure B1: Representation of mean (a), 90" percentile (b), 95™ percentile (c), 99t percentile (d) and wet days (d) spatial
stationarity with a Voronoi’s map symbolising by entropy (variation between neighbours) using ArcGIS.


https://gisgeography.com/voronoi-diagram-thiessen-polygons/

Further, we would like to bring to attention that the main motivation was to see, how removing the low
ranking and high ranking stations impact the kriging error variance. Hence in the used kriging software, we
have computed the square root of the kriging variance, also named as kriging standard error (KSE) (P12/L14)
corresponding to the statistical rainfall measures (mean, wet days, and percentile rainfall) for the original
network and reduced network. We confirm that on removing stations either high ranking, low ranking or
randomly selected the variance of the measured field will increase (not decrease!!). Intuitively, “the kriging
variance is expected to be greater at a location surrounded by data that are very different from one another (Fig.
8b) than at a location surrounded by similarly valued (Fig. 8c) data” (Goovaerts, 1997; Heuvelink and Pebesma,
2002). And hence, we notice high kriging error in case of influential stations comparative to random and low
ranking stations. We further stress out that relative kriging error in case of removing low ranking stations are
insignificant rather than highlighting that it has decreased, as mentioned earlier (corresponding text has been

changed in the discussion).

This is the reason why I asked the authors to provide the variance of the various tested fields in table 1 and to
conduct leave-one-out tests to compute real interpolation errors for the various tested networks. None of

these important results have been provided in the revised version or in the responses of the authors.

We are surprised by this statement. In the submitted response letter from 21 Dec 2018 validated on 02 Jan

2019, we have considered both suggestions and presented the corresponding results in the highlighted text.

We also remarked in the previous response letter that “the real leave-one-out approach is different and used
mainly for validation of the models. However, here the above-done analysis (leave-one-out) only mimics what
has been already shown by removing a bunch of raingauge from the network. We would again like to highlight
that the kriging and network degree would only measure the homogenous regions, but WDB measures the
connectivity (moisture pathways and separations between different regions) that are not identifiable with the
kriging method. Hence authors strongly suggest not to include this analysis in the revised version. Otherwise, it

might affect the readability of the manuscript” on which we did not get any response from the reviewer.

To my opinion, the presented method and results may be interesting, but raise some major questions that
have not been answered by the authors in the revised version of their manuscript. The method and results
deserve an in-depth critical analysis before they can be published. 1 therefore suggest rejecting the

manuscript in its present form.

In our opinion, the doubts raised are on the one hand a consequence of a misunderstanding by the reviewer.
In the revised version the confusion between the two measures degree (number of connections) and WDB
has been rectified by being even more explicit in the description of the method (Fig. 3). On the other hand, we
feel that the reviewer is mostly concerned with the kriging method. In the submitted response letter from 21

Dec 2018 we have considered all the suggestions leave-one-out approach, variogram modelling (Appendix A),



influence of variance on theoretical kriging error (Appendix B) and detailed representation of the station

resulting from high rank (Fig.8) and corresponding results are presented in discussion sections.

We also would like to highlight to the reviewer that the kriging has been used as an additional validation
measure for the proposed ranking measure. It is not the core aspect of the work and, hence, being too focused
(critical) on the kriging method would deviate from the major objective of the study. It is worth mentioning
here that the kriging and network degree would only measure the homogenous regions, but WDB measures
the connectivity (moisture pathways + separation of regions) that are not identifiable with the kriging

method.

Anonymous Referee #2

This is the second version of the manuscript describing how to use network analyses for optimizing the
design of station networks. The manuscript has been improved, and although I am far from convinced by the
application of the methodology in hydrology, I think the idea and the application still has a novelty that makes

it worth publishing after another revision.

We thank the reviewer for acknowledging the efforts of the authors and constructive summary of our

manuscript and also for his critical and supportive suggestions. Your feedback is highly appreciated.
This manuscript has two parts:

e The new node ranking measure, which can be applied to any network analyses
e Application of complex network analyses (and the new node ranking measure) to a precipitation

network.

For the first part, it seems the authors have introduced a new and improved measure, and although not a
network expert myself, I think they have documented well the usefulness. For the second part, I am still not
convinced by the usefulness of the methodology for meteorological networks. However, I think the idea of
using it here is interesting enough to merit publication anyway. I have a few suggestions below for analyses

and figures that could convince me more, but some of them might fit better in a follow-up paper.

The authors again appreciate the detailed comments and suggestions, which have been adopted in the revised

manuscript.

Changes to the manuscript include the rewriting of sentences to make easily comprehensible, a more detailed

discussion on thresholding issue, network measures. More specific changes are outlined below.

Figs 3 and 4 appears to show a spatial network. However, the networks analyzed here are made from
correlations, therefore it would be interesting to see this transformation, and how spatial patterns of station

proximity are kept or distorted.



The examples presented in Fig. 3 and 4 are synthetic networks which can be used to demonstrate any specific
interactions of entities such as in a citation network, coauthor network or friendship network. They do not
represent spatial patterns. In the present study they are used to explain the interaction of raingauges, based
on observed data, which is indeed a spatial network. Physically the link between two raingauge nodes
corresponds to the shared/common climate forcing which derives them. It is important to note that for the

network construction the geographical proximity is not taken into account.

However, there are certain scenarios where the geographical proximity could be important and need to be
properly accounted for. For instance, a study dealing with grid data of the entire globe where the distance
between grid points at the poles is significantly lower than in the equatorial region. To account for the bias
caused by the geographical proximity, so-called node splitting network measures have been proposed
(Heitzig et al.,, 2012). However, the considered region and stations in our study is far from such scenario and

hence this issue is not highlighted in the manuscript.

The authors mention the threshold effect in the answers, but I don’t think it is enough just to mention that
threshold effects also exist in other fields. I think this is an issue that should be added to the discussion of the

manuscript.

We thank the reviewer for highlighting the need for discussion on thresholding issue. In the revised version

we have added and highlighted the thresholding issue in section 4.2

In literature, Two criteria have been proposed to generate an adjacency matrix from a similarity matrix, such as
fixed amount of link density (Agarwal et al, 2018a; Donges et al, 2009a; Stolbova et al, 2014) or global fixed
thresholds (Jha et al, 2015; Sivakumar and Woldemeskel, 2014). However, both criteria are subjective and may
lead to the presence of weak and non-significant links in the adjacency matrix or network. These non-significant
links might obscure the topology of strong and significant connections, Hence, stringent threshold criteria are
needed, such as multiple testing (Agarwal, 2019; Boers et al, 2019). Alternatively, networks should be
characterized across a broad range of thresholds. Furthermore, all self-connections or negative connections

(anti-correlation), if any, should be removed (Rubinov and Sporns, 2010).

To minimize these threshold effects, we choose the threshold GLQ] objectively by considering all links in the

network that are significant. A link is significant (ie. two stations are significantly synchronized) if the
synchronization value exceeds the 95th percentile of the synchronization obtained by two synthetic variables
that have the same number of events positioned randomly in the time series. We calculate synchronization for
100 pairs of random time series from which we derive the 95th percentile of synchronization. Using a 5%
significance level, we assume that synchronization cannot be explained by chance, if the ES value between two
stations is larger than the 95th percentile of the test distribution. Here, we select 5% significance level since it is

the well accepted criteria for the network construction.



The methodology is presented as an alternative method for network optimization. But there is little
discussion about the alternatives, and what advantages this particular method could provide. An alternative
method is to optimize based on the kriging error. My guess is that the proposed method might be better for
observations which are not only connected by spatial proximity, or where the effect of spatial proximity
differs in different part of the study domain, but this would have to be properly

described/discussed/analyzed.

We agree that more details about the advantages of the complex network approach are needed. The details

are now mentioned in the revised version on page 3, line 3.

It is now highlighted that “We use complex networks since it is a powerful approach in extracting information
from large high-dimensional hydrological datasets (Donges et al, 2009a; Cohen and Havlin 2010). This non-
parametric method allows investigating the topology of local and non-local statistical interrelationships. An
example for non-local connections in a climate network are global influence of El Nino Southern Oscillation
(ENSO) on rainfall (Agarwal, 2019; Ferster et al,, 2018) and Atlantic Meridional Overturning Circulation (AMOC)
on air surface temperature (Caesar et al, 2018) via teleconnections and ocean circulation respectively. The
method allows to represent the dataset in form of spatially embedded network and visualize the connections.
Once the spatial network of stations is set up, one might use network measures (e.g. degree, betweenness
centrality) to analyse a range of aspects, such as community structure unravelling dominant climate modes
(Agarwal et al, 2018a; Fang et al, 2017; Halverson and Fleming, 2015; Tsonis et al, 2011), catchment
classification indicating hydrologic similarity (Fang et al, 2017), short and long-range spatial connections in
rainfall (Agarwal et al, 2018a; Boers et al, 2014b; Jha et al, 2015; Stolbova et al, 2014) and spatio-temporal
hydrologic patterns (Halverson and Fleming, 2015; Konapala and Mishra, 2017). Further, a recent study by
Donges et al, (2015) pinpoints that complex network analysis can complement classical Eigen techniques, such
as empirical orthogonal functions (EOFs) or coupled patterns (CP) maximum covariance analysis. They showed
that EOFs, CPs and related methods rely on dimensionality reduction, whereas network techniques allow
studying the full complexity of the statistical interdependences structure and are not limited to linear and
spatial-proximity connections. Also, it has been shown that higher-order complex network measures
(betweenness centrality, closeness centrality, participation coefficient) provide additional information on the
higher-order structure of statistical interrelationships in climatological data (Donges et al, 2015). For example,
the network degree represents similar information as the first eigenmode of an EOF analysis (Donges et al,
2015), in-out degree (incoming links and outgoing links in directed network) represents spatial-temporal
propagation (Boers et al, 2014a), and betweenness centrality represents a spatial separation between flows or a
handful of stations which are positioned in-between the large communities. These stations belong to large
communities, but unlike most stations they tend to possess intercommunity connections ((Halverson and

Fleming, 2015; Molkenthin et al,, 2015; Tupikina et al,, 2016).


https://link.springer.com/article/10.1007/s00382-015-2479-3#CR18

Measurement uncertainty seems not to be mentioned at all. This would most likely have an effect of the
results. I can understand that this might be too complex to address properly in this manuscript, but at least

the assumption about no measurement errors should be added to the text somewhere.

We have added this assumption in section 4.1 (P13/L26) which reads that “data processing and quality
control were performed according to Osterle et al. (2006), and in this study we assume that data is free from

measurement errors”.

[ think Fig 2 is somewhat unclear. If | understand it right, the temporal distance between events in the two

figures in the middle should reflect the first figure, but [ don’t see that this is the case.
We thank the reviewer for noticing a plotting mistake, which has been rectified with the new figure.
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Figure 2: Schematic of network construction using event synchronization (ES). Equations and symbols are

given in the main text.

In 2.3, it is somewhat unclear which of the measures that are part of the methodology, and which are the

measures that are used for comparison. Maybe Fig 3 could be used for explaining some of the concepts here?

We have modified the section 2.3 clearly listing the traditional and contemporary network measures (P6-
7/L11-L1-3). Traditional network measures which are the part of the methodology has been discussed in the

Fig.3 following which Fig.4 compare the WDB with the contemporary network measure.

The wording seems to be based on the concept of network analyses. For example on P8, L17, it is referred to
flow of information. What is really the flow of information in this case? Contrary to computer networks or
social networks, the correlation of a variable between two observation locations is independent of the “flow”
through a station between them. I think the authors should really consider the wording when they describe a

network that is based on correlation rather than physical nodes with direct links.

The reviewer has highlighted an important point. Indeed, a network reconstructed by correlation measures,

as in our case, often has no physical equivalence. A link represents a statistically similar behavior between



nodes, but not necessarily a real physical link. In some applications, such a reconstructed link can represent a
real physical link, such in brain networks. In climate networks, the network topology is a useful tool to
statistically analyze spatio-temporal patterns. Network measures represent certain aspects of the spatio-
temporal field. For example, the network degree represents similar information as the first eigenmode of a
EOF analysis (Donges et al, 2015), in-out degree (incoming links and outgoing links in directed network)
represents spatial-temporal propagation (Boers et al, 2014) , and betweenness centrality represents a
handful of stations which are positioned in-between the large communities and unlike most stations they
tend to possess intercommunity connections (Halverson and Fleming, 2015; Molkenthin et al.,, 2015; Tupikina
etal, 2016). The proposed measure WDB represents the importance of nodes for the information flow within
the general context of complex networks. Within the specific application on rainfall networks, it describes a
very specific property of the spatio-temporal patterns: the importance of a certain location for the exact
description of the spatio-temporal patterns, such as boundaries between differently behaving regions. Again,
WDB does not emphasize such locations within a homogenous region, but more the differences between

homogenous regions as shown in Fig. 8. Therefore, it differs from other methods such as kriging.

Regarding the kriging error, it is only written that that this is estimated “across the entire study area”. I would
expect “across the study area” to mean a grid covering Germany, but the authors should add some more

details about how many and how they selected the evaluation locations.
The word entire has been deleted (section 3.3.2, P12/L18).

Further details “how many and how we have selected evaluation locations” asked by the reviewer are indeed
important, however, this section was dedicated to only introduce kriging briefly. All such information

(highlighted below) is already existing in section 4.4.

The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked rain gauges are
interpreted as the most influential stations, and low ranked as expendable stations. Three cases are investigated:
removing the 10% (total 122 stations) highest ranking stations, removing the 10% lowest ranking stations, and

ten trials of removing 10% of the stations randomly.

P17L10-11 I had a quick look at the cited paper, and I don’t see that they describe how M out of N stations can

reduce the uncertainty.
We apologize for the writing style which confused the reviewer. We have changed the text as follows

(P17/L22).

The study by Villarini et al, (2008) proposed a simple rule for the number of rain gauges required to estimate
areal rainfall with a prescribed accuracy. In such scenarios, WDB measure could be applied to identify

prescribed number of influential stations.



Minor edits

P3L14 “This interactionS is” - remove S or change This is.

Corrected (P3/L21).

P4L5 remove space after Bullmore and Sporns, 2012)

Corrected.

P7L4 hybrid nodes are poorly defined, maybe make a reference to Fig 3 here?

Done.

P9L4 I'm sure there is a fairly good English translation for Grosswetterlage.

Done.

Fig 3 caption Most of this is a description that belongs (and mostly already is) in the main text.
Authors agree with the reviewer and correspondingly caption has been shortened in the revised version.

Many places: I'd say that the “relative kriging error” should rather be referred to as something like the

“relative increase of kriging error”.

Done.

P17L9 “in the region,”

Corrected.

P17 Caption Fig 8 “showing on Germany” - should be rephrased
Done.

P19L5-6 This sentence is first of all unclear. Additionally, many variogram models have a range parameter

that is not equal to a distance where the correlation is zero.

Corrected.
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Abstracts

Hydrometric networks play a vital role in providing information for decision-making in water resources management. They
should be set up optimally to provide as much and as accurate information as possible, and at the same time, be cost-
effective. Though, the design of hydrometric networks is a well-identified problem in hydrometeorology and has received
considerable attention still it has scope for further advancement. In this study, we use complex network analysis, defined as
collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The
approach can support the design and redesign of hydrometric station networks. The science of complex networks is a
relatively young field and has gained significant momentum in the last years in different areas such as brain networks, social
networks, technological networks or climate networks. The identification of influential nodes in complex networks is an
important field of research. In particular, we develop a new node ranking measure, the weighted degree-betweenness
(WDB), to identify the stations providing the largest additional information to the network. The highest ranks of the WDB-
ordered raingauges correspond to the most influential stations in the network. It is compared to previously proposed
measures on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across
Germany to check its applicability in the optimal design of hydrometric networks. The proposed measure is evaluated using
the decline rate of network efficiency and the kriging error. The results suggest that it effectively quantifies the importance
of rain stations. The new measure is very useful in identifying influential stations which need high attention and expendable

stations which can be removed without much loss of information provided by the station network.

Keywords: Rainfall network, complex networks, event synchronization, kriging error.

1 Introduction

Hydrometric networks monitor a wide range of water quantity and water quality parameters such as precipitation,

streamflow, groundwater, or surface water temperature (Keum et al., 2017). Adequate hydrometric monitoring is one of the
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first and primary tasks towards efficient water resources management. Information from hydrometric stations plays a crucial
role in, among other things, flood estimation, water budget analysis, hydraulic design and assessing climate change. Even
after the advent of remote sensing based information, such as precipitation products, in-situ observations are considered as

an essential source of information in hydrometeorology.

The basic characteristics of hydrometric networks comprise the number of stations, their locations, observation periods and
sampling frequency (Keum et al., 2017). The general understanding is that the higher the number of monitoring stations, the
more reliable the quantification of areal average estimates and point estimates at any ungauged location. However, a higher
station number increases the cost of installation, operation, and maintenance, but may provide redundant information and,
therefore, not increase the information content obtained from the network. Globally, there is a decreasing trend in the
number of hydrometric stations in the last decades (Mishra and Coulibaly, 2009). Against the background of shrinking

monetary support for hydrometric networks, their optimal design is gaining importance.

The design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable
attention (Mishra and Coulibaly, 2009). For example, Putthividhya and Tanaka (2012) made an effort to design an optimal
rain gauge network based on the station redundancy and the homogeneity of the rainfall distribution. Adhikary et al. (2015)
proposed a kriging based geostatistical approach for optimizing rainfall networks, and Chacon-Hurtado et al. (2017)
provided a generalized procedure for optimal rainfall and streamflow monitoring in the context of rainfall-runoff modelling.
Yeh et al. (2017) optimized a rain gauge network applying the entropy method on radar datasets. Several approaches have
been developed for optimal network design, such as statistical analysis which include variance and dimension reduction
methods (Wadoux et al., 2017), spatial interpolation which includes kriging methods (Adhikary et al., 2015) and various
interpolation techniques (Kassim and Kottegoda, 1991), information theory-based methods (Stosic et al., 2017), optimization
techniques such as simulated annealing (Mishra and Coulibaly, 2009), physiographic analysis (Laize, 2004), multivariate
factor analysis (Hargrove and Hoffman, 2004), sampling strategies (Tsintikidis et al., 2002), and user surveys or expert
recommendations (Rani and Moreira, 2010). Combinations of methods have also been introduced in the last decade
(Chacon-Hurtado et al., 2017; Keum et al., 2017; Mishra and Coulibaly, 2009).

Most of these studies inherently assume that a more optimal network is achieved through expanding the network with
supplementary stations. However, increasing the number of stations does not necessarily decrease the uncertainty (Stosic et
al., 2017). Mishra and Coulibaly (2009) argued that the expendable stations in a network that contribute little or even nothing
should be identified and removed, and at the same time, the most valuable or influential stations should be maintained and
protected. Hence, a network can also be optimized by eliminating expendable stations from the network.

Against this background, this study aims to identify influential and expendable stations based on their relative information
content by developing a new node ranking measure for hydrometric station networks. We use complex network which is
defined as a collection of nodes interconnected with links in a non-trivial manner. The application of complex networks in

hydrology is still in its infancy stage, however it has attracted many researchers from different disciplines and application
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fields, e.g., transportation networks (Bell and Lida, 1997), power grid analysis (Schultz et al., 2014), streamflow networks
(Halverson and Fleming, 2015) and climate networks (Agarwal et al., 2018b).

We use complex networks since it is a powerful approach in extracting information from large high-dimensional
hydrological datasets (Donges et al., 2009a; Cohen and Havlin 2010). This non-parametric method allows investigating the
topology of local and non-local statistical interrelationships. An example for non-local connections in a climate network are
global influence of El Nino Southern Oscillation (ENSO) on rainfall (Agarwal, 2019; Ferster et al., 2018) and Atlantic
Meridional Overturning Circulation (AMOC) on air surface temperature (Caesar et al., 2018) via teleconnections and ocean
circulation respectively. The method allows to represent the dataset in form of spatially embedded network and visualize the
connections. Once the spatial network of stations is set up, one might use network measures (e.g. degree, betweenness
centrality) to analyse a range of aspects, such as community structure unravelling dominant climate modes (Agarwal et al.,
2018a; Fang et al., 2017; Halverson and Fleming, 2015; Tsonis et al., 2011), catchment classification indicating hydrologic
similarity (Fang et al., 2017), short and long-range spatial connections in rainfall (Agarwal et al., 2018a; Boers et al., 2014b;
Jha et al., 2015; Stolbova et al., 2014) and spatio-temporal hydrologic patterns (Halverson and Fleming, 2015; Konapala and
Mishra, 2017). Further, a recent study by Donges et al., (2015) pinpoints that complex network analysis can complement
classical Eigen techniques, such as empirical orthogonal functions (EOFs) or coupled patterns (CP) maximum covariance
analysis. They showed that EOFs, CPs and related methods rely on dimensionality reduction, whereas network techniques
allow studying the full complexity of the statistical interdependences structure and are not limited to linear and spatial-
proximity connections. Also, it has been shown that higher-order complex network measures (betweenness centrality,
closeness centrality, participation coefficient) provide additional information on the higher-order structure of statistical
interrelationships in climatological data (Donges et al., 2015). For example, the network degree represents similar
information as the first eigenmode of an EOF analysis (Donges et al, 2015), in-out degree (incoming links and outgoing links
in directed network) represents spatial-temporal propagation (Boers et al., 2014a), and betweenness centrality represents a
spatial separation between flows or a handful of stations which are positioned in-between the large communities. These
stations belong to large communities, but unlike most stations they tend to possess intercommunity connections ((Halverson
and Fleming, 2015; Molkenthin et al., 2015; Tupikina et al., 2016).

In this study, we propose a complex network-based method to identify the influential and expendable stations in a rainfall
network. The novelty of this study is twofold: 1) We propose a new measure for identifying the most influential nodes in a
network, and 2) we use event synchronization as a similarity measure. Several methods in the field of complex networks
have been proposed to evaluate the importance of nodes (Chen et al., 2012; Hou et al., 2012; Jensen et al., 2016; Kitsak et
al., 2010; Zhang et al., 2013 and Hu et al., 2013). Degree (k), betweenness centrality (B) and closeness centrality (CC) are
the methods commonly used in complex networks (Gao et al., 2013). Studies in different disciplines have shown that degree
and betweenness centrality often outperform other node-ranking measures (Gao et al., 2013; Liu et al., 2016). We propose a

novel measure, weighted degree-betweenness (WDB), which combines degree (k) and betweenness centrality (B), to identify
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the stations providing the largest information to the network. We show that the proposed measure WDB has a higher
discrimination power compared to existing methods and that it effectively ranks the nodes in the network. Additionally,
WDB is more sensitive to the different roles of nodes, such as global connecting nodes, hybrid nodes, and local centres, and

provides a more informative ranking than the existing node ranking measures.

Further, we use event synchronization as a similarity measure. In a complex network, links are set up between each pair of
nodes based on how the nodes interact with each other. This interaction is measured through statistical measures, such as
zero-lag correlation or time-delayed correlation (Agarwal et al., 2018b). However, these measures are limited by the
underlying assumptions, e.g. measuring linear relations. They give equal weight to high and low rainfall values, whereas the
main information content in a rainfall time series is embedded in the larger values. In contrast, event synchronization (ES) is
a suitable measure for event-like, non-Gaussian data such as precipitation (Malik et al., 2012; Tass et al., 1998). It has
advantages over other time-delayed correlation techniques (e.g., Pearson lag correlation), as it allows us to define the event
time series by determining the threshold, and as it uses a dynamic time delay (not fixed). The latter refers to a time delay that
is adjusted according to the two time series being compared, which allows for better adaptability to the variable and region

of interest.

The main objective of the study is to develop a node ranking measure, based on complex network analysis that can be used
to identify influential and expendable stations in large hydrometric station networks. Our aim is not to question the
credibility of operating stations, but to propose an alternative evaluation procedure for the optimal design and redesign of

observational networks.

In section 2, we introduce the basic concepts of complex networks. The proposed node ranking measure is presented and
compared with existing measures in section 3 using synthetic networks. In section 4, the new measure is applied to a rain

gauge network consisting of 1229 stations across Germany and compared with state-of-the-art methods.

2 Basics of Complex Networks
2.1 Network Construction

A network or a graph is a collection of entities (nodes, vertices) interconnected with lines (links, edges) as shown in Fig. 1.
These entities could be anything, such as humans defining a social network (Arenas et al., 2008), computers constructing a
web network (Zlati¢ et al., 2006), neurons forming brain networks (Bullmore and Sporns, 2012), streamflow stations
creating a hydrological network (Halverson and Fleming, 2015) or climate stations describing a climate network (Agarwal et
al., 2018a).

Formally, a network or graph is defined as an ordered pair Z = {N, E}; containing a set N = {N;, N,, .... Ny}, of vertices

together with a set E of edges, {i, j} which are 2-element subsets of N. In this work we consider undirected and unweighted
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simple graphs, where only one edge can exist between a pair of vertices and self-loops of the type {i, i} are not allowed. This
type of graph can be represented by the symmetric adjacency matrix (Fig.1)
ay=f e

Yo 1 {i,j} € E (1)
Figure 1 is a simple representation of such a network, i.e., one with a set of identical nodes connected by identical links. In
general, (large) graphs of real-world entities with irregular topology are called complex networks. The links represent similar
evolution or variability at different nodes and can be identified from data using a similarity measure such as Pearson
correlation (Donges et al., 2009a), synchronization (Agarwal, 2019; Boers et al., 2019; Conticello et al., 2018) or mutual
information (Palug, 2018).

3 (a) Network N1 o4 (b) Network N2

o
s

Link
® Node

®1 2 1 2

Figure 1: Topology of two sample networks to explain network structures and measures. (a) Network N1 with four nodes and
three links; (b) network N2 with four nodes and six links.

2.2 Event synchronization

Event synchronization (ES) has been specifically designed to calculate nonlinear correlations among bivariate time series
with events defined on them (Quiroga et al., 2002). This method has advantages over other time-delayed correlation
techniques (e.g., Pearson lag correlation), as it allows us to define extreme event series of the signal, depending on the kind
of extreme, and as it uses a dynamic time delay. The latter refers to a time delay that is adjusted according to the two time
series being compared, which allows for better adaptability to the variable and region of interest. Another advantage of this
method is that it can also be applied to a non-Gaussian and event-like data sets (Boers et al., 2014b, 2015; Malik et al.,
2012).

In the last decade, various modifications have been proposed, related to, for instance, boundary effects (Rheinwalt et al.,
2016) and bias toward the number of events which can be explained as, let us say an event above threshold « percentile
occurs in the signal x(t) and y(t) (Fig. 2, step 1) at time t¥ and t), where | = 1,2,3,4...5,, m = 1,2,3,4 ... ... S, and within a

time lag +7; which is defined as following (Fig. 2, step 2)

im
Tz?l/ = min{tlxﬂ -t — oy, t‘r}r)1+1 — oty — tg;l—l }/2 )
where S, and S,, is the total number of such events (greater then threshold «) that occurred in the signal x(t) and y(t),
respectively. The above definition of the time lag helps to separate independent events which in turn allows to take into

5



account the fact that different processes may be responsible for the generation of events. We need to count the number of
times an event occurs in the signal x(t) after it appears in the signal y(t), and vice versa, and this is achieved by defining

quantities C(x|y) and C(y|x) where

Sx Sy
Caly =Y D ®
=1 m=1
and
1 if o<tf—-ty <t
Jxy = {% if tf=t) @
to else,

This definition of J,, prevents counting a synchronized event twice. When two synchronized events match exactly (t; =

5 t2), we use a factor 1/2 since they double count in C(x|y) and C(y|x). Similarly, we can define C(y|x) and from these

quantities we obtain
_ Clxly) +Cylx)
xy —
\/(Sx -2)(s, - 2)

Qxy is a normalized measure of the strength of event synchronization between signal x(t) and y(t). This implies Q,, = 1

Q

®)

for perfect synchronization and zero if no events are synchronized.

Step 2: Count coincidence of events within the Step 3: Construct the network by creating
time lag (1) to calculate strength of links between point with the highest
synchronization (Q). synchronization values

Stepl: Apply a threshold to time
series of each grid point (x and y) to
obtain extreme event

Network

AR ISENA IS
(x) ‘ |
2201 B840

lelyi
i Q
Time (days) 4= 1, if Qr‘,j = 9[}}.
P () 0, else,
© Qy; - is a correlation matrix
m-l mo - om+l m-1 m | m+l

95 - is a threshold

Ay - is an adjacency matrix

Rainfall amount (mm /day)

t
Time (days)

10 Figure 2: Schematic of network construction using event synchronization (ES). Equations and symbols are given in the main text.
2.3 Node Ranking Measures

A large number of measures have been defined to characterize the behaviour of complex networks. We focus here on those

traditional and contemporary network measures which have been proposed to quantify the importance of nodes in a network:
6
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degree k, betweenness centrality B (Stolbova et al., 2014), bridgeness Bri (Jensen et al., 2016) and degree and influence of
line DIL (Liu et al., 2016).

Traditional network measures
The degree k of a node in a network counts the number of connections linked to the node directly. The degree of any i node
is calculated as

K = YA (6)
N-1

Where N is the total number of nodes in a network. For example, the degree of nodes 1, 2 and 4 in network N1 (Fig. 1a) is 1

and for node 3 is 3. In the network N2 (Fig. 1b), all nodes have degree 3. The degree can explain the importance of nodes to

some extent, but nodes that own the same degree may not play the same role in a network. For instance, a bridging node

connecting two important nodes might be very relevant though its degree could be much lower than the value of less

important nodes.

The betweenness centrality B is a measure of control that a particular node exerts over the interaction between the remaining
nodes. In simple words, B describes the ability of nodes to control the information flow in networks. To calculate
betweenness centrality, we consider every pair of nodes and count how many times a third node can interrupt the shortest
paths between the selected node pair. Mathematically, betweenness centrality B of any i node is

O (j' k) (7)
Bi= G0

i#j#ve{V}

where o (j, k) represents the number of links along the shortest path between node j and k; while o;(j, k) is the number of
links of the shortest path running through node i. In network N1, B of node 3 is 3, i.e., node 3 can disturb three pairs 1-2, 1-4,
2-4, and for other nodes B = 0. In the network N2, all nodes have B = 0 because no node can interrupt the information flow.

So node 3 is a critical node in the network N1 but not in the network N2.
Contemporary network measures

Jensen et al. (2016) developed the Bridgeness measure Bri to distinguish local centres, i.e. nodes that are central to a part of
the network, from hybrid nodes, i.e. nodes that connect different parts of a network (Fig. 3). Bri is a decomposition of
betweenness centrality B into a local and a global contribution. Therefore, the Bri value of a node i is always smaller or
equal to the corresponding B value and they only differ by the local contribution of the first neighbours. To calculate Bri we

consider the shortest path between nodes outside the neighbourhood of node i, N, (i). Mathematically, it is represented as

a:(j, k) 8)
G, 1

Brii =
o
j&NGg() vV k&Ng (D)
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The neighbourhood of node i (N; (i)) consists of all direct neighbours of node i. For example, in the networks N1 and N2, all
nodes have B = 0, hence Bri = 0, except node 3 in the network N1 for which all the nodes are in direct neighbourhood.
Hence, it also has Bri = 0.

The degree and influence of line (DIL), introduced by Liu et al. (2016), considers the node degree k and importance of line I
to rank the nodes in a network:

DIL; = k; + z il ©

U+ k-2
j=N¢(®)

where the line between node i and j is e;; and its importance is defined as I, = % where U = (k; —p—1D.(kj—p—1)
reflects the connectivity ability of a line (link), p is the number of triangles having one edge e;; and 1 = §+ 1 is defined as

an alternative index of line e;;. N (i) is the set of neighbours of node i (for detailed explanation refer Liu et al., 2016). The
equation for DIL suggests that all the nodes having k; = 1 will have DIL; = 1, since the second term of the equation will be
zero. Hence, in the network N1 all nodes, except node 3, have DIL = 1. Node 3 has DIL = 3 equal to its degree, since the

second term is zero (all the connected nodes 1, 2 and 4 have k; = 1, hence Iei,- =0).

3 Methodology

We propose a new node ranking measure that we call weighted degree-betweenness (WDB). We further compare the
efficacy of the proposed measure with the existing traditional and contemporary node ranking methods using two synthetic

networks.

3.1 Weighted Degree-Betweenness

WDB is a combination of the network measures degree and betweenness centrality. We define WDB of a particular node i as
the sum of the betweenness centrality of node i and all directly connected nodes j, j = 1,2,3....n in proportion to their

contribution to node i. Mathematically, the WDB of a node i is given by

WDB; = B; +1; (10)

where B; is the betweenness centrality of node i, and J; stands for the influence or contribution of the directly connected

node j, j = 1,2,3 ....n to node i. It is defined for node i as

"B*(k

L +k—2) —2) (1)

where k; is the degree of node i, k; is the degree of the nodes j which are directly connected to node i;, and n is the total

number of directly connected nodes to node i.
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3.2 Comparison with Existing Node Ranking Measures Using Synthetic Networks

In this section, we motivate the development of the new node ranking measure WDB by comparing it to existing network
measures. ldentifying nodes that occupy interesting positions in a real-world network using node ranking helps to extract

meaningful information from large datasets with little cost.

Usually, the measures degree or betweenness centrality are used for node ranking (Gao et al., 2013; Okamoto et al., 2008;
Saxena et al., 2016). However, these measures have certain limitations which are explained using a simple network, the
undirected and unweighted network Z = (N, E) with 8 nodes and 11 edges shown in Figure 3. The network measures k;, B;

and WDB; of each node are given in Figure 3 along with the node number.

Degree is limited as node ranking measure since it cannot distinguish between different roles in the network. For example,
nodes 5, 7, and 8 have the same degree (ki=2), but node 5 serves as a bridge node linking the two parts of the network.
Information between several nodes in this network can flow through this node only. In a large complex network, such nodes
have strategic relevance as most of the information can be accessed quickly just by capturing those nodes. For example, in a
social network, the spreading of a disease could be slowed down or hindered by identifying these nodes. In climate networks,

an early warning signal could be generated by capturing the flow of information (Donges et al., 2009a, 2009b).

Betweenness centrality has a higher power in discriminating different roles. For example, nodes 4 and 5 have the highest
betweenness centrality B = 24 followed by node 6. Their importance for the information flow in the network is obvious, as
such high B nodes can be used to control the flow of information in any network. Information flow, or in our context,
transferability of precipitation measurements across locations, would be restricted in their absence. However, betweenness B
gives equal scores to local centers (nodes 4, 6), i.e., nodes of high degree central to a single region, and to global bridges
(node 5), which connect different regions. This distinction is important because the roles of these nodes are different. For
example, in climate networks, local centers correspond to nodes which are important for local climate phenomena, while
bridges correspond to nodes which connect different climatic subsystems, such as Indian monsoon and El Nifio/Southern
Oscillation, leading to teleconnections (Palus, 2018). Bridge nodes spread a process to the entire region globally whereas the
effect of a local center is confined to a region (Lawyer, 2015).

In climate networks, information and/or mass can be transported between nodes. In temperature-based climate networks, it is
the energy that is transported, and with this, some kind of information about the atmospheric state in a region (Hlinka et al.,
2017). For rainfall networks, the links may reflect the major propagation pathways of moisture (Boers et al., 2013, 2014b;
Malik et al., 2012). For extreme precipitation, it is even more specific and reflects certain weather conditions, e.g. a specific
weather pattern in central Europe as shown by Rheinwalt et al., (2016). Ozturk et al., (2018) proposed a complex network-
based approach to estimate the movement of extreme rainfall over Japan during typhoons. They iteratively estimated likely
tracks of extreme precipitation for each cell of a large grid, many of which present redundant information, and hence the
computation is time consuming. We suggest that by applying their method only on global bridges and local centers, we can

deduce the likely tracks of extreme rainfall efficiently.
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Figure 3: Synthetic network to explain the degree (k), betweenness (B) and weighted degree-betweenness (WDB) measures, with
node number (1 to 8) followed by the degree, betweenness value and WDB value in brackets. Degree and betweenness are limited

in distinguishing the role of different nodes in the network and centers from bridges, respectively.

The proposed measure WDB has an even higher discrimination power compared to betweenness centrality and effectively
ranks the nodes in the network. Node 5 has the highest WDB score and is ranked as the most influential node. This reflects
its role as global bridge node, as losing node 5 would disconnect the two parts of the network. WDB is also able to
distinguish between the nodes 1, 2, 3 (WDB = 14.4) and the nodes 7, 8 (WDB = 13.3), which is important in case we need to

sequentially rank nodes.

To further evaluate the proposed measure, we compare WDB with other network measures recently published, namely the
bridgeness developed by Jensen et al. (2016) and degree and influence of line DIL by Liu et al. (2016). For this comparison,
we use the same synthetic network as Jensen et al. (2016) shown in Fig. 4. The corresponding network measure values are

also given in Fig. 4.
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Figure 4: Synthetic network used to compare the network measures betweenness, bridgeness, and DIL with the proposed measure
WDB. Numbers 1 to 11 are node counts, and values in brackets represent the network measure values in order of
[B,Bri,DIL,and WDB]. Node 6 is a global bridge node which connects two sub-networks. Node 4 and 7 are hubs which are

connected to most of the nodes in the sub-networks. Node 5, 10 and 11 are the dead-end nodes.

Fig. 4 illustrates that betweenness does not distinguish between the local centers (nodes 4, 7) and the global bridge node
(node 6). It even assigns a smaller value to the global bridge node. Bridgeness expresses the higher importance of the global
bridge node compared to local centers, however, it does not distinguish between all other nodes. Although DIL assigns
different values to almost very node, these numbers do not represent the different roles of the nodes and are therefore hardly
suitable as node ranking measure. WDB outperforms the existing measures in effectively ranking nodes in the network, such
as the global bridge nodes, local centers and dead-end nodes. For example, WDB differentiates between nodes 4 and 7 for

which the bridgeness measure provides equal scores.

This comparison of the proposed measure WDB with other measures that have been developed to express the importance of
nodes within a network shows that WDB is able to provide a nuanced picture. The resulting node ranking reflects the
different roles, such as global bridge, local center, dead-end node, hub (high degree), or non-hub (low degree), of the

individual nodes.

There is one situation where our method would require additional care: Let us imagine a node that is unrelated to other nodes
(no links). One might imagine this scenario in a meteorological sub-region characterized by fine-scale convective

thunderstorms with sparse rain gauge coverage. Hence, precipitation event synchronization in that sub-region would be

11



10

15

20

25

poor. This station would not be the part of the constructed network and would not be ranked. However, this station should be

treated carefully as it provides unique information.
3.3 Evaluation of the Proposed Measure for a Rain Gauge Network

In the context of hydrometric station networks, we hypothesise that higher ranking stations are more influential nodes in the
network. Loosing such stations would more strongly reduce the network efficiency, i.e., the flow of information within the
network, compared to lower ranking stations. Stations with the lowest ranks in the network are the least influential and are
seen as expendable stations. To test this hypothesis, we apply the proposed node ranking measure to a rain gauge network
consisting of more than 1000 stations in Germany. The information loss caused by removing stations is quantified via two

measures: (a) decline rate of network efficiency, and (b) relative kriging error.
3.3.1 Decline Rate of Network Efficiency

The decline rate of network efficiency, as proposed by Liu et al. (2016), quantifies the loss in efficiency with which

information flows within a network when nodes are removed from the network. Network efficiency is defined as

__ 1 z: (12)
T=NiN—1 L M

ni¢nj
Where N is the total number of nodes in a network. n;; is the efficiency between nodes n; and n;. n;; is inversely related to the

shortest path length: n;; = 1/d;;, where d;; is the shortest path between nodes n; and n;. The average path length

j ]
L measures the average number of links along the shortest paths between all possible pairs of network nodes. It is a measure
of the efficiency of information or mass transport in a network. A network with small L is highly efficient, because two
nodes are likely to be separated by a few links only. The decline rate of network efficiency u is defined as

NMnew (13)
Nola

u=1-

where 1,...» 1S the efficiency of the network after removing nodes, and n,,4 is the efficiency of the complete network.

We hypothesise that the network efficiency reduces more strongly if higher ranking stations are removed. This implies

higher decline rates of efficiency when removing higher ranking stations from the network.
3.3.2 Relative Kriging Error

As second measure to evaluate the information loss when stations are removed from the network, we use a kriging based
geostatistical approach (Adhikary et al., 2015; Keum et al., 2017). Kriging is an optimal surface interpolation technique
assuming that the variance in a sample of observations depends on their distance (Adhikary et al., 2015). It is the best linear
unbiased estimator of unknown variable values at unsampled locations in space where no measurements are available, based
on the known sampling values from the surrounding areas (Hohn, 1991; Webster and Oliver, 2007). Ordinary Kriging is
used in this study for interpolating rainfall data and estimating the kriging error. The kriging estimator is expressed as
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" (14)
2°Ge) = ) wiZ(x)

where Z*(x,) refers to the estimated value of Z at the desired location x,; w; represents weights associated with the
observation at the location x; with respect to Xo; and n indicates the number of observations within the domain of the search
neighborhood of Xo for performing the estimation of Z*(x,). Ordinary Kriging is implemented through ArcGISv10.4.1
(Redlands, CA, USA) (ESRI, 2009) and its geostatistical analyst extension (Johnston et al., 2001).

The kriging variance o2 (x,) in the Ordinary Kriging can be computed as (Adhikary et al., 2015; Xu et al., 2018)

n n
07 =W, + Z wiy(hy)  for z wp =1
i=1 i=1

where y(h) is the variogram value for the distance h; hy; is the distance between observed data points x; and x;; u, is the
Lagrangian multiplier in the Z scale; hy; is the distance between the unsampled location x, (where the estimation is desired)

and sample locations x;; and n is the number of sample locations.

The square root of the kriging variance, also named as kriging standard error (KSE), is used as a gauge network evaluation
factor. We estimate the increase in the kriging standard error across the study area when stations are removed to evaluate the
performance of the WDB measure in identifying influential and expendable stations in a large network. Goovaerts (1997, p.
179) states that the theoretical kriging error is dependent on the variogram model and data configuration whereas it is
independent of data values (Appendix B). In a given scenario of constant variogram during network modifications

theoretical kriging error only depends on data configuration (density and distribution of inter-distances between stations).
The relative kriging error before and after removing the stations is denoted as

KSE,.,, — KSE, 1
R(%) = ”;;VSE old + 100 (15)
old

where KSE,,,, denotes the standard kriging error after removing stations, and KSE,,, is the error for the original network.
We hypothesise that the increase in the relative kriging error is higher when removing high ranking stations. To cover a
broad range of rainfall characteristics, the error is calculated for different statistics, i.e. the mean, 90™, 95™ and 99™ percentile

rainfall and the number of wet days (precipitation > 2.5mm).

4 Application to an Extensive Rain Gauge Network
4.1 Rainfall Data

To evaluate the proposed measure in the context of the optimal design of hydrometric networks, we apply it to an extensive
network of rain stations in Germany and adjacent areas (Figure 5). The data covers 110 years at daily resolution (1 January
1901 to 31 December 2010). The 1229 rain stations inside Germany (blue dots in Fig. 5) are operated by the German

Weather Service. Data processing and quality control were performed according to Osterle et al. (2006), and in this study we
13



assume that data is free from measurement errors. 211 stations from different sources outside Germany (red dots in Fig. 5)
were included in the analysis to minimize spatial boundary effects in the network construction, however, these stations were

excluded from the node ranking analysis.

N

Elevation (m)
e High © 204077

B Low - 24871

. il | Do . raingauges used for analysis

b/ REAT 4 s - raingauges outside study region used
0 30 60+ 120 180 240 *  to minimize the boundary effect
-::-:————'—Miles Sowces: Esri, USGS, NOAA

5 Figure 5: Location of rain stations in Germany and adjacent areas. Blue dots indicate stations lying inside Germany that are used
in the analysis. Red dots indicate stations outside of Germany that are used for network construction only to minimize the

boundary effect.

4.2 Network Construction

We begin the network construction by extracting event time series from the 1440 daily rainfall time series. The event series
10 represent heavy rainfall events, i.e., precipitation exceeding the 95™ percentile at that station (Rheinwalt et al., 2016). The
95" percentile is a good compromise between having a sufficient number of rainfall events at each location and a rather high
threshold to study heavy precipitation. All rainfall event series are compared with each other using event synchronization
(Fig. 2) which is the base for various network measures used to rank the nodes in the network. Hence, event synchronization
is not used to derive the station ranking. This results in the similarity matrix Q, whereas the entry at index pair (i,j) defines
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synchronization in the occurrence of heavy rainfall events at station i and station j. Applying a certain threshold to the Q
matrix (see Appendix A) yields an adjacency matrix (Fig. 2)

; Q
Ai_]' — {1, lf Qi,j = gi,]'

0, else, (16)

Two criteria have been proposed to generate an adjacency matrix from a similarity matrix, such as fixed amount of link
density (Agarwal et al., 2018a; Donges et al., 2009a; Stolbova et al., 2014) or global fixed thresholds (Jha et al., 2015;
Sivakumar and Woldemeskel, 2014). However, both criteria are subjective and may lead to the presence of weak and non-
significant links in the adjacency matrix or network. These non-significant links might obscure the topology of strong and
significant connections, Hence, stringent threshold criteria are needed, such as multiple testing (Agarwal, 2019; Boers et al.,
2019). Alternatively, networks should be characterized across a broad range of thresholds. Furthermore, all self-connections

or negative connections (anti-correlation), if any, should be removed (Rubinov and Sporns, 2010).
To minimize these threshold effects, we choose the threshold 98]. objectively by considering all links in the network that are

significant. A link is significant (i.e. two stations are significantly synchronized) if the synchronization value exceeds the
95" percentile of the synchronization obtained by two synthetic variables that have the same number of events positioned
randomly in the time series. We calculate synchronization for 100 pairs of random time series from which we derive the
95™ percentile of synchronization. Using a 5% significance level, we assume that synchronization cannot be explained by
chance, if the ES value between two stations is larger than the 95" percentile of the test distribution. Here, we select 5%

significance level since it is the well accepted criteria for the network construction.

A;j = 1 denotes a link between the it" and j** station and O denotes otherwise. The adjacency matrix represents the
connections in the rainfall network. Although the constructed network is based on all 1440 stations (to minimize the

boundary effect), the subsequent topological analysis is performed only for the 1229 stations lying inside Germany.

4.3 Decline Rate of Network Efficiency

In this section, we evaluate the ranking of stations derived from the proposed WDB measure using the decline rate of
network efficiency. The rain gauges are ranked in decreasing order according to their WDB values. Highly ranked rain

gauges are interpreted as the most influential stations, and low ranked as expendable stations.

Firstly, we analyze the decline rate of network efficiency u when one station is removed from the network. In each trial, we
remove only one station (starting with the highest rank). After n=1229 (number of nodes) trials, we investigate the
relationship between y and the node ranking measured by WDB. We expect an inverse relationship between p and WDB:
the higher the node ranking, the more important is that node, leading to a higher loss in network efficiency. Fig. 6 confirms
this behavior. u is high for high-ranking stations and decays with node ranking. Interestingly, u < 0 for very low ranking
stations, i.e. the network efficiency increases when single, low ranking stations are removed. This is explained by the

decrease of the redundancy in the network when such stations are removed.
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Figure 6: Decline rate of network efficiency corresponding to the removal of each node in the rainfall network. In each

implementation, only one node is removed from the network according to the ranking with replacement (bootstrapping).

Secondly, we remove successively a larger number of stations, from 1 to 123 stations (10%), considering three cases. In case
I, we remove up to the 10% highest ranking stations. This implies that in the first iteration we remove the top-ranked station
and in the second iteration we remove the top two stations and so on. Figure 7 shows a clear increase in 4 when more and
more influential stations are removed. In case I, up to the 10% lowest ranking stations are successively removed. It can be
seen in Fig. 7 that this affects the network efficiency in a positive way: The efficiency increases when the lowest ranking
stations are removed. In case I1I, up to 10% stations are randomly removed. Case Il is repeated ten times to understand the
effect of random sampling. In general, u increases with removing random stations. However, the effect is much lower (in
absolute terms) compared to the effect of removing high or low ranking stations, respectively. The variation in u between the
ten trials and within one trial is caused by randomness. For example, u rises instantaneously when the algorithm picks up a

high ranking station.
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Figure 7: Decline rate of network efficiency as a function of the number of stations removed from the network. Case I: up to the
10% highest ranking stations are removed (black), case Il: up to the 10% lowest ranking stations are removed (red), case Il1: up
to 10% randomly drawn stations are removed (10 trials) (blue).

4.4 Relative Kriging Error

As the second approach to assess the suitability of WDB for identifying influential and expendable stations, we analyse the
change in the kriging error when stations are removed from the network. The variogram is kept constant during the network
modifications. Similarly to the evaluation using the decline rate of network efficiency in section 4.3, three cases are
investigated: removing the 10% highest ranking stations, removing the 10% lowest ranking stations, and ten trials of
removing 10% of the stations randomly. The change in the kriging error is calculated for five characteristics, i.e., mean,
90%-, 95%-, 99%-percentile, and number of wet days (Table 1).

Removing the 10% high-ranking stations (case 1) leads to positive and high (R > 5%) values for all five statistics
considered. The kriging error increases substantially when these stations are removed. When the 10% lowest ranking stations
(case Il) are not considered, the R values are small compared to those obtained by removing high ranking stations. The
relative errors in estimating the mean, percentile rainfall characteristics (90" and 95™) and number of wet days at ungauged
locations are low (<5%) for the 10% lowest ranking stations, suggesting that these stations do not contribute much
information. For two out of five statistics, i.e., mean and number of wet days, removing the 10% lowest ranking stations
actually improves the kriging model. Case l1ll, i.e. removing stations randomly, shows mostly positive and high (R > 5%)

values, because high ranking nodes are removed as well which leads to higher rates of R(%).
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Table 1: Relative kriging error for the three different cases. The relative kriging error for case 111 is the average across ten trials.

Stars indicate a high relative error >5%.

Case  Removal of stations Relative kriging error R(%)

Mean 90" percentile 95" percentile 99" percentile ~ Wet days

| 10% highest ranking 9.3* 32.9* 72.3* 57.1* 69.1*
1 10% lowest ranking -2.1 4.4 3.1 11.1* -1.7
11 10% randomly selected 5.4* 27.3* 52.3* 42.6* 4.1

5 Discussion

Building on the young science of complex networks, a novel node ranking measure, the weighted degree-betweenness WDB,
is proposed. It is based on the degree and betweenness centrality measures of the nodes in a network. The comparison of the
WDB measure with the existing traditional and contemporary node ranking measures suggests that it is more informative
since it is better able to consider the different role of nodes in a complex network. The WDB measure provides a unique

value to each node depending on its importance and influence in the network.

Further, this study proposes to use WDB for supporting the optimal design of large hydrometric networks. It is able to rank
the nodes in a large network in relation to their importance for the flow of information, mass or energy. This ranking can be
used to identify highly influential and expendable hydrometric stations. For example, removing low ranking stations in the
German rain gauge network increases the network efficiency considerably, and may even decrease the error of estimating
rainfall at ungauged locations. This is explained by the redundancy in the information that those stations provide, which in
turn is attributed to the similarity between the gauges due to the common driving mechanisms or spatial similarity as
advocated by Tobler’s Law of Geography (Tobler, 1970). The results of our analysis suggests that WDB identifies the
expendable nodes correctly as shown by the decline rate of efficiency and the insignificant change in relative kriging error.
On the other hand, WDB awards stations which provide unique information which cannot be generated from other stations in

the network.

We further analyse the characteristics of the stations with the highest ranks. We plot the network (Figure 8a)
corresponding to the 10% (~122) high ranking stations, i.e. all the links originating only from these 122 stations. The size
and color of each diamond shaped raingauge mark their degree and betweenness. All other stations are plotted in the
background without highlighting their degree and betweenness. This sub-network is still difficult to interpret, hence we

further plot the connections corresponding to two high ranking stations (Figure 8b) and two low ranking stations (Figure 8c).
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Although the degree of these four stations is roughly the same, there is a striking difference in the connections between low
and high ranking stations. The connections of low ranking stations are regionally confined, and they rather reflect the
similarity in rainfall variability within (homogenous) regions. The plot of high ranking stations in Figure 8a highlights that
high rank stations are not limited to high degree or betweenness stations. The latter measures represent the homogeneity
(high degree = many similar nodes of similar dynamics) and the path in the network, respectively, whereas WDB represents
the connectiveness. This could reflect the critical nodes in pathways of moisture transport, extreme rainfall propagation, or
(in case of betweenness) or a handful of stations which are positioned in-between the large communities and unlike most
stations they tend to possess intercommunity connections (Halverson and Fleming, 2015; Molkenthin et al., 2015; Tupikina
et al., 2016). To test whether the long-range connections of the selected nodes in Figure 8b are a typical feature of high
ranking stations, we compute the geographical distance between all the connected raingauges and plot its median (Figure 8d)
and 95" percentile (Figure 8e) against the node ranking. There is a clear correlation between rank and distance: High ranking
stations tend to show longer connections, implicitly affirming that the WDB measure has the potential to capture highly
influential nodes in the network.

Further, Fig.8 also in congruence with the results reported by declining rate of Kriging error in section 4.4 and
Table 1. Intuitively, “the kriging variance is expected to be greater at a location surrounded by data that are very different
from one another (Fig. 8b) than at a location surrounded by similarly valued (Fig. 8c) data” (Goovaerts, 1997; Heuvelink and
Pebesma, 2002). And hence, we notice high kriging error (Table 1) in case of influential stations comparative to random
selected and low ranking stations. We further noticed that removing the low ranking measures does not have an adverse

effect on the estimation of other statistical measures of rainfall thereby verifying the efficacy of the method.

Based on our analysis, we argue that the use of complex networks and the proposed network measure are valuable for the
optimal design of hydrometric networks or redesign of existing networks. The proposed node ranking approach differs from
the existing approaches as it considers different aspects of the spatio-temporal relationships in observation networks. This
measure also has the potential to support the selection of an optimal humber of stations for the prediction in ungauged basins
(PUBs) and the estimation of missing values by identifying influential stations in the region. For example, the study by
Villarini et al., (2008) proposed a simple rule for the number of rain gauges required to estimate areal rainfall with a
prescribed accuracy. In such scenarios, WDB measure could be applied to identify prescribed number of influential stations.
Further, the proposed method can be applied to gridded satellite data (e.g. rainfall, soil moisture), to locate the strategic

points where stations should be installed to ensure a highly efficient observation network.
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Figure 8: Connections and location of 10% (~122) highest ranking rain gauges (a). The size and colour of the diamond marker
indicate the degree and betweenness of the raingauge. Connections corresponding to two high ranking stations (b, station ID:
21320, 16149) and two low ranking stations (c, station ID: 26132, 20356). Median (d) and 95™ percentile (e) geographical distance

5 plotted against node ranking.
An advantage of the proposed method is its capability to differentiate between the different roles played by individual
stations. For example, global bridge nodes are able to control the flow of information, energy or mass between different parts
of a network. Hence, they are of highest importance. This capability opens new possibilities for its use in complex networks.

For instance, in climate networks an early warning signal could be generated by capturing the flow of information at such
10 points (Donges et al., 2009b; Hlinka et al., 2014).
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6 Conclusions

This study proposes a novel node ranking measure for identifying the influential and expendable nodes in a complex
network. The new network measure weighted degree-betweenness (WDB) combines the existing measures degree and
betweenness centrality and considers the neighbourhood of a node. The proposed measure is compared to other measures
using synthetic networks. WDB is more sensitive to the different roles of nodes, such as global connecting nodes, hybrid

nodes, and local centers, and provides a more informative ranking than the existing node ranking measures.

We propose to use this measure for the optimal design of hydrometric networks. Applying this measure to a network of 1229
rain gauges in Germany allows identifying influential and expendable stations. Two criteria, the decline rate of network
efficiency and the kriging error, are used to evaluate the performance of the proposed node ranking measure. The results

suggest that the proposed measure is indeed capable of effectively ranking the stations in large hydrometric networks.

Despite the preliminary results of the study, we suggest that the proposed measure is not only useful for optimizing
observational networks, but has the potential to support the selection of an optimal number of stations (by determining
influential station of the region) to be used in the prediction in ungauged basins, or to support the estimation of missing
values, regionalization, and regional flood frequency analysis. When applied to gridded satellite data, it can be used to locate
the strategic points where stations should be installed to ensure a highly efficient network. Furthermore, the new network
measure has large potentials in other fields where the science of complex networks is used, such as in social networks,

infrastructure networks, disease spreading networks, and brain networks.

Data availability

The precipitation data was provided by the German Weather Service. The data is publicly accessible at
https://opendata.dwd.de/. The data was pre-processed by the Potsdam Institute for Climate Impact Research (Conradt et al.,
2012).

Appendix
A. Kriging variogram modelling

The kriging modelling mandates a theoretical variogram function that is to be fitted with an experimental variogram of the
observed data. The experimental variogram (y(h)) is calculated from the observed data as a function of the distance of
separation (h) and is given by (Adhikary et al., 2015)
G ] (A1)
Y = 35 Zl[(m) ~Y ()]
i

where N (h) is the number of sample data points separated by a distance h; , i and j represent sampling locations separated by
a distance h; Y (i) and Y (j) indicate values of the observed variable Y, measured at the corresponding locations i and
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j respectively. The theoretical variogram function (y * (h)) allows the analytical estimation of variogram values for any

distance and provides the unique solution for weights required for kriging interpolation.

The variogram models are a function of three parameters, known as the range, the sill, and the nugget (Fig.Al (a)). The
range is typically the distance where the models first flattens out i.e. station locations separated by distances closer than the
range are spatially auto-correlated, whereas locations farther apart than the range are not. The value of y at range is called the
sill. The variance of the sample is used as an estimate of the sill. Additionally, many other variogram models have a range
parameter that is not equal to a distance where the correlation is zero. Nugget represents measurement error and/or
microscale variation at spatial scales that are too fine to detect and is seen as a discontinuity at the origin of the variogram
model. The ratio of the nugget to the sill is known as the nugget effect, and may be interpreted as the percentage of variation
in the data that is not spatial. The difference between the sill and the nugget is known as the partial sill.

The value of all the parameters and resultant variogram for mean, 90" percentile, 95" percentile, 99" percentile and wet days

has been reported in the Table Al and Figure Al (b-d) respectively. The variogram has been kept constant during network

reductions.
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Figure Al: Typical variogram models (a) and fitted variogram models for mean (b), 90t percentile (c), 95" percentile
(d), 99t percentile (e) and wet days (f).

Table Al: Parameters values for the fitted variogram.

Parameters Mean 90™ percentile 95™ percentile 99" percentile Wet days
Nugget 0.0058 0 0 0 0.905
Range 0.0782 0.0782 0.0782 0.0782 2.363
Partial sill 0.103 1.055 2.140 6.808 2.771

B. Spatial stationarity check
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Goovaerts (1997, p. 179) states that the theoretical kriging error is dependent on the covariance model and data configuration
whereas independent of data values. In a given scenario of constant variogram during network modifications (as mentioned
on P17/L7), theoretical kriging error only depends on data configuration (density and distribution of inter-distances between
stations). To rule the possibility that these theoretical kriging error also influenced by data values or spatial variance we
double check the spatial stationarity of the measure field of the considered variable. Spatial stationarity means that local
variation doesn’t change in different areas of the map. For example, 2 data points 5 meters apart in different locations should
have similar differences in your measured value. Kriging is not optimal for spatial abrupt changes and break lines. In
literature two methods have been proposed to check data’s stationarity with a voronoi map symbolizing by entropy (variation
between neighbors) or standard deviation and look for randomness.

First check has been performed in the ArcGIS (Geostatistical Analysis >Explore Data ->Voronoi Map) on all the
considered variables (mean, wet days, 90th-, 95th-, 99th percentile). The corresponding results for entropy voronoi maps
show the data set is looking adequately stationary (Fig. B1). However to quantify it, the second check has been performed in
the Matlab using run test for randomness with the null hypothesis that the values in the data vector come in random order,
against the alternative that they do not. The run test for randomness on all the considered variables rejects the null hypothesis
with a p-value less than .0001. Hence, both methods confirm that kriging model used is spatially stationary, one of the

mandatory condition to perform kriging.
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Figure B1: Representation of mean (a), 90" percentile (b), 95" percentile (c), 99™ percentile (d) and wet days’s (d) spatial
stationarity with a Voronoi map symbolising by entropy (variation between neighbours) using ArcGIS.
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