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Abstract. Extreme pluvial floods across China's Yangtze River basin in the summer of 2016 were 10 

strongly connected with intense atmospheric moisture transport, and resulted in vast loss of properties 11 

after a strong El Niño winter. Predicting such extreme floods in advance is essential for hazard 12 

mitigation, but the flood forecast skill is relatively low due to the limited predictability of summer 13 

precipitation. By using a “perfect model” assumption, here we show that atmospheric moisture flux has 14 

a higher potential predictability than precipitation over the Yangtze River at seasonal time scales. The 15 

predictability of precipitation and moisture flux is higher in post-El Niño summers than in post-La 16 

Niñas, especially for flooding events. As compared with extreme precipitation, the potential 17 

detectability of extreme moisture flux increases by 20% in post-El Niño summers, which suggests that 18 

atmospheric moisture flux could be crucial for early warning of Yangtze River summer floods.   19 

 20 
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1. Introduction 21 

Located in eastern China with dense population and major agricultural and industrial productions, the 22 

Yangtze River basin suffers from frequent flooding due to large interannual variability of the East Asian 23 

summer monsoon. In June-July of 2016, extreme pluvial floods hit the middle and lower reaches of the 24 

Yangtze River, caused severe inundations over many big cities, and resulted in direct economic loss of 25 

70 billion RMB (about 10 billion U.S. dollars) (Yuan et al., 2018). Effective early warning of upcoming 26 

extreme flood events is urgent to mitigate the potential damages, which strongly depends on accurate 27 

precipitation forecasts not only at synoptic- but also subseasonal-to-seasonal scales (Yang et al., 2008; 28 

Tian et al., 2017). However, predicting flood at seasonal time scales is still a grand challenge due to 29 

limited forecast skill in precipitation at long leads (Alfieri et al., 2013; Yuan et al., 2015). This raises the 30 

interests to explore other relevant variables that are more predictable than precipitation for flood early 31 

warning. 32 

Predictability is an inherent property of the climate system, and it represents the ability of the model to 33 

"predict itself" (Boer et al., 2013). As for a numerical prediction model, it is widely accepted that we 34 

cannot improve the (precipitation) predictability without improving its dynamical framework, data 35 

assimilation and/or physical parameterizations, etc (e.g., Barnston et al., 2012). However, most of the 36 

heavy precipitation and flood events in many mid-latitude regions, especially in coastal areas, are 37 

strongly related to intense horizontal atmospheric moisture transport (Banacos and Schultz, 2005; Ralph 38 

et al., 2006; Lavers et al., 2014). The atmospheric moisture flux is supposed to be better predicted by 39 

large-scale climate models than precipitation that is not only connected to mesoscale (or more local 40 

scale) circulation but also influenced by the vertical convection and the localized orography (Lavers et 41 



3 
 

al., 2014, 2016b). This provides a potential to use atmospheric moisture flux to extend the predictability 42 

of floods. Recently, a series of studies (Lavers et al., 2014, 2016a, 2016b) have assessed the varying 43 

predictability of precipitation and moisture flux in winter, and shown that moisture flux yields a higher 44 

predictability than precipitation at synoptic-scales (less than two weeks) across northwest Europe and 45 

western U.S. that are known as affected by atmospheric rivers. At sub-seasonal to seasonal time scales, 46 

however, whether such moisture flux and precipitation predictability relation also applies in China's 47 

monsoonal summer seasons where convection is active, such as the Yangtze River summer flood, is still 48 

unclear.  49 

The middle and lower reaches of the Yangtze River basin in eastern China is one of the most strongly El 50 

Niño-Southern Oscillation (ENSO)-affected regions in the world (e.g., Wang, 2000; Wu et al., 2003; 51 

Ding and Chan, 2005). The persistent Sea Surface Temperature (SST) anomalies in the equatorial 52 

eastern Pacific can alter the tropical and subtropical circulations via local air-sea interaction and/or 53 

teleconnections, and thus affect the East Asia summer climate significantly, including the summer 54 

precipitation in the Yangtze region. Such ENSO-related climate anomaly in the Yangtze region is not 55 

concurrent with the ENSO cycle, but has a seasonal lag. A possible mechanism for this lag-impact of 56 

ENSO on East Asia summer climate is the Indo-western Pacific ocean capacitor (IPOC), where the 57 

North Indian ocean warming after El Niño plays a crucial role (e.g., Xie et al., 2016). Therefore, the 58 

precipitation predictability over the Yangtze River is closely associated with the atmospheric and 59 

oceanic conditions, which is similar to other regions (Gershunov, 1998; Kumar and Hoerling, 1998; 60 

Lavers et al., 2016a). For instance, Kumar and Hoerling (1998) indicated that the North American 61 

climate is most predictable during the late winter and early spring seasons of the warm ESNO events. 62 
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Lavers et al (2016a) showed that the moisture flux and extreme precipitation have different prediction 63 

skill during different North Atlantic Oscillation (NAO) phases. In short, the weather or climate forecasts 64 

initialized at different atmospheric/oceanic conditions can have varying levels of predictability, so 65 

understanding how the Yangtze River rainfall predictability varies during different ENSO phases is also 66 

a concern. 67 

In present study, we aim to address the above questions by evaluating the seasonal predictability of 68 

precipitation and moisture flux for the middle and lower reaches of Yangtze River (110°-123°E, 27°-69 

34°N) based on multisource observational data, and ensemble hindcasts and real-time forecasts from a 70 

dynamical seasonal forecast model Climate Forecast System version 2 (CFSv2; Saha et al., 2014) for 71 

the period of 1982-2016.  72 

2. Data and Method 73 

2.1  Observation and reanalysis data 74 

Monthly mean precipitation data at 1°×1° resolution over the Yangtze River basin was obtained from 75 

NOAA's precipitation reconstruction over land (PREC/L), which agrees well with gauge-based datasets 76 

(Chen et al., 2002). Monthly mean atmospheric fields including geopotential height, u-wind, v-wind, 77 

and specific humidity at 300, 400, 500, 700, 850, 925 and 1000 hPa were derived from the ERA-Interim 78 

reanalysis (Dee et al., 2011). Herein, the mean June-July zonal and meridional atmospheric moisture 79 

fluxes between 300 and 1000 hPa were calculated separately, and their magnitudes were combined as 80 

the total moisture flux (Lavers et al., 2016a).  81 

NINO3.4 (5°S–5°N, 120°–170°W) SST anomaly based on ERSSTv4 monthly data (Huang et al., 2014) 82 

during 1948–2016 was used to analyze the impact of ENSO on the seasonal predictability of rainfall 83 
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and moisture flux over the Yangtze River. An ENSO event was defined as the averaged NINO3.4 SST 84 

anomaly during preceding December-January-February (DJF) exceeding its 0.5 standard deviation (σ). 85 

2.2 CFSv2 seasonal hindcast and real-time forecast data 86 

The ensemble hindcast and real-time forecast datasets including the monthly specific humidity and wind 87 

field at different levels and monthly precipitation from Climate Forecast System version 2 (CFSv2) 88 

(Saha et al., 2014), were used here to quantify the potential predictability. The predicted moisture flux 89 

was calculated the same as the observation mentioned in Section 2.1. CFSv2 has 24 ensemble members 90 

with different initial conditions (Yuan et al., 2011) and has been widely used for subseasonal to 91 

seasonal forecasting (e.g., Kirtman et al., 2014; Yuan et al., 2015; Tian et al., 2017). All monthly 92 

anomalies were calculated based on the climatology from the entire hindcast period (1982-2010). The 93 

0.5-month lead forecast ensembles started from mid-May to early June (Saha et al., 2014), and predicted 94 

through June-July. Similarly, the 1.5-month lead forecasts for the June-July started from the mid of 95 

April, and so on. 96 

In order to investigate the predictability at finer temporal resolution (e.g., weekly mean fields), the 97 

CFSv2 daily reforecasts were also obtained from the Subseasonal to Seasonal (S2S) prediction project 98 

for the period of 1999-2010, with the forecast lead times up to 45-days (Vitart et al. 2017). As for the 99 

June 1-7 weekly mean fields, the reforecasts started from May 18 were used as the first ensemble 100 

member, the reforecasts started from May 19 were used as the second, and so on. This resulted in 14 101 

ensemble members, with forecast lead times from 1-day to 14-days. The above process was repeated for 102 

other weekly averaged fields during June and July. This is called as the first group of ensemble 103 
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subseasonal forecasts, with lead times of 1-14days. The second group of ensemble reforecasts started 104 

from 17 May, 18 May …, and 30 May were formed similarly, with lead times of 2-15days, and so on. 105 

2.3 The potential predictability approach 106 

The potential predictability was quantified by using a “perfect model” assumption (Koster et al., 2000, 107 

2004; Luo and Wood, 2006; Becker et al., 2013; Kumar et al., 2014; Lavers et al., 2016b). For the 108 

predictions of June-July mean precipitation and moisture flux over each grid cell within the Yangtze 109 

River basin (110°-123°E, 27°-34°N) at a given lead time, ensemble member 1 was considered as the 110 

observation and the average of members 2–24 was taken as the prediction, which resulted in two time 111 

series with 35 years of record (1982-2016). The skill of this forecast was then calculated by using the 112 

anomaly correlation (AC; Becker et al., 2013) between these two time series, which is defined as 113 

AC= ∑௑′௒′

[∑(௑′)మ(௒′)మ]
భ
మൗ
, where X′ is the “observed” precipitation/moisture flux anomaly and Y′ is the 114 

predicted counterparts. Here, the 95% (90%) significant level is 0.33 (0.22) for AC according to a two-115 

tailed Student’s t-test. Figure 1 gives an example of the potential predictability calculation at a grid near 116 

Wuhan city, where the ensemble member 1 was taken as the truth and the mean of the members 2-24 117 

was the prediction. Result shows that moisture flux has a higher predictability (AC) than precipitation at 118 

0.5- and 1.5-month lead for member 1. This method was repeated 24 times, with each member being 119 

considered as the observation, so as to obtain 24 AC values; the average of these 24 values was the final 120 

estimate of the potential predictability. In addition to the calculation for individual grid cells, AC value 121 

was also calculated by using both spatial and temporal samples for the Yangtze River basin with 72 122 

CFSv2 grid cells. Here, an AC higher than 0.05 would be considered as significant at 95% confidence 123 

level, both for ENSO events and the entire period.  The rationale for this “perfect model” approach is 124 
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that the statistical characteristics of the “observation” (one of the ensemble members) and the prediction 125 

(ensemble mean of remaining members) are the same, so the estimate of potential predictability is not 126 

affected by model biases (Koster et al., 2004; Kumar et al., 2014). 127 

In addition, the hit rate (HR) was also used to assess the seasonal predictability for extreme hydrologic 128 

events (Ma et al., 2015), where the flooding condition was defined as the June-July mean precipitation 129 

or moisture flux greater than 90th percentile of their climatology. Here, a forecast for flooding event can 130 

be counted at a given grid or region when taking ensemble member 1 as observation and the average of 131 

members 2–24 as the prediction: the HR was computed as HR = ௔
௔ା௖

, where a represents the number of 132 

events that flooding is forecast and observed and c for observed flooding that is not forecast. Similar to 133 

the AC calculation, 24 HR values would be obtained when each member was considered as the 134 

observation, and their average HR value was the final potential predictability for extreme hydrologic 135 

events.  136 

3. Results 137 

3.1 Yangtze River 2016 pluvial flood and its associated atmospheric circulation 138 

Figure 2a shows the spatial distribution of the 2016 June-July mean rainfall anomaly. Extreme pluvial 139 

flooding hit the middle and lower reaches of Yangtze River, where the area averaged precipitation 140 

increased by about 40% relatively to the climatology. In particular, continuous heavy rainfall hit the 141 

Yangtze River basin, with rainfall anomalies locally exceeding 300 mm within 10 days (June 26-July 5; 142 

Yuan et al., 2018). Figure 2b shows that the June-July mean precipitation averaged over the Yangtze 143 

River basin ranks only second to the 1954 flood during the period 1948-2016, and is even heavier than 144 

the 1998 flood.  145 
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This Yangtze River extreme summer flood occurred in the context of the 2015/16 strong El Niño (Zhai 146 

et al., 2016; Yuan et al., 2018). Generally, when the SST over the eastern tropical Pacific is warmer 147 

than normal in the preceding winter, the Yangtze region would experience a wetter summer, or even a 148 

flood hazard. For instance, the catastrophic flooding of the Yangtze River in the summer of 1998 was 149 

strongly influenced by the 1997/98 extreme El Niño (e.g., Lau and Weng, 2001). From November 2015 150 

to January 2016, the seasonal mean SST anomaly in the NINO3.4 region (NOAA's Oceanic NINO 151 

Index) peaked at 2.3 °C (L’Heureux et al., 2016), and returned to neutral condition until May 2016. 152 

With the influence of the preceding El Niño signal, the western Pacific subtropical high (WPSH) was 153 

stronger than climatology and located further west in the summer of 2016 through the Pacific-East 154 

Asian teleconnection (e.g., Wang, 2000; Wu et al., 2003; Huang et al., 2007; Wang et al., 2014) and the 155 

Indo-western Pacific Ocean capacitor (Xie et al., 2016), so a large amount of moisture was transported 156 

along its western flank, from the Indian ocean, South China Sea and Pacific ocean to the middle and 157 

lower reaches of Yangtze River (Fig. 2c). As a result, there was a significantly anomalous moisture 158 

band in the east-west direction characterized with the largest moisture transport amount in the middle 159 

and lower reaches of Yangtze River, which was directly responsible for the 2016 summer flood (Fig. 160 

2d). 161 

3.2 Seasonal predictability of precipitation and moisture flux 162 

Considering the association between intense moisture flux and heavy rainfall over the Yangtze River 163 

basin, which is known within the canonical East Asian monsoon region (Ding and Chan, 2005), testing 164 

whether atmospheric moisture flux is more predictable than precipitation at the seasonal time scale is 165 

helpful for flood-control and disaster-relief. Figure 3 shows the predictions for June-July mean 166 
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anomalies of precipitation and corresponding moisture flux from the dynamical climate forecast model 167 

CFSv2 for the 2016 summer flood at the first three-month leads. As compared with the observed 168 

precipitation, CFSv2 successfully captured the rainfall surplus across the middle and lower reaches of 169 

the Yangtze River at 0.5-month lead (Fig. 3a), and predicted a visible moisture transport band along the 170 

middle and lower reaches of the Yangtze River (Fig. 3b). The highest moisture flux anomaly occurred 171 

over the southern bank of the Yangtze River, which corresponded exactly to the location of heavy 172 

precipitation and flood. At 1.5-month lead, CFSv2 still performed well for the anomalous moisture flux, 173 

but the predicted precipitation anomaly was much weaker than that at the 0.5-month lead (Figs. 3c-3d). 174 

At the 2.5-month lead, the prediction skill of precipitation significantly weakened with almost no 175 

anomaly (Fig. 3e), but the predicted moisture flux could reproduce the anomaly to some extent (Fig. 3f).  176 

In addition to the 2016 Yangtze flooding case, the potential predictability for June-July precipitation 177 

and moisture flux at different lead times during 1982-2016 is also investigated. Figures 4a-4f depict the 178 

spatial distribution of predictability for June-July mean precipitation and moisture flux at the 0.5-, 1.5- 179 

and 2.5-month leads respectively, where moisture flux has higher predictability than precipitation. The 180 

highest AC values for moisture flux occur over the south of the Yangtze River where frequently suffers 181 

from extreme summer pluvial flooding. At the 0.5-month lead, the AC values for precipitation are lower 182 

than 0.3 over most areas (Fig. 4a), while they are higher than 0.3 and even close to 0.6 for moisture flux 183 

predictability over the southern part of the Yangtze River basin (Fig. 4b). The AC values of 184 

precipitation drop quickly with forecast leads, and Fig. 4c shows that more than half of the AC values 185 

are less than 0.2 over the Yangtze region at the 1.5-month lead. However, the moisture flux still 186 

performs well with many AC values higher than 0.3 at the 1.5-month lead, especially over the 187 
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southeastern mountain region (Fig. 4d). The moisture flux at the 2.5-month lead has higher AC values 188 

even than precipitation at the 0.5-month lead (Fig. 4f). Meanwhile, it is evident that most areas of the 189 

Yangtze River basin have significant predictability (at least at 90% confidence level) for the moisture 190 

flux, but the predictability for precipitation is limited (Figs. 4a-4f).  191 

Figure 4g indicates the corresponding spread for precipitation and moisture flux predictability 192 

throughout the middle and lower reaches of Yangtze River region (110°-123°E, 27°-34°N). The median 193 

(mean) value for precipitation is 0.25 (0.23) at the 0.5-month lead, but reaches 0.37 (0.35) for moisture 194 

flux. At the 2.5-month lead, the median (mean) value for moisture flux is 0.25 (0.24), which is much 195 

higher than the value of 0.18 (0.16) for precipitation. The changes in potential predictability with 196 

different forecast leads are also displayed in Figure 4h, based on both spatial and temporal samples for 197 

the Yangtze River basin. The difference between precipitation and moisture flux is statistically 198 

significant (p<0.05) with a two-tailed Student’s t-test. It is evident that moisture flux has consistently 199 

higher predictability than precipitation out to 8.5-month lead. Similar result is also found at the location 200 

(30°N, 114°E) near Wuhan city (Fig. 4i), one of the big cities along the Yangtze River, which suffered 201 

widespread inundation in the summer of 2016. 202 

3.3 Varying predictability conditioned on different ENSO phases 203 

As mentioned above, the Yangtze region in eastern China is one of the most strongly ENSO-affected 204 

regions in the world, and the precipitation variability in this region is generally influenced by the 205 

anomalous ENSO forcing (e.g., Wang, 2000; Wu et al., 2003; Ding and Chan, 2005). To explore their 206 

covariability, here we performed a maximum covariance analysis (MCA, Bretherton et al., 1992) for the 207 

preceding December-January-February mean SST (120°E-80°W, 10°S-60°N) and June-July mean 208 
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precipitation (100°-150°E, 10°-55°N) fields from 1948 to 2016. It is found that the second mode 209 

(MCA2) explains 23% of the variance, and its corresponding SST anomaly pattern is very similar to the 210 

traditional ENSO-like pattern with a warm anomaly over the equatorial eastern Pacific and a horse-211 

shoes pattern with cold anomalies over the western tropical and central northern Pacific (Fig. 5a). 212 

Meanwhile, its temporal evolution is strongly correlated with the NINO3.4 SST anomaly (r = 0.92, 213 

black line in Fig. 5c). Correspondingly, the summer precipitation in the Yangtze region is above normal 214 

significantly (Fig. 5b). Therefore, the Yangtze region is prone to experience a rainy or flooding summer 215 

if the SST over the eastern tropical Pacific is warmer than normal in the preceding winter based on the 216 

covariance analysis during the period 1948-2016, whether the predictability varies during different 217 

ENSO phases should be investigated.  218 

To explore the impacts of preceding ENSO signals on Yangtze precipitation and moisture flux 219 

predictability, correlations and hit rates conditional on different ENSO phases (i.e., El Niño and La Niña) 220 

at different leads are shown in Figure 6. It is found that the seasonal predictability of Yangtze summer 221 

rainfall and moisture flux is much higher following El Niño years than La Niñas (Fig. 6a). The contrast 222 

during different ENSO phases is more obvious for extreme events, and the potential detectability of 223 

extreme moisture flux increases by 20% in post-El Niño summers as compared with the potential 224 

detectability of extreme precipitation (Fig. 6b). This asymmetric performance during El Niño and La 225 

Niña has drawn many attentions. One of the reasons is that the atmospheric response to tropical Pacific 226 

SST anomaly is inherently nonlinear (Hoerling et al., 1997), where both the amplitude of SST anomaly 227 

in the equatorial eastern Pacific and the associated atmospheric response are significantly larger during 228 

El Niño than during La Niña episodes (Burgers and Stephenson 1999). Figure 6 also shows that the 229 
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predictability is high conditional on El Niños even out to 6.5-month lead, which is consistent with 230 

previous studies. For instance, Sooraj et al. (2012) have mentioned that forecasting seasonal rainfall 231 

anomalies over central tropical Pacific islands from El Niño winter into the following spring/summer is 232 

skillful by using CFS, and Ma et al. (2015) have demonstrated high predictability for seasonal drought 233 

over ENSO-affected regimes in southern China. The exception for 3.5-month lead forecast (started in 234 

March) where the predictability conditioned on La Niña is slightly higher than El Niño (Fig. 6a) is 235 

perhaps related to the ‘spring predictability barrier’, but such chaos disappear for extreme events (Fig. 236 

6b). 237 

Furthermore, CFSv2 predictions of atmospheric circulations associated with 500 hPa geopotential 238 

height and 850 hPa wind and moisture flux are also investigated during different ENSO phases. As 239 

shown in Figure 6c, there is an anomalously high pressure center over the subtropical western Pacific, 240 

which is a recurrent pattern in post-El Niño summers (Xie et al., 2016) and implies that the WPSH is 241 

enhanced. Such circulation pattern would bring larger amounts of atmospheric moisture than normal 242 

from the southern oceans to the Yangtze River basin, which corresponds well with extreme hydrologic 243 

events. The mechanism for this lag-impact of El Niño on East Asia summer climate is the Indo-western 244 

Pacific ocean capacitor (IPOC), where the coupled wind–evaporation–SST feedback over the Northwest 245 

Pacific in spring persists to trigger East Asia–Pacific/Pacific–Japan (EAP/PJ) pattern that arises from 246 

the interaction of the anomalous anti-cyclone and North Indian Ocean warming in post-El Niño 247 

summers (Xie et al., 2016). On the contrary, preceding La Niña winters are favorable to a low pressure 248 

anomaly in next summer, accompanied with an abnormal cyclonic circulation, and thereby preventing 249 

the moisture from moving northwards to the Yangtze region (Fig. 6d). It implies that the precipitation 250 
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deficits or droughts are more likely to occur in this region in post-La Niña summers. The contrast is 251 

obvious even for forecasts for 6.5-month lead (Figs. 6e-6f). The differences in predicted circulation and 252 

associated moisture transport largely result in higher predictability for extreme hydrologic events over 253 

the middle and lower reaches of the Yangtze River basin in post-El Niño summers (Hu et al., 2014). 254 

4. Summary and Discussion 255 

Previous studies have revealed that moisture flux has higher predictability than precipitation in weather 256 

forecasts over the northwestern Europe and the western U.S., which are affected by westerlies and 257 

narrow bands of enhanced moisture transport known as atmospheric rivers (Lavers et al., 2014, 2016b). 258 

However, whether the atmospheric moisture flux is more predictable at seasonal time scales during a 259 

summer monsoon region is still unclear. Based on seasonal ensemble predictions from NCEP's 260 

operational CFSv2 model during 1982-2016, our results show that moisture flux has higher seasonal 261 

predictability than precipitation over China’s Yangtze River basin in summer. In addition, we also 262 

investigated potential predictability of precipitation and moisture flux on weekly averaged fields in 263 

June-July at subseasonal time scale. Results are similar to seasonal time scale, where the moisture flux 264 

has a higher predictability than precipitation at different lead times (Fig. 7). Moreover, the potential 265 

predictability may change under different climatic conditions. The seasonal predictability is much 266 

higher when initialized in warm ENSO conditions not only for precipitation but also for moisture flux. 267 

More importantly, the moisture flux shows higher detectability (hit rate) than precipitation for extreme 268 

pluvial flooding events following El Niño winters. The results suggest that it may be possible to extend 269 

the predictability of Yangtze River summer floods and to provide more reliable early warning by using 270 

atmospheric moisture flux predictions. However, to which degree that moisture flux is connected with 271 
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precipitation and floods might be model dependent. It is necessary to explore their connections in a 272 

multi-model framework (e.g., NMME; Kirtman et al., 2014; Shukla et al., 2016).   273 

This study extends previous findings on the predictability of precipitation and moisture flux at synoptic 274 

scales (Lavers et al., 2014) to seasonal time scales, and from atmospheric river-affected regions to the 275 

East Asian summer monsoon region. Given that the transport of atmospheric moisture from oceanic 276 

source regions is important for extreme rainfall in monsoon regions (Gimeno et al., 2012), moisture flux 277 

might also be useful for long-range forecasting over other areas affected by the monsoon and low-level 278 

jets. In fact, extreme precipitation and floods are found to be associated with large-scale moisture 279 

transport over the North American monsoon (Schmitz and Mullen, 1996) and the South American 280 

monsoon (Carvalho et al., 2011) regions. Extreme precipitation and floods usually occur accompanied 281 

with intensive atmospheric moisture transport, especially over a large area such as the middle and lower 282 

reaches of the Yangtze River. Given higher predictability of atmospheric moisture flux, it can be used 283 

as a precursor for flooding forecasting, either directly linking moisture flux to streamflow prediction 284 

through statistical techniques (e.g., conditional distribution or Bayesian methods), or adding moisture 285 

flux information into precipitation prediction, and consequently improving floods prediction. Moreover, 286 

it is suggested that assimilating moisture flux observations into numerical climate forecast models 287 

would benefit the prediction of hydrological extremes. 288 

The higher moisture flux predictability largely arises from more predictable large-scale circulation (Li 289 

et al., 2016), which strongly determines the atmospheric moisture transport. Although precipitation 290 

variability is affected by both large-scale moisture transport and localized process and features, such as 291 

condensation nuclei in the atmosphere and lifting movement, it is expected that moisture transport could 292 
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still be used as a crucial source of predictability for flooding over monsoonal regimes, especially at long 293 

leads where meso-scale convection is still unpredictable at seasonal time scales.   294 
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 409 

Figure 1. An example of the potential predictability calculation, where the ensemble member 1 is the 410 

truth and the mean of the members 2-24 is the prediction. This is for 116°E and 28°N near to Wuhan 411 

city at (a-b) the 0.5-month lead and (c-d) the 1.5-month lead. 412 

 413 
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 414 

Figure 2. The 2016 extreme summer flood. (a) Mean precipitation anomaly (shading, mm/day) during 415 

the June-July of 2016. (b) Time series of the June-July mean precipitation anomaly averaged over the 416 

middle and lower reaches of Yangtze River basin (110-123°E, 27-34°N) in (a). (c) Anomaly of 500 hPa 417 

geopotential height (shading, gpm) superimposed by absolute integrated horizontal moisture transport 418 

between 1000 to 300 hPa layers (vectors, kg•m-1s-1). The thick contour lines are 5880 gpm, implying the 419 

location of the West Pacific Subtropical High, where the black denotes the June-July 2016 and the cyan 420 

is the climatology during 1982-2010. (d) Anomaly of integrated horizontal moisture transport amount 421 

(shading, kg•m-1s-1). 422 
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 423 

Figure 3. Spatial distributions of CFSv2 predicted anomalies of precipitation (shading, mm/day) and 424 

atmospheric moisture flux (shading, Kg•m-1s-1) in the June-July of 2016 at the 0.5-, 1.5- and 2.5-month 425 

leads, where the 0.5-month lead was initialized from mid-May to early June, 1.5-month lead was 426 

initialized from mid-Apr to early May, and so on.  427 
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 428 

Figure 4. (a-f) Potential predictability (AC value, see Method) for June-July mean precipitation and 429 

atmospheric moisture flux at different lead times during 1982-2016 over the middle and lower reaches 430 

of Yangtze River for the 0.5-, 1.5- and 2.5-month leads; the stippling indicates a 95% confidence level 431 

according to a two-tailed Student’s t-test. (g) Median, lower and upper quartiles, 1.5 times the 432 

interquartile ranges for AC values for precipitation (black) and moisture (red) throughout the study 433 

region (110-123°E, 27-34°N); outliers are displayed with + signs. (h-i) Potential predictability 434 

throughout study region and Wuhan city (pink pentagram in (a)) at different lead times; the error bars 435 

are standard deviations according to 24 members. 436 
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 437 

Figure 5. (a-b) Spatial and (c) temporal patterns of the second modes based on the maximum 438 

covariance analysis (MCA) for SST in preceding winter (December-January-February) and 439 

precipitation field in summer (June-July) for 1948-2016. Here the second MCA mode explains 23 % of 440 

the variance, as indicated in the square fraction of covariance (SFC). 441 

 442 
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 443 

Figure 6. Potential predictability at different lead times in terms of (a) anomaly correlation (AC) for 444 

precipitation and moisture, and (b) hit rate (HR) for flood events (>90th percentiles) across the Yangtze 445 

River region conditioned on ENSO phases. (c-d) Composites of predicted anomalies of 500 hPa 446 

geopotential height (contour, gpm) superimposed by 850 hPa wind (vectors, m/s) and moisture flux 447 

(shading, g/cm•hPa•s) at the 0.5-month lead during different ENSO phases. (e-f) The same as (c-d), but 448 

for 6.5-month lead time.  449 
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 450 

Figure 7. (a-f) Potential predictability (AC value) for weekly mean precipitation and atmospheric 451 

moisture flux at different lead times during June-July of 1999-2010 over the middle and lower reaches 452 

of Yangtze River for the 1-14, 5-18 and 8-21 days leads; the stippling indicates a 95% confidence level 453 

according to a two-tailed Student’s t-test. (g) Potential predictability throughout study region at 454 

different lead times. 455 


