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Abstract. We propose an objective framework for selecting rainfall hazard mapping models in a region starting from rain

gauge data. Our methodology is based on the evaluation of several goodness-of-fit scores at regional scale in a cross-validation

framework, allowing to assess goodness-of-fit of the rainfall cumulative distribution functions within the region but with a

particular focus on their tail. Cross-validation is applied both to select the most appropriate statistical distribution at station

locations and to validate the mapping of these distributions. To illustrate the framework, we consider daily rainfall in the5

Ardèche catchment in South of France, a 2260 km2 catchment with strong inhomogeneity in rainfall distribution. We compare

several classical marginal distributions, that are possibly mixed over seasons and weather patterns to account for the variety

of climatological processes triggering precipitation, and several classical mapping methods. Among those tested, results show

preference for a mixture of Gamma distribution over seasons and weather patterns, with parameters interpolated with thin plate

spline across the region.10

1 Introduction

In recent years, Mediterranean storms involving various spatial and temporal scales have hit many locations in southern Europe,

causing casualties and damages (Ramos et al., 2005; Ruin et al., 2008; Ceresetti et al., 2012a). Assessing the frequency of

occurrence of extreme rainfall in a region is usually done by the computation of return level maps. This requires relating any

(large) amount of rainfall at a given location to its return level, i.e. to the frequency such an amount is expected to occur on15

average at this location. In other words, it requires knowing the cumulative distribution function (CDF) of extreme rainfall

at any grid point of the map. However there are other situations when not only the largest rainfalls are of interest, but also

smaller and even zero rainfall values. This is for example the case in rainfall simulation frameworks, e.g. when rainfalls are

input of spatially distributed hydrological models. In such a case one needs to be able to simulate any possible rainfall field.

This implies knowing both the local occurrence of any rainfall value with the right frequency, and not only the largest ones,20

and their spatial co-occurrence. Other domains include the evaluation of numerical weather simulations (e.g. Froidurot et al.,

2016) or the investigation of the climatology of rainfall events in a region.

A difficulty in producing rainfall return level maps is that knowing the CDF at any grid point ideally requires observing

rainfall on a grid scale. However long-enough gridded data with good-enough quality is often lacking. Radar and satellite
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estimations are usually available for about 10 years at best, and only for selected regions. In addition rainfall estimation in

complex topography is particularly tricky, e.g. due to the mountain ranges shielding the radar beam (Germann et al., 2006),

or to the complex relationship between satellite-measured radiances and rainfall reaching the ground (Tian and Peters-Lidard,

2010). On the other hand, rain gauge networks are usually operational for 50 to 100 years in the main part of the world, at

least at daily scale, but they only provide point observations. Thus, two main methods are usually adopted for estimating the5

CDF of rainfall at any location when observations are only available at selected locations. The first one resorts to the spatial

interpolation of point data supplied by rain gauges. This allows transforming point observations into gridded ones, and so to

estimate gridded CDFs of rainfall. Among the most performing methods for spatial interpolation of daily rainfall are kriging,

Inverse Distance Weighting and spline-surface fitting (e.g. Camera et al., 2014; Creutin and Obled, 1982; Goovaerts, 2000; Ly

et al., 2011; Rogelis and Werner, 2013). In complex topography, there may be some gain in applying these methods locally,10

e.g. considering local precipitation altitude gradients (Frei and Schär, 1998; Gottardi et al., 2012; Lloyd, 2010). However none

of the above statistical method is able to fully account for the statistical properties of rainfall fields. A first difficulty is due

to the presence of zeros, which complicates interpolation and can lead to negative interpolated rainfalls - although this could

be partially overcome by using analytical transformation of the raw variable. A second difficulty is that rainfall distribution

is usually heavy tailed and interpolation methods, by smoothing values, lack quality for representing the most extreme events15

(Delrieu et al., 2014).

A second way of mapping rainfall hazard is, rather than interpolating the point observations, to map the parameters of CDFs

fitted on rain gauge series. In addition to the choice of interpolation models, comes now the choice of the marginal model

of rainfall amounts on wet days (referred as nonzero rainfalls). The most commonly used CDFs at daily scale include the

exponential, Gamma, lognormal, Pareto, Weibull and Kappa models (Papalexiou et al., 2013). Noting that these distributions20

tend to underestimate extreme rainfall amounts (Katz et al., 2002), a recent flurry of research developed hybrid models based

on mixtures of distributions for low and heavy amounts (Vrac and Naveau, 2007; Furrer and Katz, 2008; Li et al., 2012).

More recently Naveau et al. (2016) proposed a family of distributions that is able to model the full spectrum of rainfall, while

avoiding the use of mixtures of distributions. Several studies compared marginal models for rainfall (e.g. Mielke and Johnson,

1974; Swift and Schreuder, 1981; Cho et al., 2004; Husak et al., 2007; Papalexiou et al., 2013), but focusing usually on a25

couple of CDFs. Other studies compared methods for mapping rainfall hazard, and particularly extreme rainfall, assuming a

given CDF (Beguería and Vicente-Serrano, 2006; Beguería et al., 2009; Szolgay et al., 2009; Blanchet and Lehning, 2010;

Ceresetti et al., 2012b). However there is, to the best of our knowledge, no study assessing goodness-of-fit of the full procedure

of rainfall hazard mapping, i.e. from marginal modeling to the production of hazard maps.

Our study aims at filling this gap by proposing an objective cross-validation framework that is able to validate the full30

procedure of rainfall hazard mapping starting from point observations. Our framework features three characteristics: i) it

selects both the marginal and mapping models, ii) it validates the full spectrum of rainfall, from small to long-term extrapolated

amounts, iii) it applies on a regional scale. The framework is illustrated on the Ardèche catchment in South of France. Despite

its relatively small size, this test case is particularly challenging as showing extraordinarily strong inhomogeneity in rainfall

statistics in very short distance. Following previous studies in the region (Evin et al., 2016; Garavaglia et al., 2010, 2011;35
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Gottardi et al., 2012), the compared marginal distributions involve seasonal and weather pattern subsampling, considering

different models for the subclass-dependent distributions. However the proposed cross-validation framework is general, as

involving objective criteria, and could likewise be used to select among any other distribution. Section 2 presents the data.

Section 3.1 and 3.2 describe the marginal distributions and mapping models considered in this study and present the cross-

validation scores of model selection. Section 3.3 detail the procedure of model selection from marginal modeling to hazard5

mapping. Section 4 gives extensive results for the Ardèche catchment. Section 5 concludes.

2 Data

We illustrate our framework on the Ardèche catchment (2260 km2) located in South of France (see Figure 1). The region

includes part of the south-eastern edge of the Massif Central, where the highest peaks of the region are located (more than

1500 m.a.s.l), and the Rhône valley (down to 10 m.a.s.l). The south-eastern slope of the Massif Central is known to experience10

most of the extreme storms and resulting flash floods (Figure 2 of Nuissier et al., 2008). These so-called “Cévenol” events

are produced by quasi-stationary mesoscale convective systems that stabilize over the region during several tens of hours. The

positioning and stationarity of these systems are largely influence by the topography of the surrounding mountain massifs

(Nuissier et al., 2008). We use two daily rain gauge networks maintained respectively by Electricité de France and Météo-

France. We consider the 15 rain gauges inside the catchment, together with the 27 stations located less than 15km outside. This15

gives a total of 42 stations with 20 to 64 years of data between January 1, 1948 and December 31, 2013. In both databases,

daily values are recorded every day at 6AM UTC, corresponding to rainfall accumulation between 6AM of the previous day

and 6AM of the present day.

The Ardèche catchment is chosen for illustration purpose and because, despite its relatively small size, it shows strong

inhomogeneity in rainfall distribution. To illustrate this, we show in Figure 2 the averages of annual totals and annual maximum20

daily rainfalls for each station. Computing the ratios between the largest and lowest values in Figure 2 gives a ratio of 2.6 for

the annual totals and 3.2 for the annual maxima. For comparison the latter ratio is barely lower than the ratio found over the

whole of France, which amounts 4. For both annual totals and annual maxima, the strongest values in the region concentrate

along the Massif Central ridge, while much smaller values are found a few km apart in the Massif Central plateau or in the

Piémont. Concentration of daily rainfall and particularly of extreme daily rainfall along the Massif Central ridge has already25

been documented in many studies, see e.g. Figure 10 of Blanchet et al. (2016a). We assume in this study temporal stationarity

of rainfall. Case of potential nonstationarity due to climate change will be discussed in Section 5.
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Figure 1. Region of analysis. The blue polygon is the Ardèche catchement. The red points show the location of the stations. The upper

triangle is the station Antraigues and the lower triangle the station Mayres (both lie at about 500 m.a.s.l.). The background shows the altitude

in gray scale (1km raster cells). The top left insert shows a map of France with the studied region in red. The black lines are the 400 and 800

m.a.s.l. isolines.

3 Method

3.1 Marginal distribution of rainfall

3.1.1 Considered marginal models

Let R be the random variable of daily rainfal amount at a given station. R is zero with probability p0 and, for any r > 0, we

have the following decomposition:5

pr(R≤ r) = p0 + (1− p0)G(r), (1)

where G is the CDF of nonzero rainfall at the considered station. Choice of G is an issue. One of the difficulties is that we wish

to model adequately both the bulk of the distribution of nonzero rainfall and its tail, i.e. the probability of extreme rainfall to
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Figure 2. Left: Averages of annual totals (mm). Right: Averages of annual maximum daily rainfalls (mm).

Distribution CDF G(r) or density g(r), for r > 0 Parameters

Gamma g(r) = (rκ−1e−r/λ)/(Γ(κ)λκ) λ > 0, κ > 0

Weibull G(r) = 1− e−(r/λ)κ λ > 0, κ > 0

lognormal g(r) = exp{−(log(r/λ))2/(2κ2)}/(rκ
√

2π) λ > 0, κ > 0

extended exponential G(r) = (1− e−r/λ)κ λ > 0, κ > 0

extended Generalized Pareto G(r) = (1− (1 + ξr/λ)−1/ξ)κ λ > 0, κ > 0, ξ > 0

Table 1. Considered models for the marginal distributions of nonzero rainfall. Γ in the Gamma density is the complete Gamma function

Γ(κ) =
∫∞
0
rκ−1e−rdr

occur. The most common models for nonzero rainfall include the Gamma, Weibull and lognormal models (Papalexiou et al.,

2013), whose CDF G(r) or densities g(r) = ∂G(r)/∂r, r > 0 are given in Table 1. Although less common, another family of

models for nonzero rainfall relies on univariate extreme value theory, which tells that probabilities of the form pr(R≤ r|r > q),

with q large, can be approximated by either an exponential or a Generalized Pareto tail (Coles, 2001, chapter 4). This led Naveau

et al. (2016) to propose the extended exponential and extended Generalized Pareto distributions, whose CDF are given in Table5

1. Note that less parsimonious models are given in Naveau et al. (2016) but they are not considered in the present study. The

extended exponential and extended Generalized Pareto distributions of Table 1 insure that the occurrence probability of small

(but nonzero) rainfall amounts is driven by κ while the upper tail of nonzero rainfall is equivalent to a Generalized Pareto tail.

The extended exponential model is also called "Generalized exponential" and it has been used previously for extreme rainfall

in Madi and Raqab (2007); Kaźmierczak and Kotowski (2015).10
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In the models of Table 1, rainfall is implicitely assumed to come from a single distribution. This assumption may be ques-

tioned. Indeed, different climatological processes trigger precipitation, leading to the occurrence of rainfall of different natures

and intensities (e.g. convective vs. stratiform precipitation). Furthermore, rainfall occurrence and intensities often vary with

season, reflecting both variations in temperature and in storm tracks, for example. For this reason, Garavaglia et al. (2010) pro-

posed for the same region the use of subsampling based on seasons and weather patterns (WP) (see also Brigode et al., 2014;5

Blanchet et al., 2015, respectively in Canada and Norway). Each day of the record period is assigned to a WP. If S seasons and

K WP are considered, then days are classified into S×K subclasses. The law of total probability gives, for all r > 0,

pr(R≤ r) =

S∑
s=1

K∑
k=1

pr(R≤ r|season = s,WP = k)ps,k (2)

where ps,k is the probability that a given day is in season s and in WP k (thus
∑
s

∑
k ps,k = 1). Following (1), R in season s

and WP k is zero with probability p0s,k and, for any r > 0, we have the decomposition

pr(R≤ r|season = s,WP = k) = p0s,k + (1− p0s,k)Gs,k(r), ,

where Gs,k is the CDF of nonzero rainfall at the considered station for a day in season s and WP k. This gives in (2), for all

r > 0,10

pr(R≤ r) = p0 +

S∑
s=1

K∑
k=1

ps,k(1− p0s,k)Gs,k(r), (3)

where p0 =
∑S
s=1

∑K
k=1 ps,kp

0
s,k is the probability of any day to be dry. Nonzero precipitation amounts defined by (3) have

CDF:

G(r) = pr(R≤ r|R> 0) =

S∑
s=1

K∑
k=1

p′s,kGs,k(r), (4)

where p′s,k = ps,k(1−p0s,k)/(1−p0). (4) defines a mixture of S×K distributions, e.g. a mixture of S×K Gamma distributions.15

Analogously, the CDF of nonzero precipitation amounts in a given season s writes

Gs(r) = pr(R≤ r|R> 0,season = s) =

K∑
k=1

p′′s,kGs,k(r), (5)

where p′′s,k = ps,k(1−p0s,k)/(1−
∑K
k=1 ps,kp

0
s,k). A similar idea is used in Wilks (1998) for example, but considering a mixture

of 2 (exponential) distributions in an unsupervised way, i.e. without relying on a priori subsampling. It shows the advantage

of not requiring prior knowledge on the classification but it is at the same time more difficult to estimate, in particular if the20

models for different seasons and WP do not differ much.

In this article, we will consider the supervised case (3), with S = 2 seasons and K = 3 WP, considering the five models

of Table 1 for the distribution of precipitation amounts Gs,k (see Section 3.3). This implies that estimation of Gs,k can be

made independently of each others, by considering only the days of the record belonging to season s and WP k. A variety of

6



Score Assessment For which model?

NRMSE Accuracy of the whole distribution Marginal & mapping models

FF Reliability of the far tail Marginal & mapping models

NT Reliability of the close tail Marginal & mapping models

SPAN Stability at extrapolation Marginal & mapping models

TVD & KLD Spatial stability Mapping model
Table 2. Summary of the considered scores for evaluating marginal and mapping models.

inference methods exists. For rainfall analysis, two options are popular: maximum likelihood (ML) estimation and a method of

moments based on probability weighted moments (PWM). However, as noted in Naveau et al. (2016), ML estimation may fail

for rainfall because the discretization due to instrumental precision strongly affects low values, which biaises ML estimation

if not accounted for. One way to circumvent this issue is to resort to censored likelihood but choice of the censoring threshold

is in itself an issue. Results on our data (not shown) reveal that the threshold has to be no smaller than 5 mm. PWM, on the5

other side, is much more robust against discretization since it is based on summary statistics, rather than on the exact values of

observations (Naveau et al., 2016). For this reason, we estimate in this study the distributions of precipitation amounts Gs,k by

PWM, while p0s,k at a given station is estimated empirically as p̂0s,k = d0s,k/d where d is the number of observations and d0s,k is

the number of zero values in season s and WP k. Combining estimations in (3) gives an estimation of the rainfall CDF at the

considered station, and in (4) an estimation of the CDF of nonzero rainfall.10

Estimates of return levels are then obtained as follows. The T -year return level rT is the level expected to be exceeded

on average once every T years. It satisfies the relationship pr(R≤ rT |R> 0) = 1− 1/(Tδ) where δ is the mean number of

nonzero rainfall per year at the considered station. When subsampling (4) is considered, there is not an explicit formulation

and estimation of rT is obtained numerically by solving pr(R≤ rT |R> 0) = 1− 1/(Tδ) in (4).

3.1.2 Evaluation at regional scale in a cross-validation framework15

The goal of this evaluation is to assess which marginal model performs better at the regional scale, i.e. for a set of n stations

taken as a whole, rather than individually. We follow the split sample evaluation proposed in Garavaglia et al. (2011) and

Renard et al. (2013). We divide the data for each station i into two subsamples, C(1)
i and C(2)

i , and consider nonzero rainfall

for these two subsamples. We fit a given competing model on each of the subsamples, giving two estimated distributions of G

in (4): Ĝ(1)
i , estimated on C(1)

i , and Ĝ(2)
i , estimated on C(2)

i . Our goal is to test the consistency between validation data and20

predictions of the estimates, both for the core and tail of the distributions, and the stability of the estimates when calibration

data changes, focusing particularly on the tail which is usually less stable.

As shown in Table 2, three families of scores are computed, assessing respectively i) accuracy of the estimations along

the full range of observations (MEAN(NRMSE)), ii) reliability of the tail of the estimated distribution, checking in particular

systematic over or under-estimation of the observations (AREA(FF ) and AREA(NT )), and iii) stability of the tail at extrapo-25

lation (MEAN(SPAN)). The scores relating the tail of the distribution have been proposed and used in Garavaglia et al. (2011);
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Renard et al. (2013); Blanchet et al. (2015). In the split sample evaluation framework, four scores can be derived of a given

score Sc: Sc(12) is the regional score when G(2)
i is validated on the nonzero rainfall subsample C(1)

i . Sc(21), Sc(11) and Sc(22)

are obtained symmetrically. Sc(11) and Sc(22) are calibration scores, while Sc(12) and Sc(21) are cross-validation scores. For

the sake of conciseness, we detail below the case of Sc(12) for the different scores.

The NRMSE (Normalized Root Mean Squared Error) evaluates reliability of the fits in the whole observed range of nonzero5

rainfall, by comparing observed and predicted return levels of daily rainfall. For a given station i ∈ {1, . . . ,Q},

NRMSE(12)
i =

 1

n
(1)
i

n
(1)
i∑
k=1

(r
(1)
i,Tk
− r̂(2)i,Tk)2


1/2

/
1

n
(1)
i

n
(1)
i∑
k=1

r
(1)
i,Tk

, (6)

where n(1)i is the number of nonzero rainfall in C(1)
i for station i, Tk ranges the observed return periods of nonzero rainfall in

C(1)
i , r(1)i,Tk is the observed daily rainfall associated to the return period Tk for the subsample C(1)

i and r̂(2)i,Tk is the Tk-year return

period derived from the estimated Ĝ(2)
i . Without loss of generality we assume T1, . . . ,Tn(1)

i
to be sorted in descending order10

(so T1 is associated to the maximum over C(1)
i ). If station i has δi nonzero rainfall per year on average, usual practice is to

consider the kth largest return period as Tk = (n
(1)
i +1)/(δik), k = 1, . . . ,n

(1)
i , and to estimate r(1)i,Tk as the kth largest observed

rainfall over C(1)
i . Estimate r̂(2)i,Tk is obtained numerically from Ĝ

(2)
i as described in Section 3.1.1. The normalization by the

mean rainfall of C(1)
i in (6) allows comparison of NRMSE over stations with different pluviometry. The smaller NRMSE(12)

i ,

the better Ĝ(2)
i fits the rainfalls over C(1)

i . For the set ofQ stations, we obtain a vector of NRMSE(12) of lengthQ which should15

remain reasonably close to zero. A regional score is obtained by computing the mean of the Q values:

MEAN(NRMSE(12)) =
1

Q

Q∑
i=1

NRMSE(12)
i . (7)

For competing models, the closer the mean is to 0, the better the goodness-of-fit.

NRMSE assesses goodness-of fit of the whole distribution in the observed range. Now let have a closer look at the tail of the

distribution, and in particular at the maximum over C(1)
i , i.e. at r(1)i,T1

in (6), that for shortness we denote m(1)
i . If Gi is the true

distribution of nonzero rainfall, then the corresponding random variable M (1)
i has distribution Gi to the power n(1)i , whose

variance is large. Thus computing error based on the single realization m(1)
i would be very uncertain. For this reason, Renard

et al. (2013) proposed to make evaluation by pulling together the maxima of the Q stations, after transformation to make them

on the same scale. It is based on the idea that if X has CDF F , then F (X) follows the uniform distribution on (0,1). Taking

X =M
(1)
i and F = (Gi)

n
(1)
i implies that, if Ĝ(2)

i is a perfect estimate of Gi then

ff
(12)
i = {Ĝ(2)

i (m
(1)
i )}n

(1)
i

should be a realization of the uniform distribution. For the set of Q stations, this gives a uniform sample ff (12) of size Q.

Hypothesis testing for assessing the validity of the uniform assumption is challenging because the ff (12)i are not independent20

from site to site, due to the spatial dependence between data. Thus Blanchet et al. (2015) proposed to base comparison on the

divergence of the density of the ff (12) to the uniform density. A reasonable estimate of the latter is obtained by computing the
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Figure 3. Illustration of the FF score when the true CDFG0 is extended exponential with λ= 20 and κ= 0.3. The CDFG1 underestimates

G0 (λ= 25) while G2 overestimates G0 (λ= 15). Left: Histogram of {G0(m)}n where m are 42 realizations of Gn0 and n=4000. Middle:

Histogram of {G1(m)}n. Right: Histogram of {G2(m)}n. The horizontal dashed lines show the uniform density on (0,1).

empirical histogram of the ff (12) with 10 equal bins between 0 and 1. As illustrated in Figure 3, if Ĝ(2)
i are good estimates

of Gi, i= 1, . . . ,Q, the histogram of ff (12) should be reasonably uniform on (0,1). If the histogram is left-skewed, then

Ĝ
(2)
i (m

(1)
i ) tends to overestimate the true G(1)

i (m
(1)
i ), or in other words the return period of the maximum over C(1)

i tends

to be underestimated (case of over-estimated risk). If the histogram is right-skewed, the return period of the maximum over

C(1)
i tends to be over-estimated (case of under-estimated risk). Although any scenario of misfitting could theoretically be5

possible, in practice the histograms of ff (12) show mainly the three above alternatives: either a good fit (flat histogram),

or a tendency towards a systematic under- or over-estimation (left- or right-skewed histograms). By focusing of maximum

values, the histogram of ff (12) can be seen as a way of assessing systematic bias in the far tail of the distribution. For a more

quantitative assessment, we compute the area between the density of the ff (12) and the uniform density as follows:

AREA(FF (12)) =
1

18

10∑
c=1

∣∣∣∣10
card(Bc)

n
− 1

∣∣∣∣ , (8)10

where card(Bc) is the number of ff (12)i in the cth bin, for c= 1, . . . ,10. The term inside the absolute value in (8) is the

difference between densities in the cth bin. The division by 18 forces the score to lie in the range (0,1) with lower values

indicating better fits (the worst case being all values lying in the same bin). Figure 3 shows that, when Q= 42 stations are

considered, a value of AREA(FF (12)) around 0.2 corresponds to no systematic bias in the very tail of the distribution at

regional scale, whereas a value around 0.5 corresponds to a strong over- or under-estimation. In the latter case, only looking at15

the histogram can inform on whether over- or under-estimation applies.

The NT criterion is an alternative to FF assessing reliability of the fit of the tail but focusing on prescribed (large) quantiles

rather than on the overall maximum. It applies the same principle as FF , involving a transformation of X to F (X), but
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considering X as K(1)
i,T , the random variable of the number of exceedances over C(1)

i of the T -year return level, i.e. K(1)
i,T =

card({Ri,j ∈ C(1)
i ;Gi(Rj)> 1−1/(Tδi)}), in which case F is the Binomial distributionB(1)

i with parameters (n
(1)
i ,1/(Tδi)).

Thus if Ĝ(2)
i is a perfect estimate of Gi then n(12)i,T =B

(1)
i (k

(12)
i,T ), where

k
(12)
i,T = card({ri,j ∈ C(1)

i ;Ĝ
(2)
i (ri,j)> 1− 1/(δiT )}),

should be a realization of the discrete uniform distribution. Randomisation to transform n
(12)
i,T to a continuous uniform variate5

on (0,1) is proposed in Renard et al. (2013) and extensively described in Blanchet et al. (2015). For i ranging over the set of Q

stations, we thus obtain a sample of Q uniform variates. Scores are calculated as for FF by comparing the empirical densities

of N (12)
T to the theoretical uniform density, giving the scores AREA(N

(12)
T ). Taking T as e.g. half to one-quarter the length of

the observations allows to assess reliability of the close tail of the distribution. As such, it is a good complement to FF that

focuses on the far tail (i.e. on the maximum).10

Last but not least, the SPAN criterion evaluates the stability of the return level estimation, when using data for each of the

two subsamples. More precisely, for a given return period T and station i,

SPANi,T =
|r̂(1)i,T − r̂

(2)
i,T |

1/2{r̂(1)i,T + r̂
(2)
i,T }

, (9)

where r̂(1)i,T , e.g., is the T -year return level for the distribution G estimated on subsample C(1)
i of station i, i.e. such that

Ĝ
(1)
i {r̂

(1)
i,T }= 1−1/(Tδi). SPANi,T is the relative absolute difference in T -year return levels estimated on the two subsamples.15

It ranges between 0 and 2; the closer to 0, the more stable the estimations for station i. For the set of Q stations, we obtain

a vector of SPANT of length Q with a distribution which should remain reasonably close to zero. A rough summary of this

information is obtained by computing the mean of the Q values of SPANi,T , i= 1, . . . ,Q:

MEAN(SPANT ) =
1

Q

Q∑
i=1

SPANi,T . (10)

For competing models, the closer the mean is to 0, the more stable is the model. When T is larger than the observed range of20

return periods, MEAN(SPANT ) evaluates the stability of the return levels in extrapolation. Note that it is by definition 0 in

calibration and thus it is only useful in cross-validation.

For the sake of concision, in the rest of this article the scores MEAN(NRMSE), AREA(FF ), AREA(NT ) and MEAN(SPANT )

will be referred to as the NRMSE, FF , NT and SPANT scores.

3.2 Mapping of the margins25

3.2.1 Considered mapping models

LetRi be the random variable of daily rainfall at station i, i= 1, . . . ,Q. Applying Section 3.1 at station i gives an estimate Ĝi(r)

of the CDF Gi(r) = pr(Ri ≤ r|Ri > 0). Our goal is to derive an estimate of the CDF of nonzero daily rainfall at any location

l of the region, pr(R(l)≤ r|R(l)> 0), based on the Q estimated CDFs Ĝi(r). Location l refers here to the three coordinates
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Name Model Coordinates exact?

krig Kriging without external drift x,y yes

krigz Kriging with external drift x,y,z yes

krigZ Kriging with external drift x,y,Z yes

steplmz Stepwise linear regression x,y,z no

steplmZ Stepwise linear regression x,y,Z no

tps2 Bivariate thin plate spline x,y no

tps2z Bivariate thin plate spline with drift x,y,z no

tps2Z Bivariate thin plate spline with drift x,y,Z no

tps3z Trivariate thin plate spline x,y,z no

tps3Z Trivariate thin plate spline x,y,Z no
Table 3. Mapping models considered in this study, with involved coordinates. Kriging method provides exact interpolation, unlike the linear

regression and thin plate spline.

of ground projection coordinates and altitude, that we write l = (x,y,z). Let θ̂i be the set of estimated parameters for station

i and θ̂i,j its jth element. θ̂i is composed of the S×K probability of zero rainfall p0s,k and the 2×S×K or 3×S×K
parameters of the distributions Gs,k, depending on the marginal distribution (see Table 1). We assume the θi,j ordered so

that the first S×K elements are the p0s,k. We aim at estimating the surface response θj(l) at any l of the region, knowing

θj(li) = θ̂i,j . In this study we consider three of the most popular method: kriging interpolation, linear regression methods and5

thin plate spline regressions. However the parameters θjs are constrained whereas these models apply the unbounded variables:

the probabilities p0s,k lie in (0,1), while the parameters of Table 1 are all positive. Therefore we apply the mapping models to

transformations of θj , i.e. to ψj = transf(θj) where transf maps the range of values of θj to (−∞,+∞). In this study we

considerψj(l) = Φ{θj(l)} if j ≤ S×K (i.e. if θj is any p0s,k), where Φ is the standard Gaussian CDF, and to ψj(l) = log{θj(l)}
otherwise. Other transformations would be possible, in particular p0s,k may be transformed with the logit function, but will not10

be considered here for the sake of concision. Thus we aim at estimating ψ̃j(l) given values ψj(li) = ψ̂i,j at station locations,

with obvious notations. If l ≤ S×K, estimates of θj(l) are then obtained as θ̃j(l) = Φ−1(ψ̃j(l)). Otherwise surface response

estimates are obtained as θ̃j(l) = exp(ψ̃j(l)). For the sake of clarity, we omit below the index j, considering a surface ψ(l) to

be estimated for all l in the region, given values ψ(li) = ψ̂i.

The considered mapping models are listed in Table 3. Three families of method are considered: kriging, linear regression15

and thin plate spline. Additionally to how they map values, there is a fundamental difference between these models: kriging is

an exact interpolation, i.e. ψ̃(li) = ψ̂i at any station location li used to estimate the model. On the contrary the linear regression

models and thin plate splines provide inexact interpolations: in the great majority of the time, ψ̃(li) 6= ψ̂i (the goal being

obviously to minimize the overall error).

For the kriging interpolation, cases with and without external drift are tested (chapter 3.6 of Diggle and Ribeiro, 2007).20

The external drift, if any, is modeled as a linear function of altitude (i.e. of the form a0 + a1ζ), considering ζ as either the
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altitude of the station (z), or, following Hutchinson (1998), as a smoothed altitude (Z) derived by smoothing a 1km Digital

Elavation Model (DEM) with 5km moving windows (i.e. taking Z as the average altitude of 25 DEM grid points). The results

that will be presented below correspond to the case of an exponential covariance function of the form ρ(h) = e−h/β , with

β > 0. We also considered the case of a powered exponential covariance function ρ(h) = e−(h/β)
ν

with 0< ν ≤ 2, but this

resulted in a slight loss of stability due to the additional degree of freedom, without improving the accuracy at regional scale.5

For the sake of concision, these results are not presented here. Combining alternatives for the drift part gives a total of three

kriging interpolation models with 2 to 3 unknown parameters each, for each ψ. Estimation of the kriging models are made

by maximizing the likelihood associated to the ψ̂i, assuming that ψ(l) is a Gaussian process (see chapter 5.4 of Diggle and

Ribeiro, 2007). Alternatives are to estimate drifts and variograms by least squares in different steps, with the risk of biaising

estimates (chapter 5.1 to 5.3 of Diggle and Ribeiro, 2007). Both estimation methods are available in the R package ’geoR’ (e.g.10

functions ’likfit’ and ’variofit’). In the case without drift, prediction at any site l of the region is obtained as

ψ̃(l) =

Q∑
i=1

wi(hi) ψ̂i, (11)

where the weights wi(hi) are derived from the kriging equations and satisfy
∑Q
i=1wi(hi) = 1. The weights depend on the

estimated covariance function and on the distance hi between l and station location li in the (x,y) space (i.e. h2i = (x−xi)2 +

(y− yi)2). In the case with external drift, prediction at any location l of the region is then obtained as15

ψ̃(l) = a1ζ +

Q∑
i=1

wi(hi)(ψ̂i− a1ζi), (12)

where ζ is the altitude at location l (i.e. either z or Z). Predictions (11) and (12) are exact: ψ̃(li) = ψ̂i, and consequently

θ̃(li) = θ̂i.

For the linear regression models, we start from regressions of the form ψ(l) = a0+a1x+a2y+a3ζ+a4x
2+a5y

2+a6xy+

a7xζ + a8yζ + ε(l), where ε(l)∼N(0,σ2) and ζ is, as before, either the altitude of the station (z) or the smoothed altitude20

(Z). We consider Akaike Information Criteria (AIC), defined as AIC= 2η− 2logL, where η is the number of parameters (10

at the start) and L is the maximum likelihood value of the regression model. The lower AIC, the better the model. Then we

repeatedly drop the variable that increases most the AIC -if any-, and add the variable that decreases most the AIC -if any. This

stepwise method is implemented in the ’step’ function of the R package ’stats’. At algorithm stop, the model may contain 1 to

10 parameters, for each ψ. Predictions θ̃(l) are then obtained as the back-transformation the estimated regressions.25

Last but not least, bivariate and trivariate thin plate splines are considered for ψ(l) (Boer et al., 2001; Hutchinson, 1998).

These methods are implemented in the function ’Tps’ of the R package ’fields’. In the bivariate case, ψ(l) is modeled as

ψ(l) = u(x,y)+ε(x,y) where u is an unknown smooth function and ε(x,y) are uncorrelated errors with zero means and equal

variances. The function u is estimated by minimizing

Q∑
i=1

(ψ̂i−u(xi,yi))
2 +λ

+∞∫
−∞

+∞∫
−∞

{
(
∂2u(x,y)

∂x2
)2 + 2(

∂2u(x,y)

∂x∂y
)2 + (

∂2u(x,y)

∂y2
)2
}
dxdy, (13)30
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where λ is the so-called smoothing parameter, which controls the trade-off between smoothness of the estimated function and

its fidelity to the observations. It can be estimated by generalized cross-validation. Then predictions are obtained as

ψ̃(l) = a0 + a1x+ a2y+

Q∑
i=1

bih
2
i log(hi), (14)

where hi is the Euclidean distance in the (x,y) space between l and station location li. The partial trivariate case assumes that

ψ(l)− a3ζ is a bivariate thin plate spline, where a3 is fixed and ζ is either z or Z. To make the connection with kriging, ψ(l)5

can thus also be seen as a bivariate thin plate spline with (fixed) drift in ζ. The coefficient a3 is estimated in a preliminary step

by regressing ψ̂i against ζi. Estimation of the bivariate thin plate spline for ψ(l)− a3ζ is made as described above given the

values of ψ̂i− a3ζi. Predictions are obtained as

ψ̃(l) = a0 + a1x+ a2y+ a3ζ +

Q∑
i=1

bih
2
i log(hi), (15)

Finally in the trivariate case, we have ψ(l) = u(x,y,ζ) + ε(x,y,ζ). The minimization problem is similar to (13) with a penal-10

ization enlarged by several terms (Wahba and Wendelberger, 1980). Predictions are then obtained as

ψ̃(l) = a0 + a1x+ a2y+ a3ζ +

Q∑
i=1

bih
′
i, (16)

where h′i is the Euclidean distance in the (x,y,ζ) space between l and station location li, scaling the altitude by a factor of 10

following Boer et al. (2001); Hutchinson (1998) (i.e. h′2i = (x−xi)2 +(y−yi)2 +100(ζ−ζi)2). Coefficients ai and bi in (14)

to (16) are estimated by solving a linear system of order Q involving the smoothing parameter λ. Note that the trivariate case15

(16) differs from the bivariate case with drift (15) in two ways. First, (16) considers distance in the (x,y,ζ) space whereas (15)

considers distance in the (x,y) space. Second, in (16) the weights associated to the stations are linear functions of the distance,

unlike in (15) (see the term h2i log(hi) vs. h′i).

3.2.2 Evaluation at regional scale in a cross-validation framework

Evaluation is performed in two ways. The first one is a leave-one-out cross-validation scheme aiming to test at regional scale20

how the interpolated distributions are able to fit the data of the stations when these data are left out for estimating the mapping

model. The second step assesses spatial stability by comparing the interpolated distributions obtained at a given station whether

the data of this station are used or not in the mapping estimation. In other words, it is a comparison between leave-one-out and

leave-zero-out mappings. So the two evaluations differ in that the first one compares an interpolated distribution to data, while

the second step compares two interpolated distributions.25

First, let consider a given parameter estimate θ̂(1)i,j obtained at station i based on the subsample C(1)
i (for a given marginal

model). We apply a leave-one-out cross-validation scheme: for each station i0 alternatively, we use the set of θ̂(1)i,j , i 6= i0 to

estimate the surface response θ̃(1)j (l). We store the value of this estimate at station location i0, i.e. θ̃(1)j (li0) = θ̃
(1)
i0,j

Repeating

this for every parameter θj gives estimation of the full set of parameters at station i0, i.e. estimation G̃(1)
i0

of Gi0 . Iterating over
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the stations, we obtain new estimates G̃(1)
1 , . . . , G̃

(1)
Q of G1, . . . ,GQ. Applying similarly for the subsample C(2)

i gives estimates

G̃
(2)
1 , . . . , G̃

(2)
Q . We can assess reliability of these estimates at regional scale by computing the scores Sc(11), Sc(22), Sc(12) and

Sc(21) of Section 3.1.2, where Ĝi is replaced by G̃i. Note all these scores are cross-validation scores since the estimates G̃(1)
1

and G̃(2)
1 are computed without using any data of station i.

Second, we consider the set of all θ̂(1)i,j , i= 1, . . . ,Q to estimate the surface response θ̃(1)j (l). We store the value of this5

function at every station location, giving new estimates G̃∗(1)1 , . . . , G̃
∗(1)
Q . Note that in the particular case of kriging, G̃∗(1)i is

exactly Ĝ(1)
i since it is an exact interpolation method, so every θ̂(1)i,j equals θ̃∗(1)i,j . We can assess the stability of the interpolated

distributions at a given location li when observations are available or not at this location by comparing G̃∗(1)i (r) and G̃(1)
i (r)

for all r. For this we discretize r between 0 and 450 mm (which is the overall maximum rainfall) with 1 mm step and we

compute the total variation distance (TVD) between G̃∗(1)i and G̃(1)
i and the Kullback–Leibler divergence (KLD, Weijs et al.,10

2010) from G̃
∗(1)
i to G̃(1)

i , which are given by:

TVD(1)
i = sup

r
|G̃∗(1)i (r)− G̃(1)

i (r)|

KLD(1)
i =

∫
r

g̃
∗(1)
i (r) log

g̃
∗(1)
i (r)

g̃
(1)
i (r)

dr,

where e.g. g̃(1)i is the density function associated to G̃(1)
i . Note that the KLD is not symmetric. Written as such, it can be

interpreted as the amount of information lost when G̃(1)
i is used to approximate G̃∗(1)i , so considering G̃∗(1)i as the "true"15

distribution of data. TVD and KLD differ in that TVD focuses on the largest deviation between the two CDFs, whereas KLD

somewhat integrate deviations along rainfalls. Obviously, one would like the interpolation to be as stable as possible when data

are available or not at station i, i.e. that the lower TVDi and KLDi, the more stable the interpolation at station i.

Regional scores MEAN(TVD(1)
i ) and MEAN(KLD(1)

i ) are then obtained by computing the mean of theQ values. MEAN(TVD(2)
i )

and MEAN(KLD(2)
i ) are obtained similarly for the subsample C(2). For competing models, the closer the means are to 0, the20

more spatially stable is the interpolation. For shortness, we will refer to MEAN(TVD) and MEAN(KLD) as the TVD and KLD

scores, respectively (Table 2).

3.3 Procedure of model selection at regional scale

We wish to evaluate and compare performance of both marginal and mapping models for estimating rainfall frequency across

the region. We consider models both with and without season/WPs. For the cases involving the use of WPs, we use the WP25

classification described in Garavaglia et al. (2010), which is obtained by clustering synoptic situations (geopotential heights)

for France and surrounding areas into eight classes. However a grouping of the eight WPs into three is made in order to improve

the robustness of the method while conserving the diversity of the rainy synoptic situations. The choice of the grouped WPs is

made in a separate analysis based on the spatial correlation of rainfall in the different WPs. The range of spatial correlation is

twice as big in WP1 than in WP2, and three times as big in WP1 than in WP3. The occurrence statistics of the three WPs for30

the period 1948-2013 are presented in Figure 4. The yearly occurrence of the three WPs is roughly similar (27% for WP1, 36%

for WP2, 37% for WP3). However the WPs show very different seasonality. In particular WP1 is more frequent in spring and
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Figure 4. Left: Monthly percentage of occurrence of the three WPs. Right: Boxplot of the monthly averages of daily nonzero rainfall. Each

boxplot contains 42 points (one point per station).

autumn, which correspond to wetter periods, particularly in autumn (see the monthly averages of nonzero rainfall in Figure 4).

WP3 is more frequent in summer, which is the dryest season, while WP2 features almost a reversed seasonality compared to

WP3. This shows that, although being based on the spatial dependence, the WPs are linked to the seasonality of rainfall in the

region.

In cases where subsampling is also undertaken by season, we impose a restriction of S being two seasons, representing5

the season-at-risk during which most of the annual maxima are observed, and the season-not-at-risk. Furthermore, we impose

the season-at-risk to be the same for all the stations due to the little extent of the region. Based on Figure 4, we define the

season-at-risk as the three months of September, October and November, as in Garavaglia et al. (2010); Evin et al. (2016) for

example. Alternative for bigger regions would be to select the months composing the season-at-risk following the procedure

described in Blanchet et al. (2015).10

3.3.1 Marginal selection procedure.

The full cross-validation procedure for selecting both the marginal and mapping models is summarized in Figure . First we

consider the marginal distributions of Table 1 and select the best of them at regional scale, as described in Section 3.1.2:

1. We divide the days of 1948-2013 into two subsamples of equal size, denoted C(1) and C(2). Given the weak temporal

dependence of rainfall in the region (80% of the wet periods have length lower than 3), division is made by randomly15

choosing blocks of five consecutive days to compose C(1), the remaining blocks composing C(2).
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2. For every station i, we consider the set of observed days in C(1) and C(2), giving C(1)
i and C(2)

i .

3. We fit each distribution of Table 1 to the two subsamples, getting estimates Ĝ(1)
i and Ĝ(2)

i of each distribution and for

every station.

4. We compute the scores of Section 3.1.2, getting two calibration scores ((11) and (22)) of NRMSE, FF and NT and two

cross-validation scores ((12) and (21)) of NRMSE, FF , NT and SPANT . For NT , we consider T = 5 years, which is5

lower than the minimum length of the calibration data and allows focusing on the tail but still having several exceedances

of the T -year return level at every station. So FF , by focusing on the maximum of roughly 10 to 30 years of data, can

be seen as an evaluation score for the far tail, while N5 can be seen as a evaluation score for the close tail. For SPANT ,

we consider T = 100 and T = 1000 years in order to test extrapolation far in the tail but at a scale still commonly used

for engineering purposes (dam building, protections etc, Paquet et al., 2013).10

5. We repeat 50 times the steps 1-4.

We obtain 100 values of each calibration score and 100 values of each cross-validation score. We apply this procedure to

the four distributions of Table 1, considering the four alternatives: no season nor WP (S = 1, K = 1), two seasons but no

WP (S = 2, K = 1), no season but three WPs (S = 1, K = 3), two seasons and three WPs (S = 2, K = 3). Comparing the

distributions of the scores of the 16 models allows us the select the marginal distribution yielding to the best fit at regional15

scale. We select this marginal model for further consideration.

3.3.2 Mapping selection procedure.

Second we consider the mapping models of Section 3.2.1 for interpolating the selected marginal model, and we select the best

of them in two ways, as described in Section 3.2.2.

1. We consider the estimates Ĝ(1,t)
i , i= 1, . . . ,Q, obtained at the t-th iteration of the marginal selection procedure, and20

corresponding to the subsamples C(1,t)
i , i= 1, . . . ,Q.

2. We estimate the mapping models of Section 3.2.1 following the leave-one-out cross-validation framework of Section

3.2.2. We obtain new estimates G̃(1,t)
i for each station i and each mapping model. Each G̃(1,t)

i is a cross-validation

estimation of both G(1)
i and G(2)

i since the computation of G̃(1,t)
i did not use any data of station i.

3. We compute the scores of Section 3.1.2 associated to G̃(1,t)
i , i= 1, . . . ,Q. We obtain for each score two values (e.g.25

FF (11) and FF (21) when considering G̃
(1,t)
i and the maximum value over either C(1) or C(2)). All these score are

cross-validation scores.

4. We estimate the mapping models of Section 3.2.1, using all the stations to make interpolation. We obtain new estimates

G̃
∗(1,t)
i for each station i and each mapping model.
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times

Compute NRMSE, FF, NT 
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Figure 5. Schematic summary of the full cross-validation procedure for selecting both the marginal and mapping models.
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5. We compute the spatial means of the TVD and KLD scores of Section 3.2.2, comparing G̃∗(1,t)i to G̃(1,t)
i , for , i=

1, . . . ,Q.

6. We repeat steps 1-5 for the estimates G̃(2,t)
i corresponding to the subsample C(2,t)

i .

7. We repeat steps 1-6 for each of the 50 subsamples.

We obtain 200 values of each cross-validation score NRMSE, FF ,NT and SPAN, and 100 values of the TVD and KLD scores.5

Comparing the distributions of these scores allows us the select the mapping model yielding the smallest score, for the selected

marginal model. We select this mapping model for further consideration.

At this step we have selected the best marginal model and the best mapping model (among those tested) for our data.

3.3.3 Final regional model.

Finally, we consider the whole sample of data and apply the selected marginal distribution and mapping model:10

1. We estimate the selected marginal distribution Ĝ∗i based on the full data, giving parameters θ̂∗ij , i= 1, . . . ,Q.

2. We estimate the mapping model associated to each marginal parameter, using all θ̂∗ij , i= 1, . . . ,Q, to estimate the surface

response θ̃∗j (l).

We obtain estimates of pr(R(l)≤ r|R(l)> 0) for every l within the region, making full use of the observations. Estimation

of pr(R(l)≤ r) is obtained straightforwardly from (3). Although not considered in this study, confidence intervals could be15

obtained by bootstrapping within these two last steps.

4 Results

4.1 Selection of the marginal distribution

We show in Figure 6 the influence of considering seasons and/or WPs in the marginal distributions, in the case of the Gamma

distribution for illustration, but similar patterns are found with the other distributions. Figure 6 depicts the cross-validation20

scores of NRMSE, FF and N5 and the reliability score SPAN100 for the 100 split samples C(1) and C(2). Calibration scores

are not shown because they are very similar to the cross-validation scores (correlation 91% between validation and calibration

scores). For the stability criteria, we only show the values of SPAN100, which corresponds to 3 to 10 times the length of

calibration data, but actually values for T = 1000 years lead to the same conclusions (correlation 99.9% between SPAN100 and

SPAN1000).25

Comparing the reliability scores NRMSE,FF andN5 when neither season nor WP is used (case (1,1)) with cases when either

WPs (case (1,3)) or seasons (case (2,1)) are considered shows there is at regional scale a clear improvement of using a mixture

of Gamma distributions rather than considering a single Gamma for the whole year. Reliability criteria are slightly better (i.e.

lower) when WPs are considered rather than season, but this is more marked for the bulk of the distribution (represented by the
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Figure 6. Scores of cross-validation when Gs,k are Gamma distributions and the number of seasons and WP varies: S ∈ {1,2} and K ∈

{1,3}. The values of (S,K) are indicated in the x-labels. Each boxplot contains 100 points.

NRMSE scores) than for its tail (FF and N5). Reliability scores are even better when both seasons and WPs are considered

(case (2,3)), particularly for the tail of the distribution.

Obviously, there is a loss of stability when considering seasons and/or WPs due to the increased number of parameters.

However the score of SPAN100 ranges 0.08-0.14, which means that the two estimates of the 100-year return levels over C(1)

and C(2) differ by 8 to 14%, which seems acceptable.5

We illustrate the quality of the fit for the station Antraigues, located in the very foothills of the Massif Central slope (see

Figure 1), which shows among that largest annual maxima (see Figure 2). We focus on the tail of the distribution by looking

at the return level plot (here beyond the yearly return period). Of course, some variability is found in the return level estima-

tions depending on the subsample used for estimation. Figure 7 illustrates this by showing the 95%-envelope of return level

estimations over the 100 subsamples on either C(1) or C(2) together with the full sample of 35 years. Note that the envelopes10

do not show confidence intervals (that could be obtained by bootstrapping for example) but variability when only half the data
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Figure 7. Case of Antraigues when Gs,k are Gamma distributions and the number of seasons and WP varies: S ∈ {1,2} and K ∈ {1,3}.

The values of (S,K) are indicated in the title. The dotted lines show the 95%-envelope of return level estimates over the 100 subsamples.

The plain line shows the median estimates. The gray points show the full sample (35 years). Each estimation is based on half of these points.

in used from calibration. Thus, more than goodness-of-fit assessment, the plots of Figure 7 allow to assess quality of the fits

at close extrapolation (i.e. when extrapolating at twice the length of data). The plots clearly show that considering seasons and

WPs allows to get heavier-tailed distributions. The median estimates with two seasons and three WPs follow the most closely

the empirical points, even the largest ones, showing quality of the fits for extrapolating at twice the length of data. However we

note that the return level plots of Figure 7 all appear approximately linear for high values, meaning that none of the Gamma5

mixtures is able to produce heavy tails in the sense of extreme value theory. It is possible that return levels at extrapolation

far beyond the observed return periods are underestimated. Figure 7 also shows that variability is relatively low in all cases,

although it naturally increases for the marginal models involving more parameters. In particular, the coefficient of variation

of the 100-year return level with two seasons and three WPs is less than 7%, in coherence with the SPAN100 of Figure 6 at

regional scale.10

Due to its better fit for the Gamma model (Figures 6 and 7) as for the other distributions (not shown), we select the mixture

model with S = 2 seasons and K = 3 WPs for further investigation. Figure 8 shows the scores of cross-validation when

the parent distribution Gs,k is either the extended exponential, extended Generalized Pareto, Gamma, lognormal or Weibull

distribution. The reliability scores NRMSE, FF and N5 in the lognormal case are missing because they lie far above the upper

range of the depicted values (e.g. the median NRMSE is about 0.7), which clearly rules out the use of the lognormal model for15

this region. The reliability criteria of the four other distributions all show the same pattern: a better performance of the Gamma

model, closely followed by the extended exponential case. Then comes the extended Generalized Pareto, itself closely followed

by the Weibull model. A closer look at the values of ffi and ni,5 for all stations and samples reveals that the weaker reliability

of the Weibull and extended Generalized Pareto models is due to their tendency to systematically overestimate the probability

of occurrence of large values (i.e. to underestimate their return period), with ffi and ni,5 tending to be too frequently small20

(remind case G1 of Figure 3). Note that the lack of reliability of the extended Generalized Pareto in the upper tail is at least

partially attributable to being based on fitting the entire range of rainfall values, which leads to a systematic overestimation of
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Figure 8. Scores of cross-validation when Gs,k is either the extended exponential (eexp), extended Generalized Pareto (egp), Gamma

(gamma), lognormal (lnorm) or Weibull (wei) distribution, with S = 2 and K = 3. Each boxplot contains 100 points. The boxplots of

reliability scores in the lognormal case are missing because they lie far above the upper range of depicted values.

the shape parameter ξ in Table 1 compared to when fitting a Generalized Pareto distribution on the upper tail of the data (not

shown).

The stability score SPAN100 in Figure 8 shows that the most stable model is the lognormal case but this is because the

lognormal distribution gives unreasonably huge estimates of large return values (as illustrated in Figure 9 for the station

Antraigues, for example), giving very large normalization terms in the SPAN criteria (see (9)). The fact that the lognormal5

model has by far the worst reliability scores but the best stability score preaches for the conjoint use of these two family of

scores not to misinterpret results. Stability of the Gamma and extended exponential distributions are very similar and fairly

less good than the lognormal case. Then comes the Weibull distribution, and finally the Generalized Pareto distribution, which

is clearly the least stable.
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Figure 9. Case of Antraigues when Gs,k is either the extended exponential (eexp), extended Generalized Pareto (egp), lognormal (lnorm) or

Weibull (wei) distribution, with S = 2 andK = 3. The dotted lines show the 95%-envelope of return level estimates over the 100 subsamples.

The plain line shows the median estimates. The gray points show the full sample (35 years). Each estimation is based on half these points.

Case of the Gamma distribution is shown in the right panel of Figure 7.

Figure 9 illustrates the quality and spread of the fits depending on the distribution for the station Antraigues, when estimation

is made on either subsample. Compared to Figure 7, it confirms that the Gamma and the extended exponential models perform

almost likely. Median estimations differ by about 5% for the 100-year return level (303 mm for the Gamma vs. 287 mm for

the extended exponential model) and by about 7% for the 1000-year return level (414 mm vs. 386 mm), with very similar

widths of the 95% envelopes (e.g. ± 40 mm for the 100-year return level). The lognormal model clearly fails to reproduce5

return periods larger than one year, giving much too heavy tails despite a resonably good fit of the bulk. Actually the skewness

–which informs somehow on the "asymetry of the bulk"– is reasonably well estimated, whereas the kurtosis –which informs

on the heaviness of the tail– is much overestimated. This is in line with Fig. 2 of Hanson and Vogel (2008), which shows that

when the skewness of daily rainfall across the US is well estimated by the lognormal distribution, then the kurtosis is much

overestimated. Note that Papalexiou et al. (2013) did not find such ill-fitted tails with the lognormal distribution but in their10

case fitting is made on the tail (i.e. on the largest values), whereas the lognormal model seems to fail when adjusting both

the bulk and the tail of rainfall distribution. The Weibull and extended Generalized Pareto models give very similar fits up to

the 50-year return period but the return level plot of the extended Generalized Pareto model is more convex (i.e. it shows a

heavier tail) than for the Weibull model, giving median estimation 8% larger for the 100-year return level (390 mm vs. 358

mm) and 35% larger for the 1000-year return level (799 mm vs. 522 mm). Width of the 95%-envelope is also larger both15

in absolute and relative values, in coherence with the SPAN100 of Figure 8 at regional scale. Finally both the Weibull and

extended Generalized Pareto models overestimate the return levels associated to 1-5 years, unlike the Gamma and extended

exponential models. This tendency towards overestimation of the tail is actually a quite general feature observed for most the

stations, giving too frequently low values of ffi and ni,T , as already stated.

The results of Figures 8 and 9 lead us to conclude that the best performance for the region is achieved by the Gamma20

and extended exponential models, which actually perform very similarly for Antraigues station. Note that exactly the same

conclusions hold when focusing on the season-at-risk rather than considering the whole year, i.e. when computing the cross-

validation scores for the estimated seasonal distribution Gs in (5) rather than for the year-round distribution G in (4. Due to
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its slightly better performance at regional scale for adjusting the tail of the distribution (FF and N5 in Figure 8), we select the

Gamma model (with two season and three WPs) for further consideration.

4.2 Selection of the mapping model

Figure 10 shows the 10 scores of evaluation of the mapping models of Table 3. The first comment is that, compared to Figure

8, the FF scores of leave-one-out cross-validation are for any mapping method of the same order as for the the local fits, while5

the SPAN scores are even slightly better. This means that i) no mapping method gives systematic over- or under-estimation of

the very tail, and ii) mapping gives more stable estimations by smoothing out the sampling effect. However NMRSE scores are

all larger, meaning that any mapping gives less accurate estimations of the full distributions than the local fits. Loss in accuracy

is equivalent and relatively small for all kriging interpolations and the bivariate thin plate splines (with or without drift), while

the trivariate thin plate spline and even more the linear model are less accurate. A closer look at the fits of all stations reveals10

that the strong loss in NRMSE for these two methods is actually due to few stations that are systematically very badly fitted

-among which the station of Mayres of Figure 11-, which strongly deteriorates the spatial mean of the scores. Their less good

performance is due to a lack of flexibility, which prevents them from adapting to local features. However at the same time,

the lack of flexibility of these methods allow them for slightly increased stability in the tail, as shown by the SPAN scores in

Figure 10.15

Back to the kriging methods, the three tested alternatives give very similar fits, with slightly less stability when considering

a drift in station altitude z, while considering the smoothed altitude Z is useless because a1 in (12) is almost always zero.

The best kriging method for our region study in thus the simple kriging interpolation. This method is only slightly beaten

in accuracy by the bivariate thin plate spline (with or without drift), but which is slightly less stable. However the TVD and

KLD scores comparing the spatial stability of the mappings show that the bivariate thin plate splines are clearly more stable20

in space than all kriging methods. The linear model is even more stable but, as already said, it is much less accurate. Finally,

comparing the five cases of thin plate spline shows that the three bivariate cases clearly outperform the trivariate case, both in

terms of accuracy and stability. Comparing the bivariate case with drift (15) to the the trivariate case (16) shows the usefulness

of considering non-linear weights of the distance (through the term h2i log(hi) vs. h′i). Last but not least, whatever the method

but particularly for the thin plate spline, better accuracy and stability is achieved when the smoothed altitude Z is considered25

rather than the station altitude z, as also found in Hutchinson (1998) for interpolating rainfall data.

We illustrate the results in Figure 11 for the Antraigues station, adding to that the case of the worst fit of the thin plate spline,

which is for the station of Mayres. Mayres lies at about 500 m.a.s.l, as Antraigues, but it is located at the end of a funnel

shaped valley surrounded by steep slopes (see Figure 1). This creates favorable conditions to the orographic intensification of

rainfall, with the consequence that Mayres receives more rainfall than expected at this altitude, as also confirmed by Figure30

2. For this reason, although the local fit of the Gamma model is reasonably good, the interpolated distributions underestimate

the empirical values, even the small ones. This can be seen in Figure 11 by comparing the black curves, which were obtained

independently of the data of Mayres, to the red curves of the kriging case, which are equal to the local fits since kriging is

an exact interpolation. Although return levels are underestimated with all models, kriging and the bivariate thin plate spline
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Figure 10. Scores of mapping when Gs,k are Gamma distributions with S = 2 and K = 3 whose parameters are interpolated with the

mapping models of Table 3. The two first rows show leave-one-out cross-validation scores. Each boxplot contains 200 points. The third row

compares interpolations at a given station whether the data of this station are used or not in the interpolation. Each boxplot contains 100

points.
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Figure 11. Case of Antraigues (top) and Mayres (bottom) when Gs,k are Gamma distributions with S = 2 and K = 3 whose parameters are

interpolated with either: kriging without extrenal drift (krig), stepwise linear model (steplmZ), bivariate thin plate spline with drift (tps2Z),

or trivariate thin plate spline (tps3Z). The dotted lines show the 95%-envelope of return level estimates over the 100 subsamples. The plain

line shows the median estimates. In black, each interpolation is based on half the data of the other stations, excluding the considered station.

In red, interpolation is based on half the data of all the stations, including the considered station. The gray points show the full sample (35

years for both stations).

manage however better the fit the data of Mayres in the leave-one-out framework, in coherence with the NMRSE values of

Figure 10 at regional scale. For the station Antraigues, underestimation is also found for all methods due to smoothing but

with much smaller extent than for Mayres. For both stations, comparing the red and black curves shows that kriging and

the trivariate thin plate spline are too dependent on the data used for fitting since large differences are obtained whether the

station is included or not in the estimation, in coherence with the TVD and KLD values of Figure 10 at regional scale. Finally,5

comparing the envelope widths in red and black in Figure 11 confirms that interpolation increases stability of the estimates, as

also revealed by the SPAN score of Figure 11.

We conclude following the results of Figures 10 and 11 that the best interpolation method (among those tested) is the

bivariate thin plate spline with drift in smoothed altitude, which is slightly more accurate but much more stable spatially stable

than the kriging method. The trivarite thin plate spline and the linear model should be avoided for our data due to their lack of10

flexibility.
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4.3 Final regional model

Figure 12 illustrates the final regional models when both the Gamma parameters and the mapping models are estimated using

all the available data. The map of the probability of daily rainfall to exceed 1 mm is obtained from (3) with r = 1 mm. The

maps of the mean nonzero rainfall in the WPs of the season-at-risk (S2) are obtained as the product λ2,kκ2,k, k = 1, . . . ,3, with

the notations of Table 1. The four maps of Figure 12 reveal the double effect of the Massif Central ridge, which both creates a5

climatological border and enhances orographic precipitation. The map of rainfall probability is conform to the climatology of

the region (as shown by the colored points), with a smaller probability of rainfall in the Rhône valley and increased probability

when approaching the relief due to orographic effect. Being more exposed to the west fluxes -which are the most common in

the region-, the west side of the Massif Central undergoes more frequent rainfall events. Comparing the three maps of mean

nonzero rainfall reveals very different range of values depending on the WP, with WP1 showing much larger values than the10

other WPs all across the region. Recall that the WPs were constructed based on the spatial correlation of rainfall, with WP1

showing a spatial correlation of rainfall twice as big as in WP2 and three times as big than in WP3. Remarkably, roughly the

same factors are found when comparing the range of values of the means (resp. 5-36 mm, 3-11 mm, 2-10 mm). There is thus a

strong link between the spatial correlation of rainfall and the mean amounts. However the WPs do not only differ in the range of

values of the mean amounts but also, and maybe even more, in the way these amounts are usually distributed over the region.15

This emphasizes once again the usefulness of considering subsampling over WPs in order to distinguish contrasted spatial

pattern. The map of WP1 shows a strong intensification of rainfall along the Massif Central slope, while a clear decrease in

the mean rainfall is found when passing the Massif Central ridge both towards the Massif Central plateau with means divided

by three in 20km, and towards the Rhône valley with means divided by two in 20km. In WP2 the topography builds somehow

a mask effect. The larger means are found along the Massif Central slope with a fast break when passing the Massif Central20

ridge. Daily means in the Massif Central plateau are half the values of the slope, while daily means in the Rhône valley are

just slightly lower than in the slope. Finally the map of the mean nonzero rainfall in WP3 shows an inverse pattern to that of

the probability of rainfall. The mean almost linearly decreases from the Rhône valley to the Massif Central plateau while the

probability of rainfall almost linearly increases. The largest rainfall events in this WP are usually convective events of small

extent occurring mainly in the Rhône valley, reason why the mean values are larger in this area, although the probability of25

rainfall is relatively low.

Last but not least, Figure 13 shows the map of the probability of daily rainfall to exceed 100 mm. It reveals a clear concen-

tration of higher probabilities of exceedance along the Massif Central ridge, with actually quite similar patterns as the averages

of annual totals and annual maxima in Figure 2, with however much more pronounced disparities. It is up to 10 times less

likely to exceed 100 mm rainfall in the Rhône valley than along the ridge, and up to 1000 times less likely in the Massif Central30

plateau. Actually 100 mm is expected to be exceeded several times a year along the ridge, about every year on the slope, and

on average every 100 to 1000 year in the Massif Central plateau.
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Figure 12. Map of the probability of daily rainfall to exceed 1 mm and of the mean of nonzero rainfall in the three WPs of the season-at-risk.

The points are colored with respect to the empirical estimates.
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Figure 13. Map of the probability of daily rainfall to exceed 100 mm. The points show the location of the stations.

5 Conclusion and discussion

In this article we have presented an objective framework for selecting rainfall hazard mapping models in a region starting from

rain gauge data. For this we have proposed an objective procedure involving split sampling cross-validation and using several

evaluation scores allowing to validate the accuracy of both the bulk and tail of the distribution and the stability of these estimates

when calibration data changes. We have applied this procedure to daily rainfall in the Ardèche catchment in southern France,5

a particularly challenging test case subject to strong inhomogeneity of rainfall at very short distance. For illustration purpose,

we chose to compare several classical marginal distributions, that are possibly mixed over seasons and weather patterns to

account for the variety of climatological processes triggering precipitation, and several classical mapping methods. Our results

show that for this region, the best marginal model (among those tested) is a mixture of Gamma distributions over seasons and

weather patterns, and that the best mapping method (among those tested) is the bivariate thin plate spline. However, the goal10

of this paper was neither to be exhaustive not to find the best hazard mapping model for the region. Obviously, other choices

may be worth of investigation.

Possible direction of improvement for the study region regards the choice of the marginal distribution. Although the Gamma

mixture was selected according to the cross-validation scores, we noted a possible underestimation of return levels at far

extrapolation since the model is unable to produce heavy tails in the sense of extreme value theory. It could be worth considering15

hydrid models based on combining distributions for low and heavy amounts (Vrac and Naveau, 2007; Furrer and Katz, 2008;

Li et al., 2012), although robustness might be an issue. Other possibility includes considering less parcimonious versions of the

extended Generalized Pareto distribution (Naveau et al., 2016) to improve reliability in the upper tail. Further investigations

may also be conducted regarding the choice of the spatial covariates to be used in the interpolation method. There might
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be more relevant covariates than the geographical coordinates used in this study, e.g. considering atmospheric and terrain

characteristics (Carreau et al., 2013; Kyriakidis et al., 2001). Finding good gridded covariates (and good regression models)

is a subject of research in itself, and it is particularly tricky in areas with complex topography (Prudhomme and Reed, 1999;

Weisse and Bois, 2001; Drogue et al., 2002; Beguería et al., 2009; Rogelis and Werner, 2013). The geographical distance itself

might also be improved, e.g. by better accounting for the terrain characteristics (Gottardi et al., 2012; Evin et al., 2016) or5

by considering statistical distance (Ahrens, 2006). Also more robust estimates of the marginal parameters at station locations

(i.e. of the θ̂s) might be obtained by gathering observations of neighbor stations in order to increase the sample size, following

the concept of regions-of-influence proposed by Burn (1990). Such idea has been quite widely used in the context of rainfall

extremes (e.g. Carreau et al., 2013; Evin et al., 2016, for the studied region). However we anticipate the gain to be much less

pregnant when interest is in modeling any rainfall –as in this study–, and not only the extreme ones since parameter estimation10

is already based on many data (several thousands).

Despite the above reservations of prudence, some other results seem to us to be generalizable, in particular regarding the

mapping step. Among these is the fact that the kriging method gives usually too patchy maps of rainfall hazard by sticking

the observations, unless nugget effects are considered (which was not the case in this study). Finally the linear model with

spatial covariates usually fails to map rainfall hazard because it is highly unlikely to be ruled by simple enough physics for15

the parameters to be well represented as linear functions of the covariates, in particular in such complex topography (Carreau

et al., 2013).

Last for not least, we put this study in a framework of temporal stationarity and we addressed the question of the spatial

nonstationarity of the margins. Yet several studies showed temporal trend in the rainfall distribution in the region, particularly

since the 80s and particularly along the Massif Central slope where daily rainfall is usually more intense (Blanchet et al.,20

2016b; Tramblay et al., 2011, 2013; Vautard et al., 2015). Extending the proposed procedure to the case of nonstationary

rainfall would be possible by considering the marginal parameters as parametric functions of time, e.g. linear models. This

would increase the number of parameters but the split sample framework would still be valid. However the scores would have

to be adapted to account for changing distributions. One way of doing this would be to transform the rainfall at time t to

some variate independent of t. For example considering R′t = exp{−exp(−Gt(Rt))} would transform Rt with CDF Gt to a25

stationary Gumbel variate, to which the scores presented in this article could be applied for model evaluation and selection. A

drawback however would be that the value of the scores would depend upon the chosen transformation. Also the SPAN score

might have to be thought over because return levels in changing climates are not meaningful for quantifying risk (Katz, 2013).

Author contributions. J. Blanchet developed the cross-validation framework, wrote the code in R (R Core Team, 2013) and prepared the

manuscript. The estimation of the margins is partly based on a code written by P. Vaittinada. The climatological discussion of the produced30

hazard maps has benefited from the input of E. Paquet and D. Penot.

29



References

Ahrens, B.: Distance in spatial interpolation of daily rain gauge data, Hydrology and Earth System Sciences, 10, 197–208,

https://doi.org/10.5194/hess-10-197-2006, https://www.hydrol-earth-syst-sci.net/10/197/2006/, 2006.

Beguería, S. and Vicente-Serrano, S. M.: Mapping the Hazard of Extreme Rainfall by Peaks over Threshold Extreme Value Analysis and

Spatial Regression Techniques, Journal of Applied Meteorology and Climatology, 45, 108–124, https://doi.org/10.1175/JAM2324.1, https:5

//doi.org/10.1175/JAM2324.1, 2006.

Beguería, S., Vicente-Serrano, S. M., López-Moreno, J. I., and García-Ruiz, J. M.: Annual and seasonal mapping of peak intensity, magnitude

and duration of extreme precipitation events across a climatic gradient, northeast Spain, International Journal of Climatology, 29, 1759–

1779, https://doi.org/10.1002/joc.1808, http://dx.doi.org/10.1002/joc.1808, 2009.

Blanchet, J. and Lehning, M.: Mapping snow depth return levels: smooth spatial modeling versus station interpolation, Hydrology and Earth10

System Sciences, 14, 2527–2544, https://doi.org/10.5194/hess-14-2527-2010, http://www.hydrol-earth-syst-sci.net/14/2527/2010/, 2010.

Blanchet, J., Touati, J., Lawrence, D., Garavaglia, F., and Paquet, E.: Evaluation of a compound distribution based on weather patterns

subsampling for extreme rainfall in Norway, Natural Hazards and Earth System Sciences, 15, 2653–2667, https://doi.org/10.5194/nhess-

15-2653-2015, https://www.nat-hazards-earth-syst-sci.net/15/2653/2015/, 2015.

Blanchet, J., Ceresetti, D., Molinié, G., and Creutin, J.-D.: A regional GEV scale-invariant framework for Intensity–Duration–Frequency15

analysis, Journal of Hydrology, 540, 82 – 95, https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2016.06.007, http://www.sciencedirect.

com/science/article/pii/S0022169416303584, 2016a.

Blanchet, J., Molinié, G., and Touati, J.: Spatial analysis of trend in extreme daily rainfall in southern France, Climate Dynamics, pp. 1–14,

https://doi.org/10.1007/s00382-016-3122-7, http://dx.doi.org/10.1007/s00382-016-3122-7, 2016b.

Boer, E. P., de Beurs, K. M., and Hartkamp, A. D.: Kriging and thin plate splines for mapping climate variables, International Journal20

of Applied Earth Observation and Geoinformation, 3, 146 – 154, https://doi.org/https://doi.org/10.1016/S0303-2434(01)85006-6, http:

//www.sciencedirect.com/science/article/pii/S0303243401850066, 2001.

Brigode, P., Bernardara, P., Paquet, E., Gailhard, J., Garavaglia, F., Merz, R., Mićović, Z., Lawrence, D., and Ribstein, P.: Sensitivity anal-
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Kaźmierczak, B. and Kotowski, A.: The suitability assessment of a generalized exponential distribution for the description of maximum

precipitation amounts, Journal of Hydrology, 525, 345 – 351, https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.03.063, http://www.

sciencedirect.com/science/article/pii/S0022169415002346, 2015.20

Kyriakidis, P. C., Kim, J., and Miller, N. L.: Geostatistical Mapping of Precipitation from Rain Gauge Data Using At-

mospheric and Terrain Characteristics, Journal of Applied Meteorology, 40, 1855–1877, https://doi.org/10.1175/1520-

0450(2001)040<1855:GMOPFR>2.0.CO;2, https://doi.org/10.1175/1520-0450(2001)040<1855:GMOPFR>2.0.CO;2, 2001.

Li, C., Singh, V. P., and Mishra, A. K.: Simulation of the entire range of daily precipitation using a hybrid probability distribution, Water

Resources Research, 48, https://doi.org/10.1029/2011WR011446, http://dx.doi.org/10.1029/2011WR011446, w03521, 2012.25

Lloyd, C. D.: Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom, International Journal of

Climatology, 30, 390–405, https://doi.org/10.1002/joc.1892, http://dx.doi.org/10.1002/joc.1892, 2010.

Ly, S., Charles, C., and Degré, A.: Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the

Ourthe and Ambleve catchments, Belgium, Hydrology and Earth System Sciences, 15, 2259–2274, https://doi.org/10.5194/hess-15-2259-

2011, https://www.hydrol-earth-syst-sci.net/15/2259/2011/, 2011.30

Madi, M. T. and Raqab, M. Z.: Bayesian prediction of rainfall records using the generalized exponential distribution, Environmetrics, 18,

541–549, https://doi.org/10.1002/env.826, http://dx.doi.org/10.1002/env.826, 2007.

Mielke, P. W. and Johnson, E. S.: Some generalized beta distributions of the second kind having desirable application features in hydrol-

ogy and meteorology, Water Resources Research, 10, 223–226, https://doi.org/10.1029/WR010i002p00223, http://dx.doi.org/10.1029/

WR010i002p00223, 1974.35

Naveau, P., Huser, R., Ribereau, P., and Hannart, A.: Modeling jointly low, moderate and heavy rainfall intensities without a threshold

selection, Water Resources Research, 2016.

32

https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2012.02.014
http://www.sciencedirect.com/science/article/pii/S002216941200114X
https://doi.org/https://doi.org/10.1061/40976(316)585
https://doi.org/10.1002/joc.1441
http://dx.doi.org/10.1002/joc.1441
https://doi.org/10.1007/978-94-007-4479-0_2
http://dx.doi.org/10.1007/978-94-007-4479-0_2
https://doi.org/http://dx.doi.org/10.1016/S0309-1708(02)00056-8
http://www.sciencedirect.com/science/article/pii/S0309170802000568
http://www.sciencedirect.com/science/article/pii/S0309170802000568
http://www.sciencedirect.com/science/article/pii/S0309170802000568
https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.03.063
http://www.sciencedirect.com/science/article/pii/S0022169415002346
http://www.sciencedirect.com/science/article/pii/S0022169415002346
http://www.sciencedirect.com/science/article/pii/S0022169415002346
https://doi.org/10.1175/1520-0450(2001)040%3C1855:GMOPFR%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040%3C1855:GMOPFR%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040%3C1855:GMOPFR%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1855:GMOPFR>2.0.CO;2
https://doi.org/10.1029/2011WR011446
http://dx.doi.org/10.1029/2011WR011446
https://doi.org/10.1002/joc.1892
http://dx.doi.org/10.1002/joc.1892
https://doi.org/10.5194/hess-15-2259-2011
https://doi.org/10.5194/hess-15-2259-2011
https://doi.org/10.5194/hess-15-2259-2011
https://www.hydrol-earth-syst-sci.net/15/2259/2011/
https://doi.org/10.1002/env.826
http://dx.doi.org/10.1002/env.826
https://doi.org/10.1029/WR010i002p00223
http://dx.doi.org/10.1029/WR010i002p00223
http://dx.doi.org/10.1029/WR010i002p00223
http://dx.doi.org/10.1029/WR010i002p00223


Nuissier, O., Ducrocq, V., Ricard, D., Lebeaupin, C., and Anquetin, S.: A numerical study of three catastrophic precipitating events over

southern France. I: Numerical framework and synoptic ingredients, Quarterly Journal of the Royal Meteorological Society, 134, 111–130,

https://doi.org/10.1002/qj.200, http://dx.doi.org/10.1002/qj.200, 2008.

Papalexiou, S. M., Koutsoyiannis, D., and Makropoulos, C.: How extreme is extreme? An assessment of daily rainfall distribution tails,

Hydrology and Earth System Sciences, 17, 851–862, https://doi.org/10.5194/hess-17-851-2013, http://www.hydrol-earth-syst-sci.net/17/5

851/2013/, 2013.

Paquet, E., Garavaglia, F., Garçon, R., and Gailhard, J.: The SCHADEX method: A semi-continuous rainfall-runoff simulation for ex-

treme flood estimation, Journal of Hydrology, 495, 23 – 37, https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2013.04.045, http://www.

sciencedirect.com/science/article/pii/S0022169413003508, 2013.

Prudhomme, C. and Reed, D. W.: Mapping extreme rainfall in a mountainous region using geostatistical techniques: a case study10

in Scotland, International Journal of Climatology, 19, 1337–1356, https://doi.org/10.1002/(SICI)1097-0088(199910)19:12<1337::AID-

JOC421>3.0.CO;2-G, http://dx.doi.org/10.1002/(SICI)1097-0088(199910)19:12<1337::AID-JOC421>3.0.CO;2-G, 1999.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, http:

//www.R-project.org/, 2013.

Ramos, M. H., Creutin, J.-D., and Leblois, E.: Visualization of storm severity, Journal of Hydrology, 315, 295 – 307,15

https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2005.04.007, http://www.sciencedirect.com/science/article/pii/S0022169405001939,

2005.

Renard, B., Kochanek, K., Lang, M., Garavaglia, F., Paquet, E., Neppel, L., Najib, K., Carreau, J., Arnaud, P., Aubert, Y., Borchi, F.,

Soubeyroux, J.-M., Jourdain, S., Veysseire, J.-M., Sauquet, E., Cipriani, T., and Auffray, A.: Data-based comparison of frequency analysis

methods: A general framework, Water Resources Research, 49, 825–843, https://doi.org/10.1002/wrcr.20087, http://dx.doi.org/10.1002/20

wrcr.20087, 2013.

Rogelis, M. C. and Werner, M. G. F.: Spatial Interpolation for Real-Time Rainfall Field Estimation in Areas with Complex Topography,

Journal of Hydrometeorology, 14, 85–104, https://doi.org/10.1175/JHM-D-11-0150.1, https://doi.org/10.1175/JHM-D-11-0150.1, 2013.

Ruin, I., Creutin, J.-D., Anquetin, S., and Lutoff, C.: Human exposure to flash floods – Relation between flood parameters

and human vulnerability during a storm of September 2002 in southern France, Journal of Hydrology, 361, 199 – 213,25

https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2008.07.044, http://www.sciencedirect.com/science/article/pii/S0022169408003983,

2008.

Swift, L. W. J. and Schreuder, H. T.: Fitting Daily Precipitation Amounts Using the SB Distribution, Monthly Weather Re-

view, 109, 2535–2540, https://doi.org/10.1175/1520-0493(1981)109<2535:FDPAUT>2.0.CO;2, https://doi.org/10.1175/1520-0493(1981)

109<2535:FDPAUT>2.0.CO;2, 1981.30
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