
We warmly thank the Reviewer for his valuable comments. We provide below a detailed point-to-point

reply to these comments. The proposed changes for the next version of the article are indicated in red.

GENERAL COMMENTS

This paper deals with the statistical modeling of the distribution of rainfall amounts within a region, es-

pecially focusing on extremes. The approach is computationally intensive, with the parameters of the rainfall

distribution at individual sites being mapped across the region using (e.g.) Kriging or splines. Cross vali-

dation is applied to evaluate the performance of the candidate models (e.g., form of distribution and spatial

interpolation technique). Challenges include the attempt to model the entire range of rainfall amounts (i.e.,

from near zero to the most extreme) with a single distribution.

It is claimed that the proposed approach to rainfall modeling is "general and could be applied to any region

of the world" (p. 24, line 29). Yet some aspects of the approach seem tailored to the application to a specific

region in France. In particular, seasonality is treated by dividing the year into two seasons, one in which

extremes typically occur. Plus the model is fitted conditional on one of three possible weather patterns (WPs),

based on the spatial correlation of rainfall for the region. Although the number of seasons and WPs could

certainly be varied to model rainfall for other types of climate, it is not clear that the constraint of being

limited to a quite small number of seasons and WPs could always permit an adequate fit.

⇒ We think there is a misunderstanding here. We fully agree that the seasonal and weather pattern

modeling may not be relevant in other region of the world, but this is precisely what we claim p. 24 lines

29-33: "Although our procedure of selection is general and could be applied to any region of the world -and

possibly to other variables (temperature etc)-, we stress that our conclusions are in themselves not universal.

In particular, other marginal distributions may be more suitable than the Gamma in other regions of the

world showing less or more heavy tails. Although the mixture of distributions over weather patterns has

revealed efficient in other countries (e.g. in Norway and Canada, Brigode et al., 2014; Blanchet et al., 2015),

it might be less relevant in, e.g., monsoon climate regions where the consideration of seasons seems essential

and might be enough." So the term "general" refers to the selection procedure (i.e. to the cross-validation

framework), not to the modeling. We claim that the proposed framework, as being based on objective criteria,

is general and may be used to select among any distribution. Here we use mixtures of Gamma over seasons

and weather patterns, but any other distribution may be considered. The proposed cross-validation criteria

are general and independent on the choice of distributions.

In order to clarify this in the article, we propose to add p. 2 line 33 the following sentences: "... in

very short distance. Following previous studies in the region (Evin et al., 2016; Garavaglia et al., 2010, 2011;

Gottardi et al., 2012), the compared marginal distributions involve seasonal and weather pattern subsampling,

considering different models for the subclass-dependent distributions. However the proposed cross-validation
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framework is general, as involving objective criteria, and could likewise be used to select among any other

distribution.".

Another potential limitation concerns the performance of the different forms of distributions fitted to

rainfall amounts, particularly for extremes. Conclusions are drawn about "heavy tails" that could benefit

by relying more on extreme value theory. The restriction to a single distribution may have distorted the

performance for extremes, with some of the conclusions conflicting with results in the literature when only

extremes are modeled.

⇒ By "the restriction to a single distribution", we guess you refer to using a single distribution for modeling

the whole range of rainfall. As already stated p. 2 lines 18-20, another possibility would indeed be to consider

hybrid distributions built by mixing a first distribution representing the bulk of the distribution and a second

one focusing on the upper tail and relying on Extreme Value Theory (see the review of Scarrot and MacDonald,

2012, for example). For example Frigessi et al. (2002) consider a mixture of Weibull and Generalized Pareto

distributions modeling respectively the bulk and the heavy tail of the distribution. Frigessi’s model presents

the advantage of removing the delicate choice of a predetermined threshold. However, as noted by Naveau

et al. (2016), it also has many parameters (6) which are difficult to estimate. We don’t think that applying

such a model in the context of WP and season subsampling is relevant. This is why we preferred considering

the extended Generalized Pareto model of Naveau et al. (2016) which i) allows to model both the bulk and

the tail of the distribution, ii) is in compliance with Extreme Value Theory, iii) is much more parsimonious (3

parameters). Given the lack of robustness of the extended Generalized Pareto distribution (see the SPAN100

scores of Figure 6), we firmly believe that Frigessi’s model (or equivalent) would lack robustness even more.

Regarding the fact that the selected model is not in compliance with Extreme Value Theory, let us point out

that the mixture of Gamma distribution looks actually "pretty much" like the extended Generalized Pareto

distribution (compare Figure 7 to Figure 5) but it is much more robust. Finally let us remind that Extreme

Value Theory is an asymptotic theory, so it applies to peaks over infinite threshold, which is obviously never

the case in practice. However for long-enough data one can usually reasonably assume convergence to the

asymptotic case and base analysis of extremes on Extreme Value Theory. So the fact that the distribution

founded by Extreme Value Theory is not selected in our case might be an indication that the available data

are not long-enough to consider the asymptotic theory to hold.

For these reasons, I recommend that the manuscript be accepted for publication subject to revision.

SPECIFIC COMMENTS

(1) Generality of proposed approach

It seems like a crude approximation to consider only two seasons and assume stationarity within a given

season. More realistic approaches include allowing the parameters of the rainfall distribution to gradually

2



change depending on the time of year. Some regions of the world even have more than one wet season,

indicating a limitation of the proposed approach.

⇒ Actually we assume stationarity within a given season and weather type. Figure 4 of the paper shows

there is a clear gain in considering the weather patterns (WPs) to complement the information brought by

subsampling into seasons. This said, we fully agree that considering two fixed seasons might not be relevant

in other region of the world. This is stated in the discussion section, see p. 24 line 31 to p. 25 line 1:

"Although the mixture of distributions over weather patterns has revealed efficient in other countries (e.g. in

Norway and Canada, Brigode et al., 2014; Blanchet et al., 2015), it might be less relevant in, e.g., monsoon

climate regions where the consideration of seasons seems essential and might be enough." However the use of

fixed seasons and WPs has already been extensively studied and validated in southern France in other studies

(Evin et al., 2016; Garavaglia et al., 2010, 2011; Gottardi et al., 2012). Considering rainfall distributions that

gradually change depending on the time of year would be another possibility but it would be tricky in our case.

Figure 1 shows the monthly averages of daily nonzero rainfall in the region. It clearly shows the occurrence of

a wetter season spanning the months of September, October and November. These three months compose the

season-at-risk considered in this paper. A second maximum, although much lower, is found in April and May.

Modeling the monthly fluctuations of Figure 1 as a parametric function of time (for example using cos and sin

terms) doesn’t seem easy to us. Fitting one distribution per month would be another possibility but it would

very likely lack robustness by requiring estimating 12 distributions. Considering WPs is an alternative way

of modeling the monthly fluctuations through the monthly occurrence of the WPs (see Figure 1). It shows

the advantage of being physically-based since the original WPs of Garavaglia et al. (2010) are constructed

by clustering synoptic circulations (geopotential fields). Considering WPs allows in particular accounting

for the occurrence of two wetter periods -firstly in automn (season-at-risk) and secondary in spring (in the

season-not-at-risk)-, which correspond to larger probabilities of occurrence of WP1, which is the wettest WP

for both seasons (see Figure 10 of the article for the case of the season-at-risk). This shows the advantage of

being relatively parcimonious (it requires estimating 6 distributions in the WP/season subsampling case).

To make this clearer, we propose to replace Table 4 by a new Figure 4 corresponding to Figure 1 of this

response and to replace p. 14 lines 14-16 by: "The occurrence statistics of the three WPs for the period

1948-2013 are presented in Figure 4. The yearly occurrence of the three WPs is roughly similar (27% for

WP1, 36% for WP2, 37% for WP3). However the WPs show very different seasonality. In particular WP1

is more frequent in spring and autumn, which correspond to wetter periods, particularly in autumn (see the

monthly averages of nonzero rainfall in Figure 4). WP3 is more frequent in summer, which is the dryest

season, while WP2 features almost a reversed seasonality compared to WP3. This shows that, although being

based on the spatial dependence, the WPs are linked to the seasonality of rainfall in the region. We also

propose to clarify that the WPs are physically-based by adding p. 14 line 11: "... classification described in
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Figure 1: Left: Boxplot of the monthly averages of daily nonzero rainfall. Each boxplot contains 42 points
(one point per station). Right: Monthly percentage of occurrence of the three WPs.

Garavaglia et al. (2010), which is obtained by clustering synoptic situations (geopotential heights) for France

and surrounding areas into eight classes".

Conditioning on a few WPs based on the degree of spatial correlation of rainfall is an intriguing and

not very common approach. Alternatives in the literature have included either introducing a hidden state

variable (likewise assuming only a few possible states), which would require much more involved calculations,

or including an observed covariate (such as an index of atmospheric circulation), which would require its

identification for a given region but could assume effectively infinitely many possible states. Other than

convenience, the advantages of the proposed approach are not clear.

⇒ This is perfectly right: as stated p. 14 lines 12-13, the three considered WPs are obtained by grouping

the eight WPs of Garavaglia et al. (2010) into three classes based on their spatial correlation. However let

us recall that the spatial correlation is only a secondary ingredient in the construction of the WPs. The first

ingredient is the similarity in synoptic situations since the eight WPs of Garavaglia et al. (2010) are obtained

by clustering geopotential fields. Thus the used WPs do already include atmospheric information. This

said, we understand it might seem intriguing to consider the spatial correlation for the subgouping whereas

this article deals with marginal distribution. Actually this choice is guided by external constraints that we

deliberately omitted to mention to not confuse the reader. Indeed, this study is part of a bigger project

aiming to build a stochastic daily rainfall generator in the region. The first step of this project was to select

an appropriate marginal distribution that could reasonably fit the whole range of rainfall values anywhere

within the region. This has led us to develop the cross-validation framework of this article. However having
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in mind that the final goal will be to generate rainfall fields and that this generation will be based on WPs,

we decided to reduce the number of parameters of the rainfall generator by grouping some of the WPs based

on the spatial correlation of rainfall during these WPs. The maps of Figure 10 of the paper lead us conclude

that this grouping, although based on the spatial correlation, makes actually good sense for the marginal

distribution. There may be other possible groupings but we repeat that the goal of this paper is not to find

the best marginal model but to propose an objective cross-validation framework for selecting among several

marginal distributions.

(2) Using extreme value theory to interpret results

It is concluded that a mixture of gamma distributions provides the best fit, especially for extreme high

precipitation amounts. Yet a gamma distribution has a light tail, well known to not be heavy enough for

precipitation extremes. Still it is argued that allowing the gamma distribution to vary depending on the

season and on the WP induces a heavier tail (Figure 5).

If this claim were correct for seasonality, then it would appear that the apparent heavy tail is at least partly

an artifact of ignoring seasonality. Yet there is some evidence in the literature (e.g., by explicitly allowing

some of the parameters in an extreme value analysis to vary within the year) that this is not necessarily the

case.

Concerning conditioning on WPs, it is well known that a mixture of gamma distributions can induce a

heavier tail than a single gamma. Yet I wonder whether a mixture involving only a few gamma distributions

(i.e., only three for the wet season) is sufficient to produce a truly heavy tail (in the sense of extreme value

theory).

So it may be informative to examine how well the gamma distribution (and the mixture of three gamma

distributions depending on the WP) fits precipitation amounts in the wet season alone. As it stands, I worry

that the results for extremes may have been distorted by the constraint of fitting a single distribution to all

rainfall amounts.

⇒ This is a very good point. Let consider the marginal distribution of daily rainfall in the season-at-risk.

Following Equation (3) of the article, the marginal distribution in season s is given by

prs(R ≤ r) = p0s +

K∑
k=1

ps,k(1− p0s,k)Gs,k(r), (1)

where p0s =
∑K

k=1 ps,kp
0
s,k is the probability of any day to be dry in the season s. Nonzero precipitation

amounts defined by (1) have CDF:

Gs(r) =

K∑
k=1

p′s,kGs,k(r), (2)
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where p′s,k = ps,k(1− p0s,k)/(1− p0s). We show in Figures 2 and 3 the cross-validation scores associated to (2)

when s is the season-at-risk. Comparing Figure 2 below to Figure 4 of the article reveals the same conclusion,

namely also for the season-at-risk there is a strong gain in considering WP subsampling, which applies both

for the bulk (NRMSE) and the tail (FF and N5) of the distribution, despite a slight loss in robustness

(SPAN100). Comparing Figure 3 below to Figure 6 of the article reveals also that, for the season-at-risk as

well, the two best distributions are the extended Generalized Exponential (eexp) and the Gamma (gamma)

distributions. We propose to add in the article:

• p. 6 line 7 "... S ×K Gamma distributions. Analogously, the CDF of nonzero precipitation amounts

in a given season s writes

Gs(r) = pr(R ≤ r|R > 0, season = s) =

K∑
k=1

p′′s,kGs,k(r), (5)

where p′′s,k = ps,k(1− p0s,k)/(1−
∑K

k=1 ps,kp
0
s,k)."

• p. 20 line 10 "... similarly for Antraigues station. Note that exactly the same conclusions hold

when focusing on the season-at-risk rather than considering the whole year, i.e. when computing the

cross-validation scores for the estimated seasonal distribution Gs in (5) rather than for the year-round

distribution G in (4)."

However, for the sake on concision, we propose not to show any of the Figure 2 or 3 below.

(3) Assumption of temporal independence

It is effectively assumed that the rainfall amounts at an individual site, especially extreme high values,

are temporally independent (e.g., second displayed equation on p. 8 and p. 9, line 7). But this assumption

never appears to be explicitly stated or verified. There is some evidence in the literature of "clustering" at

high levels for time series of daily rainfall amounts at individual sites. Cross validation, depending on how it

is implemented, would not properly account for the effects of such temporal dependence.

⇒ Actually temporal dependence is weak in the region. If we define the wet periods of a given station as

the number of consecutive days with nonzero daily rainfall, we find that 43% of the wet periods over the whole

region have length 1, 25% have length 2 and 13% have length 3. To focus more on high levels, we computed the

extremal index at each station using the method of Ferro and Segers (2003) (R package texmex), considering

exceedances above the 90%- and 95%-quantiles. The regional average of the extremal indices amounts 0.65

for the 90%-quantile and 0.68 for the 95%-quantile. This means that the average cluster length of rainfall

exceeding high levels is about 1/0.65 ≈ 1.5, which is close to independence (in which case the extremal index

is 1). Therefore we think that the hypothesis of temporal independence is defensible for our data. However,
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Figure 2: Scores of cross-validation in the season-at-risk when Gs,k are Gamma distributions and the number
of WT varies: K ∈ {1, 3}. The values of (S,K) are indicated in the x-labels. Each boxplot contains 100
points.
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Figure 3: Scores of cross-validation in the season-at-risk when Gs,k is either the extended exponential (eexp),
extended Generalized Pareto (egp), Gamma (gamma), lognormal (lnorm) or Weibull (wei) distribution, with
S = 2 and K = 3. Each boxplot contains 100 points. The boxplots of reliability scores in the lognormal case
are missing because they lie far above the upper range of depicted values.
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Figure 4: Scores of cross-validation obtained when split sampling blocks of five consecutive days, when Gs,k

are Gamma distributions and the number of seasons and WT varies: S ∈ {1, 2} and K ∈ {1, 3}. The values
of (S,K) are indicated in the x-labels. Each boxplot contains 100 points.

in order not to be biased in the cross-validation procedure by possible weak temporal dependence, we re-

made all the estimation but split sampling for the cross-validation blocks of five consecutive days rather than

individual days (still imposing half the data to be in the calibration sample and the remaining half to be in

the validation sample). Results are shown in Figures 4 to 9, corresponding respectively to Figures 4 to 8 of

the article. All results are actually almost similar to those of the article. Therefore the same conclusions hold,

namely that i) there is some gain in considering subsampling into seasons and WPs (Figure 4 below), ii) the

Gamma and extended Exponential models give overall the best scores of cross-validation, iii) the bivariate

thin plate spline with drift in smoothed altitude (tps2Z) is the best interpolation method.

We propose to replace line 1 of p. 15 by: "1. We divide the days of 1948-2013 into two subsamples of

equal size, denoted C(1) and C(2). Given the weak temporal dependence of rainfall in the region (80% of the

wet periods have length lower than 3), division is made by randomly choosing blocks of five consecutive days

to compose C(1), the remaining blocks composing C(2). Figures 4 to 8 of the article will be replaced by the

corresponding figures.
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Figure 5: Case of Antraigues obtained when split sampling blocks of five consecutive days, when Gs,k are
Gamma distributions and the number of seasons and WT varies: S ∈ {1, 2} and K ∈ {1, 3}. The values of
(S,K) are indicated in the title. The dotted lines show the 95%-envelope of return level estimates over the
100 subsamples. The plain line shows the median estimates. The gray points show the full sample (35 years).
Each estimation is based on half of these points.
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Figure 7: Case of Antraigues when when split sampling block of five consecutive days, when Gs,k is either
the extended exponential (eexp), extended Generalized Pareto (egp), lognormal (lnorm) or Weibull (wei)
distribution, with S = 2 and K = 3. The dotted lines show the 95%-envelope of return level estimates over
the 100 subsamples. The plain line shows the median estimates. The gray points show the full sample (35
years). Each estimation is based on half these points. Case of the Gamma distribution is shown in the right
panel of Figure 5.

EDITORIAL COMMENTS

(1) p. 3, lines 16-17

Not clear how the "factor" is defined or calculated.

⇒ We apologize for the confusing formulation. By "a factor 1 to 2.6 is found for the annual totals of

daily rainfall", we mean that the largest average of annual total of daily rainfall is 2.6 times larger than the

lowest average of annual total (max= 2111 mm/year, min= 805 mm/year). To make it clearer, we propose

to replace p. 3 lines 16-17 by: "... rainfall distribution. To illustrate these disparities, we show in Figure 2

the averages of annual totals and annual maximum daily rainfalls for each station. Computing the ratios

between the largest and lowest values in Figure 2 gives a ratio of 2.6 for the annual totals and 3.2 for the

annual maxima. For comparison the latter ratio is barely lower than the ratio found over the whole of France,

which amounts 4. For both annual totals... "

(2) p. 25, Figure 10

Three of the graphs are for the same quantity, mean of non-zero rainfall for different weather patterns.

But the color coding varies making comparisons difficult.

⇒ We show in Figure 10 the equivalent of Figure 10 of the article when using the same color scale for

all the mean maps. It hinders visualizing the regional disparities in WP2 and 3. Therefore we prefer leaving

Figure 10 of the article as it is.
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Figure 8: Scores of mapping obtained when split sampling block of five consecutive days, when Gs,k are
Gamma distributions with S = 2 and K = 3 whose parameters are interpolated with the mapping models of
Table 3 of the article. The two first rows show leave-one-out cross-validation scores. Each boxplot contains
200 points. The third row compares interpolations at a given station whether the data of this station are
used or not in the interpolation. Each boxplot contains 100 points.
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Figure 9: Case of Antraigues (top) and Mayres (bottom) when when split sampling block of five consecutive
days, when Gs,k are Gamma distributions with S = 2 and K = 3 whose parameters are interpolated with
either: kriging without extrenal drift (krig), stepwise linear model (steplmZ), bivariate thin plate spline with
drift (tps2Z), or trivariate thin plate spline (tps3Z). The dotted lines show the 95%-envelope of return level
estimates over the 100 subsamples. The plain line shows the median estimates. In black, each interpolation
is based on half the data of the other stations, excluding the considered station. In red, interpolation is based
on half the data of all the stations, including the considered station. The gray points show the full sample
(35 years for both stations).
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Figure 10: Map of the probability of daily rainfall to exceed 1mm and of the mean of nonzero rainfall in the
three WPs of the season-at-risk. The points are colored with respect to the empirical estimates.
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