
1 
 

Responses of runoff to historical and future climate variability 1 

over China 2 

Chuanhao Wu1, Bill X. Hu1,2*, Guoru Huang3,4, Peng Wang1, and Kai Xu1 3 

1 Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China. 4 
2 Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, 32306, USA. 5 
3 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China. 6 
4 State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China. 7 

Correspondence to: Bill X. Hu (bill.x.hu@gmail.com) 8 

Abstract. China has suffered some of the effects of global warming, and one of the potential implications of climate 9 

warming is the alteration of the temporal-spatial patterns of water resources. Based on the long-term (1960–2008) water 10 

budget data and climate projections from 28 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project 11 

Phase 5 (CMIP5), this study investigated the responses of runoff (R) to historical and future climate variability in China at 12 

both grid and catchment scales using the Budyko-based elasticity method. Results show that there is a large spatial variation 13 

in precipitation (P) elasticity (from 1.1 to 3.2) and potential evaporation (PET) elasticity (from -2.2 to -0.1) across China. 14 

The P elasticity is larger in northeast and western China than in southern China, while the opposite occurs for PET elasticity. 15 

The catchment properties elasticity of R appears to have a strong non-linear relationship with the mean annual aridity index 16 

and tends to be more significant in more arid regions. For the period 1960–2008, the climate contribution to R ranges from 17 

-2.4 % yr-1 to 3.6 % yr-1 across China, with the negative contribution in northeast China and the positive contribution in 18 

western China and some parts of the southwest. The results of climate projections indicate that although there is large 19 

uncertainty involved in the 28 GCMs, most project a consistent change in P (or PET) in China at the annual scale. For the 20 

period 2071–2100, the mean annual P is projected to increase in most parts of China, especially the western regions, while 21 

the mean annual PET is projected to increase in all of China, particularly the southern regions. Furthermore, greater 22 

increases are projected for higher emission scenarios. Overall, due to climate change, the arid regions and humid regions of 23 

China are projected to become wetter and drier in the period 2071–2100, respectively (relative to the baseline 1971–2000). 24 
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 26 

1 Introduction 27 

Climate change has become increasingly significant (IPCC, 2013), and numerous studies have reported that climate warming 28 

is likely leading to the alteration of the hydrological cycle (Oki and Kanae, 2006; Jung et al., 2010). The dynamic properties 29 

of the hydrological cycle are governed by the interactions and feedbacks between atmospheric and land surface hydrologic 30 
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processes on a catchment scale. The potential consequences of anthropogenic climate change on the hydrological cycle have 31 

received significant attention over the last two decades (Wang et al., 2012; IPCC, 2013). 32 

 33 

Runoff (R), as a commonly adopted indicator of the hydrologic cycle, is critical to human lives and economic activities 34 

(Milly et al., 2005). There is a great deal of previous work exploring the impact of climate variations on R, with the 35 

motivation stemming from the region’s vast resources (Christensen et al., 2004; Guo et al., 2009, Piao et al., 2010; Chen et 36 

al., 2012; Harding et al., 2012; Wang et al., 2012; Xu et al., 2013b), dangers of flooding (Kay et al., 2006, 2009, 2012; Raff 37 

et al., 2009; Liu et al., 2013; Xiao et al., 2013; Wang et al., 2013; Smith et al., 2014; Wu et al., 2014, 2015), and agricultural 38 

water uses (Vano et al., 2010). The most common practices in these previous studies are to use the hydrological models 39 

driven by the output from Global Climate Models (GCMs) to simulate the hydrological process (e.g., R) under future climate 40 

change scenarios. However, the key issue faced by such studies is the need to convert coarse resolution GCM outputs to local 41 

catchment-scale climatic variables at a higher spatial resolution to serve as the input to a hydrological model (Vano et al., 42 

2015; Wu et al., 2015). The impact assessments are resource intensive and usually subject to uncertainties related to the 43 

choice of hydrological model, GCMs, emissions scenarios, and downscaling techniques (Vano et al., 2014, 2015). 44 

 45 

With the uncertainty in R due to climate change, simple tools able to provide robust estimates of this impact are essential to 46 

support policy and planning decisions. Climate elasticity, as an important indicator, provides a measure of sensitivity of the 47 

changes in R due to the changes in climate. Schaake (1990) made the first attempt to introduce the concept of elasticity and 48 

related the climate elasticity of R to precipitation (P). Since then numerous climate elasticity methods have been developed 49 

for evaluating the hydrologic response to climate change all over the world (Schaake, 1990; Dooge et al., 1999; 50 

Sankarasubramanian et al., 2001; Milly and Dunne, 2002; Fu et al., 2007; Zheng et al., 2009; Ma et al., 2010; Yang and Yang, 51 

2011; Yang et al., 2014; Vano et al., 2015). Sankarasubramanian et al. (2001) provided a detailed category of climate 52 

elasticity methods for modelling climate change impacts. One of the most common methods is to analytically derive the 53 

sensitivity of R based on the Budyko hypothesis, due to its clear theory and that it does not rely on a large amount of data 54 

(Yang and Yang, 2011). More importantly, the Budyko-based elasticity method can derive the climate elasticity and can also 55 

represent the impact of the catchment characteristics through the parameters of the Budyko model. Accordingly, it is widely 56 

applied for the assessment of the hydrologic impacts of climate change (Dooge et al., 1999; Zheng et al., 2009; Yang and 57 

Yang, 2011; Yang et al., 2014). 58 

 59 

China is a vast land, spanning many degrees of latitude with complicated terrain, which results in a large regional variation 60 

in climate elasticity. The investigation of the P elasticity of R has been reported in many regions of China, such as the Miyun 61 
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Reservoir basin (Ma et al., 2010), Luan River basin (Xu et al., 2013a), the headwater catchments of the Yellow River basin 62 

(Zheng et al., 2009), Poyang Lake basin (Sun et al., 2013), and Hai River and Yellow River basins (Yang and Yang, 2011; 63 

Liu and McVicar, 2012). Recently Yang et al. (2014) investigated the climate elasticity of R for the 210 catchments of China 64 

based on the Budyko-based elasticity approach. The results indicated that the P elasticity exhibits a large regional variation, 65 

with a small range in southern China, the Songhua River basin and the northwest and a large range in the Hai River basin, 66 

the Yellow River basin, and the Liao River basin. Although the aforementioned studies have certainly made advances in 67 

understanding the climate elasticity of R in China, our knowledge about the responses of R to climate change over various 68 

temporal and spatial scales remains rather limited due to the large regional variation in climate types and catchment 69 

characteristics. The question of how climate change will affect R over China in the future is also an important problem to be 70 

addressed. Developing a more accurate and quantitative understanding of the changing water resources over various 71 

temporal and spatial scales under a changing environment is therefore a high priority for China. 72 

 73 

Based on the unique long-term (1960–2008) land surface dataset of China and the climate projections from 28 GCMs of the 74 

Coupled Model Intercomparison Project Phase 5 (CMIP5), the objectives of this research are (1) to investigate the changes 75 

of R and climate variables and their relationship at an interannual scale; (2) to estimate quantitatively the climate elasticity 76 

and catchment properties elasticity of R across China at both grid and catchment scales; and (3) to predict climate change 77 

and the changes in R due to future climate change for China from the CMIP5 projections at both grid and catchment scales. 78 

 79 

2 Data and methodology 80 

2.1 Data sets 81 

Monthly data of potential evaporation (PET) covering the period 1960–2008 over China are provided by the 82 

Hydroclimatology Group of Princeton University (Sheffield et al., 2006, 2012). The PET is estimated by the Penman 83 

equation (Penman, 1948; Shuttleworth, 1993), using the updated meteorological dataset obtained from Sheffield et al. (2006, 84 

2012). A long-term (1960–2008) daily land surface dataset over China, including P, surface runoff (RS), and baseflow (BS), 85 

with a 0.25 degree spatial resolution were obtained from the Land Surface Processes and Global Change Research Group 86 

(Zhang et al., 2014). In this dataset, P is driven by interpolating gauged daily precipitation from 756 meteorological stations 87 

of the Chinese Meteorological Administration (CMA). RS and BS are derived from the Variable Infiltration Capacity (VIC) 88 

model forced by the gridded daily climate forcings (i.e. P, maximum and minimum temperature, and wind speed). VIC 89 

model parameters, including the infiltration shape parameter, the second and third soil layer depths, and the three parameters 90 

in the base flow scheme, were estimated by using an optimization algorithm of the multi-objective complex evolution of the 91 

University of Arizona (Zhang et al., 2014). The simulated monthly RS and BS match well with the observations at the large 92 
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river basins in China (Zhang et al., 2014). Compared with the global product of a similar nature, this dataset provides a more 93 

reliable estimate of land surface variables over China (Nijssen et al., 2001; Adamet al., 2006; Rodell et al., 2004; Sheffield et 94 

al., 2006; Sheffield and Wood, 2007; Pan et al., 2012). In this study, the data of P, RS, and BS are initially regridded onto 0.5o 95 

grids over China using the linear interpolation method. All the daily data (P, RS, and BS) and monthly data (PET) are then 96 

aggregated temporally for the annual scale over China. The R was calculated by the sum of RS and BS at each of the 0.5o grid 97 

points. 98 

 99 

Climate projections from 28 CMIP5 GCMs (as shown in Table 1) are provided by the Canadian Climate Data and Scenarios 100 

(CCDS, http://www.cccsn.ec.gc.ca/index.php?page=gridded-data). These data, including simulations of surface air 101 

temperature (T), P, sea ice thickness, sea ice concentration, snow depth, and near-surface wind speed, are statistically 102 

downscaled and regridded onto a common 1o×1o global grid by the CCDS. In this study, monthly P and monthly T over 103 

China, including one historical simulation for the period 1971–2000 and three emission scenarios (RCP2.6, RCP4.5, and 104 

RCP8.5) for the future period 2071–2100 from each of the 28 CMIP5 models and the multi-model ensemble of 28 CMIP5 105 

models, are used for the projections of climate change. The data are initially disaggregated to 0.5o grids over China then 106 

corrected by using a ‘delta change’ method (Wu et al., 2016), on the basis of the observed data of P and T as provided by the 107 

Climatic Research Unit (CRU) of the University of East Anglia (Harris et al., 2014). 108 

 109 

Figure 2 shows the comparison of observed mean annual T and P and the corresponding simulations from 28 CMIP5 models 110 

before and after bias correction for the 14 basins in China. The basin number is consistent with that given in Figure 1. As 111 

shown, the uncorrected model simulations tend to underestimate T and overestimate P for most of the basins, with more 112 

uncertainties for the simulation of P than for T. Compared to the uncorrected model results, the bias correction results 113 

represent large improvements and show a good agreement with the observed values for these basins. Therefore, the bias 114 

correction model simulations are acceptable for the investigation of climate change projections in this study. 115 

 116 

As the GCM data used only consist of P and T, the PET of GCM is estimated by the Thornthwaite method (Thornthwaite, 117 

1948) and then corrected by a multiplicative bias correction method as follows: 118 

, ,

, , , ,
, ,

Pen obs i

cor GCM i Th GCM i
Th obs i

PET
PET PET

PET
                                    (1) 119 

where
, ,cor GCM iPET and

, ,Th GCM iPET are bias-corrected annual PET and the PET calculated from the Thornthwaite method, 120 

respectively, for the ith grid point of the GCMs. , ,Pen obs iPET and , ,Th obs iPET are the 49-year (1960–2008) averages of 121 

PET calculated from the Penman and Thornthwaite methods, respectively, for the ith grid point. 122 
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 123 

Based on the T data from the CRU, the Thornthwaite method is used to calculate PET to test the applicability of Equation (1). 124 

Figure 3 shows a comparison of annual PET calculated from the Penman method and that from the Thornthwaite method 125 

corrected by Equation (1) during the period 1960–2008. It is clear that the corrected PET agrees well with the PET from the 126 

Penman method, with the correlation coefficients of 0.94 and 0.958 at the catchment and grid scales, respectively. This 127 

suggests that Equation (1) can be acceptable for the bias correction of PET in the GCMs. 128 

 129 

2.2 Sensitivity of runoff to climate and catchment properties 130 

The Budyko framework has been widely used to study basin-scale water and energy balances. Two of the one-parameter 131 

formulations of the Budyko curve proposed by Choudhury (1999) (Equation (2), see also Yang et al., 2008) and Fu (1981) 132 

(Equation (3), see also Zhang et al., 2004) are expressed as: 133 

1/
,  (0, )

( )n n n

PET
E P  n

P PET
  


                                  (2) 134 

    
1/( ) ,  (1, )E P PET P PET        

                              (3)
 135 

where n and ω are empirical parameters, representing the effects of other factors (e.g. land surface characteristics, the 136 

average slope, vegetation type or land use, and climate seasonality) on the water-energy balance (Yang et al., 2008, 2014; 137 

Roderick and Farquhar, 2011; Li et al., 2013a). Yang et al. (2008) calibrated the parameters n and ω using long-term water 138 

balance data from 108 catchments from the nonhumid regions of China and found that these two empirical parameters are 139 

linearly correlated. 140 

 141 

Based on the Budyko hypothesis and assuming steady state conditions, Roderick et al. (2011) and Yang and Yang (2011) 142 

derived the elasticity method to estimate the contribution to R from the changes in climate (represented by P and PET) and 143 

catchment properties as follows: 144 

P PET n

dR dP dPET dn

R P PET n
                                        (4) 145 

where , , and P PET n   represent the elasticity coefficients of P, PET, and catchment properties respectively, and are 146 

expressed as: 147 

(1 )P
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 


                                         (5a) 148 
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
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n

n E

R n



 


                                         (5c) 150 

where , , and 
E E E

P PET n

  

  
denote the first order partial derivatives of the Budyko equation with respect to P, PET, and 151 

the parameter n. In this study, both Equations (2) and (3) are used for the estimation of the elasticity of P, PET, and 152 

catchment properties over China. 153 

 154 

2.3 Trend estimate method 155 

The Mann-Kendall (M-K) nonparametric test (Mann, 1945; Kendall, 1975) is an effective tool for detecting the statistical 156 

significance of trends in the time series of meteorological and hydrological variables (Yang et al., 2014; Wu and Huang, 157 

2015). In this study, the M-K method is used to detect the significance of monotonic trends in hydroclimatic time series. The 158 

nonparametric trend slope estimator developed by Sen (1968) is used for the magnitude estimation of the trends in a 159 

hydroclimatic time series. 160 

 161 

3 Results 162 

3.1 Interannual variability of climatic variables and runoff 163 

The standard deviations for annual P, PET, and R are computed for each of the 0.5o grids in China, and the PET deviation 164 

ratio (σPET/σP) and the R deviation ratio (σR/σP) are calculated. The spatial distributions of PET deviation ratio and R 165 

deviation ratio across China are displayed in Figure 4(a) and (b). As shown, the PET deviation ratio is rather small in most 166 

parts of China, especially the southern regions, while a larger value is observed mainly in the Xinjiang region, where there 167 

are greater aridity indices. Generally, atmospheric water is enough to accommodate the limited PET in humid climates, 168 

which would lead to a limited response of PET to P variability. Specifically, the interannual variability of PET is more 169 

sensitive to that of P in arid climates (with water limits) than in humid climates (with energy limits). In contrast to the PET 170 

deviation ratio, the R deviation ratio tends to increase from arid climates to humid climates. The reason for this is that, in arid 171 

climates, the catchment water supply is very limited and gives priority to evaporation and soil storage capability, which leads 172 

to little variation in R. 173 

 174 

Figure 4(c) shows the relationship between the R deviation ratio and mean annual aridity index ( ) for all 0.5o grids in 175 

China. As indicated,   is a major control for the R deviation ratio under not very dry conditions (e.g.  <10); that is, the R 176 

deviation ratio decreases with increased  . However, under very dry conditions (e.g.  >10) the R deviation ratio becomes 177 
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insensitive to  , since in this case, other factors, such as soil storage capacity, can also have a large impact on the variation 178 

of R. 179 

 180 

3.2 Sensitivity of runoff to climate and catchment properties 181 

3.2.1 Climate elasticity 182 

The P elasticity and PET elasticity of R based on Equations (2) and (3) are estimated at each of the 0.5o grids in China. As 183 

shown in Figure 5, the spatial patterns of P elasticity and PET elasticity from Equations (2) and (3) are almost the same in all 184 

regions of China. There is a large spatial variation in P elasticity and PET elasticity, i.e. ranging from 1.1 to 3.2 and from 185 

-2.2 to -0.1 across China, respectively. In particular, P elasticity is more significant in the northeast and western areas than in 186 

southern China, which is in contrast to PET elasticity. Figure 6 shows the relationship between   and climate (P and PET) 187 

elasticity. As shown, the P (PET) elasticity first increases (decreases) and then decreases (increases) with the increase of 188 

under not very dry conditions (i.e.  <10). However, when   becomes large enough (e.g.  >10), both P and PET 189 

elasticity becomes insensitive to . 190 

 191 

The climate elasticity estimated for each of the 14 large basins is shown in Table 2. The values of P elasticity are in the range 192 

of 1.39–2.28, with a larger (~smaller) elasticity in the Haihe River and Inner Mongolia River (Southwest Drainage). A 193 

similar phenomenon is found for PET elasticity, which suggests that Haihe River (Southwest Drainage) is the most (least) 194 

sensitive to PET among the 14 basins. Overall the values of P elasticity and PET elasticity derived by Equation (2) are very 195 

close to those from Equation (3), but the difference between them tends to be larger for dry basins with increasing aridity 196 

indices. 197 

 198 

By using the estimates of climate elasticity derived by Equation (2), the change in R as a function of the percentage change 199 

in P and PET is calculated for the 14 basins (Figure 7). The R is positively related to P and negatively related to PET, and the 200 

magnitudes and patterns of the response of R to changes in P and PET vary in different scales. Generally, the R is more 201 

sensitive to climate in the Haihe River and Inner Mongolia River, while relatively weak sensitivity is found in the Southwest 202 

Drainage and Yangtze. 203 

 204 

3.2.2 Catchment properties elasticity 205 

The spatial distributions of catchment properties elasticity from Equations (2) and (3) are displayed in Figure 5(e) and (f). As 206 

shown, the catchment properties elasticities for these two equations are rather similar across China, and the values of 207 
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Equation (3) are generally smaller than those from Equation (2). Regarding the spatial pattern, the catchment properties 208 

elasticity is very weak (approximately equal to 0) in southern China and some regions of northeast China, but it tends to be 209 

more significant in some water-limited regions of northwest China. Figure 6(c) shows the relationship between   and the 210 

parameter elasticity for all 0.5o grids in China. It suggests that   is a major control for catchment properties elasticity 211 

across China, i.e. the catchment properties elasticity would become stronger with increasing aridity indices. The catchment 212 

properties elasticities estimated for the 14 large basins are shown in Table 2. The catchment properties elasticity shows a 213 

large spatial variation, ranging from -2.78 to -0.24 for Equation (2) and from -4.3 to -0.33 for Equation (3). Overall, the 214 

changes in R are more sensitive to catchment properties in arid basins with larger aridity indices, which is consistent with the 215 

findings at the grid scale. 216 

 217 

3.3 Climate change during 1960–2008 218 

The annual trend magnitudes in P, R, PET, and aridity index during the period 1960–2008 are shown in Figure 8 (a), (b), (c), 219 

and (d). As indicated, both P and R show an increasing trend mainly in the northwest and southeast regions and a decreasing 220 

trend mainly in the central region and North China plain. A significant increasing in PET is detected mainly in northeast 221 

China and eastern China, while the decreases mainly occur in most parts of western China. The aridity index tends to show 222 

an increasing trend in most parts of China, indicating an increasing risk of meteorological drought in these regions during the 223 

past several decades. In contrast, the decrease of aridity index is only found in some parts of western China. 224 

 225 

3.4 Changes in runoff due to climate change during 1960–2008 226 

Using the estimates of climate elasticity from Equation (2), the contributions of P, PET, and climate (i.e. P& PET) to R in 227 

China for the period 1960–2008 are calculated (as shown in Figure 8(e), (f), and (g)). A positive contribution (up to 3.7 % 228 

yr-1) from P to R is mainly recorded in western China, while a negative contribution is found mainly in northeast China and 229 

North China plain. Negative and positive contributions of PET to R mainly occur in northeast China and western China, 230 

respectively. The contributions of climate, i.e. the sum of the contributions from P and PET, ranges from -2.4 % yr-1 to 3.6 % 231 

yr-1 across China. The spatial pattern of climate is rather similar to that of P, showing a negative contribution in northeast 232 

China and a positive contribution in western China and some parts of the southeast. Particularly, the largest positive 233 

contribution of climate occurs in the Tibetan plateau. The contributions of P, PET, and climate (i.e. P& PET) to R in the 14 234 

river basins for the period 1960–2008 are shown in Table 3. A positive contribution of P is detected in Southeast Drainage, 235 

Southwest Drainage, Qiangtang, Qinghai, Xinjiang and Hexi, while an oppoiste contribution is found in other basins. In 236 

contrast, a negative contribution of PET is found in most of the basins (except for Qiangtang and Hexi). In general, there is 237 

an increased R in Southeast Drainage, Southwest Drainage, Qiangtang, Qinghai, Xinjiang and Hexi (from 0.06 to 1 % yr-1) 238 



9 
 

and a decreased R in other basins (from -1.12 to -0.12 % yr-1).  239 

 240 

3.5 Future climate change 241 

Figure 9 shows the uncertainty range of the relative change in mean annual P and PET in the basins for the period 2071–242 

2100 under the RCP2.6, RCP4.5, and RCP8.5 scenarios as predicted by 28 CMIP5 models (relative to the baseline 1971–243 

2000). As shown, there is a large difference between different GCMs and emission scenarios, which highlights the 244 

uncertainty inherent in projections of climate change. However, overall P is projected to increase in most of the basins, and 245 

greater increases are projected for higher emission scenarios. Meanwhile, greater increases tend to be projected for more arid 246 

basins, suggesting a decreasing risk of meteorological drought in the future. The average changes (red dotted lines) of mean 247 

annual P for the 14 basins range from 2.4 % to 11.0 % in RCP2.6, from 4.2 % to 16.0 % in RCP4.5, and from 3.1 % to 23.7 % 248 

in RCP8.5. The largest increase in the RCP2.6 and RCP8.5 scenarios is found for the Qinghai River, while the largest 249 

increase in the RCP4.5 scenario is projected for the Hexi River. For PET, there is an increase projected in all basins due to 250 

climate warming, with the largest and smallest increases in the RCP8.5 and RCP2.6 scenarios, respectively. However, a large 251 

uncertainty exists among the GCMs, which is similar to that for P. Furthermore, the uncertainty range tends to be larger with 252 

higher emission scenarios. The average changes (red dotted lines) of PET for the basins range from 7.0 % to 12.0 % in 253 

RCP2.6, from 13.5 % to 22.2 % in RCP4.5, and from 27.9 % to 49.8 % in RCP8.5. The largest and smallest average 254 

increases are projected for the Pearl River and Qiangtang River, respectively. 255 

 256 

Figure 10 displays the multi-model ensemble median relative change in mean annual P and PET in China for the period 257 

2071–2100 (relative to the baseline 1971–2000). The projected changes in P (or PET) have a similar spatial pattern for the 258 

three emission scenarios; that is, P is projected to show an increase in western China and the northeast, and PET is projected 259 

to increase significantly in southern China and some parts of the Tibetan plateau, especially for the RCP8.5 scenario. In 260 

addition, note that there are small changes in P and significant increases in PET projected for southern China. This would 261 

result in an increasing risk of meteorological drought in the future. 262 

 263 

3.6 Future changes in runoff due to climate change 264 

Based on the estimates of elasticity from Equation (2), the percentage changes in the contributions of annual P and PET, as 265 

well as climate, to R from the 28 GCMs for the period 2071–2100 are calculated for each of the 14 basins (relative to the 266 

baseline 1971–2000). As shown in Figure 11, the changes in P contribution mainly follow the changes in P (Figure 9). A 267 

positive contribution from P is projected for most of the basins, and larger contributions occur in more arid basins, as well as 268 

in higher emission scenarios. Negative contributions of PET to R are projected for all basins due to the negative coefficients 269 
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of PET elasticity. Smaller contributions of PET are mainly found in the Southwest Drainage. In contrast, larger contributions 270 

are projected mainly in the Huaihe River, Haihe River, and Inner Mongolia River, where the percentage decreases from the 271 

28 models can be up to 25 %, 35 %, and 90 % in the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. 272 

 273 

Climate change is projected to reduce the R in some humid basins, such as the Southeast Drainage and Pearl River, where the 274 

average changes in the three emission scenarios range from -22.83 % to -3.0 % and from -23.6 % to -3.5 %, respectively 275 

(Figure 11 (g), (h) and (i)). For other basins, particularly for arid basins, the R is projected to increase due to climate change. 276 

The largest average changes in R under the RCP2.6 and RCP4.5 scenarios are found in the Qinghai River (12.85 % and 277 

16.18 %, respectively). For the RCP8.5 scenario, they are found in the Qiangtang River (18.59 %). Note that there is an 278 

obvious decrease in R (-17.59 %) projected for the Huaihe River under RCP8.5 scenario, which is mainly caused by the 279 

larger negative contribution of PET. 280 

 281 

Figure 12 shows the spatial distributions of the relative changes in the contributions of annual P and PET as well as climate 282 

to R in China for 2071–2100. This is based on the CMIP5 multi-model ensemble medians. Compared with the baseline 283 

1971–2000, the increases in R due to the changes in P are projected in western China and some parts of northern China, and 284 

this phenomenon is particularly significant in the RCP8.5 scenario (up to 60.3 %). In contrast, the changes in PET are 285 

projected to reduce the R in all of China, with the larger decreases occurring mainly in the North China plain, northeast, and 286 

some parts of western China. Overall, climate change is projected to cause an obvious increase (decrease) of R in western 287 

China (southern China) under any emission scenario (Figure 12(g), (h) and (i)). This suggests that the arid regions (humid 288 

regions) in China will become wetter (drier) in the future. 289 

 290 

4 Discussion 291 

4.1 The estimation of elasticity 292 

The Budyko-based elasticity method is applied to quantify sensitivity of runoff to climate and catchment properties across 293 

China. Two Budyko models proposed by Choudhury (1999) and Fu (1981) are used for the comparison of the estimation of 294 

the climate elasticity of R. The results suggest that the climate elasticity is insensitive to the Budyko equations. The climate 295 

elasticity of R has been estimated in many regions of China. For example, the values of P elasticity are estimated as 2.4 for 296 

the Miyun Reservoir basin (Ma et al., 2010), 2.6 for the Luan River basin (Xu et al., 2013a), 2.1 for the headwater 297 

catchments of the Yellow River basin (Zheng et al., 2009), 1.4–1.7 for the Poyang Lake basin (Sun et al., 2013), 1.7–3.1 for 298 

the Hai River basin (Xu et al., 2014), 1.1–2.0 for southern China, the Songhua River basin, and the northwest, 2.1–4.8 for the 299 

Hai River basin, the Yellow River basin, and the Liao River basin (Yang et al., 2014), and 1.6–3.8 for the 63 catchments of 300 



11 
 

China (Yang and Yang, 2011). In addition, the PET elasticity is estimated as -1.04 for the headwater catchments of the 301 

Yellow River basin (Zheng et al., 2009) and from -1 to -0.2 for the Poyang Lake basin (Sun et al., 2013). Those results are 302 

close to our results for P elasticity ranging from 1.1 to 3.2, and for PET elasticity ranging from -2.2 to -0.1 in China. It is 303 

worth noting that the values of P elasticity tend to be larger in the northeast and some parts of western China that are located 304 

in arid climates. This is in good agreement with the findings by Sankarasubramanian et al. (2001), which indicated that a 305 

larger P elasticity occurs in more arid regions. However, some parts of Xinjiang, which is more arid than southern China, 306 

have smaller P elasticity. Meanwhile, some parts of southern China, which is more humid than other regions in China, have 307 

larger P elasticity (Figure 5). In addition, the Haihe River basin, located in less arid climates than that of the northwest, 308 

shows the largest P elasticity in China (Table 2). A similar phenomenon is also introduced in Yang et al. (2014). One of the 309 

major reasons for this difference may be attributed to the impacts of human activities that alter the patterns of R in these 310 

regions. In addition, uncertainties in water budget data, such as the errors in the simulation of R and in the estimation of PET, 311 

may also contribute to this difference. 312 

 313 

The comparisons for the estimates of εn and εω suggest that although the values of εn and εω are mainly dependent on the 314 

parameters of Budyko models, the spatial pattern of εn is consistent with that of εω at the 0.5o grid points over China (Figure 315 

5(e) and (f)). Yang et al. (2008) indicated that the parameters n and ω from Equations (2) and (3) are linearly correlated. We 316 

also conducted a regression analysis of εn and εω for all 0.5o grid points over China and found a strong linear correlation 317 

between εn and εω (εω = 1.7061εn + 0.0986, r² = 0.96). In addition, our results show that R is more sensitive to catchment 318 

properties (εn and εω) in the more arid regions (Figure 5(e) and (f)). The possible internal connection is that the arid regions 319 

with less vegetation coverage and stronger evaporation do not effectively hold the rainfall water that will be evaporated, 320 

leading to the smaller proportion of rainfall for R. 321 

 322 

4.2 Sensitivity analysis for PET calculation methods 323 

We compare four PET calculation methods, including the Penman method, the Thornthwaite method, the FAO-56 Penman–324 

Monteith method (Allen et al., 1998), and the Thornthwaite method corrected by Equation (1), to test the robustness of the 325 

PET elasticity result subject to PET uncertainties. In terms of mean annual PET as shown in Figure 13 (a), the Thornthwaite 326 

method gives relatively low PET among the four methods, especially in arid basins (e.g., Qiangtang, Qinghai, Xinjiang and 327 

Hexi). This is in agreement with previous studies, which indicated that the Thornthwaite method tends to underestimate PET 328 

in the arid areas (Hashemi and Habibian, 1979; Malek 1987; Garcia et al., 2004). In contrast, the mean annual PET by the 329 

other three methods are quite consistent, especially for the Penman method and the Thornthwaite method corrected by 330 

Equation (1). A similar result was also reported by Zeng and Cai (2016), which indicated that estimations of water balance at 331 

https://link.springer.com/article/10.1007%2Fs12517-013-1263-0#CR19
https://link.springer.com/article/10.1007%2Fs12517-013-1263-0#CR33
https://link.springer.com/article/10.1007%2Fs12517-013-1263-0#CR12
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both annual and month scales are generally robust under various PET calculation methods (not including the Thornthwaite 332 

method). The PET elasticity calculations from the four different PET data for the 14 river basins are shown in Figure 13(b). 333 

The Thornthwaite method yields stronger PET elasticity than other three methods in most of the basins mainly due to the 334 

underestimation of PET. However, the other three methods give very similar results in all 14 basins. In summary, the 335 

estimation of PET elasticity is robust to the PET calculations from the Penman method, the FAO-56 Penman–Monteith 336 

method, and the Thornthwaite method corrected by Equation (1), but is not acceptable for the Thornthwaite method.  337 

 338 

In general, the Thornthwaite method corrected by Equation (1) significantly improves the accuracy of PET (Figure 3 and 339 

Figure 13(a)). However, it should be emphasized that the Thornthwaite method is an empirical equation that neglects the 340 

effects of atmospheric conditions, such as wind speed, humidity and radiation (McVicar et al., 2012). In addition, the 341 

Equation (1) used for the bias correction of PET belongs to a ‘delta method’ (Graham et al., 2007; Sperna Weiland et al., 342 

2010), which only considers the average change but ignores the differences in the standard deviation and the coefficient of 343 

variation between the projection and baseline periods (Watanabe et al., 2012). Therefore, a more physically-based PET 344 

calculation method (such as the Penman method) needs to be considered to fully understand the PET calculation 345 

uncertainties in the projections of climate change. 346 

 347 

4.3 The projections of climate change and runoff 348 

The hydrological impacts of climate change have been investigated in many regions of China, such as the Hanjiang basin 349 

(Chen et al., 2007; Guo et al., 2009), the catchment of the Loess Plateau (Wang et al., 2013), the Qingjiang River basin 350 

(Chen et al., 2012), the Qiantang River basin (Xu et al., 2013b), the Songhuajiang River basin (Su et al., 2015), the 351 

southeastern Tibetan Plateau (Li et al., 2013b), the Pearl River basin (Yan et al., 2015), the Xin River basin (Zhang et al., 352 

2016), the sub-catchments of the Yangtze and Yellow River basins (Xu et al., 2011), the Huang-Huai-Hai region (Lu et al., 353 

2012), and ten major river basins in China (Wang et al., 2012). There is a large uncertainty involved in these impact studies, 354 

which results in a large difference in climate projections. For example, Wang et al. (2012) indicated that the prevailing 355 

pattern of “north dry and south wet” in China will likely be exacerbated under future climate warming. However, the results 356 

of most GCMs in this study suggest that the arid regions and humid regions of China are projected to become wetter and 357 

drier in the future, respectively. The main difference between the two studies is the use of different climate models, emission 358 

scenarios, and time periods. This also demonstrates that the results of climate projections should be taken with caution, since 359 

the regional climate simulations (especially of precipitation) from the GCMs are still not robust at the present stage.  360 

 361 

This study focuses on the hydrological change due to climate change (i.e., changes in P and PET), while the effects of the 362 
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variability of catchment properties (e.g., land cover change, groundwater and river water extraction, urbanization, irrigation, 363 

etc.) on the hydrology are overlooked here. Most of the available GCMs lack of key regional feedback processes involving 364 

land use, such as forest plantations, irrigation, and urbanization feedbacks that are critically important throughout China 365 

(Piao et al., 2010). The projected changes in catchment properties therefore need to be involved in the GCMs to account for 366 

their hydrological impacts. In addition, recent studies indicated that plant responses to increasing CO2 tend to keep more 367 

water on land, hence resulting in a greater increase in R (Milly and Dunne, 2016; Swann et al, 2016). That is to say, the 368 

hydrological models (e.g., VIC model), without the schemes of the plant stomatal responses to CO2, would lead to an 369 

underestimation of R under high CO2. Therefore, the implications of plants needing less water under high CO2 should be 370 

included in the assessment of hydrological impacts of climate change. 371 

 372 

4.4 Uncertainties 373 

Generally, a multitude of sources of uncertainty are involved in the impact assessment of climate change. In this study, 374 

uncertainty mainly comes from the GCMs, emission scenarios, the elasticity method, and the estimation error of the water 375 

budget data. To highlight the uncertainty from the GCMs, the 28 GCMs as produced by different research institutes around 376 

the world, are used for the comparison of climate change projections. There exists a large difference in the projections of P 377 

and PET among the 28 GCMs. Particularly, the uncertainty range of P tends to be larger for more arid regions, while the 378 

uncertainty range of PET tends to be larger for more humid regions (Figure 9). This highlights the impact of potential 379 

misleading conclusions if only one climate model were to be used for the impact assessments. The large uncertainty driven 380 

by the GCMs in relation to the hydrological impacts of climate change has been reported in many previous studies (Kay et 381 

al., 2009; Prudhomme and Davies, 2009; Chen et al., 2011; Teng et al., 2012; Liu et al., 2013; Wu et al., 2014, 2015). It is 382 

worth noting that although the projected ranges of P and PET show large variability in various GCMs, most project a 383 

consistent change (i.e. increase) in P and PET for the future period (Figure 9). In contrast, the uncertainty from the emission 384 

scenarios is smaller than that from the GCMs, since the projected changes in P (or PET) show a similar pattern under all 385 

emission scenarios (Figure 9). The main difference is that the projected changes tend to be more significant in higher 386 

emission scenarios. 387 

 388 

The elasticity equation (i.e. Equation (4)) used in this study is driven from the linear approximation of the Budyko equation 389 

(Equations (2) and (3)) by neglecting the higher order. Such approximation would possibly lead to an uncertainty in the 390 

estimation of climate elasticity. Yang et al. (2014) indicated that the error in estimation of elasticity tends to increase with 391 

increasing changes in P and PET, as well as the increased parameter of the Budyko equation. Future research is needed to 392 

quantify the effects of the errors on the estimation of elasticity under various climate conditions. 393 
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 394 

In addition to uncertainty in PET calculation (as discussed in section 4.2), there are also uncertainties associated with the 395 

estimates of other water budget components, such as R. As shown in Figure 14, the sensitivity of climate (i.e., P and PET) 396 

elasticity to R varies considerably between basins and tends to be larger in more humid basins. Moreover, PET elasticity is 397 

more sensitive to changes in R compared with P elasticity for all 14 basins. As indicated by Zhang et al. (2014), although the 398 

R is realistically estimated for most of the basins (especially for humid basins) in China with a small relative error, there is 399 

still a large relative error for few arid basins in western China due to the lack of meteorological observations. Therefore, the 400 

large errors in simulated R of the VIC model may result in large uncertainties in elasticity calculation, particularly in western 401 

China. Also note that some other natural water sources, such as snow and glaciers, which may contribute to R, are 402 

overlooked in this study. Lute and Abatzoglou (2014) highlighted the importance of extreme snowfall events in shaping the 403 

interannual variability of the water balance. The melting of snow and glaciers is generally significant at a seasonal time scale 404 

in some high altitude regions of China. Neglecting the effects of snow and glaciers would lead to a bias in the modelling of R 405 

for these regions. 406 

 407 

5 Conclusion 408 

In this study, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future 409 

climate variability over China at both grid and catchment scales. The climate and catchment properties elasticities of runoff 410 

were estimated based on the long-term (1960–2008) land surface data from Zhang et al. (2014). Twenty-eight GCMs with 411 

three emission scenarios from the CMIP5 were collected for the projections of climate change and its contribution to runoff 412 

in China during the period 2071–2100. The uncertainties associated with the estimates of PET, R, climate elasticity, as well 413 

as climate projections, are discussed in detail. The main findings are summarised as follows: 414 

 415 

(1) The interannual variability of PET is more sensitive to that of P in more arid regions, while the opposite occurs in the 416 

response of interannual variability of R to that of P. A large spatial variation exists in P elasticity (from 1.1 to 3.2) and PET 417 

elasticity (from -2.2 to -0.1) across China. The P elasticity is larger in northeast and western China than in southern China, 418 

which is opposite to that of PET elasticity. Among the 14 river basins, the Haihe River and Southwest Drainage have the 419 

largest and smallest climate elasticities, respectively. The catchment properties elasticity of R is sensitive to mean annual 420 

aridity indices and tends to be stronger in more arid regions with increasing aridity indices. 421 

 422 

(2) For the period 1960–2008, the positive (negative) contributions from P to R are mainly found in western China (northeast 423 

China and North China plain), and the positive (negative) contributions of PET mainly occur in western China (northeast 424 
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China). Overall, the climate contribution to R ranges from -2.4 % yr-1 to 3.6 % yr-1 across China during the period 1960–425 

2008, with a negative contribution in northeast China and a positive contribution in western China and some parts of the 426 

southwest. The largest positive and negative contributions of climate occur in the Qiangtang and Haihe River basins, 427 

respectively. 428 

 429 

(3) There is a large uncertainty in climate projections among the 28 GCMs. Moreover, the uncertainty range of the P (PET) 430 

projection tends to be larger for more arid (humid) regions. However, most of the GCMs project a consistent change in 431 

annual P or annual PET. For the period 2071–2100, the P is projected to increase in most parts of China, especially the 432 

western regions, and the PET is projected to increase in all of China, particularly the southern regions. Furthermore, greater 433 

increases are projected for higher emission scenarios. Due to future climate warming, the arid regions and humid regions of 434 

China are projected to become wetter and drier in the period 2071–2100, respectively (relative to the baseline 1971–2000). 435 

 436 

The results of this study (especially of the climate change projections) should be taken with caution, since uncertainties in 437 

the results exist because of several issues, including the different simulations of GCMs, the estimation error of climate 438 

elasticity, and the estimation error in the water budget components. A thorough investigation of the uncertainty involved in 439 

the hydrologic effects of climate change in China should be considered in future research. 440 

 441 
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Table 1. CMIP5 GCMs used in this study. The GCM data were statistically downscaled and regridded 640 

onto a common 1o×1o global grid by the Canadian Climate Data and Scenarios (CCDS). 641 

No. Model Institution (Country) Resolution 

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, 

China 
1°×1° 

2 BCC-CSM1-1-m 

3 BNU-ESM 
College of Global Change and Earth System Science, Beijing 

Normal University, China  
1°×1° 

4 CCSM4 National Center for Atmospheric Research, USA  1°×1° 

5 CESM1-CAM5 Community Earth System Model Contributors, USA  1°×1° 

6 CNRM-CM5 

Centre National de Recherches Météorologiques / Centre 

Européen de Recherche et Formation Avancée en Calcul 

Scientifique, France  

1°×1° 

7 CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial Research Organization 

in collaboration with Queensland Climate Change Centre of 

Excellence, Australia 

1°×1° 

8 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 1°×1° 

9 EC-EARTH EC-EARTH consortium 1°×1° 

10 FGOALS-g2 
LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences and CESS, Tsinghua University, China  
1°×1° 

11 FIO-ESM The First Institute of Oceanography, SOA, China 1°×1° 

12 GFDL-CM3 

NOAA Geophysical Fluid Dynamics Laboratory, USA 1°×1° 13 GFDL-ESM2G 

14 GFDL-ESM2M 

15 GISS-E2-H 
NASA Goddard Institute for Space Studies, USA 1°×1° 

16 GISS-E2-R 

17 HadGEM2-AO 
National Institute of Meteorological Research/Korea 

Meteorological Administration, South Korea  
1°×1° 

18 HadGEM2-ES 

Met Office Hadley Centre (additional HadGEM2-ES 

realizations contributed by Instituto Nacional de Pesquisas 

Espaciais), UK  

1°×1° 

19 IPSL-CM5A-LR 
Institut Pierre-Simon Laplace, France  1°×1° 

20 IPSL-CM5A-MR 

21 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean  

Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies, Japan  

1°×1° 
22 MIROC-ESM-CHEM 

23 MIROC5 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology, Japan 

1°×1° 

24 MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for 

Meteorology), Germany  
1°×1° 

25 MPI-ESM-MR 

26 MRI-CGCM3 Meteorological Research Institute, Japan 1°×1° 

27 NorESM1-M 
Norwegian Climate Centre, Norway  1°×1° 

28 NorESM1-ME 
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Table 2. The estimations of P elasticity, PET elasticity, and catchment properties elasticity of R in the 643 

14 river basins of China based on Equations (2) and (3). The basin number is consistent with that given 644 

in Figure 1. The numbers in the parentheses indicate the 1960–2008 mean aridity index. 645 

Basin No. 
εP εPET εn or εω 

Eq.(2) Eq.(3) Eq.(2) Eq.(3) Eq.(2) Eq.(3) 

1 (0.52) 1.64 1.65 -0.64 -0.65 -0.24 -0.33 

2 (0.64) 1.63 1.64 -0.62 -0.63 -0.41 -0.61 

3 (0.81) 1.55 1.56 -0.55 -0.55 -0.57 -0.93 

4 (1.19) 1.40 1.39 -0.40 -0.39 -0.73 -1.44 

5 (1.19) 2.09 2.08 -1.08 -1.07 -1.03 -1.47 

6 (1.43) 2.06 2.04 -1.05 -1.02 -1.25 -1.83 

7 (1.71) 1.92 1.88 -0.91 -0.87 -1.35 -2.10 

8 (2.14) 2.28 2.21 -1.29 -1.22 -1.89 -2.70 

9 (2.38) 1.78 1.72 -0.79 -0.73 -1.53 -2.54 

10 (4.41) 2.23 2.11 -1.22 -1.10 -2.78 -4.16 

11 (4.70) 1.81 1.72 -0.82 -0.72 -2.17 -3.67 

12 (6.68) 1.72 1.62 -0.73 -0.63 -2.28 -4.08 

13 (8.09) 1.66 1.56 -0.65 -0.55 -2.26 -4.27 

14 (8.63) 1.63 1.53 -0.64 -0.54 -2.26 -4.30 

 646 

 647 

 648 

Table 3. The contributions of P, PET, and climate (i.e. P& PET) to R in the 14 basins of China for the 649 

period 1960–2008. The basin number is consistent with that given in Figure 1. The numbers in the 650 

parentheses indicate the 1960–2008 mean aridity index. 651 

Basin No. P (%/a) PET (%/a) P&PET (%/a) 

1 (0.52) 0.19 -0.13 0.06 

2 (0.64) -0.03 -0.09 -0.12 

3 (0.81) -0.07 -0.07 -0.14 

4 (1.19) 0.14 -0.01 0.13 

5 (1.19) -0.18 -0.27 -0.45 

6 (1.43) -0.35 -0.31 -0.66 

7 (1.71) -0.57 -0.34 -0.91 

8 (2.14) -0.74 -0.38 -1.12 

9 (2.38) -0.38 -0.04 -0.42 

10 (4.41) -0.40 -0.26 -0.66 

11 (4.70) 0.99 0.01 1.00 

12 (6.68) 0.43 -0.01 0.42 

13 (8.09) 0.84 -0.02 0.82 

14 (8.63) 0.11 0.08 0.19 

 652 

 653 

 654 
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 655 

Figure 1. Location of the main river basins in China. The numbers denote the river basins with 656 

increasing aridity index: 1, Southeast Drainage (0.52); 2, Pearl River (0.64); 3, Yangtze River (0.81); 4, 657 

Southwest Drainage (1.19); 5, Huaihe River (1.19); 6, Heilongjiang River (1.43); 7, Liaohe River (1.71); 658 

8, Haihe River (2.14); 9, Yellow River (2.38); 10, Inner Mongolia River (4.41); 11, Qiangtang River 659 

(4.70); 12, Qinghai River (6.68); 13, Xinjiang River (8.09), 14, Hexi River (8.63). The numbers in the 660 

parentheses indicate the 1960–2008 mean aridity index. 661 
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 669 

Figure 2. Box plots of the simulation results of (a) mean annual T and (b) mean annual P and the bias 670 

correction results of (c) mean annual T and (d) mean annual P from 28 GCMs for the period 1971–2000 671 

in the 14 river basins. The boxes denote the interquartile model spread (range between the 25th and 75th 672 

quantiles), with the horizontal line indicating the ensemble median and the whiskers showing the 673 

extreme range of the 28 CMIP5 model simulations. The blue dotted lines denote the observed results of 674 

mean annual T and mean annual P for the period 1971–2000. The basin number is consistent with that 675 

given in Figure 1. 676 
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 685 

Figure 3. Comparison of annual PET calculated from the Penman method and the Thornthwaite method 686 

corrected by Equation (1) during the period 1960–2008 for (a) the 14 river basins and (b) all 0.5o grid 687 

points over China. 688 
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 689 

Figure 4. Spatial distributions of (a) PET deviation ratio and (b) R deviation ratio and (c) the 690 

relationship between R deviation ratio and mean annual aridity index ( ) for all 0.5o grid points in 691 

China. 692 
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 694 

Figure 5. Spatial distributions of the P elasticity of R across China from (a) Equation (2) and (b) 695 

Equation (3). Spatial distributions of the PET elasticity of R across China from (c) Equation (2) and (d) 696 

Equation (3). Spatial distributions of the parameter elasticity of R across China from (e) Equation (2) 697 

and (f) Equation (3). 698 
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 704 

Figure 6. The relationship between mean annual aridity index and (a) P elasticity, (b) PET elasticity, 705 

and (c) parameter elasticity. The blue points represent the case of Equation (2), and the red points 706 

represent the case of Equation (3).  707 
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 713 

Figure 7. Contour plot of percentage R change due to the changes in P and PET for the 14 river basins. 714 

The P elasticity and PET elasticity of R are estimated based on Equation (2).  715 
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 718 

Figure 8. Trend magnitudes in annual time series of (a) P, (b) R, (c) PET, and (d) aridity index for the 719 

period 1960–2008 and spatial distributions of the contributions (unit: % yr-1) of (e) P, (f) PET, and (g) 720 

climate (i.e. P& PET) to R in China for the period 1960–2008. The trend magnitudes are estimated by 721 

the Sen’s method. Grey dots are shown as statistically significant positive/negative trends (p < 0.05). 722 
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 723 

Figure 9. Box plots of relative change (%) in mean annual P under (a) RCP2.6, (b) RCP4.5, and (c) 724 

RCP8.5 scenarios and in mean annual PET under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios 725 

calculated from 28 CMIP5 models in 14 basins for the period 2071–2100 (relative to the baseline 1971–726 

2000). The boxes denote the interquartile model spread (range between the 25th and 75th quantiles), 727 

with the horizontal line indicating the ensemble median and the whiskers showing the extreme range of 728 

the 28 CMIP5 model simulations. Red dotted lines denote the average values of the multi-model 729 

ensemble. Blue dotted lines denote the 95 % significance levels range of the average values of the 730 

multi-model ensemble. The basin number is consistent with that given in Figure 1. 731 
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 735 

Figure 10. The CMIP5 multi-model ensemble median relative change (%) in mean annual P under (a) 736 

RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios and in mean annual PET under (d) RCP2.6, (e) RCP4.5, 737 

and (f) RCP8.5 scenarios in China for the period 2071–2100 (relative to the baseline 1971–2000). 738 
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 745 

Figure 11. Box plots of relative change (%) in the contributions of annual P to R under (a) RCP2.6, (b) 746 

RCP4.5, and (c) RCP8.5 scenarios, in the contributions of annual PET to R under (d) RCP2.6, (e) 747 

RCP4.5, and (f) RCP8.5 scenarios, and in the contributions of climate to R under (g) RCP2.6, (h) 748 

RCP4.5, and (i) RCP8.5 scenarios calculated from 28 CMIP5 models in 14 basins for the period 2071–749 

2100 (relative to the baseline 1971–2000). The boxes denote the interquartile model spread (range 750 

between the 25th and 75th quantiles) with the horizontal line indicating the ensemble median and the 751 

whiskers showing the extreme range of the 28 CMIP5 model simulations. Red dotted lines denote the 752 
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average values of the multi-model ensemble. Blue dotted lines denote the 95% significance levels range 753 

of the average values of the multi-model ensemble. The basin number is consistent with that given in 754 

Figure 1.  755 
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 778 

Figure 12. The CMIP5 multi-model ensemble median relative change (%) in the contributions of 779 

annual P to R under (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios, in the contributions of annual 780 

PET to R under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios, and in the contributions of climate 781 
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to R under (g) RCP2.6, (h) RCP4.5, and (i) RCP8.5 scenarios in China for the period 2071–2100 782 

(relative to the baseline 1971–2000).  783 
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 807 

Figure 13. (a) Mean annual PET calculated from the four methods for the 14 river basins of China 808 

during the period 1960–2008. (b) PET elasticity calculated from Equation (2) based on the four PET 809 

data for the 14 river basins of China during the period 1960–2008. The basin number is consistent with 810 

that given in Figure 1.  811 
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 813 

Figure 14. Comparison of changes in (a) P elasticity and (b) PET elasticity in response to changes in R 814 

for the 14 river basins of China. The basin number is consistent with that given in Figure 1. 815 
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