
 
 

Dear Editor and Reviewers: 

 

On behalf of all the contributing authors, I would like to express our sincere appreciations of your letter and reviewers’ 

constructive comments concerning our article entitled “Responses of runoff to historical and future climate variability 

over China” (Manuscript No.: hess-2017-98). Those comments are all valuable and very helpful for revising and 

improving our paper, as well as the important guiding significance to our researches. We have studied comments 

carefully and have made correction which we hope meet with approval. In this revised version, changes to our 

manuscript were all highlighted within the document by using red colored text. Point-by-point responses to the nice 

editor and two nice reviewers are listed below this letter. 

 

********************************************************************* 

Editor comments: 

I think the authors have responded to some critical comments well. I do class this paper as requiring major corrections 

to answer some of these points and that is in agreement with both reviewers. Please can the authors submit a revised 

manuscript that will be further reviewed by both the current reviewers. To add to the authors comments I note the 

following that I would like to see more developed: 

Reviewer 1, comment 1: I think there needs to be a more quantified answer to whether or not the modelled results may 

impact the elasticities calculated. I'm not sure I agree that a calibration scheme that is focused on high flows and 

having some uncertainty (as all models do) means that 'annual' outputs are more accurate. I can imagine the extent of 

that is catchment response dependent... So ensure this effect is proved by the manuscripts analyses. Please note that the 

reviews are asking for a treatment of the uncertainties in the modelling and this is not all about different PET 

calculations in my view.... 

Also I will want to make sure then authors identify and are seen to be dealing with the issues of hydrological model 

simulations to future climates and how 'valid' there modelling system is for achieving this (from the GCM's 

downwards through the hydrological cascade). 

 

Response: Thank you very much for your nice comments. We quite agree with you that there needs to be a more 

quantified answer to whether or not the modelled results may impact the elasticities calculated. According to your good 

suggestion, we further made a sensitivity analysis on the changes in P elasticity and PET elasticity in response to 

changes in runoff (R) for the 14 river basins in China (As shown in Figure 14 in the revised MS). We found that the 

sensitivity of climate (i.e., P and PET) elasticity to R varies considerably between basins and tends to be larger in more 

humid basins. Moreover, PET elasticity is more sensitive to changes in R compared with P elasticity for all 14 basins. 

As indicated by Zhang et al. (2014), the R is realistically estimated for most of the basins (especially for humid basins) 

in China with a small relative error, but there is a large relative error for few arid basins in western China due to the 

lack of meteorological observations. Therefore, these errors in simulated R of the VIC model may result in 

uncertainties in elasticity calculation, particularly in western China. For more information please see lines 396-403 in 

the revised MS.  

 

To address the issues of hydrological simulations to future climate change, our study firstly calculated the climate (i.e., 

P and PET) elasticity of R (i.e., per change in R due to per change in P and PET) over China by the Budyko-based 

elasticity method, based on the land surface data from the VIC model (Zhang et al., 2014). Then we projected changes 



 
 

in climate (i.e., changes in P and PET) over the 0.5 degree grids of China during the period 2071-2100 in RCPs 4.5 

and 8.5 compared with the baseline period (1971-2000), by using the downscaling results of the 28 GCMs. By 

neglecting the catchment properties elasticity, the projected changes in P and PET over China from the 28 GCMs were 

taken into equation (4) (as shown in the revised MS) to project future hydrological changes (i.e. projected changes in R) 

due to climate change during the period 2071-2100 in RCPs 4.5 and 8.5. We think climate elasticity concept is neat for 

the issues of hydrological responses to an ensemble of climate change projections. 

 

Reference:  

Zhang, X., Tang, Q., Pan, M., Tang, Y.: A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China, J. 

Hydrometeor., 15, 2067–2084, doi: 10.1175/JHM-D-13-0170.1, 2014. 

 

********************************************************************* 

Anonymous Referee #1： 

This paper describes the projected effects of climate change on runoff and water availability in China using a 

framework based on runoff elasticity. In general the paper is well written and of sufficiently wide geographical scope 

to be interesting to a broad readership, but several key assumptions in the methodology, which are neither documented 

nor discussed, preclude a recommendation to publish without major revisions. These are:  

 

1. More information on the parameters used in the hydrological modeling is necessary, especially those used with VIC 

to calculate runoff. These assumptions lie at the heart of the elasticities calculated, which will be heavily influenced by 

the structure and parametrisation of that model. [Section 2.1 Line 5] 

 

Response: Thank you very much for your nice comments. In our study, the Budyko framework with an empirical 

parameter was used to calculate climate elasticity of runoff (R), and this method has been proven to be robust to the 

calculation of climate elasticity (Yang et al., 2014). For the VIC model used for the calculation of runoff, the 

parameters include: the infiltration parameter b, the second and third soil layer depths (d2 and d3), and the three 

parameters in the base flow scheme. According to Zhang et al (2014), the VIC model was calibrated in the 11 major 

basins over China based on the best meteorological forcing data (derived by 756 meteorological stations over China). 

The model parameters were estimated by using an optimization algorithm of the multi-objective complex evolution of 

the University of Arizona (MOCOM-UA). According to your good comments, we have added more information on the 

parameters in the VIC modeling in the revised MS. For detailed information please see lines 89-93 in the revised MS.  

 

In addition, we made a sensitivity analysis on the changes in P elasticity and PET elasticity in response to changes in R 

for the 14 river basins in China (As shown in Figure 14 in the revised MS). We found that the sensitivity of climate 

(i.e., P and PET) elasticity to R varies considerably between basins and tends to be larger in more humid basins. 

Moreover, PET elasticity is more sensitive to changes in R compared with P elasticity. As indicated by Zhang et al. 

(2014), the R is realistically estimated for most of the basins (especially for humid basins) in China with a small 

relative error, but there is a large relative error for few arid basins in western China due to the lack of meteorological 

observations. Therefore, the results suggest that the errors in simulated R of the VIC model may result in uncertainties 

in elasticity calculation, particularly in western China. For more information please see lines 396-403 in the revised 

MS.  

 

Reference:  

Yang, H., Qi, J., Xu, X., Yang, D., and Lv, H.: The regional variation in climate elasticity and climate contribution to 

runoff across China. J. hydrol., 517, 607-616, 2014. 

Zhang, X., Tang, Q., Pan, M., Tang, Y.: A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China, J. 



 
 

Hydrometeor., 15, 2067–2084, doi: 10.1175/JHM-D-13-0170.1, 2014. 

 

2. There is some discussion of uncertainty in Section 4.3 but it is very general and not quantitative. In particular, the 

detailed choice of which formulation of the Budyko model used to compute elasticities is investigated but neither the 

runoff model nor the PET equation are examined in this regard. 

 

Response: Thank you very much for your nice comments. We agree with you that the discussion section is lack of 

quantitative analysis, especially for the examination of the estimation of runoff or PET. In our original version (i.e. 

initial submission), the PET of the 28 GCMs for the baseline 1971–2000 and the future period 2071–2100 was 

estimated by the Thornthwaite method. We noted that the Thornthwaite method is solely based on monthly temperature, 

which may tend to underestimate PET in the arid areas and overestimate PET in the humid areas. Therefore, we used a 

multiplicative correction for PET bias correction of the 28 GCMs (as shown in equation (1) in the revised MS). 

 

According to your good suggestions, we compared four different PET calculation equations (i.e., the Penman method, 

the Thornthwaite method, the FAO-56 Penman–Monteith method, and the Thornthwaite method corrected by equation 

(1) in the revised MS) over the 14 river basins of China, and conducted a quantitative analysis of the impacts of the 

PET calculations on the PET elasticity calculations (as shown in Figure 13 in the revised MS). The results showed that 

the mean annual PET by the Penman method, the FAO-56 Penman–Monteith method, and the Thornthwaite method 

corrected by equation (1) are quite consistent, and the PET elasticity calculations from these three methods give very 

similar results in all 14 basins. In summary, our study suggests that the estimation of PET elasticity is robust to the 

PET estimated from the Penman method, the FAO-56 method, and the Thornthwaite method corrected by equation (1), 

but is not robust to the Thornthwaite method. For more information please see section 4.2 in the revised MS.  

 

We also made a discussion on the comparison of changes in P elasticity and PET elasticity in response to changes in R 

for the 14 river basins in China (As shown in Figure 14 in the revised MS). It was found that the sensitivity of climate 

(i.e., P and PET) elasticity to R varies considerably between basins and tends to be larger in more humid basins. 

Moreover, PET elasticity is more sensitive to changes in R compared with P elasticity. As shown in Zhang et al. (2014), 

the R is realistically estimated for most of the basins (especially for humid basins) in China with a small relative error. 

However, there is a large relative error for few arid basins in western China due to the lack of meteorological 

observations. Therefore, our results suggest that the errors in simulated R of the VIC model may result in uncertainties 

in elasticity calculation, and this is particularly in western China. For more information please see lines 396-403 in the 

revised MS.  

 

Reference: 

Zhang, X., Tang, Q., Pan, M., Tang, Y.: A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China, J. 

Hydrometeor., 15, 2067–2084, doi: 10.1175/JHM-D-13-0170.1, 2014.  

 

3. PET is calculated using the Thornthwaite method, which is a surprise since with the data available there is 

information to justify the use of more physically accurate PET calculations. Justification for the use of the 

temperature-based Thornthwaite method is required, especially given that it may oversimplify (and artificially 

constrain) the results of the Budyko calculation which features subsequently. [P5 line 5] 

 

Response: Thank you very much for your nice comments. In the original version (i.e. initial submitted manuscript), 

the PET data used for the calculation of climate elasticity are derived from the CRU TS3.22 dataset as produced by the 

Climatic Research Unit (CRU) at the University of East Anglia (Harris et al., 2014). In this dataset, the PET is 

calculated from the FAO Penman-Monteith method. In contrast, the PET of 28 GCMs is estimated by the Thornthwaite 

method. We fully agree with you that the temperature-based Thornthwaite method is lack of physical basis, and it is 



 
 

necessary to justify the use of the temperature-based Thornthwaite method and the use of more physically PET 

calculation methods. 

 

In the revised manuscript, we used a more physically PET data that estimated by the Penman method (during the 

period 1960–2008 provided by the Hydroclimatology Group of Princeton University) to calculate the climate elasticity 

over China instead of the PET data from the FAO Penman-Monteith method. The related results and some figures and 

tables have been updated in the revised MS. We believe the new climate elasticity coefficients would be more accurate 

compared with that in the original version. Meanwhile, the PET of GCMs calculated by the Thornthwaite method was 

corrected by the equation (1) in the revised MS. We compared the corrected PET with the PET calculated from the 

Penman method at both basin and grid scales (as shown in Figure 3 in the revised MS). The results indicated the 

Thornthwaite method corrected by the equation (1) significantly improves the accuracy of PET and can be acceptable 

for the PET calculation of the 28 GCMs. For more information please see lines 117-129 in the revised MS. In future 

work, we are going to compute the Penman PET using the meteorological data from the CMIP5 output and make a 

comparative analysis to fully understand the PET calculation uncertainties in the projections of climate change.  

 

Reference: 

Harris, I., Jones, P. D., Osborna, T. J., Lister, D. H.: Updated high-resolution grids of monthly climatic observations–

the CRU TS3.10 Dataset, Int. J. Climatol., 34(3), 623–642, 2014. 

 

 

********************************************************************* 

Anonymous Referee #2： 

This paper applies Budyko’s concept of ‘climate elasticity’ in the response of runoff to changes in precipitation, 

potential evapotranspiration and catchment properties to projections of climate change from an ensemble of general 

circulation model projections. The authors use this to assess the robustness of projections of changes in future due to 

climate change in different regions of China. 

 

Climate elasticity concept seems quite neat for the question of responses to climate change (separating P and PET 

drivers, and also with the potential for accounting for other drivers via the catchment properties) and in my opinion the 

authors have applied this appropriately to the specific question of responses to an ensemble of climate change 

projections. I would however advise more care in the interpretation, as these should not be taken as actual predictions 

of the future (which the language used some- times suggests that there are). There are 3 reasons for this： 

1. (1) While the use of the multi-model ensemble probably is a good, well-established way to explore a number of 

possible outcomes, the ensemble is not designed to be probabilistic, ie: it is not intended to give an indication of 

likelihoods. It is an ‘ensemble of opportunity’, using all models that happened to be available in the community, and 

the levels of skill for regional climate change in China will vary somewhat arbitrarily. The models themselves have not 

been specifically chosen or varied in order to systematically explore regional climate changes. Likelihood statements 

generally require further backing-up with understanding of model performance and the simulated climate processes in 

the region in question. Therefore I would encourage the authors to avoid terms such as “climate change will likely 

cause an obvious increase (decrease) of R” – the simulations are not intended to give guidance on likelihoods. (2) It is 

also not clear to me whether the catchment properties term includes plant stomatal responses to CO2. (It could do in 

theory). Two recent papers (Milly and Dunne, 2016, Nature Climate Change, and Swann et al, 2016, PNAS) showed 

that projected runoff changes in the GCMs tend to show a greater increase or smaller decrease in runoff than many 

hydrological models, because the GCM land surface schemes tend to include this term whereas hydrological models 

do not. It is not clear whether the VIC model includes this here or not. (3) The method used here does not, I believe, 

include other drivers of hydrological change eg. Land cover change, groundwater and river water extraction, irrigation 



 
 

etc. I think that in theory the catchment properties quantity could account for this, but it has not been applied to this 

here. We cannot assume that climate change is the only driver of hydrological change, and hence the interpretation of 

the results should bear this in mind. 

 

Response: Thank you very much for your nice comments. For the question 1, we quite agree with your points that the 

multi-model ensemble is not designed to be probabilistic and is not intended to give an indication of likelihoods. 

Likelihood statements, which generally require further backing-up with understanding of model performance and the 

simulated climate processes, are not appropriate here. According to your good suggestions, we have changed the 

statements of some sentences to avoid term such as ‘climate change will likely cause an obvious increase (decrease) of 

R’ (changed to ‘climate change is projected to cause an increase (decrease) in R’). For more information please see the 

red colored text in the revised MS. 

 

For the question 2, thank you for providing these two very nice references (Milly and Dunne, 2016, Swann et al, 2016), 

which showed a very important information that the plant responses to increasing CO2 tend to save more water on land, 

leading to a greater increase in runoff. We note that the VIC model used for the calculation of runoff does not include 

the schemes with the plant stomatal responses to CO2. Therefore, under high CO2 condition, neglecting the plant 

stomatal responses to CO2 would lead to a underestimation of runoff in the hydrological model. According to your 

good comments, we made a discussion on this point to highlight the importance of the plant stomatal responses to CO2 

in the assessment of hydrological impacts of climate change. For more information please see lines 368-372 in the 

revised MS. In addition, the empirical parameter in the Budyko equations well accounts for the effects of catchment 

properties (e.g. land surface characteristics, the average slope, and vegetation type) on the water-energy balance. 

Therefore, the catchment properties term could include plant stomatal responses to CO2 in theory. This is a very nice 

suggestion for us to try to characterize the plant stomatal responses to CO2 using the catchment properties term in the 

future work, especially under high CO2 condition. 

  

For the question 3, we quite agree with your comments that there are other drivers of hydrological change in addition 

to climate change. Our method only considers the hydrological change due to climate change but neglects the effects of 

the variability of catchment properties (e.g., land cover change, groundwater and river water extraction, urbanization, 

irrigation, etc.) on the hydrology. According to your good comments, we made a discussion on the other drivers 

(catchment properties) of hydrological change for the interpretation of the results. For more information please see 

lines 363-368 in the revised MS. 

 

2. The authors do acknowledge some of these issues to some extent at the end of the paper, but this is after the earlier 

discussion which often uses language of prediction, which I think goes too far. I would suggest terms such as “Climate 

change is projected to cause an increase (decrease) in R: : :.” Also I suggest the authors address the above points in 

more detail, highlighting the limits to the interpretation of the CMIP5 ensemble in terms of likelihoods.  

 

Response: Thank you very much for your nice comments. According to your good suggestions, we have changed the 

sentence “climate change will likely cause an obvious increase (decrease) of R…” to “climate change is projected to 

cause an increase (decrease) in R…”. We also addressed the above points in more detail to highlight the limits to the 

interpretation of the CMIP5 ensemble in terms of likelihoods. For more information please see the red colored text in 

the revised MS. 

 

3. My other concern is why the authors chose to use the Thorthwaite method for PET. It is stated on page 14 line 4 that 

this is because there is a “lack of meteorological data (such as relative humidity) in the GCM data. This is not true – 

GCMs are meteorological models, and indeed some of the CMIP5 GCMs are used in slightly different variants for 

numerical weather prediction. A huge range of meteorological outputs is available, including RH – see here 



 
 

http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf. 

I recommend that the authors use the data portal http://cmippcmdi.llnl.gov/cmip5/data_description.html at PCMDI, 

who organised CMIP5. The Canadian Climate Centre webpage used by the authors only has a very limited number of 

variables.  

 

Response: Thank you very much for your nice comments. In the original version (i.e. initial submitted manuscript), 

the PET of GCM for the baseline 1971–2000 and the future period 2071–2100 is estimated by the Thornthwaite 

method. We noted that the temperature-based Thornthwaite method is lack of physical basis, and it is necessary to 

justify the use of the Thornthwaite method and the use of more physically PET calculation methods. Thank you very 

much for informing us the meteorological data used for the PET calculation from the CMIP5 output 

http://cmippcmdi.llnl.gov/cmip5/data_description.html at PCMDI. Indeed, there is a huge range of meteorological 

outputs (including RH) from the CMIP5 models, which are enough for the calculation of PET by the Penman method. 

However, due to large amounts of data needed to be processed (including (1) download the 28 GCMs meteorological 

data, (2) statistical downscaling of the 28 GCMs meteorological data over China, (3) bias correction of the 28 GCMs 

meteorological data, (4) calculations of PET for the 28 GCMs, and (5) bias correction of PET for the 28 GCMs), so it 

is difficult for us to complete it in a short period. However, we tried our best to correct the PET of GCMs, and made a 

detailed comparison of the corrected PET method with other PET calculation methods to justify the use of PET 

calculation of the GCMs. In particular, there are three main changes for the PET calculations in the revised MS, which 

are as follows: 

 

(1) We used a more physically PET data that estimated by the Penman equation (data during the period 1960–2008 

provided by the Hydroclimatology Group of Princeton University) to calculate the climate elasticity over China instead 

of the PET data from the FAO Penman-Monteith method. We believe the climate elasticity would be more accurate in 

the revised MS than in the original version. 

 

(2) We used a multiplicative correction method to correct the PET data of GCMs calculated from the Thornthwaite 

method (as shown in equation (1) in the revised MS). Based on the monthly data of temperature covering the period 

1960–2008 provided by the Climatic Research Unit (CRU), the PET was calculated by the Thornthwaite method and 

then corrected by the equation (1) to test the applicability of the multiplicative correction method. The results indicated 

that the corrected annual PET shows a good agreement with that calculated by the Penman method (as shown in Figure 

3 in revised MS). These two methods are quite consistent at both basin and grid scales, suggesting that the 

multiplicative correction method is acceptable for the bias correction of PET of the GCMs. 

 

(3) We compared the four PET calculation methods (i.e., the Penman method, the Thornthwaite method, the FAO-56 

Penman–Monteith method, and the Thornthwaite method corrected by the equation (1) in the revised MS) to test the 

robustness of the PET elasticity result subject to PET uncertainties. The results indicated that the mean annual PET by 

the Penman method, the FAO-56 Penman–Monteith method, and the Thornthwaite method corrected by the equation 

(1) are quite consistent, and the PET elasticity calculations from these three methods give very similar results in all 14 

basins (as shown in Figure 13 in the revised MS). That is to say, the Thornthwaite method corrected by the equation (1) 

significantly improves the accuracy of PET and can be acceptable for the PET calculation of the GCMs.  

 

Considering your good suggestions, in the future work we are going to calculate the Penman PET using the 

meteorological data from the CMIP5 output and further make a comparative analysis to fully understand the PET 

calculation uncertainties in the projections of climate change. 

http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
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Abstract. China has suffered some of the effects of global warming, and one of the potential implications of climate 9 

warming is the alteration of the temporal-spatial patterns of water resources. Based on the long-term (1960–2008) water 10 

budget data and climate projections from 28 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project 11 

Phase 5 (CMIP5), this study investigated the responses of runoff (R) to historical and future climate variability in China at 12 

both grid and catchment scales using the Budyko-based elasticity method. Results show that there is a large spatial variation 13 

in precipitation (P) elasticity (from 1.1 to 3.2) and potential evaporation (PET) elasticity (from -2.2 to -0.1) across China. 14 

The P elasticity is larger in northeast and western China than in southern China, while the opposite occurs for PET elasticity. 15 

The catchment properties elasticity of R appears to have a strong non-linear relationship with the mean annual aridity index 16 

and tends to be more significant in more arid regions. For the period 1960–2008, the climate contribution to R ranges from 17 

-2.4 % yr
-1

 to 3.6 % yr
-1

 across China, with the negative contribution in northeast China and the positive contribution in 18 

western China and some parts of the southwest. The results of climate projections indicate that although there is large 19 

uncertainty involved in the 28 GCMs, most project a consistent change in P (or PET) in China at the annual scale. For the 20 

period 2071–2100, the mean annual P is projected to increase in most parts of China, especially the western regions, while 21 

the mean annual PET is projected to increase in all of China, particularly the southern regions. Furthermore, greater 22 

increases are projected for higher emission scenarios. Overall, due to climate change, the arid regions and humid regions of 23 

China are projected to become wetter and drier in the period 2071–2100, respectively (relative to the baseline 1971–2000). 24 

Key words: Runoff; Budyko hypothesis; climate elasticity; climate variability; CMIP5 GCMs; China 25 

 26 

1 Introduction 27 

Climate change has become increasingly significant (IPCC, 2013), and numerous studies have reported that climate warming 28 

is likely leading to the alteration of the hydrological cycle (Oki and Kanae, 2006; Jung et al., 2010). The dynamic properties 29 

of the hydrological cycle are governed by the interactions and feedbacks between atmospheric and land surface hydrologic 30 

http://link.springer.com/search?facet-creator=%22Bill+X.+Hu%22
http://link.springer.com/search?facet-creator=%22Bill+X.+Hu%22
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processes on a catchment scale. The potential consequences of anthropogenic climate change on the hydrological cycle have 31 

received significant attention over the last two decades (Wang et al., 2012; IPCC, 2013). 32 

 33 

Runoff (R), as a commonly adopted indicator of the hydrologic cycle, is critical to human lives and economic activities 34 

(Milly et al., 2005). There is a great deal of previous work exploring the impact of climate variations on R, with the 35 

motivation stemming from the region’s vast resources (Christensen et al., 2004; Guo et al., 2009, Piao et al., 2010; Chen et 36 

al., 2012; Harding et al., 2012; Wang et al., 2012; Xu et al., 2013b), dangers of flooding (Kay et al., 2006, 2009, 2012; Raff 37 

et al., 2009; Liu et al., 2013; Xiao et al., 2013; Wang et al., 2013; Smith et al., 2014; Wu et al., 2014, 2015), and agricultural 38 

water uses (Vano et al., 2010). The most common practices in these previous studies are to use the hydrological models 39 

driven by the output from Global Climate Models (GCMs) to simulate the hydrological process (e.g., R) under future climate 40 

change scenarios. However, the key issue faced by such studies is the need to convert coarse resolution GCM outputs to local 41 

catchment-scale climatic variables at a higher spatial resolution to serve as the input to a hydrological model (Vano et al., 42 

2015; Wu et al., 2015). The impact assessments are resource intensive and usually subject to uncertainties related to the 43 

choice of hydrological model, GCMs, emissions scenarios, and downscaling techniques (Vano et al., 2014, 2015). 44 

 45 

With the uncertainty in R due to climate change, simple tools able to provide robust estimates of this impact are essential to 46 

support policy and planning decisions. Climate elasticity, as an important indicator, provides a measure of sensitivity of the 47 

changes in R due to the changes in climate. Schaake (1990) made the first attempt to introduce the concept of elasticity and 48 

related the climate elasticity of R to precipitation (P). Since then numerous climate elasticity methods have been developed 49 

for evaluating the hydrologic response to climate change all over the world (Schaake, 1990; Dooge et al., 1999; 50 

Sankarasubramanian et al., 2001; Milly and Dunne, 2002; Fu et al., 2007; Zheng et al., 2009; Ma et al., 2010; Yang and Yang, 51 

2011; Yang et al., 2014; Vano et al., 2015). Sankarasubramanian et al. (2001) provided a detailed category of climate 52 

elasticity methods for modelling climate change impacts. One of the most common methods is to analytically derive the 53 

sensitivity of R based on the Budyko hypothesis, due to its clear theory and that it does not rely on a large amount of data 54 

(Yang and Yang, 2011). More importantly, the Budyko-based elasticity method can derive the climate elasticity and can also 55 

represent the impact of the catchment characteristics through the parameters of the Budyko model. Accordingly, it is widely 56 

applied for the assessment of the hydrologic impacts of climate change (Dooge et al., 1999; Zheng et al., 2009; Yang and 57 

Yang, 2011; Yang et al., 2014). 58 

 59 

China is a vast land, spanning many degrees of latitude with complicated terrain, which results in a large regional variation 60 

in climate elasticity. The investigation of the P elasticity of R has been reported in many regions of China, such as the Miyun 61 
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Reservoir basin (Ma et al., 2010), Luan River basin (Xu et al., 2013a), the headwater catchments of the Yellow River basin 62 

(Zheng et al., 2009), Poyang Lake basin (Sun et al., 2013), and Hai River and Yellow River basins (Yang and Yang, 2011; 63 

Liu and McVicar, 2012). Recently Yang et al. (2014) investigated the climate elasticity of R for the 210 catchments of China 64 

based on the Budyko-based elasticity approach. The results indicated that the P elasticity exhibits a large regional variation, 65 

with a small range in southern China, the Songhua River basin and the northwest and a large range in the Hai River basin, 66 

the Yellow River basin, and the Liao River basin. Although the aforementioned studies have certainly made advances in 67 

understanding the climate elasticity of R in China, our knowledge about the responses of R to climate change over various 68 

temporal and spatial scales remains rather limited due to the large regional variation in climate types and catchment 69 

characteristics. The question of how climate change will affect R over China in the future is also an important problem to be 70 

addressed. Developing a more accurate and quantitative understanding of the changing water resources over various 71 

temporal and spatial scales under a changing environment is therefore a high priority for China. 72 

 73 

Based on the unique long-term (1960–2008) land surface dataset of China and the climate projections from 28 GCMs of the 74 

Coupled Model Intercomparison Project Phase 5 (CMIP5), the objectives of this research are (1) to investigate the changes 75 

of R and climate variables and their relationship at an interannual scale; (2) to estimate quantitatively the climate elasticity 76 

and catchment properties elasticity of R across China at both grid and catchment scales; and (3) to predict climate change 77 

and the changes in R due to future climate change for China from the CMIP5 projections at both grid and catchment scales. 78 

 79 

2 Data and methodology 80 

2.1 Data sets 81 

Monthly data of potential evaporation (PET) covering the period 1960–2008 over China are provided by the 82 

Hydroclimatology Group of Princeton University (Sheffield et al., 2006, 2012). The PET is estimated by the Penman 83 

equation (Penman, 1948; Shuttleworth, 1993), using the updated meteorological dataset obtained from Sheffield et al. (2006, 84 

2012). A long-term (1960–2008) daily land surface dataset over China, including P, surface runoff (RS), and baseflow (BS), 85 

with a 0.25
 
degree

 
spatial resolution were obtained from the Land Surface Processes and Global Change Research Group 86 

(Zhang et al., 2014). In this dataset, P is driven by interpolating gauged daily precipitation from 756 meteorological stations 87 

of the Chinese Meteorological Administration (CMA). RS and BS are derived from the Variable Infiltration Capacity (VIC) 88 

model forced by the gridded daily climate forcings (i.e. P, maximum and minimum temperature, and wind speed). VIC 89 

model parameters, including the infiltration shape parameter, the second and third soil layer depths, and the three parameters 90 

in the base flow scheme, were estimated by using an optimization algorithm of the multi-objective complex evolution of the 91 

University of Arizona (Zhang et al., 2014). The simulated monthly RS and BS match well with the observations at the large 92 
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river basins in China (Zhang et al., 2014). Compared with the global product of a similar nature, this dataset provides a more 93 

reliable estimate of land surface variables over China (Nijssen et al., 2001; Adamet al., 2006; Rodell et al., 2004; Sheffield et 94 

al., 2006; Sheffield and Wood, 2007; Pan et al., 2012). In this study, the data of P, RS, and BS are initially regridded onto 0.5
o
 95 

grids over China using the linear interpolation method. All the daily data (P, RS, and BS) and monthly data (PET) are then 96 

aggregated temporally for the annual scale over China. The R was calculated by the sum of RS and BS at each of the 0.5
o
 grid 97 

points. 98 

 99 

Climate projections from 28 CMIP5 GCMs (as shown in Table 1) are provided by the Canadian Climate Data and Scenarios 100 

(CCDS, http://www.cccsn.ec.gc.ca/index.php?page=gridded-data). These data, including simulations of surface air 101 

temperature (T), P, sea ice thickness, sea ice concentration, snow depth, and near-surface wind speed, are statistically 102 

downscaled and regridded onto a common 1
o
×1

o
 global grid by the CCDS. In this study, monthly P and monthly T over 103 

China, including one historical simulation for the period 1971–2000 and three emission scenarios (RCP2.6, RCP4.5, and 104 

RCP8.5) for the future period 2071–2100 from each of the 28 CMIP5 models and the multi-model ensemble of 28 CMIP5 105 

models, are used for the projections of climate change. The data are initially disaggregated to 0.5
o
 grids over China then 106 

corrected by using a ‘delta change’ method (Wu et al., 2016), on the basis of the observed data of P and T as provided by the 107 

Climatic Research Unit (CRU) of the University of East Anglia (Harris et al., 2014). 108 

 109 

Figure 2 shows the comparison of observed mean annual T and P and the corresponding simulations from 28 CMIP5 models 110 

before and after bias correction for the 14 basins in China. The basin number is consistent with that given in Figure 1. As 111 

shown, the uncorrected model simulations tend to underestimate T and overestimate P for most of the basins, with more 112 

uncertainties for the simulation of P than for T. Compared to the uncorrected model results, the bias correction results 113 

represent large improvements and show a good agreement with the observed values for these basins. Therefore, the bias 114 

correction model simulations are acceptable for the investigation of climate change projections in this study. 115 

 116 

From the GCM data, the PET for the periods 1971–2000 and 2071–2100 under different emission scenarios are initially 117 

estimated by the Thornthwaite method (Thornthwaite, 1948) and then corrected by a multiplicative bias correction method as 118 

follows: 119 

, ,

, , , ,
, ,

Pen obs i

cor GCM i Th GCM i
Th obs i

PET
PET PET

PET
                                    (1) 120 

where
, ,cor GCM iPET and

, ,Th GCM iPET are bias-corrected annual PET and the PET calculated from the Thornthwaite method, 121 

respectively, for the ith grid point of the GCMs. , ,Pen obs iPET and , ,Th obs iPET are the 49-year (1960–2008) averages of 122 

http://www.cccsn.ec.gc.ca/index.php?page=gridded-data
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PET calculated from the Penman and Thornthwaite methods, respectively, for the ith grid point. 123 

 124 

Based on the T data from the CRU, the Thornthwaite method is used to calculate PET to test the applicability of Equation (1). 125 

Figure 3 shows a comparison of annual PET calculated from the Penman method and that from the Thornthwaite method 126 

corrected by Equation (1) during the period 1960–2008. It is clear that the corrected PET agrees well with the PET from the 127 

Penman method, with the correlation coefficients of 0.94 and 0.958 at the catchment and grid scales, respectively. This 128 

suggests that Equation (1) can be acceptable for the bias correction of PET in the GCMs. 129 

 130 

2.2 Sensitivity of runoff to climate and catchment properties 131 

The Budyko framework has been widely used to study basin-scale water and energy balances. Two of the one-parameter 132 

formulations of the Budyko curve proposed by Choudhury (1999) (Equation (2), see also Yang et al., 2008) and Fu (1981) 133 

(Equation (3), see also Zhang et al., 2004) are expressed as: 134 

1/
,  (0, )

( )n n n

PET
E P  n

P PET
  


                                  (2) 135 

    
1/( ) ,  (1, )E P PET P PET        

                              (3)
 136 

where n and ω are empirical parameters, representing the effects of other factors (e.g. land surface characteristics, the 137 

average slope, vegetation type or land use, and climate seasonality) on the water-energy balance (Yang et al., 2008, 2014; 138 

Roderick and Farquhar, 2011; Li et al., 2013a). Yang et al. (2008) calibrated the parameters n and ω using long-term water 139 

balance data from 108 catchments from the nonhumid regions of China and found that these two empirical parameters are 140 

linearly correlated. 141 

 142 

Based on the Budyko hypothesis and assuming steady state conditions, Roderick et al. (2011) and Yang and Yang (2011) 143 

derived the elasticity method to estimate the contribution to R from the changes in climate (represented by P and PET) and 144 

catchment properties as follows: 145 

P PET n

dR dP dPET dn

R P PET n
                                        (4) 146 

where , , and P PET n   represent the elasticity coefficients of P, PET, and catchment properties respectively, and are 147 

expressed as: 148 

(1 )P

P E

R P



 


                                         (5a) 149 
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PET

PET E

R PET



 


                                      (5b) 150 

n

n E

R n



 


                                         (5c) 151 

where , , and 
E E E

P PET n

  

  
denote the first order partial derivatives of the Budyko equation with respect to P, PET, and 152 

the parameter n. In this study, both Equations (2) and (3) are used for the estimation of the elasticity of P, PET, and 153 

catchment properties over China. 154 

 155 

2.3 Trend estimate method 156 

The Mann-Kendall (M-K) nonparametric test (Mann, 1945; Kendall, 1975) is an effective tool for detecting the statistical 157 

significance of trends in the time series of meteorological and hydrological variables (Yang et al., 2014; Wu and Huang, 158 

2015). In this study, the M-K method is used to detect the significance of monotonic trends in hydroclimatic time series. The 159 

nonparametric trend slope estimator developed by Sen (1968) is used for the magnitude estimation of the trends in a 160 

hydroclimatic time series. 161 

 162 

3 Results 163 

3.1 Interannual variability of climatic variables and runoff 164 

The standard deviations for annual P, PET, and R are computed for each of the 0.5
o
 grids in China, and the PET deviation 165 

ratio (σPET/σP) and the R deviation ratio (σR/σP) are calculated. The spatial distributions of PET deviation ratio and R 166 

deviation ratio across China are displayed in Figure 4(a) and (b). As shown, the PET deviation ratio is rather small in most 167 

parts of China, especially the southern regions, while a larger value is observed mainly in the Xinjiang region, where there 168 

are greater aridity indices. Generally, atmospheric water is enough to accommodate the limited PET in humid climates, 169 

which would lead to a limited response of PET to P variability. Specifically, the interannual variability of PET is more 170 

sensitive to that of P in arid climates (with water limits) than in humid climates (with energy limits). In contrast to the PET 171 

deviation ratio, the R deviation ratio tends to increase from arid climates to humid climates. The reason for this is that, in arid 172 

climates, the catchment water supply is very limited and gives priority to evaporation and soil storage capability, which leads 173 

to little variation in R. 174 

 175 

Figure 4(c) shows the relationship between the R deviation ratio and mean annual aridity index ( ) for all 0.5
o
 grids in 176 

China. As indicated,   is a major control for the R deviation ratio under not very dry conditions (e.g.  <10); that is, the R 177 
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deviation ratio decreases with increased  . However, under very dry conditions (e.g.  >10) the R deviation ratio becomes 178 

insensitive to  , since in this case, other factors, such as soil storage capacity, can also have a large impact on the variation 179 

of R. 180 

 181 

3.2 Sensitivity of runoff to climate and catchment properties 182 

3.2.1 Climate elasticity 183 

The P elasticity and PET elasticity of R based on Equations (2) and (3) are estimated at each of the 0.5
o
 grids in China. As 184 

shown in Figure 5, the spatial patterns of P elasticity and PET elasticity from Equations (2) and (3) are almost the same in all 185 

regions of China. There is a large spatial variation in P elasticity and PET elasticity, i.e. ranging from 1.1 to 3.2 and from 186 

-2.2 to -0.1 across China, respectively. In particular, P elasticity is more significant in the northeast and western areas than in 187 

southern China, which is in contrast to PET elasticity. Figure 6 shows the relationship between   and climate (P and PET) 188 

elasticity. As shown, the P (PET) elasticity first increases (decreases) and then decreases (increases) with the increase of 189 

under not very dry conditions (i.e.  <10). However, when   becomes large enough (e.g.  >10), both P and PET 190 

elasticity becomes insensitive to . 191 

 192 

The climate elasticity estimated for each of the 14 large basins is shown in Table 2. The values of P elasticity are in the range 193 

of 1.39–2.28, with a larger (~smaller) elasticity in the Haihe River and Inner Mongolia River (Southwest Drainage). A 194 

similar phenomenon is found for PET elasticity, which suggests that Haihe River (Southwest Drainage) is the most (least) 195 

sensitive to PET among the 14 basins. Overall the values of P elasticity and PET elasticity derived by Equation (2) are very 196 

close to those from Equation (3), but the difference between them tends to be larger for dry basins with increasing aridity 197 

indices. 198 

 199 

By using the estimates of climate elasticity derived by Equation (2), the change in R as a function of the percentage change 200 

in P and PET is calculated for the 14 basins (Figure 7). The R is positively related to P and negatively related to PET, and the 201 

magnitudes and patterns of the response of R to changes in P and PET vary in different scales. Generally, the R is more 202 

sensitive to climate in the Haihe River and Inner Mongolia River, while relatively weak sensitivity is found in the Southwest 203 

Drainage and Yangtze. 204 

 205 

3.2.2 Catchment properties elasticity 206 
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The spatial distributions of catchment properties elasticity from Equations (2) and (3) are displayed in Figure 5(e) and (f). As 207 

shown, the catchment properties elasticities for these two equations are rather similar across China, and the values of 208 

Equation (3) are generally smaller than those from Equation (2). Regarding the spatial pattern, the catchment properties 209 

elasticity is very weak (approximately equal to 0) in southern China and some regions of northeast China, but it tends to be 210 

more significant in some water-limited regions of northwest China. Figure 6(c) shows the relationship between   and the 211 

parameter elasticity for all 0.5
o
 grids in China. It suggests that   is a major control for catchment properties elasticity 212 

across China, i.e. the catchment properties elasticity would become stronger with increasing aridity indices. The catchment 213 

properties elasticities estimated for the 14 large basins are shown in Table 2. The catchment properties elasticity shows a 214 

large spatial variation, ranging from -2.78 to -0.24 for Equation (2) and from -4.3 to -0.33 for Equation (3). Overall, the 215 

changes in R are more sensitive to catchment properties in arid basins with larger aridity indices, which is consistent with the 216 

findings at the grid scale. 217 

 218 

3.3 Climate change during 1960–2008 219 

The annual trend magnitudes in P, R, PET, and aridity index during the period 1960–2008 are shown in Figure 8 (a), (b), (c), 220 

and (d). As indicated, both P and R show an increasing trend mainly in the northwest and southeast regions and a decreasing 221 

trend mainly in the central region and North China plain. A significant increasing in PET is detected mainly in northeast 222 

China and eastern China, while the decreases mainly occur in most parts of western China. The aridity index tends to show 223 

an increasing trend in most parts of China, indicating an increasing risk of meteorological drought in these regions during the 224 

past several decades. In contrast, the decrease of aridity index is only found in some parts of western China. 225 

 226 

3.4 Changes in runoff due to climate change during 1960–2008 227 

Using the estimates of climate elasticity from Equation (2), the contributions of P, PET, and climate (i.e. P& PET) to R in 228 

China for the period 1960–2008 are calculated (as shown in Figure 8(e), (f), and (g)). A positive contribution (up to 3.7 % 229 

yr
-1

) from P to R is mainly recorded in western China, while a negative contribution is found mainly in northeast China and 230 

North China plain. Negative and positive contributions of PET to R mainly occur in northeast China and western China, 231 

respectively. The contributions of climate, i.e. the sum of the contributions from P and PET, ranges from -2.4 % yr
-1

 to 3.6 % 232 

yr
-1

 across China. The spatial pattern of climate is rather similar to that of P, showing a negative contribution in northeast 233 

China and a positive contribution in western China and some parts of the southeast. Particularly, the largest positive 234 

contribution of climate occurs in the Tibetan plateau. The contributions of P, PET, and climate (i.e. P& PET) to R in the 14 235 

river basins for the period 1960–2008 are shown in Table 3. A positive contribution of P is detected in Southeast Drainage, 236 

Southwest Drainage, Qiangtang, Qinghai, Xinjiang and Hexi, while an oppoiste contribution is found in other basins. In 237 
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contrast, a negative contribution of PET is found in most of the basins (except for Qiangtang and Hexi). In general, there is 238 

an increased R in Southeast Drainage, Southwest Drainage, Qiangtang, Qinghai, Xinjiang and Hexi (from 0.06 to 1 % yr
-1

) 239 

and a decreased R in other basins (from -1.12 to -0.12 % yr
-1

).  240 

 241 

3.5 Future climate change 242 

Figure 9 shows the uncertainty range of the relative change in mean annual P and PET in the basins for the period 2071–243 

2100 under the RCP2.6, RCP4.5, and RCP8.5 scenarios as predicted by 28 CMIP5 models (relative to the baseline 1971–244 

2000). As shown, there is a large difference between different GCMs and emission scenarios, which highlights the 245 

uncertainty inherent in projections of climate change. However, overall P is projected to increase in most of the basins, and 246 

greater increases are projected for higher emission scenarios. Meanwhile, greater increases tend to be projected for more arid 247 

basins, suggesting a decreasing risk of meteorological drought in the future. The average changes (red dotted lines) of mean 248 

annual P for the 14 basins range from 2.4 % to 11.0 % in RCP2.6, from 4.2 % to 16.0 % in RCP4.5, and from 3.1 % to 23.7 % 249 

in RCP8.5. The largest increase in the RCP2.6 and RCP8.5 scenarios is found for the Qinghai River, while the largest 250 

increase in the RCP4.5 scenario is projected for the Hexi River. For PET, there is an increase projected in all basins due to 251 

climate warming, with the largest and smallest increases in the RCP8.5 and RCP2.6 scenarios, respectively. However, a large 252 

uncertainty exists among the GCMs, which is similar to that for P. Furthermore, the uncertainty range tends to be larger with 253 

higher emission scenarios. The average changes (red dotted lines) of PET for the basins range from 7.0 % to 12.0 % in 254 

RCP2.6, from 13.5 % to 22.2 % in RCP4.5, and from 27.9 % to 49.8 % in RCP8.5. The largest and smallest average 255 

increases are projected for the Pearl River and Qiangtang River, respectively. 256 

 257 

Figure 10 displays the multi-model ensemble median relative change in mean annual P and PET in China for the period 258 

2071–2100 (relative to the baseline 1971–2000). The projected changes in P (or PET) have a similar spatial pattern for the 259 

three emission scenarios; that is, P is projected to show an increase in western China and the northeast, and PET is projected 260 

to increase significantly in southern China and some parts of the Tibetan plateau, especially for the RCP8.5 scenario. In 261 

addition, note that there are small changes in P and significant increases in PET projected for southern China. This would 262 

result in an increasing risk of meteorological drought in the future. 263 

 264 

3.6 Future changes in runoff due to climate change 265 

Based on the estimates of elasticity from Equation (2), the percentage changes in the contributions of annual P and PET, as 266 

well as climate, to R from the 28 GCMs for the period 2071–2100 are calculated for each of the 14 basins (relative to the 267 

baseline 1971–2000). As shown in Figure 11, the changes in P contribution mainly follow the changes in P (Figure 9). A 268 
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positive contribution from P is projected for most of the basins, and larger contributions occur in more arid basins, as well as 269 

in higher emission scenarios. Negative contributions of PET to R are projected for all basins due to the negative coefficients 270 

of PET elasticity. Smaller contributions of PET are mainly found in the Southwest Drainage. In contrast, larger contributions 271 

are projected mainly in the Huaihe River, Haihe River, and Inner Mongolia River, where the percentage decreases from the 272 

28 models can be up to 25 %, 35 %, and 90 % in the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. 273 

 274 

Climate change is projected to reduce the R in some humid basins, such as the Southeast Drainage and Pearl River, where the 275 

average changes in the three emission scenarios range from -22.83 % to -3.0 % and from -23.6 % to -3.5 %, respectively 276 

(Figure 11 (g), (h) and (i)). For other basins, particularly for arid basins, the R is projected to increase due to climate change. 277 

The largest average changes in R under the RCP2.6 and RCP4.5 scenarios are found in the Qinghai River (12.85 % and 278 

16.18 %, respectively). For the RCP8.5 scenario, they are found in the Qiangtang River (18.59 %). Note that there is an 279 

obvious decrease in R (-17.59 %) projected for the Huaihe River under RCP8.5 scenario, which is mainly caused by the 280 

larger negative contribution of PET. 281 

 282 

Figure 12 shows the spatial distributions of the relative changes in the contributions of annual P and PET as well as climate 283 

to R in China for 2071–2100. This is based on the CMIP5 multi-model ensemble medians. Compared with the baseline 284 

1971–2000, the increases in R due to the changes in P are projected in western China and some parts of northern China, and 285 

this phenomenon is particularly significant in the RCP8.5 scenario (up to 60.3 %). In contrast, the changes in PET are 286 

projected to reduce the R in all of China, with the larger decreases occurring mainly in the North China plain, northeast, and 287 

some parts of western China. Overall, climate change is projected to cause an obvious increase (decrease) of R in western 288 

China (southern China) under any emission scenario (Figure 12(g), (h) and (i)). This suggests that the arid regions (humid 289 

regions) in China will become wetter (drier) in the future. 290 

 291 

4 Discussion 292 

4.1 The estimation of elasticity 293 

The Budyko-based elasticity method is applied to quantify sensitivity of runoff to climate and catchment properties across 294 

China. Two Budyko models proposed by Choudhury (1999) and Fu (1981) are used for the comparison of the estimation of 295 

the climate elasticity of R. The results suggest that the climate elasticity is insensitive to the Budyko equations. The climate 296 

elasticity of R has been estimated in many regions of China. For example, the values of P elasticity are estimated as 2.4 for 297 

the Miyun Reservoir basin (Ma et al., 2010), 2.6 for the Luan River basin (Xu et al., 2013a), 2.1 for the headwater 298 

catchments of the Yellow River basin (Zheng et al., 2009), 1.4–1.7 for the Poyang Lake basin (Sun et al., 2013), 1.7–3.1 for 299 
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the Hai River basin (Xu et al., 2014), 1.1–2.0 for southern China, the Songhua River basin, and the northwest, 2.1–4.8 for the 300 

Hai River basin, the Yellow River basin, and the Liao River basin (Yang et al., 2014), and 1.6–3.8 for the 63 catchments of 301 

China (Yang and Yang, 2011). In addition, the PET elasticity is estimated as -1.04 for the headwater catchments of the 302 

Yellow River basin (Zheng et al., 2009) and from -1 to -0.2 for the Poyang Lake basin (Sun et al., 2013). Those results are 303 

close to our results for P elasticity ranging from 1.1 to 3.2, and for PET elasticity ranging from -2.2 to -0.1 in China. It is 304 

worth noting that the values of P elasticity tend to be larger in the northeast and some parts of western China that are located 305 

in arid climates. This is in good agreement with the findings by Sankarasubramanian et al. (2001), which indicated that a 306 

larger P elasticity occurs in more arid regions. However, some parts of Xinjiang, which is more arid than southern China, 307 

have smaller P elasticity. Meanwhile, some parts of southern China, which is more humid than other regions in China, have 308 

larger P elasticity (Figure 5). In addition, the Haihe River basin, located in less arid climates than that of the northwest, 309 

shows the largest P elasticity in China (Table 2). A similar phenomenon is also introduced in Yang et al. (2014). One of the 310 

major reasons for this difference may be attributed to the impacts of human activities that alter the patterns of R in these 311 

regions. In addition, uncertainties in water budget data, such as the errors in the simulation of R and in the estimation of PET, 312 

may also contribute to this difference. 313 

 314 

The comparisons for the estimates of εn and εω suggest that although the values of εn and εω are mainly dependent on the 315 

parameters of Budyko models, the spatial pattern of εn is consistent with that of εω at the 0.5
o
 grid points over China (Figure 316 

5(e) and (f)). Yang et al. (2008) indicated that the parameters n and ω from Equations (2) and (3) are linearly correlated. We 317 

also conducted a regression analysis of εn and εω for all 0.5
o
 grid points over China and found a strong linear correlation 318 

between εn and εω (εω = 1.7061εn + 0.0986, r² = 0.96). In addition, our results show that R is more sensitive to catchment 319 

properties (εn and εω) in the more arid regions (Figure 5(e) and (f)). The possible internal connection is that the arid regions 320 

with less vegetation coverage and stronger evaporation do not effectively hold the rainfall water that will be evaporated, 321 

leading to the smaller proportion of rainfall for R. 322 

 323 

4.2 Sensitivity analysis for PET calculation methods 324 

We compare four PET calculation methods, including the Penman method, the Thornthwaite method, the FAO-56 Penman–325 

Monteith method (Allen et al., 1998), and the Thornthwaite method corrected by Equation (1), to test the robustness of the 326 

PET elasticity result subject to PET uncertainties. In terms of mean annual PET as shown in Figure 13 (a), the Thornthwaite 327 

method gives relatively low PET among the four methods, especially in arid basins (e.g., Qiangtang, Qinghai, Xinjiang and 328 

Hexi). This is in agreement with previous studies, which indicated that the Thornthwaite method tends to underestimate PET 329 

in the arid areas (Hashemi and Habibian, 1979; Malek 1987; Garcia et al., 2004). In contrast, the mean annual PET by the 330 

https://link.springer.com/article/10.1007%2Fs12517-013-1263-0#CR19
https://link.springer.com/article/10.1007%2Fs12517-013-1263-0#CR33
https://link.springer.com/article/10.1007%2Fs12517-013-1263-0#CR12
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other three methods are quite consistent, especially for the Penman method and the Thornthwaite method corrected by 331 

Equation (1). A similar result was also reported by Zeng and Cai (2016), which indicated that estimations of water balance at 332 

both annual and month scales are generally robust under various PET calculation methods (not including the Thornthwaite 333 

method). The PET elasticity calculations from the four different PET data for the 14 river basins are shown in Figure 13(b). 334 

The Thornthwaite method yields stronger PET elasticity than other three methods in most of the basins mainly due to the 335 

underestimation of PET. However, the other three methods give very similar results in all 14 basins. In summary, the 336 

estimation of PET elasticity is robust to the PET calculations from the Penman method, the FAO-56 Penman–Monteith 337 

method, and the Thornthwaite method corrected by Equation (1), but is not acceptable for the Thornthwaite method.  338 

 339 

In general, the Thornthwaite method corrected by Equation (1) significantly improves the accuracy of PET (Figure 3 and 340 

Figure 13(a)). However, it should be emphasized that the Thornthwaite method is an empirical equation that neglects the 341 

effects of atmospheric conditions, such as wind speed, humidity and radiation (McVicar et al., 2012). In addition, the 342 

Equation (1) used for the bias correction of PET belongs to a ‘delta method’ (Graham et al., 2007; Sperna Weiland et al., 343 

2010), which only considers the average change but ignores the differences in the standard deviation and the coefficient of 344 

variation between the projection and baseline periods (Watanabe et al., 2012). Therefore, a more physically-based PET 345 

calculation method (such as the Penman method) needs to be considered in the GCMs to fully understand the PET 346 

calculation uncertainties in the projections of climate change. 347 

 348 

4.3 The projections of climate change and runoff 349 

The hydrological impacts of climate change have been investigated in many regions of China, such as the Hanjiang basin 350 

(Chen et al., 2007; Guo et al., 2009), the catchment of the Loess Plateau (Wang et al., 2013), the Qingjiang River basin 351 

(Chen et al., 2012), the Qiantang River basin (Xu et al., 2013b), the Songhuajiang River basin (Su et al., 2015), the 352 

southeastern Tibetan Plateau (Li et al., 2013b), the Pearl River basin (Yan et al., 2015), the Xin River basin (Zhang et al., 353 

2016), the sub-catchments of the Yangtze and Yellow River basins (Xu et al., 2011), the Huang-Huai-Hai region (Lu et al., 354 

2012), and ten major river basins in China (Wang et al., 2012). There is a large uncertainty involved in these impact studies, 355 

which results in a large difference in climate projections. For example, Wang et al. (2012) indicated that the prevailing 356 

pattern of “north dry and south wet” in China will likely be exacerbated under future climate warming. However, the results 357 

of most GCMs in this study suggest that the arid regions and humid regions of China are projected to become wetter and 358 

drier in the future, respectively. The main difference between the two studies is the use of different climate models, emission 359 

scenarios, and time periods. This also demonstrates that the results of climate projections should be taken with caution, since 360 

the regional climate simulations (especially of precipitation) from the GCMs are still not robust at the present stage.  361 
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 362 

This study focuses on the hydrological change due to climate change (i.e., changes in P and PET), while the effects of the 363 

variability of catchment properties (e.g., land cover change, groundwater and river water extraction, urbanization, irrigation, 364 

etc.) on the hydrology are overlooked here. Most of the available GCMs lack of key regional feedback processes involving 365 

land use, such as forest plantations, irrigation, and urbanization feedbacks that are critically important throughout China 366 

(Piao et al., 2010). The projected changes in catchment properties therefore need to be involved in the GCMs to account for 367 

their hydrological impacts. In addition, recent studies indicated that plant responses to increasing CO2 tend to keep more 368 

water on land, therefore resulting in a greater increase in R (Milly and Dunne, 2016; Swann et al, 2016). That is to say, the 369 

hydrological models (e.g., VIC model), without the schemes of the plant stomatal responses to CO2, would lead to an 370 

underestimation of R under high CO2. Therefore, the implications of plants needing less water under high CO2 should be 371 

included in the assessment of hydrological impacts of climate change. 372 

 373 

4.4 Uncertainties 374 

Generally, a multitude of sources of uncertainty are involved in the impact assessment of climate change. In this study, 375 

uncertainty mainly comes from the GCMs, emission scenarios, the elasticity method, and the estimation error of the water 376 

budget data. To highlight the uncertainty from the GCMs, the 28 GCMs as produced by different research institutes around 377 

the world, are used for the comparison of climate change projections. There exists a large difference in the projections of P 378 

and PET among the 28 GCMs. Particularly, the uncertainty range of P tends to be larger for more arid regions, while the 379 

uncertainty range of PET tends to be larger for more humid regions (Figure 9). This highlights the impact of potential 380 

misleading conclusions if only one climate model were to be used for the impact assessments. The large uncertainty driven 381 

by the GCMs in relation to the hydrological impacts of climate change has been reported in many previous studies (Kay et 382 

al., 2009; Prudhomme and Davies, 2009; Chen et al., 2011; Teng et al., 2012; Liu et al., 2013; Wu et al., 2014, 2015). It is 383 

worth noting that although the projected ranges of P and PET show large variability in various GCMs, most project a 384 

consistent change (i.e. increase) in P and PET for the future period (Figure 9). In contrast, the uncertainty from the emission 385 

scenarios is smaller than that from the GCMs, since the projected changes in P (or PET) show a similar pattern under all 386 

emission scenarios (Figure 9). The main difference is that the projected changes tend to be more significant in higher 387 

emission scenarios. 388 

 389 

The elasticity equation (i.e. Equation (4)) used in this study is driven from the linear approximation of the Budyko equation 390 

(Equations (2) and (3)) by neglecting the higher order. Such approximation would possibly lead to an uncertainty in the 391 

estimation of climate elasticity. Yang et al. (2014) indicated that the error in estimation of elasticity tends to increase with 392 
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increasing changes in P and PET, as well as the increased parameter of the Budyko equation. Future research is needed to 393 

quantify the effects of the errors on the estimation of elasticity under various climate conditions. 394 

 395 

In addition to uncertainty in PET calculation (as discussed in section 4.2), there are also uncertainties associated with the 396 

estimates of other water budget components, such as R. As shown in Figure 14, the sensitivity of climate (i.e., P and PET) 397 

elasticity to R varies considerably between basins and tends to be larger in more humid basins. Moreover, PET elasticity is 398 

more sensitive to changes in R compared with P elasticity for all 14 basins. As indicated by Zhang et al. (2014), although the 399 

R is realistically estimated for most of the basins (especially for humid basins) in China with a small relative error, there is 400 

still a large relative error for few arid basins in western China due to the lack of meteorological observations. Therefore, the 401 

large errors in simulated R of the VIC model may result in large uncertainties in elasticity calculation, particularly in western 402 

China. Also note that some other natural water sources, such as snow and glaciers, which may contribute to R, are 403 

overlooked in this study. Lute and Abatzoglou (2014) highlighted the importance of extreme snowfall events in shaping the 404 

interannual variability of the water balance. The melting of snow and glaciers is generally significant at a seasonal time scale 405 

in some high altitude regions of China. Neglecting the effects of snow and glaciers would lead to a bias in the modelling of R 406 

for these regions. 407 

 408 

5 Conclusion 409 

In this study, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future 410 

climate variability over China at both grid and catchment scales. The climate and catchment properties elasticities of runoff 411 

were estimated based on the long-term (1960–2008) land surface data from Zhang et al. (2014). Twenty-eight GCMs with 412 

three emission scenarios from the CMIP5 were collected for the projections of climate change and its contribution to runoff 413 

in China during the period 2071–2100. The uncertainties associated with the estimates of PET, R, climate elasticity, as well 414 

as climate projections, are discussed in detail. The main findings are summarised as follows: 415 

 416 

(1) The interannual variability of PET is more sensitive to that of P in more arid regions, while the opposite occurs in the 417 

response of interannual variability of R to that of P. A large spatial variation exists in P elasticity (from 1.1 to 3.2) and PET 418 

elasticity (from -2.2 to -0.1) across China. The P elasticity is larger in northeast and western China than in southern China, 419 

which is opposite to that of PET elasticity. Among the 14 river basins, the Haihe River and Southwest Drainage have the 420 

largest and smallest climate elasticities, respectively. The catchment properties elasticity of R is sensitive to mean annual 421 

aridity indices and tends to be stronger in more arid regions with increasing aridity indices. 422 

 423 
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(2) For the period 1960–2008, the positive (negative) contributions from P to R are mainly found in western China (northeast 424 

China and North China plain), and the positive (negative) contributions of PET mainly occur in western China (northeast 425 

China). Overall, the climate contribution to R ranges from -2.4 % yr
-1

 to 3.6 % yr
-1

 across China during the period 1960–426 

2008, with a negative contribution in northeast China and a positive contribution in western China and some parts of the 427 

southwest. The largest positive and negative contributions of climate occur in the Qiangtang and Haihe River basins, 428 

respectively. 429 

 430 

(3) There is a large uncertainty in climate projections among the 28 GCMs. Moreover, the uncertainty range of the P (PET) 431 

projection tends to be larger for more arid (humid) regions. However, most of the GCMs project a consistent change in 432 

annual P or annual PET. For the period 2071–2100, the P is projected to increase in most parts of China, especially the 433 

western regions, and the PET is projected to increase in all of China, particularly the southern regions. Furthermore, greater 434 

increases are projected for higher emission scenarios. Due to future climate warming, the arid regions and humid regions of 435 

China are projected to become wetter and drier in the period 2071–2100, respectively (relative to the baseline 1971–2000). 436 

 437 

The results of this study (especially of the climate change projections) should be taken with caution, since uncertainties in 438 

the results exist because of several issues, including the different simulations of GCMs, the estimation error of climate 439 

elasticity, and the estimation error in the water budget components. A thorough investigation of the uncertainty involved in 440 

the hydrologic effects of climate change in China should be considered in future research. 441 
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Table 1. CMIP5 GCMs used in this study 641 

No. Model Institution (Country) Resolution 

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, 

China 
1°×1° 

2 BCC-CSM1-1-m 

3 BNU-ESM 
College of Global Change and Earth System Science, Beijing 

Normal University, China  
1°×1° 

4 CCSM4 National Center for Atmospheric Research, USA  1°×1° 

5 CESM1-CAM5 Community Earth System Model Contributors, USA  1°×1° 

6 CNRM-CM5 

Centre National de Recherches Météorologiques / Centre 

Européen de Recherche et Formation Avancée en Calcul 

Scientifique, France  

1°×1° 

7 CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial Research Organization 

in collaboration with Queensland Climate Change Centre of 

Excellence, Australia 

1°×1° 

8 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 1°×1° 

9 EC-EARTH EC-EARTH consortium 1°×1° 

10 FGOALS-g2 
LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences and CESS, Tsinghua University, China  
1°×1° 

11 FIO-ESM The First Institute of Oceanography, SOA, China 1°×1° 

12 GFDL-CM3 

NOAA Geophysical Fluid Dynamics Laboratory, USA 1°×1° 13 GFDL-ESM2G 

14 GFDL-ESM2M 

15 GISS-E2-H 
NASA Goddard Institute for Space Studies, USA 1°×1° 

16 GISS-E2-R 

17 HadGEM2-AO 
National Institute of Meteorological Research/Korea 

Meteorological Administration, South Korea  
1°×1° 

18 HadGEM2-ES 

Met Office Hadley Centre (additional HadGEM2-ES 

realizations contributed by Instituto Nacional de Pesquisas 

Espaciais), UK  

1°×1° 

19 IPSL-CM5A-LR 
Institut Pierre-Simon Laplace, France  1°×1° 

20 IPSL-CM5A-MR 

21 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean  

Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies, Japan  

1°×1° 
22 MIROC-ESM-CHEM 

23 MIROC5 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology, Japan 

1°×1° 

24 MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for 

Meteorology), Germany  
1°×1° 

25 MPI-ESM-MR 

26 MRI-CGCM3 Meteorological Research Institute, Japan 1°×1° 

27 NorESM1-M 
Norwegian Climate Centre, Norway  1°×1° 

28 NorESM1-ME 

 642 

 643 
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Table 2. The estimations of P elasticity, PET elasticity, and catchment properties elasticity of R in the 644 

14 river basins of China based on Equations (2) and (3). The basin number is consistent with that given 645 

in Figure 1. The numbers in the parentheses indicate the 1960–2008 mean aridity index. 646 

Basin No. 
εP εPET εn or εω 

Eq.(2) Eq.(3) Eq.(2) Eq.(3) Eq.(2) Eq.(3) 

1 (0.52) 1.64 1.65 -0.64 -0.65 -0.24 -0.33 

2 (0.64) 1.63 1.64 -0.62 -0.63 -0.41 -0.61 

3 (0.81) 1.55 1.56 -0.55 -0.55 -0.57 -0.93 

4 (1.19) 1.40 1.39 -0.40 -0.39 -0.73 -1.44 

5 (1.19) 2.09 2.08 -1.08 -1.07 -1.03 -1.47 

6 (1.43) 2.06 2.04 -1.05 -1.02 -1.25 -1.83 

7 (1.71) 1.92 1.88 -0.91 -0.87 -1.35 -2.10 

8 (2.14) 2.28 2.21 -1.29 -1.22 -1.89 -2.70 

9 (2.38) 1.78 1.72 -0.79 -0.73 -1.53 -2.54 

10 (4.41) 2.23 2.11 -1.22 -1.10 -2.78 -4.16 

11 (4.70) 1.81 1.72 -0.82 -0.72 -2.17 -3.67 

12 (6.68) 1.72 1.62 -0.73 -0.63 -2.28 -4.08 

13 (8.09) 1.66 1.56 -0.65 -0.55 -2.26 -4.27 

14 (8.63) 1.63 1.53 -0.64 -0.54 -2.26 -4.30 

 647 

 648 

 649 

Table 3. The contributions of P, PET, and climate (i.e. P& PET) to R in the 14 basins of China for the 650 

period 1960–2008. The basin number is consistent with that given in Figure 1. The numbers in the 651 

parentheses indicate the 1960–2008 mean aridity index. 652 

Basin No. P (%/a) PET (%/a) P&PET (%/a) 

1 (0.52) 0.19 -0.13 0.06 

2 (0.64) -0.03 -0.09 -0.12 

3 (0.81) -0.07 -0.07 -0.14 

4 (1.19) 0.14 -0.01 0.13 

5 (1.19) -0.18 -0.27 -0.45 

6 (1.43) -0.35 -0.31 -0.66 

7 (1.71) -0.57 -0.34 -0.91 

8 (2.14) -0.74 -0.38 -1.12 

9 (2.38) -0.38 -0.04 -0.42 

10 (4.41) -0.40 -0.26 -0.66 

11 (4.70) 0.99 0.01 1.00 

12 (6.68) 0.43 -0.01 0.42 

13 (8.09) 0.84 -0.02 0.82 

14 (8.63) 0.11 0.08 0.19 

 653 

 654 

 655 
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 656 

Figure 1. Location of the main river basins in China. The numbers denote the river basins with 657 

increasing aridity index: 1, Southeast Drainage (0.52); 2, Pearl River (0.64); 3, Yangtze River (0.81); 4, 658 

Southwest Drainage (1.19); 5, Huaihe River (1.19); 6, Heilongjiang River (1.43); 7, Liaohe River (1.71); 659 

8, Haihe River (2.14); 9, Yellow River (2.38); 10, Inner Mongolia River (4.41); 11, Qiangtang River 660 

(4.70); 12, Qinghai River (6.68); 13, Xinjiang River (8.09), 14, Hexi River (8.63). The numbers in the 661 

parentheses indicate the 1960–2008 mean aridity index. 662 

 663 
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 666 

 667 

 668 

 669 
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 670 

Figure 2. Box plots of the simulation results of (a) mean annual T and (b) mean annual P and the bias 671 

correction results of (c) mean annual T and (d) mean annual P from 28 GCMs for the period 1971–2000 672 

in the 14 river basins. The boxes denote the interquartile model spread (range between the 25th and 75th
 

673 

quantiles), with the horizontal line indicating the ensemble median and the whiskers showing the 674 

extreme range of the 28 CMIP5 model simulations. The blue dotted lines denote the observed results of 675 

mean annual T and mean annual P for the period 1971–2000. The basin number is consistent with that 676 

given in Figure 1. 677 
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 686 

Figure 3. Comparison of annual PET calculated from the Penman method and the Thornthwaite method 687 

corrected by Equation (1) during the period 1960–2008 for (a) the 14 river basins and (b) all 0.5
o
 grid 688 

points over China. 689 
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 690 

Figure 4. Spatial distributions of (a) PET deviation ratio and (b) R deviation ratio and (c) the 691 

relationship between R deviation ratio and mean annual aridity index ( ) for all 0.5
o
 grid points in 692 

China. 693 
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 695 

Figure 5. Spatial distributions of the P elasticity of R across China from (a) Equation (2) and (b) 696 

Equation (3). Spatial distributions of the PET elasticity of R across China from (c) Equation (2) and (d) 697 

Equation (3). Spatial distributions of the parameter elasticity of R across China from (e) Equation (2) 698 

and (f) Equation (3). 699 
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 705 

Figure 6. The relationship between mean annual aridity index and (a) P elasticity, (b) PET elasticity, 706 

and (c) parameter elasticity. The blue points represent the case of Equation (2), and the red points 707 

represent the case of Equation (3).  708 
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 714 

Figure 7. Contour plot of percentage R change due to the changes in P and PET for the 14 river basins. 715 

The P elasticity and PET elasticity of R are estimated based on Equation (2).  716 
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 719 

Figure 8. Trend magnitudes in annual time series of (a) P, (b) R, (c) PET, and (d) aridity index for the 720 

period 1960–2008 and spatial distributions of the contributions (unit: % yr
-1

) of (e) P, (f) PET, and (g) 721 

climate (i.e. P& PET) to R in China for the period 1960–2008. The trend magnitudes are estimated by 722 

the Sen’s method. Grey dots are shown as statistically significant positive/negative trends (p < 0.05). 723 
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 724 

Figure 9. Box plots of relative change (%) in mean annual P under (a) RCP2.6, (b) RCP4.5, and (c) 725 

RCP8.5 scenarios and in mean annual PET under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios 726 

calculated from 28 CMIP5 models in 14 basins for the period 2071–2100 (relative to the baseline 1971–727 

2000). The boxes denote the interquartile model spread (range between the 25th and 75th
 
quantiles), 728 

with the horizontal line indicating the ensemble median and the whiskers showing the extreme range of 729 

the 28 CMIP5 model simulations. Red dotted lines denote the average values of the multi-model 730 

ensemble. Blue dotted lines denote the 95 % significance levels range of the average values of the 731 

multi-model ensemble. The basin number is consistent with that given in Figure 1. 732 
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 736 

Figure 10. The CMIP5 multi-model ensemble median relative change (%) in mean annual P under (a) 737 

RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios and in mean annual PET under (d) RCP2.6, (e) RCP4.5, 738 

and (f) RCP8.5 scenarios in China for the period 2071–2100 (relative to the baseline 1971–2000). 739 
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 746 

Figure 11. Box plots of relative change (%) in the contributions of annual P to R under (a) RCP2.6, (b) 747 

RCP4.5, and (c) RCP8.5 scenarios, in the contributions of annual PET to R under (d) RCP2.6, (e) 748 

RCP4.5, and (f) RCP8.5 scenarios, and in the contributions of climate to R under (g) RCP2.6, (h) 749 

RCP4.5, and (i) RCP8.5 scenarios calculated from 28 CMIP5 models in 14 basins for the period 2071–750 

2100 (relative to the baseline 1971–2000). The boxes denote the interquartile model spread (range 751 

between the 25th and 75th
 
quantiles) with the horizontal line indicating the ensemble median and the 752 

whiskers showing the extreme range of the 28 CMIP5 model simulations. Red dotted lines denote the 753 
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average values of the multi-model ensemble. Blue dotted lines denote the 95% significance levels range 754 

of the average values of the multi-model ensemble. The basin number is consistent with that given in 755 

Figure 1.  756 
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 779 

Figure 12. The CMIP5 multi-model ensemble median relative change (%) in the contributions of 780 

annual P to R under (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios, in the contributions of annual 781 

PET to R under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios, and in the contributions of climate 782 
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to R under (g) RCP2.6, (h) RCP4.5, and (i) RCP8.5 scenarios in China for the period 2071–2100 783 

(relative to the baseline 1971–2000).  784 
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 808 

Figure 13. (a) Mean annual PET calculated from the four methods for the 14 river basins of China 809 

during the period 1960–2008. (b) PET elasticity calculated from Equation (2) based on the four PET 810 

data for the 14 river basins of China during the period 1960–2008. The basin number is consistent with 811 

that given in Figure 1.  812 

 813 
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 814 

Figure 14. Comparison of changes in (a) P elasticity and (b) PET elasticity in response to changes in R 815 

for the 14 river basins of China. The basin number is consistent with that given in Figure 1. 816 
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