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Abstract 9 

We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth 10 

systems. Our approach allows assessing the impact of uncertain parameters on main features of the 11 

probability density function, pdf, of a target model output, y. These include the expected value of y, 12 

the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable 13 

assessment of higher order statistical moments can be computationally demanding, we couple our 14 

GSA approach with a surrogate model, approximating the full model response at a reduced 15 

computational cost. Here, we consider the generalized Polynomial Chaos Expansion (gPCE), other 16 

model reduction techniques being fully compatible with our theoretical framework. We demonstrate 17 

our approach through three test cases, including an analytical benchmark, a simplified scenario 18 

mimicking pumping in a coastal aquifer, and a laboratory-scale conservative transport experiment. 19 

Our results allow ascertaining which parameters can impact some moments of the model output pdf 20 

while being uninfluential to others. We also investigate the error associated with the evaluation of our 21 

sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that 22 

the construction of a surrogate model with increasing level of accuracy might be required depending 23 

on the statistical moment considered in the GSA. Our approach is fully compatible with (and can 24 

assist the development of) analysis techniques employed in the context of reduction of model 25 

complexity, model calibration, design of experiment, uncertainty quantification and risk assessment. 26 

  27 
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1. Introduction 28 

Our improved understanding of physical-chemical mechanisms governing hydrological 29 

processes at multiple space and time scales and the ever increasing power of modern computational 30 

resources are at the heart of the formulation of conceptual models which are frequently characterized 31 

by marked levels of sophistication and complexity. This is evident when one considers the spectrum 32 

of mathematical formulations and ensuing level of model parametrization rendering our conceptual 33 

understanding of given environmental scenarios (Willmann et al., 2006; Grauso et al., 2007; 34 

Koutsoyiannis, 2010; Wagener et al., 2010; Elshorbagy et al., 2010a,b; Wagener and Montanari, 35 

2011; Hartmann et al., 2013; Herman et al., 2013;  Förster et al., 2014; Paniconi and Putti, 2015). 36 

Model complexity can in turn exacerbate challenges associated with the need to quantify the way 37 

uncertainties associated with parameters of a given model propagate to target state variables. 38 

In this context, approaches based on rigorous sensitivity analysis are valuable tools to improve 39 

our ability to (i) quantify uncertainty, (ii) enhance our understanding of the relationships between 40 

model input and outputs, and (iii) tackle the challenges of model- and data- driven design of 41 

experiments. These also offer insights to guide model simplification, e.g., by identifying model input 42 

parameters that have negligible effects on a target output. The variety of available sensitivity 43 

methodologies can be roughly subdivided into two broad categories, i.e., local and global approaches. 44 

Local sensitivity analyses consider the variation of a model output against variations of model input 45 

solely in the neighbourhood of a given set of parameters values. Otherwise, global sensitivity analysis 46 

(GSA) quantifies model sensitivity across the complete support within which model parameters can 47 

vary. Error measurements and/or lack of knowledge about parameters can be naturally accommodated 48 

in a GSA by specifying appropriate parameter intervals and evaluating sensitivity over the complete 49 

parameter space. Recent studies and reviews on available sensitivity analysis and approaches are 50 

offered by, e.g., Pianosi et al. (2016), Sarrazin et al. (2016), and Razavi and Gupta (2015). 51 

Our study is framed in the context of GSA methods. A broadly recognized strategy to quantify 52 

global sensitivity of uncertain model parameters to model outputs relies on the evaluation of the 53 
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Sobol’ indices (Sobol, 1993). These are typically referred to as variance-based sensitivity measures 54 

because the output variance is taken as the metric upon which sensitivity is quantified. A key 55 

limitation of a variance-based GSA is that the uncertainty of the output is implicitly considered to be 56 

fully characterized by its variance. Relying solely on this criterion can provide an incomplete picture 57 

of a system response to model parameters, also considering that probability densities of typical 58 

hydrological quantities can be characterized by highly skewed and tailed distributions (e.g., 59 

Borgonovo et al., 2011). Recent studies (e.g., Krykacz-Hausmann, 2001; Borgonovo, 2007; 60 

Borgonovo et al., 2011) introduce a sensitivity metric grounded on the complete probability density 61 

function, pdf, of the model output. These so-called moment-independent analyses may suffer from 62 

operational constraints, because a robust evaluation of the complete pdf may require a number of 63 

model runs which is computationally unaffordable. The PAWN method developed by Pianosi and 64 

Wagener (2015) attempts to overcome this limitation introducing a sensitivity metric based on the 65 

cumulative density function, which can potentially be estimated more robustly than its associated pdf 66 

for a given sample size. 67 

It is clear that while a variance-based GSA can be favored for its conceptual simplicity and 68 

ease of implementation and variance can be considered in some cases as an adequate proxy of the 69 

spread around the mean, it does not yield a forthright quantification of the way variations of a 70 

parameter can affect the structure of the pdf of a target model output. Otherwise, moment-independent 71 

methodologies condense the entire pdf in only one index, somehow clouding our understanding of 72 

how the structure of the pdf is affected by variations of each uncertain model parameter. Here, our 73 

distinctive objective is to contribute to bridge the gap between these two types of GSA. We do so by 74 

introducing theoretical elements and an implementation strategy which enable us to appraise 75 

parameter sensitivity through the joint use of sensitivity indices based on four (statistical) moments 76 

of the pdf of the model output: expected value, variance, skewness and kurtosis. The key idea at the 77 

basis of this strategy is that linking parameter sensitivity to multiple statistical moments leads to 78 

improved understanding of the way a given uncertain parameter can govern key features of the shape 79 
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of the pdf of desired model outputs, which is of interest in modern applications of hydrological and 80 

Earth sciences. 81 

Variance-based GSA has also been applied (a) to guide reduction of model complexity, e.g., 82 

by setting the value of a parameter which is deemed as uninfluential to the variance of a target model 83 

output (e.g., Fu et al., 2012; Chu et al., 2015; Punzo et al., 2015), and (b) in the context of uncertainty 84 

quantification (Saltelli et al., 2008; Pianosi et al., 2016; Colombo et al., 2016). Only limited attention 85 

has been devoted to assess the relative effects of uncertain model parameters to the first four statistical 86 

moment of the target model output. This information would complement a model complexity analysis 87 

by introducing a quantification of the impact that conditioning the process on prescribed parameter 88 

values would have on the first four statistical moment of the output. Our approach is based on the 89 

joint use of multiple (statistical) moments for GSA. It enables us to address the following critical 90 

questions: When can the variance be considered as a reliable proxy for characterizing model output 91 

uncertainty? Which model parameter mostly affects asymmetry and/or the tailing behavior of a model 92 

output pdf? Does a given model parameter have a marked role in controlling some of the first four 93 

statistical moments of the model output, while being uninfluential to others? Addressing these 94 

questions would contribute to prioritize our efforts to characterize model parameters that are most 95 

relevant in affecting important aspects of model prediction uncertainty. 96 

Even as the richness of information content that a GSA grounded on the first four statistical 97 

moments might carry can be a significant added value to our system understanding, it may sometimes 98 

be challenging to obtain robust and stable evaluation of the proposed metrics for complex and 99 

computationally demanding models. This can be especially true when considering higher-order 100 

moments such as skewness and kurtosis. To overcome this difficulty, we cast the problem within a 101 

computationally tractable framework by relying on the use of surrogate models, which mimic the full 102 

model response with a reduced computational burden. Amongst the diverse available techniques to 103 

construct a surrogate model (see, e.g., Razavi et al., 2012a,b), we exemplify our approach by 104 

considering the generalized Polynomial Chaos Expansion (gPCE) that has been successfully applied 105 
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to a variety complex environmental problems (Sudret, 2008; Ciriello et al., 2013; Formaggia et al., 106 

2013; Riva et al., 2015; Gläser et al., 2016), other model reduction techniques being fully compatible 107 

with our GSA framework. In this context, we also investigate the error associated with the evaluation 108 

of the sensitivity metrics we propose by replacing the original (full) system model through the 109 

selected surrogate model for three test cases. These include a widely employed analytical benchmark, 110 

a pumping scenario in a coastal aquifers, and a laboratory-scale transport setting. The remainder of 111 

the work is organized as follows. Section 2 presents our theoretical framework and developments. 112 

Section 3 illustrates our results for the three test cases indicated above and conclusions are drawn in 113 

Section 4. 114 

2. Theoretical framework 115 

We start by recalling the widely used variance-based GSA metrics in Section 2.1. These allow 116 

quantifying the contribution of each uncertain parameter to the total variance of a state variable of 117 

interest. We also provide a brief overview of the generalized Polynomial Chaos Expansion (gPCE) 118 

technique, which we use to construct a surrogate of the full system model. We then illustrate in 119 

Section 2.2 the theoretical developments underlying our approach and introduce novel GSA indices. 120 

2.1 Sobol’ indices for variance-based GSA and generalized Polynomial Chaos Expansion 121 

We consider a target system state variable, y, which depends on N random parameters. These 122 

are collected in vector x = ( 1x , 2x , …, Nx ) and defined in the parameter space 1 2 ... N      , 123 

,min ,max[ , ]i i ix x   being the support of the i-th random variable ix . Variance-based GSA approaches 124 

consider variance as the sole metric to quantify the contribution of each uncertain parameter to the 125 

uncertainty of y. Iman and Hora (1990) introduce the following index 126 

   [ ] [ | ] [ | ]
ix i iHI V y E V y x V E y x   , (1) 127 

E[-] and V[-] respectively denoting expectation and variance operators. Index 
ixHI  quantifies the 128 

expected reduction of variance due to knowledge of ix  (the notation | ix  in Eq. (1) indicates 129 
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conditioning on ix ). A similar measure is offered by the widely used Sobol’ indices (Sobol, 1993). 130 

These have been defined starting from the Hoeffendig/Sobol decomposition (see, e.g., Sobol, 1993, 131 

Le Maître and Knio, 2010) of y(x) when x is a collection of independent random variables as 132 
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 (3) 135 

and so on, x  being the pdf of x . The integral ~ ~

~

( )
i i

i

x x

x

y d


 x x  in Eq. (3) represents integration 136 

of y ( )x  over the space of all entries of vector x excluding ix , ~ ix  being the corresponding pdf. The 137 

Sobol’ index 
1 2

, ,...,
i i is

x x xS  is associated with the mixed effect of 
1 2
, ,...,

si i ix x x  on the variance of y(x), 138 

V[y], and can be computed as 139 

  1 2 1 2 11 2 1 2

1 2

, ,...

, ,...,

1
, ,..., , ,..., ( , ,..., ) ...

i i i i i i s i i is ss s

x x xi i is

x x x x x x i i i x x x i iS y x x x dx dx
V y




  . (4) 140 

The principal and total Sobol’ indices are respectively defined as 141 

 

21
( )

i i i

xi

x x i x iS y x dx
V y

 



    , (5) 142 

, , ,

,

...
i i i j i j k

j j k

T
x x x x x x x

x x x

S S S S      (6) 143 

Note that 
ixS  describes the relative contribution to  V y  due to variability of only xi. Otherwise, 

i

T
xS  144 

quantifies the total contribution of xi to  V y , including all terms where xi appears. In other words, 145 
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i

T
xS  also includes interactions between xi and the remaining uncertain parameters, collected in vector 146 

~ ixx . Note that according to Eq.s (1)-(2) and Eq. (5) 147 

 
   

[ | ]
i

i

xi
x

HIV E y x
S

V y V y
  , (7) 148 

i.e., the principal Sobol’ index represents the relative expected reduction of process variance due to 149 

knowledge of (or conditioning on) a parameter. Sobol’ indices are commonly evaluated via Monte 150 

Carlo quadrature schemes that can be markedly demanding in terms of computational time, especially 151 

for complex and highly non-linear settings. Relying on a generalized Polynomial Chaos Expansion, 152 

gPCE, as a surrogate of the full mathematical model of the system (Ghanem and Spanos, 1991; Xiu 153 

and Karniadakis, 2002; Le Maitre and Knio, 2010; Formaggia et al., 2013; Ciriello et al., 2013; Riva 154 

et al., 2015) allows reducing the computational burden associated with GSA techniques. The process 155 

y(x) is represented as a linear combination of multivariate polynomials, ( )
p

x , i.e., 156 

,

0

1 1 1

,
1

( ) ( ) ( ) ...,

( ) ( ), ( ) ( ) ,

i i j

i

N N N
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N

i p i
i

y

x y d
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 (8) 157 

where  1,..., NN

Np p p  is a multi-index expressing the degree of each univariate polynomial, 158 

, ( )
ii p ix ;  p  are the gPCE coefficients; i  contains all indices such that only the i-th component 159 

does not vanish; ,i j  contains all indices such that only the i-th and j-th components are not zero, and 160 

so on. Note that 0   0y , i.e., 0  is the unconditional mean of y(x). Finally, the Sobol’ indices Eq.s 161 

(4)-(5) and the variance of y(x) can be computed from Eq. (8) as 162 

 1

,...,1

2

,...,

1
i is

i is

x xS
V y




  p

p
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21
i

i

xS
V y




  p

p

,   2 2

0

NN

V y  


  p

p

. (9) 163 

2.2 New metrics for multiple-moment GSA 164 
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We introduce new metrics to quantify the expected relative change of main features of the pdf 165 

of y due to variability of model input parameters. In contrast with traditional variance-based GSA 166 

techniques of the kind described in Section 2.1, we quantify changes in the pdf of y through its first 167 

four statistical moments, i.e., mean, [ ]E y , variance, [ ]V y , skewness, [ ]y , and kurtosis, [ ]k y . The 168 

latter is an indicator of the behavior of the tails of the pdf of y and is particularly useful in the context 169 

of risk analysis, [ ]y  quantifying the asymmetry of the pdf of y. 170 

The effect of changes of x on the mean of y cannot be systematically analyzed by the metrics 171 

currently available in the literature. We therefore introduce the following quantity 172 

0 0 0
0 0

0

1 1
[ | ] [ | ] 0

[ | ] = [ | ] 0

i

xi

i

i

xi

xi i i

i i i

x

x

y E y x dx E y E y x if y
y y

AMAE

E y x dx E E y x if y














     


 
    






, (10) 173 

0y  being defined in Eq. (3). Extension of Eq. (10) to consider the joint effect of 
1 2
, ,...,

si i ix x x  on the 174 

mean of y is straightforward, leading to the following index 175 
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. (11) 176 

Note that index 
ixAMAE  quantifies the expected relative variation of the mean of y due to variations 177 

of only ix , while 
1

,...,
i is

x xAMAE  also includes all interactions amongst parameters 
1 2
, ,...,

si i ix x x . 178 

Along the same lines, we introduce the following index 179 

 
 

   

 

|1
[ | ]

i i

xi

x x

i

i i

E V y V y x
AMAV V y V y x dx

V y V y




  
   , (12) 180 

quantifying the relative expected discrepancy between unconditional and conditional (on ix ) process 181 



10 
 

variance. Note that Eq. (12) does not generally coincide with the principal Sobol’ index 
ixS  in Eq. 182 

(7) that quantifies the expected relative reduction of the variance due to knowledge of ix  (or, in other 183 

words, the relative contribution to the variance arising from uncertainty in ix ). Index 
ixAMAV  184 

reduces to 
ixS  only if the conditional variance, [ | ]iV y x , is always (i.e., for each value of ix ) smaller 185 

than (or equal to) its unconditional counterpart  V y . The difference between 
ixAMAV  and 

ixS , as 186 

well as advantages of using 
ixAMAV , will be elucidated through the numerical examples illustrated 187 

in Section 3. Extension of Eq. (12) to consider the joint effect of 
1 2
, ,...,

si i ix x x  reads 188 

 
 

 
 

1 1 11

1

1

,...,

...,

1
..., [ | ,..., ] ...

1
| ,...,

i i s i

x x

is ss

i is

s

i i x i

i

x x x i

i

AMAV V y V y x x dx dx
V y

E V y V y x x
V y

 



 

      


. (13) 189 

Index 
1

,...,
i is

x xAMAV  quantifies the expected relative discrepancy between  V y  and the variance of 190 

the process conditional to joint knowledge of 
1 2
, ,...,

si i ix x x . 191 

We then quantify the relative expected discrepancy between unconditional, [ ]y , and 192 

conditional, [ | ]iy x , skewness through the index 193 
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Extension of Eq. (14) to consider the joint effect of 
1 2
, ,...,

si i ix x x  gives 195 
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The relative variation of the kurtosis of y due to variations of a parameter ix  or of the 197 

parameter set 
1 2
, ,...,

si i ix x x  can be respectively quantified through 198 

 
 

 
   

1 1
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 (17) 200 

Relying jointly on Eq.s (10)-(17) enables one to perform a comprehensive GSA of the target 201 

process y ( )x  quantifying the impact of x on the first four (statistical) moments of the pdf of y ( )x . 202 

This strategy yields information about the way important elements of the distribution of y ( )x , such 203 

as mean, spread around the mean, symmetry, and tailedness, are affected by uncertain model 204 

parameters collected in the parameter vector x. This analysis is not feasible through a classical 205 

variance- based GSA. 206 

Calculation of the indices we propose entails evaluation of conditional moments of y ( )x . This 207 

step can be computationally very demanding. Along the lines of our discussion about Sobol’ indices 208 

in Section 2.1, the new metrics Eq.s (10)-(17) can be evaluated via a surrogate model, as we illustrate 209 

through our examples in Section 3. 210 

3. Illustrative Examples 211 

The theoretical framework introduced in Section 2 is here applied to three diverse testbeds: 212 

(a) the Ishigami function, which constitutes an analytical benchmark typically employed in GSA 213 

studies; (b) a pumping scenario in a coastal aquifer, where the state variable of interest is the critical 214 

pumping rate, i.e. the largest admissible pumping rate to ensure that the extraction well is still not 215 

contaminated by seawater; and (c) a laboratory-scale setting associated with non-reactive transport in 216 

porous media. In the first two examples the relatively low computational costs associated with the 217 

complete mathematical description of the target outputs enables us to assess also the error associated 218 
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with the evaluation of indices Eq. (10), Eq. (12), Eq. (14) and Eq. (16) through a gPCE representation 219 

of the output. In the third case, due to the complexity of the problem and the associated computational 220 

costs, we relay on the gPCE representation for the target quantity of interest. We emphasize that the 221 

use of a gPCE as a surrogate model is here considered only as an example, our GSA approach being 222 

fully compatible with any full model and/or model order reduction technique. A critical limiting factor 223 

to our and any GSA approach could be the associated computational burden. The latter is expected to 224 

increase according to the following two features, which are mainly associated with the conceptual 225 

and mathematical model used to describe the target variables of interest: (a) the complexity of the 226 

hydrological system (in terms of, e.g., hydrogeological heterogeneity, non-linearity and/or transient 227 

effects), and/or (b) the number of uncertain model input parameters considered. According to the 228 

relative weight of these features, some computational constraints might arise limiting our ability to 229 

(i) perform the analysis by relying exclusively on the full system model, or (ii) construct a sufficiently 230 

accurate surrogate model through a number of full model runs that can be affordable in terms of 231 

available computational resources. Application of our GSA methodology to scenarios of increased 232 

level of complexity will be the subject of a future study. 233 

In all of the above scenarios, uncertain parameters ix  collected in x are considered as 234 

independent and identically distributed, i.i.d., random variables, each characterized by a uniform 235 

distribution within the interval ,min ,max,i i ix x     . Note that varying the pdf of the uncertain model 236 

input parameters does not impact the definition of the GSA indices proposed in Section 2. Otherwise, 237 

it may affect the actual results, depending on the test case considered. All results are grounded on 238 

55 10  Monte Carlo realizations, enabling convergence of all statistical moments analyzed. Series 239 

appearing in the gPCE Eq. (8) are evaluated up to a given order of truncation in all three examples. 240 

Here, we apply the total-degree rule and construct a polynomial of order w through a sparse grid 241 

technique (see, e.g., Formaggia et al., 2013 and references therein). We then analyze the way the 242 

selected order w influences the results. Note that the optimal choice of the polynomial ( )
p

x  in Eq. 243 
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(8) depends on the pdf of the random variables collected in x (Xiu and Karniadakis, 2002). In our 244 

exemplary settings we use the multidimensional Legendre polynomials which are orthonormal with 245 

respect to the uniform pdf. 246 

3.1 Ishigami function 247 

The non-linear and non-monotonic Ishigami function 248 

     
42

1 2 3 1sin(2 ) sin (2 ) 2 sin(2 )y ISH x a x b x x              x x  (18) 249 

is widely used in the literature (e.g., Homma and Saltelli, 1996; Chun et al., 2000; Borgonovo, 2007; 250 

Sudret, 2008; Crestaux et al., 2009; Borgonovo et al. 2011) to benchmark GSA methods. Here, ix  (i 251 

= 1, 2, 3) are i.i.d. random variables uniformly distributed within the interval [0, 1]. Unconditional 252 

mean  E ISH , variance,  V ISH , skewness,  ISH , and kurtosis,  k ISH , of Eq. (18) can be 253 

evaluated analytically as 254 
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Equation (19) reveals that the unconditional pdf of ISH is symmetric with tails that increase with |b| 258 

and decrease with |a|, as quantified by  k ISH . The conditional mean  | iE ISH x , variance 259 

 | iV ISH x , skewness  | iISH x  and kurtosis  | ik ISH x  can be evaluated analytically as 260 
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 (23) 264 

For the sole purpose of illustrating our approach, here and in the following we set a = 5 and b = 0.1, 265 

which corresponds to   2.50E ISH  ,   10.84V ISH   and   4.18k ISH  . Figure 1 depicts the 266 

first four moments of ISH conditional to values of 1x  (blue curves), 2x  (red curves) and 3x  (green 267 

curves) within the parameter space. The corresponding unconditional moments (black curves) are 268 

also depicted for completeness. 269 

Comparing Eq. (19a) and Eq. (20), it is seen that  3|E ISH x  coincides with its unconditional 270 

counterpart  E ISH , indicating that conditioning on any value of 3x  does not impact the mean of 271 

ISH. Otherwise, setting 1x  or 2x  to a given value clearly affects the mean of ISH in a way which is 272 

governed by Eq. (20) and shown in Fig. 1a. It is clear from Eq. (20) that  2|E ISH x  has a higher 273 

frequency of oscillation within 
2x  than has  1|E ISH x  within 

1x . The global index in Eq. (10) 274 

can be evaluated analytically as 275 

1

44
1

5
x

b
AMAE

a



  , 

2

2
x

a
AMAE

a
 , 

3
0xAMAE  . (24) 276 

Note that 
2xAMAE  does not depend on specific values of a and b. 277 

Equation (21) shows that all random model parameters influence the variance of ISH, albeit 278 

to different extents, as also illustrated in Fig. 1b. Note that  2|V ISH x  is always smaller than 279 

 V ISH  (compare Eq. (19a) and Eq. (21)) and does not depend on 2x , i.e., conditioning ISH  on 2x  280 
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reduces the process variance regardless the conditioning value. Otherwise,  3|V ISH x  can be 281 

significantly larger or smaller than its unconditional counterpart. Table 1 lists values of 
ixAMAV  ( ix  282 

= 1x , 2x , 3x ) computed via Eq. (12) with the a and b values selected for our demonstration. The 283 

principal Sobol’ indices (Sudret, 2008) 284 
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 , 

3
0xS  , (25) 285 

are also listed for completeness. As expected, values of 
ixAMAV  listed in Table 1 suggest that 286 

conditioning on 3x  has the strongest impact on the variance of ISH, followed by 1x  and 2x . Note that 287 

3xS  = 0, a result which might be interpreted as a symptom that ISH is insensitive to 3x . The apparent 288 

inconsistency between the conclusions which could be drawn by analysing 
3xAMAV  and 

3xS  is 289 

reconciled by the observation that the function    3|V ISH V ISH x  can be positive and negative in 290 

a way that its integration over 
3x  vanishes (see also Fig. 1b). Therefore, the mean reduction of the 291 

variance of ISH due to knowledge of (or conditioning on) 3x  is zero. It is remarked that this 292 

observation does not imply that the variance of ISH does not vary with 3x , as clearly highlighted by 293 

Fig. 1b and quantified by 
3xAMAV . 294 

The symmetry of the pdf of ISH is not affected by conditioning on 2x  or 3x , as demonstrated 295 

by Eq. (22). Otherwise,  1|ISH x  is left (or right) skewed when 1x  is smaller (or larger) than 0.5, 296 

as dictated by Eq. (22) and shown in Fig. 1c.  297 

The conditional kurtosis  2|k ISH x  does not depend on the conditioning value 2x  (see Eq. 298 

(23)). We then note that this conditional moment is always larger than (or equal to) its unconditional 299 

counterpart  k ISH , regardless the particular values assigned to a and b, as we verified through 300 

extensive numerical tests. This result implies that the pdf of ISH conditional on 2x  is characterized 301 
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by tails which are heavier than those of its unconditional counterpart. Figure 1d reveals that 302 

 1|k ISH x  and  3|k ISH x  are smaller than  k ISH  for the values of a and b implemented in this 303 

example. Table 1 lists the resulting values of 
ixAMAk  ( ix  = 1x , 2x , 3x ) for the selected a and b 304 

values. 305 

We close this part of the study by investigating the error which would arise when one evaluates 306 

our GSA indices by replacing ISH through a gPCE surrogate model. We do so on the basis of the 307 

absolute relative error 308 

0
,

0

gPCE full model

full model

full modelj

gPCE full model full model

j j
if j

je

j j if j

 


 


 

  (26) 309 

where j = 
ixAMAE , 

ixAMAV , 
ixAMA  or 

ixAMAk  ( ix  = 1x , 2x , 3x ); the subscripts full model and 310 

gPCE respectively indicate that quantity j  is evaluated via Eq. (18) or through a gPCE surrogate 311 

model, constructed as outlined in Section 2.1. Figure 2 depicts Eq. (26) versus the total degree w of 312 

the gPCE. Note that the lower limit of the vertical axis of Fig. 2 is set to 0.001% for convenience of 313 

graphical representation. Approximation errors associated with GSA indices related to the mean, 314 

ixAMAE , rapidly approach zero as w increases. Note that 
3xAMAEe  is smaller than 0.001% for all tested 315 

values of w and it is therefore not included in Fig. 2a. Values of je  linked to 
ixAMAV , 

ixAMA  and 316 

ixAMAk  do not show a consistently decreasing trend until w > 5. Values of je  associated with the 317 

variance, skewness and kurtosis decrease with approximately the same average linear rate (in log-log 318 

scale) for the largest w considered (Fig.s 2b, 2c and 2d). This example reinforces the need for reliably 319 

testing the accuracy of a gPCE-based model approximation as a function of the total degree desired, 320 

depending on the statistical moment of interest. Note that a generalization of our findings about the 321 

error (26) is outside the scope of the current study. This would require the derivation of (a) the 322 

analytical format of the pdf of a target model output through its gPCE based approximation at a given 323 
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order w (see, e.g., Riva et al., 2015), and (b) the corresponding pdf resulting from the full system 324 

model (e.g., by formulating and solving exact equations for the target pdf, or its moments, typically 325 

invoking problem specific assumptions). 326 

 327 

3.2 Critical Pumping Rate in Coastal Aquifers 328 

The example we consider here is taken from the study of Pool and Carrera (2011) related to 329 

the analysis of salt water contamination of a pumping well operating in a homogenous confined 330 

coastal aquifer of uniform thickness 
'b . The setting is sketched in Fig. 3. A constant discharge, 

'

wQ  331 

[L3 T −1], is pumped from a fully penetrating well located at a distance 
'

wx  [L] from the coastline and 332 

a constant freshwater flux, 
'

fq  [L T-1], flowing from the inland to the coastline, is set. Pool and Carrera 333 

(2011) introduced a dimensionless well discharge 
' ' ' '/ ( )w w w fQ Q b x q  and defined the critical 334 

pumping rate cQ  as the value of wQ  at which a normalized solute concentration monitored at the well 335 

exceeds 0.1%. A key result of the study of Pool and Carrera (2011) is that cQ  can be approximated 336 

through the following implicit equation 337 
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 .   (27) 338 

Here, ' '/w wx x b ; 
' /fJ q K ; ' '/T TPe b  ; K [L T-1] is the uniform hydraulic conductivity; '

T  [L] 339 

is transverse dispersivity; 
'  = '

s 
'

f , 
'

f  and '

s  being fresh- and salt-water densities, 340 

respectively. The quantity TPe  is a measure of the intensity of dispersive effects, J is the natural head 341 

gradient of the incoming freshwater, and wx  is the dimensionless distance of the well from the 342 

coastline. Pool and Carrera (2011) demonstrated the accuracy of Eq. (27) in predicting the critical 343 

pumping rate when (0 10]D   . Additional details about the problem setting, boundary and initial 344 

conditions, as well as geometrical configuration of the system can be found in Pool and Carrera 345 
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(2011). Here, we focus on the main result of Eq. (27) which represents the complete mathematical 346 

description of the problem we analyze. We perform a sensitivity analysis of cQ  with respect to TPe347 

, J, and wx . While the first two quantities are difficult to assess experimentally in practical 348 

applications, the well location can be considered as an operational/design variable. Table 2 lists the 349 

intervals of variation we consider for TPe , J and wx . These are designed to (a) resemble realistic 350 

field values and (b) obey the above mentioned constraint about D . 351 

Numerical evaluation of the first four unconditional statistical moment of cQ  yields a mean 352 

value   1.65cE Q  , variance   0.17cV Q  , skewness   0.30cQ    (which indicates a light 353 

asymmetry in the pdf), and kurtosis   2.51ck Q   (i.e., pdf tails decrease faster than those of a 354 

Gaussian distribution). Figure 4 depicts the first four moments of cQ  conditional to values of TPe  355 

(blue curves), J  (green curves), and wx  (red curves) within the parameter space. The corresponding 356 

unconditional moments (black curves) are also depicted for completeness. Note that each parameter 357 

interval of variation has been normalized to span the range [0, 1] for graphical representation 358 

purposes. Table 3 lists the values of indices 
ixAMAE  

ixAMAV , 
ixS , 

ixAMA  and 
ixAMAk  (xi =359 

TPe , J, wx ) associated with cQ . As in our first example, it is clear that sensitivity of cQ with respect 360 

to TPe , J, wx  depends on the statistical moment of interest. 361 

Inspection of Fig. 4a reveals that the mean of cQ  is more sensitive to conditioning on J or wx  362 

than to conditioning on TPe . Note that increasing TPe , i.e., considering advection-dominated 363 

scenarios, leads to an increase of the mean value of cQ . This is so because the dispersion of the 364 

intruding saltwater wedge is diminished and the travel time of solutes to the well tends to increase. 365 

High values of the natural head gradient of the incoming freshwater, J, are associated with high mean 366 

values of cQ . This is consistent with the observation that the inland penetration of the wedge is 367 

contrasted by the effect of freshwater which flows in the opposite direction. As expected, decreasing 368 
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wx  (moving the pumping well towards the coast) leads to a reduction of the mean value of cQ . Figure 369 

4a shows that mean cQ  varies with wx  and J in a similar way. This outcome is consistent with Eq. 370 

(27) where cQ  depends on the product wx J, i.e., increasing wx  or J has the same effect on cQ .  371 

It can be noted (see Tab. 3) that 
TPeAMAE  is smaller than JAMAE  and 

wxAMAE , consistent 372 

with Fig. 4a. Figure 4b shows that the variance of cQ  decreases as TPe , J, or wx  increase. This trend 373 

suggests that the uncertainty on cQ , as quantified by the variance, decreases as (i) the intruding wedge 374 

sharpens or is pushed toward the seaside boundary by the incoming freshwater or (ii) the well is 375 

placed at increasing distance from the coastline. Inspection of Fig. 4c and 4d shows that conditioning 376 

on TPe , J, or wx  causes the pdf of cQ  to become less asymmetric and less tailed than its unconditional 377 

counterpart. This behavior suggests that the relative frequency of occurrence of (high or low) extreme 378 

values of cQ  tends to decrease as additional information about the model parameters become 379 

available. 380 

Figure 5 depicts error, je , Eq. (26) versus total degree, w, of the gPCE representation of cQ , 381 

for j = (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA  and (d) 

ixAMAk  ( ix  = TPe  (blue curves), J  (red 382 

curves), wx  (green curves)). These results indicate that: (i) je  associated with 
ixAMAE  is negligible 383 

( 1%) even for low w; (ii) 
PeT

AMAVe   10% for w = 2 and rapidly decreases to values below 1% for 384 

increasing w; (iii) 
JAMAVe  and 

xw
AMAVe  are always smaller than 1%; and (iv) the trend of 

xi
AMAe   is 385 

similar to that of 
xi

AMAke  for all ix , with values of the order of 10% or higher for w = 2 and displaying 386 

a decrease with increasing w to then stabilize around values smaller than 1% when w  4 or 5. We 387 

note that the absolute relative error (26) for 
ixAMAE  with a given value of w is always lower than 388 

errors associated with higher order moments. Similar to our results in Section 3.1, it is clear from Fig. 389 

5 that attaining a given level of accuracy for the gPCE based indices for cQ  requires considering a 390 
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diverse total order w of the gPCE depending on the order of the statistical moment considered. As 391 

such, following the typical practice of assessing the reliability of a gPCE surrogate model solely on 392 

the basis of the variance or of a few random model realizations does not guarantee a satisfactory 393 

accuracy of the uncertainty analysis of a target model output which should consider higher-order 394 

statistical moments. 395 

3.3 Solute transport in a laboratory-scale porous medium with zoned heterogeneity 396 

As a last exemplary showcase, we consider the laboratory-scale experimental analysis of 397 

nonreactive chemical transport illustrated by Esfandiar et al. (2015). These authors consider tracer 398 

transport within a rectangular flow cell filled with two types of uniform sands. These were 399 

characterized by diverse porosity and permeability values, which were measured through separate, 400 

standard laboratory tests. A sketch of the experimental set-up displaying the geometry of the two 401 

uniform zones respectively formed by coarse and fine sand is illustrated in Fig. 6. 402 

After establishing fully saturated steady-state flow, a solution containing a constant tracer 403 

concentration is injected as a step input at the cell inlet. The tracer breakthrough curve is then defined 404 

in terms of the temporal variation of the spatial mean of the concentration detected along the flow 405 

cell outlet. Esfandiar et al. (2015) modeled the temporal evolution of normalized (with respect to the 406 

solute concentration of the injected fluid) concentration at the outlet, ( )C t  (t denoting time), by 407 

numerically solving within the flow domain the classical Advection-Dispersion Equation 408 

implementing an original and accurate space-time grid adaptation technique. Unknown longitudinal 409 

dispersivities of the two sands ( ,L ia , i = 1, 2 respectively denoting the coarse and fine sand) were 410 

considered as uncertain system parameters to be estimated against the available experimental solute 411 

breakthrough data. To minimize the computational costs in the model calibration process, Esfandiar 412 

et al. (2015) relied on a gPCE approximation of ( )C t . The authors constructed a gPCE of total degree 413 

w = 3 by considering  10 ,log L ia  to be two i.i.d. random variables uniformly distributed within 414 
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 10 ,log L ia
  = [-6, -2], ,L ia  being expressed in [m]. Further details about the problem set-up, numerical 415 

discretization and grid adaptation technique as well of the construction of the gPCE representation 416 

can be found in Esfandiar et al. (2015). Here, we ground the application of our new GSA metrics on 417 

the gPCE surrogate model already constructed by Esfandiar et al. (2015) to approximate ( )C t . 418 

Figure 7 depicts the temporal evolution of the unconditional expected value,  E C t 
 

, 419 

variance,  V C t 
 

, skewness,  C t  
 

, and kurtosis, ( )k C t 
 

, of normalized ( )C t . Time steps 420 

0.02t , 0.4t , and 0.96t , i.e., the times at which  E C t 
 

 = 0.02, 0.4, and 0.96, respectively, are 421 

highlighted in Fig. 7a. Figure 7a reveals a pronounced tailing of  E C t 
 

 at late times, the short 422 

time mean breakthrough being associated with a rapid temporal increase of  E C t 
 

. A local 423 

minimum at 0.4t  and two local peaks and are recognized in  V C t 
 

 (Fig. 7b). The variance peaks 424 

at times approximately corresponding to the largest values of  2 2/E C t t   
. This outcome is 425 

consistent with the results of numerical Monte Carlo (MC) simulations depicted in Fig. 8 of Esfandiar 426 

et al. (2015) where the largest spread of the MC results is observed around these locations. The local 427 

minimum displayed by  V C t 
 

 suggests that ( )C t  at observation times close to 0.4t  is mainly 428 

driven by advection, consistent with the observation that advective transport components are the main 429 

driver of the displacement of the center of mass of a solute plume. The late time variance  V C t 
 

 430 

tends to vanish because the normalized breakthrough curve is always very close to unity irrespective 431 

of the values of ,1La  and ,2La . Joint inspection of Fig.s 7c and 7d reveals that the pdf of ( )C t  tends to 432 

be symmetric around the mean (Fig. 7c) and characterized by light tails (Fig. 7d) at about 0.4t . 433 

Otherwise, the pdfs of ( )C t  tends to display heavy right or left tails, respectively for observation 434 

times shorter or longer than 0.4t . These observations suggest that the relative frequency of rare events 435 
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(i.e., very low or high solute concentrations, which can be of some concern in the context of risk 436 

assessment) is lowest at intermediate observation times across the duration of the experiment. 437 

Figure 8 depicts the temporal evolution of (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA , and (d) 438 

ixAMAk  (xi = 10 ,1log ( )La , 10 ,2log ( )La ) of ( )C t . Results embedded in Fig. 8 show that statistical 439 

moments of ( )C t  are more sensitive to 10 ,1log ( )La  than to 10 ,2log ( )La  at early times. The opposite 440 

occurs when t > 0.4t . Our set of results suggests that the overall early time pattern of solute 441 

breakthrough is mainly dictated by the value of ,1La , the late time behavior being chiefly influenced 442 

by ,2La . These conclusions are supported by the results of Fig.s 9-11, where we depict the expected 443 

value, variance, skewness, and kurtosis of C (t) conditional to 10 ,1log ( )La  (blue curves) and 444 

10 ,2log ( )La  (red curves), at times t = 0.02t  (Fig. 9), 0.4t  (Fig. 10), and 0.96t  (Fig. 11). The corresponding 445 

unconditional moments are also depicted (black curves) for ease of comparison. Figure 9 shows that 446 

the first four statistical moments of  0.02C t  are practically insensitive to the value of the fine sand 447 

dispersivity, ,2La . As one could expect by considering the relative size and geometrical pattern of the 448 

two sand zones, Fig. 9a shows that the average amount of solute reaching the cell outlet at early times 449 

increases with ,1La , because dispersion of solute increases through the coarse sand which resides in 450 

the largest portion of the domain. Figure 9b shows 
0.02( )V C t 

 
 is negligible when ,1La  is known. 451 

Consistent with this result, Fig.s 9c and 9d respectively show a reduction in the asymmetry and in the 452 

tailing behavior of the pdf of  0.02C t  when ,1La  is fixed. These results are a symptom of a reduced 453 

process uncertainty, which is in line with the observation that the bulk of the domain is filled with the 454 

coarse sand whose dispersive properties become deterministic when ,1La  is known. 455 

Inspection of the first four unconditional statistical moments of  0.4C t  (black curves in Fig. 456 

10) indicates that the unconditional pdf of C  at this intermediate time is closely resembling a 457 
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Gaussian distribution. Conditioning  0.4C t  on dispersivity causes a variance reduction, an increase 458 

of the tailing and the appearance of a negative (left) or positive (right) skewness, respectively when 459 

conditioning is performed on ,1La  or ,2La . The latter behavior suggests that in the type of experimental 460 

setting analyzed the variability of ,1La  promotes the appearance of values of  0.4C t  larger than the 461 

mean, the opposite occurring when solely ,2La  is considered as uncertain. 462 

Figure 11 shows that all four statistical moment of  0.96C t  are chiefly sensitive to the 463 

dispersivity of the fine sand box, which is placed near the cell outlet. One can note that knowledge of 464 

,2La  yields a diminished variance of  0.96C t , which drops almost to zero, an increased degree of 465 

symmetry and a reduce tailing of the pdf of  0.96C t , all these evidences being symptoms of 466 

uncertainty reduction. 467 

Results depicted in Fig.s 9-11 and our earlier observations about Fig. 7 are consistent with the 468 

expected behavior of transport in the system and the relative role of the dispersivities of the two sand 469 

regions. The high level of sensitivity of ( )C t  to ,1La  at the early times of solute breakthrough is in 470 

line with the observation that solute particles are mainly advected and dispersed through the coarse 471 

sand. Both dispersivities affect the behavior of ( )C t  at intermediate times, when solute is traveling 472 

through both sands. The dispersivity of the coarse sand plays a minor role at late times, because 473 

virtually no concentration gradients arise in this portion of the domain. Otherwise, concentration 474 

gradients persist in the fine sand zone close to the outlet and the solute breakthrough is clearly 475 

controlled by the dispersive properties of the fine sand. 476 

4. Conclusions 477 

We introduce a set of new indices to be employed in the context of global sensitivity analysis, 478 

GSA, of hydrological and Earth systems. These indices consider the first four (statistical) moments 479 

of the probability density function, pdf, of a desired model output, y. As such, they quantify the 480 
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expected relative variation, due to the variability in one (or more) model input parameter(s) of the 481 

expected value, variance, skewness and kurtosis of y. When viewed in the current research trend, our 482 

work is intended to bridge the gap between variance-based and pdf-based GSA approaches since it 483 

embeds the simplicity of the former while allowing for a higher-order description of how the structure 484 

of the pdf of y is affected by variations of uncertain model parameters. We cope with computational 485 

costs, which might be high when evaluating higher-order moments, by coupling our GSA approach 486 

with techniques approximating the full model response through a surrogate model. For the sake of 487 

our study, we consider the generalized Polynomial Chaos Expansion (gPCE), other model reduction 488 

techniques being fully compatible with our approach. Our new indices can be of interest in 489 

applications in the context of current practices and evolution trends in factor fixing procedures (i.e., 490 

assessment of the possibility of fixing a parameter value on the basis of the associated output 491 

sensitivity), design of experiment, uncertainty quantification and environmental risk assessment, due 492 

to the role of the key features of a model output pdf in such analyses. 493 

We test and exemplify our methodology on three testbeds: (a) the Ishigami function, which is 494 

widely employed to test sensitivity analysis techniques, (b) the evaluation of the critical pumping rate 495 

to avoid salinization of a pumping well in a coastal aquifer, and (c) a laboratory-scale nonreactive 496 

transport experiment. Our theoretical analyses and application examples lead to the following major 497 

conclusions. 498 

1. The calculated sensitivity of a model output, y, with respect to a parameter depends on the selected 499 

global sensitivity index, i.e., variability of a model parameter affects statistical moments of y in 500 

different ways and with different relative importance, depending on the statistical moment 501 

considered. Relying on the indices we propose allows enhancing our ability to quantify how 502 

model parameters affect features of the model output pdf, such as mean, degree of spread, 503 

symmetry and tailedness, in a straightforward and easily transferrable way. 504 

2. Joint inspection of our moment-based global sensitivity indices and of the first four statistical 505 

conditional and unconditional moments of y increases our ability to understand the way the 506 
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structure of the model output pdf is controlled by model parameters. As demonstrated in our 507 

examples, classical variance-based GSA methods cannot be used for this purpose, leading, in 508 

some cases, to the unwarranted conclusion that a given parameter have a limited impact on a 509 

target output. 510 

3. Analysis of the errors associated with the use of a surrogate model for the evaluation of our 511 

moment-based sensitivity indices suggests that: (a) attaining a given level of accuracy for the 512 

gPCE based indices associated with a target variable, y, might require considering a diverse total 513 

order w of the gPCE, depending on the target statistical moment considered in the GSA of y; and 514 

(b) in our examples, the absolute relative error (26) for 
ixAMAE  based on a given total degree w 515 

of the gPCE approximation is always lower than its counterpart associated with higher order 516 

moments (see Fig. 2 and 5). 517 

 518 

   519 
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 628 

Table 1. Global sensitivity index 
ixAMAE  Eq. (10), 

ixAMAV  Eq. (12), 
ixAMA  Eq. (14), and 629 

ixAMAk  Eq. (16) associated with the Ishigami function Eq. (18). Principal Sobol’ indices, 
ixS  Eq. 630 

(7), are also listed; ix  = 1x , 2x , 3x .  631 

 
ixAMAE  

ixAMAV  
ixS  

ixAMA  
ixAMAk  

1x  0.75 0.40 0.40 0.45 0.37 

2x  0.64 0.29 0.29 0.00 0.33 

3x  0.00 0.84 0.00 0.00 0.53 

 632 

  633 
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Table 2. Intervals of variations of TPe , J, wx . 634 

 
,min ,max[ ]n n nx x    

TPe  [0.01 0.1]  

J  4 3[8 2.5 ]e e   

wx  [10 33]  

 635 

  636 
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Table 3. Global sensitivity index 
ixAMAE  Eq. (10), 

ixAMAV  Eq. (12), 
ixAMA  Eq. (14), and 637 

ixAMAk  Eq. (16) associated with the critical pumping rate cQ  (25). Principal Sobol’ indices, 
ixS  Eq. 638 

(7) , are also listed; ix  = TPe , J, wx . 639 

 
ixAMAE  

ixAMAV  
ixS  

ixAMA  
ixAMAk  

TPe  0.07 0.14 0.09 0.35 0.09 

J  0.14 0.41 0.41 0.88 0.12 

wx  0.15 0.48 0.48 0.78 0.11 

 640 

  641 
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 642 

Figure 1. Variation of the first four moments of ISH Eq. (18) conditional to values of 1x  (blue curves), 643 

2x  (red curves) and 3x  (green curves) within the parameter space: (a) expected value,  | iE ISH x , 644 

(b) variance,  | iV ISH x , (c) skewness,  | iISH x , and (d) kurtosis,  | ik ISH x , (i = 1, 2, 3). The 645 

corresponding unconditional moments (black curves) are also depicted. 646 

  647 
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 648 

Figure 2. Error je  Eq. (26) versus the total degree w of the gPCE representation of ISH for j = (a) 649 

ixAMAE , (b) 
ixAMAV , (c) 

ixAMA  and (d) 
ixAMAk , with ix  = 1x  (blue curves), 2x  (red curves), 650 

3x  (green curves). Note that
3xAMAE  is always smaller than 0.001%. Average slope of the rate of 651 

decrease of je  for the largest w values considered are indicated as a reference in (a)-(d). 652 
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 655 

Figure 3. Sketch of the critical pumping scenario taking place within a coastal aquifer of thickness 656 
'b . A constant freshwater (in blue) flux, '

fq , flows from the inland to the coastline (saltwater in red). 657 

A constant discharge, 
'

wQ , is pumped from a fully penetrating well located at a distance 
'

wx  from the 658 

coastline. Color scale indicating variable concentration of salt is only qualitative for illustration 659 

purposes. 660 
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 662 

Figure 4. First four moments of cQ  Eq. (27) conditional to values of TPe  (blue curves), J  (green 663 

curves), and wx  (red curves) within the parameter space: (a) expected value,  |c iE Q x , (b) variance, 664 

 |c iV Q x , (c) skewness,  |c iQ x , and (d) kurtosis,  |c ik Q x , ( ix  = TPe , J , wx ). The 665 

corresponding unconditional moments (black curves) are also depicted. Intervals of variation of TPe666 

, J  and wx  has been rescaled between zero and one for graphical representation purposes. 667 

 668 
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 671 

Figure 5. Error je  Eq. (26) versus total degree w of the gPCE representation of cQ , for j = (a) 672 

ixAMAE , (b) 
ixAMAV , (c) 

ixAMA  and (d) 
ixAMAk , ix  = TPe  (blue curves), J  (red curves), wx  673 

(green curves). 674 

 675 

 676 
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 678 

Figure 6. Sketch of the solute transport setting considered by Esfandiar et al. (2015).  679 
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 682 

Figure 7. Temporal evolution of the unconditional (a) expected value,  E C t 
  , (b) variance, 683 

 V C t 
 

, (c) skewness, ( )C t  
 

, and (d) kurtosis, ( )k C t 
 

, of normalized ( )C t . Vertical lines in 684 

(a) correspond to time steps 0.4t , 0.02t  and 0.96t , i.e., the times at which  E C t 
 

 = 0.02, 0.4, and 0.96, 685 

respectively. 686 

 687 
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 690 

Figure 8. Time evolution of the global sensitivity index (a) 
ixAMAE , (b) 

ixAMAV  and 
ixS  (dashed 691 

curves), (c) 
ixAMA , and (d) 

ixAMAk  of ( )C t  (xi = 10 ,1log ( )La  (blue), or 10 ,2log ( )La  (red)). 692 
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 695 

Figure 9. First four moments of 0.02( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 10 ,2log ( )La  696 

(red curves), at time t = 0.02t : (a) expected value,  0.02 10 ,( ) log L iE C t a 
 

, (b) variance, 697 

 0.02 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.02 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 698 

 0.02 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 699 

curves). 700 

 701 

 702 

 703 
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 705 

Figure 10. First four moments of 0.4( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 10 ,2log ( )La  706 

(red curves), at time t = 0.4t : (a) expected value,  0.4 10 ,( ) log L iE C t a 
 

, (b) variance, 707 

 0.4 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.4 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 708 

 0.4 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 709 

curves). 710 
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 713 

Figure 11. First four moments of 0.96( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 10 ,2log ( )La  714 

(red curves), at time t = 0.96t : (a) expected value,  0.96 10 ,( ) log L iE C t a 
 

, (b) variance, 715 

 0.96 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.96 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 716 

 0.96 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 717 

curves). 718 
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