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August 23, 2017 

 

Re: Response to the Comments of Prof. H. Class on Manuscript HESSD-2017--90 (Moment-

based Metrics for Global Sensitivity Analysis of Hydrological Systems by A. Dell’Oca, Monica 

Riva, and Alberto Guadagnini) -  

 

We would like to thank Prof. Class for the careful and thorough reading of our manuscript and for his 

insightful comments and constructive suggestions that these have helped to improve the quality of 

the manuscript. Following is an itemized list of his comments (in italic) and our responses.  

 

1) This manuscript addresses the improvement of GSA (Global Sensitivity Analysis) by using 

newly introduced metrics based on the evaluation of the first four statistical moments: 

expectation value, variance, skewedness, tailedness. These metrics allow to extend the 

analysis beyond variance-based GSA into the details of the shape of the probability density 

function (pdf). It allows e.g. to detect when a certain model parameter particularly affects the 

asymmetry or the tailing of a pdf. The authors motivate and outline their idea in the context 

of GSA very well and nicely explain the expected benefits of their approach. 

 

We thank Prof. Class for his positive assessment of our work. 

 

2) However, like always, there is no free lunch. The method has the disadvantage that it involves 

significantly more computational effort, this rendering likely impossible to perform for a 

complex hydrological scenario of practical relevance. The work-around proposed by 

Dell’Oca et al is the use of reduced-complexity models or surrogate models; in this case, they 

use the Polynomial Chaos Expansion technique, which can be viewed as an approximation of 

a target function by polynomials, where the degree of the polynomials determines (at least up 

to a certain value) the accuracy of the approximation. 

Surrogate models like PCE require some smootheness in the targeted model output 

parameters with respect to the investigated paramters. Otherwise, discontinuities in the model 

output is difficult to reproduce. Therefore, I suppose, that this might involve the possibility 

that sophisticated GSA metrics become biased from errors introduced by the surrogate model. 

Thus, to give added value through several-moment-based GSA, we must first assure that the 

pdfs from the (surrogate) models are correct, i.e. the model represents the physics in all 

aspects. The manuscript addresses this issue quite well by some test cases, although I observe 

that all three test cases are relatively simple and do not provide huge challenges regarding 

possibly complex hydrological or geological features. The first test case is rather an academic 

exercise (which has, of course, value in itself), the second is an example where the results are 

definitely smooth in the parameter space; only the third one involves a heterogeneity, but still 

not very challenging for a polynomial approximation. I propose, maybe for future work, for 

example, a scenario where a fluid is injected into a geologic reservoir which has a fault zone 

in greater distance and where the response in terms of leakage to this fracture is rather a 

step-function. Would such a scenario be reflected properly by these new metrics? I guess that 

yes, but would the PCE provide the appropriate model for it? But clearly, the method 

proposed here is independent of the choice of the surrogate model.  
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We thank Prof. Class for pointing out this very relevant issue. As remarked by the Reviewer, 

in this manuscript we introduce novel metrics for global sensitivity analysis. These metrics can be 

evaluated making use of the complete model or (if the CPU time associated with the evaluation of 

the full model is too high) by a surrogate model. We also investigate the error associated with the 

evaluation of our novel metrics by replacing the complete system model through a gPCE. As proof 

of concept, we applied the proposed methodology to 3 (relatively simple) test cases. We agree with 

Prof. Class that any surrogate model (including gPCE) could fail in interpreting all the details of 

highly non-linear systems. The application of our methodology of analysis to more complex cases is 

envisioned as a future step. We will revise the opening statements of Section 3 of the manuscripts to 

highlight these relevant aspects. 

 

3) What if parameters are not uniformly distributed as assumed e.g. in 221-222? E.g. 

permeability in a fractured rock. How important is this assumption? 

 

Varying the probability density function (pdf) of uncertain model input parameters does not 

impact the definition of the novel metrics we propose. Otherwise, it may affect the actual results, 

depending on the test case considered. In the manuscript, we select uniform distributions for model 

parameters to mimic a scenario where the only information available is the expected range of 

variability of the parameters. We will highlight this issue in the revised manuscript. 

 

4) A given acceptable level of accuracy for the PCE-based approximation of the new indices 

requires increasing polynomial order with the order of the statistical moment. I can 

comprehend this statement in 3.3 (and in the conclusions with the careful wording "might be") 

from looking at the corresponding figures. But is there also some comprehensible reasoning 

or proof why this is the case? The authors are mathematicians and might be able to 

understand and explain this issue. 

 

A rigorous and general proof of the findings encapsulated in Figures 2 and 5 and evidenced 

by Prof. Class requires, for example, deriving (a) the analytical format of the probability density 

function (pdf) of a target model output on the basis of its gPCE based approximation at a given order 

w, and (b) the corresponding pdf associated with the full system model. We have shown a way to 

derive the former in a closed-form in a previous work (Riva et al., 2015, already referenced in the 

manuscript), at least for w = 2. With reference to the latter, one would need to formulate and solve 

(either analytically or numerically) appropriate (and exact) system equations satisfied by the pdf of 

interest or by its moments. This step is still an active area of research within which our group has 

considerable expertise. Approaches which are available in the literature always require 

approximations and specific assumptions, which are typically problem dependent. In this framework, 

a generalization of our findings is out of scope of the current study. Here, we rely on the direct solution 

of the full system model and the associated gPCE approximation to derive quantitative results for the 

examples considered. We will clarify these concepts in the revised manuscript. 

 

References 

 

Riva, M., Guadagnini, A. and Dell’Oca, A.: Probabilistic assessment of seawater intrusion under 

multiple sources of uncertainty, Adv. Water Resour., 75, 93-104, 

http://dx.doi.org/10.1016/j.advwatres.2014.11.002, 2015. 

 

5) I understood that the analysis helps better identifying the relative importance of individual 

parameters. There is enormous practical relevance for this, e.g. it would help to prioritize 
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exploration efforts for a particular parameter when it becomes clear from the sensitivity 

analysis that knowledge about this parameter reduces uncertainty drastically. The authors 

might want to emphasize such examples a bit more prominently if they like. 

 

We thank Prof. Class for this very interesting comment with which we fully agree. We will 

add an appropriate paragraph in the revised Introduction. 

 

6) In the first conclusion, line 475, I would write: "The CALCULATED sensitivity of a model 

output ..." 

 

We will modify the text accordingly. 

 

7) Very few language issues: 201-202: ... are affected by model uncertain parameters collected 

in x. Here is something wrong with the grammer, or I don’t understand the meaning. 

 

The sentence will be reprahsed as “are affected by uncertain model parameters collected in 

the parameter vector x”. 

 

8) 326: maybe "characterize" is here not the right wording? What about "control"? 

 

The key point is to emphasize that the parameters we consider are affected by uncertainty. We 

will replace the wording ‘characterize experimentally’ by ‘assess experimentally’. 
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Re: Response to the Comments of Dr. J. Bensabat on Manuscript HESSD-2017-90 (Moment-

based Metrics for Global Sensitivity Analysis of Hydrological Systems by A. Dell’Oca, Monica 

Riva, and Alberto Guadagnini) -  

 

We would like to thank Dr. Bensabat for the careful and thorough reading of our manuscript and for 

the insightful comments and constructive suggestions offered. It is our view that these have helped to 

improve the quality of the manuscript. Following is an itemized list of his comments (in italic) and 

our responses.  

 

1) This paper addresses the important topic of Sensitivity analysis of the output produced by 

hydrological models. The method is novel and provides a more mathematically rigorous 

framework for the evaluation of parameter sensitivity and a methodology for approximating 

the output produced by models in case they are demanding in terms of computational 

resources (PCE). 

 

We thank Dr. Bensabat for his appreciaton of our work and his very positive comments. 

 

2) Three examples are investigated: 1) a synthetic case (the Ishigami function); 2) an analytical 

solution for seawater intrusion in a coastal aquifer (Pool and Carrera, 2011) and 3) A 

laboratory scale model of a solute transport. These three cases are all calculated and the 

relevant measures are presented. 

Without any doubt this paper is substantial contribution and could lead to a better handling 

of complex hydrological systems 

 

We thank Dr. Bensabat for his positive assessment of our work. 

 

3) I would suggest to address a number of issues, which could make the paper attractive to an 

audience that is less familiar with the mathematical formulation of the method and more 

sensitive to its impact.  

The presented cases are for either analytical solutions (cases 1 and 2) or small scale settings 

(case 3). Therefore it could be of value to discuss how this suggested methodology could be 

applied to hydrological problems (regional groundwater flow models, flow and transport 

models and or density dependent seawater intrusion), what would be the steps needed to be 

taken and what would be the implications in terms of required computational resources.  

 

We thank Dr. Bensabat for pointing out this very relevant issue. The diret application of our 

novel metrics for global sensitivity analysis (GSA) to field scale hydrological settings is envisioned 

as a future study. Such an application should be structured according to the steps detailed in Section 

2. A critical limiting factor to any GSA approach is the associated computational burden. The latter 

is expected to increase according to two features associated with the conceptual and mathematical 

model used to describe the target variables of interest: (a) the complexity of the hydrological system 

(in terms of, e.g., hydrogeological heterogeneity, non-linear and/or transient effects), and/or (b) the 

number of uncertain model input parameters considered. According to the relative weight of these 

features, there can be some constraints to (i) perform the analysis by relying solely on the full system 

model, and (ii) construct a sufficiently accurate surrogate model through a number of full model runs 

which is affordable in terms of computational resources. We will revise the opening statements of 

Section 3 of the manuscripts to highlight these relevant aspects. 

  1 
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Abstract 11 

We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth 12 

systems. Our approach allows assessing the impact of uncertain parameters on main features of the 13 

probability density function, pdf, of a target model output, y. These include the expected value of y, 14 

the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable 15 

assessment of higher order statistical moments can be computationally demanding, we couple our 16 

GSA approach with a surrogate model, approximating the full model response at a reduced 17 

computational cost. Here, we consider the generalized Polynomial Chaos Expansion (gPCE), other 18 

model reduction techniques being fully compatible with our theoretical framework. We demonstrate 19 

our approach through three test cases, including an analytical benchmark, a simplified scenario 20 

mimicking pumping in a coastal aquifer, and a laboratory-scale conservative transport experiment. 21 

Our results allow ascertaining which parameters can impact some moments of the model output pdf 22 

while being uninfluential to others. We also investigate the error associated with the evaluation of our 23 

sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that 24 

the construction of a surrogate model with increasing level of accuracy might be required depending 25 

on the statistical moment considered in the GSA. Our approach is fully compatible with (and can 26 

assist the development of) analysis techniques employed in the context of reduction of model 27 

complexity, model calibration, design of experiment, uncertainty quantification and risk assessment. 28 

  29 
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1. Introduction 30 

Our improved understanding of physical-chemical mechanisms governing hydrological 31 

processes at multiple space and time scales and the ever increasing power of modern computational 32 

resources are at the heart of the formulation of conceptual models which are frequently characterized 33 

by marked levels of sophistication and complexity. This is evident when one considers the spectrum 34 

of mathematical formulations and ensuing level of model parametrization rendering our conceptual 35 

understanding of given environmental scenarios (Willmann et al., 2006; Grauso et al., 2007; 36 

Koutsoyiannis, 2010; Wagener et al., 2010; Elshorbagy et al., 2010a,b; Wagener and Montanari, 37 

2011; Hartmann et al., 2013; Herman et al., 2013;  Förster et al., 2014; Paniconi and Putti, 2015). 38 

Model complexity can in turn exacerbate challenges associated with the need to quantify the way 39 

uncertainties associated with parameters of a given model propagate to target state variables. 40 

In this context, approaches based on rigorous sensitivity analysis are valuable tools to improve 41 

our ability to (i) quantify uncertainty, (ii) enhance our understanding of the relationships between 42 

model input and outputs, and (iii) tackle the challenges of model- and data- driven design of 43 

experiments. These also offer insights to guide model simplification, e.g., by identifying model input 44 

parameters that have negligible effects on a target output. The variety of available sensitivity 45 

methodologies can be roughly subdivided into two broad categories, i.e., local and global approaches. 46 

Local sensitivity analyses consider the variation of a model output against variations of model input 47 

solely in the neighbourhood of a given set of parameters values. Otherwise, global sensitivity analysis 48 

(GSA) quantifies model sensitivity across the complete support within which model parameters can 49 

vary. Error measurements and/or lack of knowledge about parameters can be naturally accommodated 50 

in a GSA by specifying appropriate parameter intervals and evaluating sensitivity over the complete 51 

parameter space. Recent studies and reviews on available sensitivity analysis and approaches are 52 

offered by, e.g., Pianosi et al. (2016), Sarrazin et al. (2016), and Razavi and Gupta (2015). 53 

Our study is framed in the context of GSA methods. A broadly recognized strategy to quantify 54 

global sensitivity of uncertain model parameters to model outputs relies on the evaluation of the 55 
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Sobol’ indices (Sobol, 1993). These are typically referred to as variance-based sensitivity measures 56 

because the output variance is taken as the metric upon which sensitivity is quantified. A key 57 

limitation of a variance-based GSA is that the uncertainty of the output is implicitly considered to be 58 

fully characterized by its variance. Relying solely on this criterion can provide an incomplete picture 59 

of a system response to model parameters, also considering that probability densities of typical 60 

hydrological quantities can be characterized by highly skewed and tailed distributions (e.g., 61 

Borgonovo et al., 2011). Recent studies (e.g., Krykacz-Hausmann, 2001; Borgonovo, 2007; 62 

Borgonovo et al., 2011) introduce a sensitivity metric grounded on the complete probability density 63 

function, pdf, of the model output. These so-called moment-independent analyses may suffer from 64 

operational constraints, because a robust evaluation of the complete pdf may require a number of 65 

model runs which is computationally unaffordable. The PAWN method developed by Pianosi and 66 

Wagener (2015) attempts to overcome this limitation introducing a sensitivity metric based on the 67 

cumulative density function, which can potentially be estimated more robustly than its associated pdf 68 

for a given sample size. 69 

It is clear that while a variance-based GSA can be favored for its conceptual simplicity and 70 

ease of implementation and variance can be considered in some cases as an adequate proxy of the 71 

spread around the mean, it does not yield a forthright quantification of the way variations of a 72 

parameter can affect the structure of the pdf of a target model output. Otherwise, moment-independent 73 

methodologies condense the entire pdf in only one index, somehow clouding our understanding of 74 

how the structure of the pdf is affected by variations of each uncertain model parameter. Here, our 75 

distinctive objective is to contribute to bridge the gap between these two types of GSA. We do so by 76 

introducing theoretical elements and an implementation strategy which enable us to appraise 77 

parameter sensitivity through the joint use of sensitivity indices based on four (statistical) moments 78 

of the pdf of the model output: expected value, variance, skewness and kurtosis. The key idea at the 79 

basis of this strategy is that linking parameter sensitivity to multiple statistical moments leads to 80 

improved understanding of the way a given uncertain parameter can govern key features of the shape 81 
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of the pdf of desired model outputs, which is of interest in modern applications of hydrological and 82 

Earth sciences. 83 

Variance-based GSA has also been applied (a) to guide reduction of model complexity, e.g., 84 

by setting the value of a parameter which is deemed as uninfluential to the variance of a target model 85 

output (e.g., Fu et al., 2012; Chu et al., 2015; Punzo et al., 2015), and (b) in the context of uncertainty 86 

quantification (Saltelli et al., 2008; Pianosi et al., 2016; Colombo et al., 2016). Only limited attention 87 

has been devoted to assess the relative effects of uncertain model parameters to the first four statistical 88 

moment of the target model output. This information would complement a model complexity analysis 89 

by introducing a quantification of the impact that conditioning the process on prescribed parameter 90 

values would have on the first four statistical moment of the output. Our approach is based on the 91 

joint use of multiple (statistical) moments for GSA. It enables us to address the following critical 92 

questions: When can the variance be considered as a reliable proxy for characterizing model output 93 

uncertainty? Which model parameter mostly affects asymmetry and/or the tailing behavior of a model 94 

output pdf? Does a given model parameter have a marked role in controlling some of the first four 95 

statistical moments of the model output, while being uninfluential to others? Addressing these 96 

questions would contribute to prioritize our efforts to characterize model parameters that are most 97 

relevant in affecting important aspects of model prediction uncertainty. 98 

Even as the richness of information content that a GSA grounded on the first four statistical 99 

moments might carry can be a significant added value to our system understanding, it may sometimes 100 

be challenging to obtain robust and stable evaluation of the proposed metrics for complex and 101 

computationally demanding models. This can be especially true when considering higher-order 102 

moments such as skewness and kurtosis. To overcome this difficulty, we cast the problem within a 103 

computationally tractable framework by relying on the use of surrogate models, which mimic the full 104 

model response with a reduced computational burden. Amongst the diverse available techniques to 105 

construct a surrogate model (see, e.g., Razavi et al., 2012a,b), we exemplify our approach by 106 

considering the generalized Polynomial Chaos Expansion (gPCE) that has been successfully applied 107 
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to a variety complex environmental problems (Sudret, 2008; Ciriello et al., 2013; Formaggia et al., 108 

2013; Riva et al., 2015; Gläser et al., 2016), other model reduction techniques being fully compatible 109 

with our GSA framework. In this context, we also investigate the error associated with the evaluation 110 

of the sensitivity metrics we propose by replacing the original (full) system model through the 111 

selected surrogate model for three test cases. These include a widely employed analytical benchmark, 112 

a pumping scenario in a coastal aquifers, and a laboratory-scale transport setting. The remainder of 113 

the work is organized as follows. Section 2 presents our theoretical framework and developments. 114 

Section 3 illustrates our results for the three test cases indicated above and conclusions are drawn in 115 

Section 4. 116 

2. Theoretical framework 117 

We start by recalling the widely used variance-based GSA metrics in Section 2.1. These allow 118 

quantifying the contribution of each uncertain parameter to the total variance of a state variable of 119 

interest. We also provide a brief overview of the generalized Polynomial Chaos Expansion (gPCE) 120 

technique, which we use to construct a surrogate of the full system model. We then illustrate in 121 

Section 2.2 the theoretical developments underlying our approach and introduce novel GSA indices. 122 

2.1 Sobol’ indices for variance-based GSA and generalized Polynomial Chaos Expansion 123 

We consider a target system state variable, y, which depends on N random parameters. These 124 

are collected in vector x = ( 1x , 2x , …, Nx ) and defined in the parameter space 1 2 ... N      , 125 

,min ,max[ , ]i i ix x   being the support of the i-th random variable ix . Variance-based GSA approaches 126 

consider variance as the sole metric to quantify the contribution of each uncertain parameter to the 127 

uncertainty of y. Iman and Hora (1990) introduce the following index 128 

   [ ] [ | ] [ | ]
ix i iHI V y E V y x V E y x   , (1) 129 

E[-] and V[-] respectively denoting expectation and variance operators. Index 
ixHI  quantifies the 130 

expected reduction of variance due to knowledge of ix  (the notation | ix  in Eq. (1) indicates 131 
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conditioning on ix ). A similar measure is offered by the widely used Sobol’ indices (Sobol, 1993). 132 

These have been defined starting from the Hoeffendig/Sobol decomposition (see, e.g., Sobol, 1993, 133 

Le Maître and Knio, 2010) of y(x) when x is a collection of independent random variables as 134 

 
1 20 , , ,..., 1 2

1

( ) ( , ) ... ( , ,..., )
i i j N

i i j

N

x i x x i j x x x N

x x x

y y y x y x x y x x x
 

     x , (2) 135 

where 136 

~ ~

0

0

, ,

~

~ ~ , 0

,~

( ) ,

( ) ( ) ,

( , ) ( ) ( ) ( ) ,

i i i

i

i j i j i j i j

i j

x i x x

x

x x i j x x x x x i x j

x x

y y d

y x y d y

y x x y d y x y x y





















 

   







xx x

x x

x x

 (3) 137 

and so on, x  being the pdf of x . The integral ~ ~

~

( )
i i

i

x x

x

y d


 x x  in Eq. (3) represents integration 138 

of y ( )x  over the space of all entries of vector x excluding ix , ~ ix  being the corresponding pdf. The 139 

Sobol’ index 
1 2

, ,...,
i i is

x x xS  is associated with the mixed effect of 
1 2
, ,...,

si i ix x x  on the variance of y(x), 140 

V[y], and can be computed as 141 

  1 2 1 2 11 2 1 2

1 2

, ,...

, ,...,

1
, ,..., , ,..., ( , ,..., ) ...

i i i i i i s i i is ss s

x x xi i is

x x x x x x i i i x x x i iS y x x x dx dx
V y




  . (4) 142 

The principal and total Sobol’ indices are respectively defined as 143 

 

21
( )

i i i

xi

x x i x iS y x dx
V y

 



    , (5) 144 

, , ,

,

...
i i i j i j k

j j k

T
x x x x x x x

x x x

S S S S      (6) 145 

Note that 
ixS  describes the relative contribution to  V y  due to variability of only xi. Otherwise, 

i

T
xS  146 

quantifies the total contribution of xi to  V y , including all terms where xi appears. In other words, 147 
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i

T
xS  also includes interactions between xi and the remaining uncertain parameters, collected in vector 148 

~ ixx . Note that according to Eq.s (1)-(2) and Eq. (5) 149 

 
   

[ | ]
i

i

xi
x

HIV E y x
S

V y V y
  , (7) 150 

i.e., the principal Sobol’ index represents the relative expected reduction of process variance due to 151 

knowledge of (or conditioning on) a parameter. Sobol’ indices are commonly evaluated via Monte 152 

Carlo quadrature schemes that can be markedly demanding in terms of computational time, especially 153 

for complex and highly non-linear settings. Relying on a generalized Polynomial Chaos Expansion, 154 

gPCE, as a surrogate of the full mathematical model of the system (Ghanem and Spanos, 1991; Xiu 155 

and Karniadakis, 2002; Le Maitre and Knio, 2010; Formaggia et al., 2013; Ciriello et al., 2013; Riva 156 

et al., 2015) allows reducing the computational burden associated with GSA techniques. The process 157 

y(x) is represented as a linear combination of multivariate polynomials, ( )
p

x , i.e., 158 

,

0

1 1 1

,
1

( ) ( ) ( ) ...,

( ) ( ), ( ) ( ) ,

i i j

i

N N N

i i j

N

i p i
i

y

x y d
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    

    






   

  

  



p p p p

p p

p p p x

x x x

x x x x

 (8) 159 

where  1,..., NN

Np p p  is a multi-index expressing the degree of each univariate polynomial, 160 

, ( )
ii p ix ;  p  are the gPCE coefficients; i  contains all indices such that only the i-th component 161 

does not vanish; ,i j  contains all indices such that only the i-th and j-th components are not zero, and 162 

so on. Note that 0   0y , i.e., 0  is the unconditional mean of y(x). Finally, the Sobol’ indices Eq.s 163 

(4)-(5) and the variance of y(x) can be computed from Eq. (8) as 164 

 1

,...,1

2

,...,

1
i is

i is

x xS
V y




  p

p

, 
 

21
i

i

xS
V y




  p

p

,   2 2

0

NN

V y  


  p

p

. (9) 165 

2.2 New metrics for multiple-moment GSA 166 
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We introduce new metrics to quantify the expected relative change of main features of the pdf 167 

of y due to variability of model input parameters. In contrast with traditional variance-based GSA 168 

techniques of the kind described in Section 2.1, we quantify changes in the pdf of y through its first 169 

four statistical moments, i.e., mean, [ ]E y , variance, [ ]V y , skewness, [ ]y , and kurtosis, [ ]k y . The 170 

latter is an indicator of the behavior of the tails of the pdf of y and is particularly useful in the context 171 

of risk analysis, [ ]y  quantifying the asymmetry of the pdf of y. 172 

The effect of changes of x on the mean of y cannot be systematically analyzed by the metrics 173 

currently available in the literature. We therefore introduce the following quantity 174 

0 0 0
0 0

0

1 1
[ | ] [ | ] 0

[ | ] = [ | ] 0

i

xi

i

i

xi

xi i i

i i i
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x

y E y x dx E y E y x if y
y y
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E y x dx E E y x if y








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


     


 
    






, (10) 175 

0y  being defined in Eq. (3). Extension of Eq. (10) to consider the joint effect of 
1 2
, ,...,

si i ix x x  on the 176 

mean of y is straightforward, leading to the following index 177 

1 1 1

,...,1

11

1 1 1 1
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1
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y
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
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


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



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. (11) 178 

Note that index 
ixAMAE  quantifies the expected relative variation of the mean of y due to variations 179 

of only ix , while 
1

,...,
i is

x xAMAE  also includes all interactions amongst parameters 
1 2
, ,...,

si i ix x x . 180 

Along the same lines, we introduce the following index 181 

 
 

   

 

|1
[ | ]

i i

xi

x x

i

i i

E V y V y x
AMAV V y V y x dx

V y V y




  
   , (12) 182 

quantifying the relative expected discrepancy between unconditional and conditional (on ix ) process 183 
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variance. Note that Eq. (12) does not generally coincide with the principal Sobol’ index 
ixS  in Eq. 184 

(7) that quantifies the expected relative reduction of the variance due to knowledge of ix  (or, in other 185 

words, the relative contribution to the variance arising from uncertainty in ix ). Index 
ixAMAV  186 

reduces to 
ixS  only if the conditional variance, [ | ]iV y x , is always (i.e., for each value of ix ) smaller 187 

than (or equal to) its unconditional counterpart  V y . The difference between 
ixAMAV  and 

ixS , as 188 

well as advantages of using 
ixAMAV , will be elucidated through the numerical examples illustrated 189 

in Section 3. Extension of Eq. (12) to consider the joint effect of 
1 2
, ,...,

si i ix x x  reads 190 

 
 

 
 

1 1 11

1

1

,...,

...,

1
..., [ | ,..., ] ...

1
| ,...,

i i s i

x x

is ss

i is

s

i i x i

i

x x x i

i

AMAV V y V y x x dx dx
V y

E V y V y x x
V y

 



 

      


. (13) 191 

Index 
1

,...,
i is

x xAMAV  quantifies the expected relative discrepancy between  V y  and the variance of 192 

the process conditional to joint knowledge of 
1 2
, ,...,

si i ix x x . 193 

We then quantify the relative expected discrepancy between unconditional, [ ]y , and 194 

conditional, [ | ]iy x , skewness through the index 195 

 
 

 
1 1

[ | ] [ | ] 0

[ | ] [ | ] 0

xi

i

x

i

i

ix

x

i i y i y

x

i i i y

y y x dx E y x if
y y

AMA

y x dx E y x if

     
 



   









       


 
    






. (14) 196 

Extension of Eq. (14) to consider the joint effect of 
1 2
, ,...,

si i ix x x  gives 197 

 
 

 
   

 

1 1 1

1

11

1 1 1 1
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,...,

,...,
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1
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x x

s i is s

i is

i i ss

s i is s s

x xi is

x

i i x x i i

i i

i i x x i i

x

i i

y y x x dx dx
y

AMA E y y x x if y
y

y x x dx dx E E y x x if y

  


   


  










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

         


  
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








 (15) 198 
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The relative variation of the kurtosis of y due to variations of a parameter ix  or of the 199 

parameter set 
1 2
, ,...,

si i ix x x  can be respectively quantified through 200 

 
 

 
   

1 1
[ | ] |

i

xi

ix i i ixAMAk k y k y x dx E k y k y x
k y k y




      , (16) 201 

 
 

 
 

1 1 11

1

1

,...,

,...,

1
..., [ | ,..., ] ...

1
| ,...,

i i s i is ss

ix xis

s

i i x x ix x i

i i

AMAk k y k y x x dx dx
k y

E k y k y x x
k y

 



 

      


 (17) 202 

Relying jointly on Eq.s (10)-(17) enables one to perform a comprehensive GSA of the target 203 

process y ( )x  quantifying the impact of x on the first four (statistical) moments of the pdf of y ( )x . 204 

This strategy yields information about the way important elements of the distribution of y ( )x , such 205 

as mean, spread around the mean, symmetry, and tailedness, are affected by uncertain model 206 

parameters collected in the parameter vector x. This analysis is not feasible through a classical 207 

variance- based GSA. 208 

Calculation of the indices we propose entails evaluation of conditional moments of y ( )x . This 209 

step can be computationally very demanding. Along the lines of our discussion about Sobol’ indices 210 

in Section 2.1, the new metrics Eq.s (10)-(17) can be evaluated via a surrogate model, as we illustrate 211 

through our examples in Section 3. 212 

3. Illustrative Examples 213 

The theoretical framework introduced in Section 2 is here applied to three diverse testbeds: 214 

(a) the Ishigami function, which constitutes an analytical benchmark typically employed in GSA 215 

studies; (b) a pumping scenario in a coastal aquifer, where the state variable of interest is the critical 216 

pumping rate, i.e. the largest admissible pumping rate to ensure that the extraction well is still not 217 

contaminated by seawater; and (c) a laboratory-scale setting associated with non-reactive transport in 218 

porous media. In the first two examples the relatively low computational costs associated with the 219 

complete mathematical description of the target outputs enables us to assess also the error associated 220 
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with the evaluation of indices Eq. (10), Eq. (12), Eq. (14) and Eq. (16) through a gPCE representation 221 

of the output. In the third case, due to the complexity of the problem and the associated computational 222 

costs, we relay on the gPCE representation for the target quantity of interest. We emphasize that the 223 

use of a gPCE as a surrogate model is here considered only as an example, our GSA approach being 224 

fully compatible with any full model and/or model order reduction technique. A critical limiting factor 225 

to our and any GSA approach could be the associated computational burden. The latter is expected to 226 

increase according to the following two features, which are mainly associated with the conceptual 227 

and mathematical model used to describe the target variables of interest: (a) the complexity of the 228 

hydrological system (in terms of, e.g., hydrogeological heterogeneity, non-linearity and/or transient 229 

effects), and/or (b) the number of uncertain model input parameters considered. According to the 230 

relative weight of these features, some computational constraints might arise limiting our ability to 231 

(i) perform the analysis by relying exclusively on the full system model, or (ii) construct a sufficiently 232 

accurate surrogate model through a number of full model runs that can be affordable in terms of 233 

available computational resources. Application of our GSA methodology to scenarios of increased 234 

level of complexity will be the subject of a future study. 235 

In all of the above scenarios, uncertain parameters ix  collected in x are considered as 236 

independent and identically distributed, i.i.d., random variables, each characterized by a uniform 237 

distribution within the interval ,min ,max,i i ix x     . Note that varying the pdf of the uncertain model 238 

input parameters does not impact the definition of the GSA indices proposed in Section 2. Otherwise, 239 

it may affect the actual results, depending on the test case considered. All results are grounded on 240 

55 10  Monte Carlo realizations, enabling convergence of all statistical moments analyzed. Series 241 

appearing in the gPCE Eq. (8) are evaluated up to a given order of truncation in all three examples. 242 

Here, we apply the total-degree rule and construct a polynomial of order w through a sparse grid 243 

technique (see, e.g., Formaggia et al., 2013 and references therein). We then analyze the way the 244 

selected order w influences the results. Note that the optimal choice of the polynomial ( )
p

x  in Eq. 245 
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(8) depends on the pdf of the random variables collected in x (Xiu and Karniadakis, 2002). In our 246 

exemplary settings we use the multidimensional Legendre polynomials which are orthonormal with 247 

respect to the uniform pdf. 248 

3.1 Ishigami function 249 

The non-linear and non-monotonic Ishigami function 250 

     
42

1 2 3 1sin(2 ) sin (2 ) 2 sin(2 )y ISH x a x b x x              x x  (18) 251 

is widely used in the literature (e.g., Homma and Saltelli, 1996; Chun et al., 2000; Borgonovo, 2007; 252 

Sudret, 2008; Crestaux et al., 2009; Borgonovo et al. 2011) to benchmark GSA methods. Here, ix  (i 253 

= 1, 2, 3) are i.i.d. random variables uniformly distributed within the interval [0, 1]. Unconditional 254 

mean  E ISH , variance,  V ISH , skewness,  ISH , and kurtosis,  k ISH , of Eq. (18) can be 255 

evaluated analytically as 256 

 
2

a
E ISH  ,  

2 4
4 11

2 8 5 18
V I bSH

a b


 
  


 


,   0ISH  , (19a) 257 

 
 

4 2 4
4 4

2

4 2 43 3 1 3
3

4 13 68

1 1 1 1

5 2 2 32 2 2 5 18

b a b
bk ISH
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 
   

    
      

      

     
             

    

. 258 

   (19b) 259 

Equation (19) reveals that the unconditional pdf of ISH is symmetric with tails that increase with |b| 260 

and decrease with |a|, as quantified by  k ISH . The conditional mean  | iE ISH x , variance 261 

 | iV ISH x , skewness  | iISH x  and kurtosis  | ik ISH x  can be evaluated analytically as 262 

     1
4

1

1
5 sin 2

5
|

2
b

a
ISH xE x     ,    2

22 s 2| inaE ISH x x ,   3
2

|E ISH x
a

 , (20) 263 

      

    

2 2 8
4

1

2 2
4

3
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3

8 1 1
1 cos 4 , ,

8 225 2 5 18

1
1 1 2

8

|
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V IS
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H x V ISH x

V ISH x x

b
x b
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b


  



 



 
    

 

  
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 
 
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 (23) 266 

For the sole purpose of illustrating our approach, here and in the following we set a = 5 and b = 0.1, 267 

which corresponds to   2.50E ISH  ,   10.84V ISH   and   4.18k ISH  . Figure 1 depicts the 268 

first four moments of ISH conditional to values of 1x  (blue curves), 2x  (red curves) and 3x  (green 269 

curves) within the parameter space. The corresponding unconditional moments (black curves) are 270 

also depicted for completeness. 271 

Comparing Eq. (19a) and Eq. (20), it is seen that  3|E ISH x  coincides with its unconditional 272 

counterpart  E ISH , indicating that conditioning on any value of 3x  does not impact the mean of 273 

ISH. Otherwise, setting 1x  or 2x  to a given value clearly affects the mean of ISH in a way which is 274 

governed by Eq. (20) and shown in Fig. 1a. It is clear from Eq. (20) that  2|E ISH x  has a higher 275 

frequency of oscillation within 
2x  than has  1|E ISH x  within 

1x . The global index in Eq. (10) 276 

can be evaluated analytically as 277 

1

44
1

5
x

b
AMAE

a



  , 

2

2
x

a
AMAE

a
 , 

3
0xAMAE  . (24) 278 

Note that 
2xAMAE  does not depend on specific values of a and b. 279 

Equation (21) shows that all random model parameters influence the variance of ISH, albeit 280 

to different extents, as also illustrated in Fig. 1b. Note that  2|V ISH x  is always smaller than 281 

 V ISH  (compare Eq. (19a) and Eq. (21)) and does not depend on 2x , i.e., conditioning ISH  on 2x  282 
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reduces the process variance regardless the conditioning value. Otherwise,  3|V ISH x  can be 283 

significantly larger or smaller than its unconditional counterpart. Table 1 lists values of 
ixAMAV  ( ix  284 

= 1x , 2x , 3x ) computed via Eq. (12) with the a and b values selected for our demonstration. The 285 

principal Sobol’ indices (Sudret, 2008) 286 

 
 1

2
45

50
x

b
S

V ISH


 , 

 2

2

8
x

a
S

V ISH
 , 

3
0xS  , (25) 287 

are also listed for completeness. As expected, values of 
ixAMAV  listed in Table 1 suggest that 288 

conditioning on 3x  has the strongest impact on the variance of ISH, followed by 1x  and 2x . Note that 289 

3xS  = 0, a result which might be interpreted as a symptom that ISH is insensitive to 3x . The apparent 290 

inconsistency between the conclusions which could be drawn by analysing 
3xAMAV  and 

3xS  is 291 

reconciled by the observation that the function    3|V ISH V ISH x  can be positive and negative in 292 

a way that its integration over 
3x  vanishes (see also Fig. 1b). Therefore, the mean reduction of the 293 

variance of ISH due to knowledge of (or conditioning on) 3x  is zero. It is remarked that this 294 

observation does not imply that the variance of ISH does not vary with 3x , as clearly highlighted by 295 

Fig. 1b and quantified by 
3xAMAV . 296 

The symmetry of the pdf of ISH is not affected by conditioning on 2x  or 3x , as demonstrated 297 

by Eq. (22). Otherwise,  1|ISH x  is left (or right) skewed when 1x  is smaller (or larger) than 0.5, 298 

as dictated by Eq. (22) and shown in Fig. 1c.  299 

The conditional kurtosis  2|k ISH x  does not depend on the conditioning value 2x  (see Eq. 300 

(23)). We then note that this conditional moment is always larger than (or equal to) its unconditional 301 

counterpart  k ISH , regardless the particular values assigned to a and b, as we verified through 302 

extensive numerical tests. This result implies that the pdf of ISH conditional on 2x  is characterized 303 
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by tails which are heavier than those of its unconditional counterpart. Figure 1d reveals that 304 

 1|k ISH x  and  3|k ISH x  are smaller than  k ISH  for the values of a and b implemented in this 305 

example. Table 1 lists the resulting values of 
ixAMAk  ( ix  = 1x , 2x , 3x ) for the selected a and b 306 

values. 307 

We close this part of the study by investigating the error which would arise when one evaluates 308 

our GSA indices by replacing ISH through a gPCE surrogate model. We do so on the basis of the 309 

absolute relative error 310 

0
,

0

gPCE full model

full model

full modelj

gPCE full model full model

j j
if j

je

j j if j

 


 


 

  (26) 311 

where j = 
ixAMAE , 

ixAMAV , 
ixAMA  or 

ixAMAk  ( ix  = 1x , 2x , 3x ); the subscripts full model and 312 

gPCE respectively indicate that quantity j  is evaluated via Eq. (18) or through a gPCE surrogate 313 

model, constructed as outlined in Section 2.1. Figure 2 depicts Eq. (26) versus the total degree w of 314 

the gPCE. Note that the lower limit of the vertical axis of Fig. 2 is set to 0.001% for convenience of 315 

graphical representation. Approximation errors associated with GSA indices related to the mean, 316 

ixAMAE , rapidly approach zero as w increases. Note that 
3xAMAEe  is smaller than 0.001% for all tested 317 

values of w and it is therefore not included in Fig. 2a. Values of je  linked to 
ixAMAV , 

ixAMA  and 318 

ixAMAk  do not show a consistently decreasing trend until w > 5. Values of je  associated with the 319 

variance, skewness and kurtosis decrease with approximately the same average linear rate (in log-log 320 

scale) for the largest w considered (Fig.s 2b, 2c and 2d). This example reinforces the need for reliably 321 

testing the accuracy of a gPCE-based model approximation as a function of the total degree desired, 322 

depending on the statistical moment of interest. Note that a generalization of our findings about the 323 

error (26) is outside the scope of the current study. This would require the derivation of (a) the 324 

analytical format of the pdf of a target model output through its gPCE based approximation at a given 325 
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order w (see, e.g., Riva et al., 2015), and (b) the corresponding pdf resulting from the full system 326 

model (e.g., by formulating and solving exact equations for the target pdf, or its moments, typically 327 

invoking problem specific assumptions). 328 

 329 

3.2 Critical Pumping Rate in Coastal Aquifers 330 

The example we consider here is taken from the study of Pool and Carrera (2011) related to 331 

the analysis of salt water contamination of a pumping well operating in a homogenous confined 332 

coastal aquifer of uniform thickness 
'b . The setting is sketched in Fig. 3. A constant discharge, 

'

wQ  333 

[L3 T −1], is pumped from a fully penetrating well located at a distance 
'

wx  [L] from the coastline and 334 

a constant freshwater flux, 
'

fq  [L T-1], flowing from the inland to the coastline, is set. Pool and Carrera 335 

(2011) introduced a dimensionless well discharge 
' ' ' '/ ( )w w w fQ Q b x q  and defined the critical 336 

pumping rate cQ  as the value of wQ  at which a normalized solute concentration monitored at the well 337 

exceeds 0.1%. A key result of the study of Pool and Carrera (2011) is that cQ  can be approximated 338 

through the following implicit equation 339 
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 .   (27) 340 

Here, ' '/w wx x b ; 
' /fJ q K ; ' '/T TPe b  ; K [L T-1] is the uniform hydraulic conductivity; '

T  [L] 341 

is transverse dispersivity; 
'  = '

s 
'

f , 
'

f  and '

s  being fresh- and salt-water densities, 342 

respectively. The quantity TPe  is a measure of the intensity of dispersive effects, J is the natural head 343 

gradient of the incoming freshwater, and wx  is the dimensionless distance of the well from the 344 

coastline. Pool and Carrera (2011) demonstrated the accuracy of Eq. (27) in predicting the critical 345 

pumping rate when (0 10]D   . Additional details about the problem setting, boundary and initial 346 

conditions, as well as geometrical configuration of the system can be found in Pool and Carrera 347 
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(2011). Here, we focus on the main result of Eq. (27) which represents the complete mathematical 348 

description of the problem we analyze. We perform a sensitivity analysis of cQ  with respect to TPe349 

, J, and wx . While the first two quantities are difficult to assess experimentally in practical 350 

applications, the well location can be considered as an operational/design variable. Table 2 lists the 351 

intervals of variation we consider for TPe , J and wx . These are designed to (a) resemble realistic 352 

field values and (b) obey the above mentioned constraint about D . 353 

Numerical evaluation of the first four unconditional statistical moment of cQ  yields a mean 354 

value   1.65cE Q  , variance   0.17cV Q  , skewness   0.30cQ    (which indicates a light 355 

asymmetry in the pdf), and kurtosis   2.51ck Q   (i.e., pdf tails decrease faster than those of a 356 

Gaussian distribution). Figure 4 depicts the first four moments of cQ  conditional to values of TPe  357 

(blue curves), J  (green curves), and wx  (red curves) within the parameter space. The corresponding 358 

unconditional moments (black curves) are also depicted for completeness. Note that each parameter 359 

interval of variation has been normalized to span the range [0, 1] for graphical representation 360 

purposes. Table 3 lists the values of indices 
ixAMAE  

ixAMAV , 
ixS , 

ixAMA  and 
ixAMAk  (xi =361 

TPe , J, wx ) associated with cQ . As in our first example, it is clear that sensitivity of cQ with respect 362 

to TPe , J, wx  depends on the statistical moment of interest. 363 

Inspection of Fig. 4a reveals that the mean of cQ  is more sensitive to conditioning on J or wx  364 

than to conditioning on TPe . Note that increasing TPe , i.e., considering advection-dominated 365 

scenarios, leads to an increase of the mean value of cQ . This is so because the dispersion of the 366 

intruding saltwater wedge is diminished and the travel time of solutes to the well tends to increase. 367 

High values of the natural head gradient of the incoming freshwater, J, are associated with high mean 368 

values of cQ . This is consistent with the observation that the inland penetration of the wedge is 369 

contrasted by the effect of freshwater which flows in the opposite direction. As expected, decreasing 370 
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wx  (moving the pumping well towards the coast) leads to a reduction of the mean value of cQ . Figure 371 

4a shows that mean cQ  varies with wx  and J in a similar way. This outcome is consistent with Eq. 372 

(27) where cQ  depends on the product wx J, i.e., increasing wx  or J has the same effect on cQ .  373 

It can be noted (see Tab. 3) that 
TPeAMAE  is smaller than JAMAE  and 

wxAMAE , consistent 374 

with Fig. 4a. Figure 4b shows that the variance of cQ  decreases as TPe , J, or wx  increase. This trend 375 

suggests that the uncertainty on cQ , as quantified by the variance, decreases as (i) the intruding wedge 376 

sharpens or is pushed toward the seaside boundary by the incoming freshwater or (ii) the well is 377 

placed at increasing distance from the coastline. Inspection of Fig. 4c and 4d shows that conditioning 378 

on TPe , J, or wx  causes the pdf of cQ  to become less asymmetric and less tailed than its unconditional 379 

counterpart. This behavior suggests that the relative frequency of occurrence of (high or low) extreme 380 

values of cQ  tends to decrease as additional information about the model parameters become 381 

available. 382 

Figure 5 depicts error, je , Eq. (26) versus total degree, w, of the gPCE representation of cQ , 383 

for j = (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA  and (d) 

ixAMAk  ( ix  = TPe  (blue curves), J  (red 384 

curves), wx  (green curves)). These results indicate that: (i) je  associated with 
ixAMAE  is negligible 385 

( 1%) even for low w; (ii) 
PeT

AMAVe   10% for w = 2 and rapidly decreases to values below 1% for 386 

increasing w; (iii) 
JAMAVe  and 

xw
AMAVe  are always smaller than 1%; and (iv) the trend of 

xi
AMAe   is 387 

similar to that of 
xi

AMAke  for all ix , with values of the order of 10% or higher for w = 2 and displaying 388 

a decrease with increasing w to then stabilize around values smaller than 1% when w  4 or 5. We 389 

note that the absolute relative error (26) for 
ixAMAE  with a given value of w is always lower than 390 

errors associated with higher order moments. Similar to our results in Section 3.1, it is clear from Fig. 391 

5 that attaining a given level of accuracy for the gPCE based indices for cQ  requires considering a 392 
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diverse total order w of the gPCE depending on the order of the statistical moment considered. As 393 

such, following the typical practice of assessing the reliability of a gPCE surrogate model solely on 394 

the basis of the variance or of a few random model realizations does not guarantee a satisfactory 395 

accuracy of the uncertainty analysis of a target model output which should consider higher-order 396 

statistical moments. 397 

3.3 Solute transport in a laboratory-scale porous medium with zoned heterogeneity 398 

As a last exemplary showcase, we consider the laboratory-scale experimental analysis of 399 

nonreactive chemical transport illustrated by Esfandiar et al. (2015). These authors consider tracer 400 

transport within a rectangular flow cell filled with two types of uniform sands. These were 401 

characterized by diverse porosity and permeability values, which were measured through separate, 402 

standard laboratory tests. A sketch of the experimental set-up displaying the geometry of the two 403 

uniform zones respectively formed by coarse and fine sand is illustrated in Fig. 6. 404 

After establishing fully saturated steady-state flow, a solution containing a constant tracer 405 

concentration is injected as a step input at the cell inlet. The tracer breakthrough curve is then defined 406 

in terms of the temporal variation of the spatial mean of the concentration detected along the flow 407 

cell outlet. Esfandiar et al. (2015) modeled the temporal evolution of normalized (with respect to the 408 

solute concentration of the injected fluid) concentration at the outlet, ( )C t  (t denoting time), by 409 

numerically solving within the flow domain the classical Advection-Dispersion Equation 410 

implementing an original and accurate space-time grid adaptation technique. Unknown longitudinal 411 

dispersivities of the two sands ( ,L ia , i = 1, 2 respectively denoting the coarse and fine sand) were 412 

considered as uncertain system parameters to be estimated against the available experimental solute 413 

breakthrough data. To minimize the computational costs in the model calibration process, Esfandiar 414 

et al. (2015) relied on a gPCE approximation of ( )C t . The authors constructed a gPCE of total degree 415 

w = 3 by considering  10 ,log L ia  to be two i.i.d. random variables uniformly distributed within 416 
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 10 ,log L ia
  = [-6, -2], ,L ia  being expressed in [m]. Further details about the problem set-up, numerical 417 

discretization and grid adaptation technique as well of the construction of the gPCE representation 418 

can be found in Esfandiar et al. (2015). Here, we ground the application of our new GSA metrics on 419 

the gPCE surrogate model already constructed by Esfandiar et al. (2015) to approximate ( )C t . 420 

Figure 7 depicts the temporal evolution of the unconditional expected value,  E C t 
 

, 421 

variance,  V C t 
 

, skewness,  C t  
 

, and kurtosis, ( )k C t 
 

, of normalized ( )C t . Time steps 422 

0.02t , 0.4t , and 0.96t , i.e., the times at which  E C t 
 

 = 0.02, 0.4, and 0.96, respectively, are 423 

highlighted in Fig. 7a. Figure 7a reveals a pronounced tailing of  E C t 
 

 at late times, the short 424 

time mean breakthrough being associated with a rapid temporal increase of  E C t 
 

. A local 425 

minimum at 0.4t  and two local peaks and are recognized in  V C t 
 

 (Fig. 7b). The variance peaks 426 

at times approximately corresponding to the largest values of  2 2/E C t t   
. This outcome is 427 

consistent with the results of numerical Monte Carlo (MC) simulations depicted in Fig. 8 of Esfandiar 428 

et al. (2015) where the largest spread of the MC results is observed around these locations. The local 429 

minimum displayed by  V C t 
 

 suggests that ( )C t  at observation times close to 0.4t  is mainly 430 

driven by advection, consistent with the observation that advective transport components are the main 431 

driver of the displacement of the center of mass of a solute plume. The late time variance  V C t 
 

 432 

tends to vanish because the normalized breakthrough curve is always very close to unity irrespective 433 

of the values of ,1La  and ,2La . Joint inspection of Fig.s 7c and 7d reveals that the pdf of ( )C t  tends to 434 

be symmetric around the mean (Fig. 7c) and characterized by light tails (Fig. 7d) at about 0.4t . 435 

Otherwise, the pdfs of ( )C t  tends to display heavy right or left tails, respectively for observation 436 

times shorter or longer than 0.4t . These observations suggest that the relative frequency of rare events 437 
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(i.e., very low or high solute concentrations, which can be of some concern in the context of risk 438 

assessment) is lowest at intermediate observation times across the duration of the experiment. 439 

Figure 8 depicts the temporal evolution of (a) 
ixAMAE , (b) 

ixAMAV , (c) 
ixAMA , and (d) 440 

ixAMAk  (xi = 10 ,1log ( )La , 10 ,2log ( )La ) of ( )C t . Results embedded in Fig. 8 show that statistical 441 

moments of ( )C t  are more sensitive to 10 ,1log ( )La  than to 10 ,2log ( )La  at early times. The opposite 442 

occurs when t > 0.4t . Our set of results suggests that the overall early time pattern of solute 443 

breakthrough is mainly dictated by the value of ,1La , the late time behavior being chiefly influenced 444 

by ,2La . These conclusions are supported by the results of Fig.s 9-11, where we depict the expected 445 

value, variance, skewness, and kurtosis of C (t) conditional to 10 ,1log ( )La  (blue curves) and 446 

10 ,2log ( )La  (red curves), at times t = 0.02t  (Fig. 9), 0.4t  (Fig. 10), and 0.96t  (Fig. 11). The corresponding 447 

unconditional moments are also depicted (black curves) for ease of comparison. Figure 9 shows that 448 

the first four statistical moments of  0.02C t  are practically insensitive to the value of the fine sand 449 

dispersivity, ,2La . As one could expect by considering the relative size and geometrical pattern of the 450 

two sand zones, Fig. 9a shows that the average amount of solute reaching the cell outlet at early times 451 

increases with ,1La , because dispersion of solute increases through the coarse sand which resides in 452 

the largest portion of the domain. Figure 9b shows 
0.02( )V C t 

 
 is negligible when ,1La  is known. 453 

Consistent with this result, Fig.s 9c and 9d respectively show a reduction in the asymmetry and in the 454 

tailing behavior of the pdf of  0.02C t  when ,1La  is fixed. These results are a symptom of a reduced 455 

process uncertainty, which is in line with the observation that the bulk of the domain is filled with the 456 

coarse sand whose dispersive properties become deterministic when ,1La  is known. 457 

Inspection of the first four unconditional statistical moments of  0.4C t  (black curves in Fig. 458 

10) indicates that the unconditional pdf of C  at this intermediate time is closely resembling a 459 
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Gaussian distribution. Conditioning  0.4C t  on dispersivity causes a variance reduction, an increase 460 

of the tailing and the appearance of a negative (left) or positive (right) skewness, respectively when 461 

conditioning is performed on ,1La  or ,2La . The latter behavior suggests that in the type of experimental 462 

setting analyzed the variability of ,1La  promotes the appearance of values of  0.4C t  larger than the 463 

mean, the opposite occurring when solely ,2La  is considered as uncertain. 464 

Figure 11 shows that all four statistical moment of  0.96C t  are chiefly sensitive to the 465 

dispersivity of the fine sand box, which is placed near the cell outlet. One can note that knowledge of 466 

,2La  yields a diminished variance of  0.96C t , which drops almost to zero, an increased degree of 467 

symmetry and a reduce tailing of the pdf of  0.96C t , all these evidences being symptoms of 468 

uncertainty reduction. 469 

Results depicted in Fig.s 9-11 and our earlier observations about Fig. 7 are consistent with the 470 

expected behavior of transport in the system and the relative role of the dispersivities of the two sand 471 

regions. The high level of sensitivity of ( )C t  to ,1La  at the early times of solute breakthrough is in 472 

line with the observation that solute particles are mainly advected and dispersed through the coarse 473 

sand. Both dispersivities affect the behavior of ( )C t  at intermediate times, when solute is traveling 474 

through both sands. The dispersivity of the coarse sand plays a minor role at late times, because 475 

virtually no concentration gradients arise in this portion of the domain. Otherwise, concentration 476 

gradients persist in the fine sand zone close to the outlet and the solute breakthrough is clearly 477 

controlled by the dispersive properties of the fine sand. 478 

4. Conclusions 479 

We introduce a set of new indices to be employed in the context of global sensitivity analysis, 480 

GSA, of hydrological and Earth systems. These indices consider the first four (statistical) moments 481 

of the probability density function, pdf, of a desired model output, y. As such, they quantify the 482 



28 
 

expected relative variation, due to the variability in one (or more) model input parameter(s) of the 483 

expected value, variance, skewness and kurtosis of y. When viewed in the current research trend, our 484 

work is intended to bridge the gap between variance-based and pdf-based GSA approaches since it 485 

embeds the simplicity of the former while allowing for a higher-order description of how the structure 486 

of the pdf of y is affected by variations of uncertain model parameters. We cope with computational 487 

costs, which might be high when evaluating higher-order moments, by coupling our GSA approach 488 

with techniques approximating the full model response through a surrogate model. For the sake of 489 

our study, we consider the generalized Polynomial Chaos Expansion (gPCE), other model reduction 490 

techniques being fully compatible with our approach. Our new indices can be of interest in 491 

applications in the context of current practices and evolution trends in factor fixing procedures (i.e., 492 

assessment of the possibility of fixing a parameter value on the basis of the associated output 493 

sensitivity), design of experiment, uncertainty quantification and environmental risk assessment, due 494 

to the role of the key features of a model output pdf in such analyses. 495 

We test and exemplify our methodology on three testbeds: (a) the Ishigami function, which is 496 

widely employed to test sensitivity analysis techniques, (b) the evaluation of the critical pumping rate 497 

to avoid salinization of a pumping well in a coastal aquifer, and (c) a laboratory-scale nonreactive 498 

transport experiment. Our theoretical analyses and application examples lead to the following major 499 

conclusions. 500 

1. The calculated sensitivity of a model output, y, with respect to a parameter depends on the selected 501 

global sensitivity index, i.e., variability of a model parameter affects statistical moments of y in 502 

different ways and with different relative importance, depending on the statistical moment 503 

considered. Relying on the indices we propose allows enhancing our ability to quantify how 504 

model parameters affect features of the model output pdf, such as mean, degree of spread, 505 

symmetry and tailedness, in a straightforward and easily transferrable way. 506 

2. Joint inspection of our moment-based global sensitivity indices and of the first four statistical 507 

conditional and unconditional moments of y increases our ability to understand the way the 508 
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structure of the model output pdf is controlled by model parameters. As demonstrated in our 509 

examples, classical variance-based GSA methods cannot be used for this purpose, leading, in 510 

some cases, to the unwarranted conclusion that a given parameter have a limited impact on a 511 

target output. 512 

3. Analysis of the errors associated with the use of a surrogate model for the evaluation of our 513 

moment-based sensitivity indices suggests that: (a) attaining a given level of accuracy for the 514 

gPCE based indices associated with a target variable, y, might require considering a diverse total 515 

order w of the gPCE, depending on the target statistical moment considered in the GSA of y; and 516 

(b) in our examples, the absolute relative error (26) for 
ixAMAE  based on a given total degree w 517 

of the gPCE approximation is always lower than its counterpart associated with higher order 518 

moments (see Fig. 2 and 5). 519 

 520 

   521 
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 630 

Table 1. Global sensitivity index 
ixAMAE  Eq. (10), 

ixAMAV  Eq. (12), 
ixAMA  Eq. (14), and 631 

ixAMAk  Eq. (16) associated with the Ishigami function Eq. (18). Principal Sobol’ indices, 
ixS  Eq. 632 

(7), are also listed; ix  = 1x , 2x , 3x .  633 

 
ixAMAE  

ixAMAV  
ixS  

ixAMA  
ixAMAk  

1x  0.75 0.40 0.40 0.45 0.37 

2x  0.64 0.29 0.29 0.00 0.33 

3x  0.00 0.84 0.00 0.00 0.53 

 634 

  635 
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Table 2. Intervals of variations of TPe , J, wx . 636 

 
,min ,max[ ]n n nx x    

TPe  [0.01 0.1]  

J  4 3[8 2.5 ]e e   

wx  [10 33]  

 637 

  638 
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Table 3. Global sensitivity index 
ixAMAE  Eq. (10), 

ixAMAV  Eq. (12), 
ixAMA  Eq. (14), and 639 

ixAMAk  Eq. (16) associated with the critical pumping rate cQ  (25). Principal Sobol’ indices, 
ixS  Eq. 640 

(7) , are also listed; ix  = TPe , J, wx . 641 

 
ixAMAE  

ixAMAV  
ixS  

ixAMA  
ixAMAk  

TPe  0.07 0.14 0.09 0.35 0.09 

J  0.14 0.41 0.41 0.88 0.12 

wx  0.15 0.48 0.48 0.78 0.11 

 642 

  643 
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 644 

Figure 1. Variation of the first four moments of ISH Eq. (18) conditional to values of 1x  (blue curves), 645 

2x  (red curves) and 3x  (green curves) within the parameter space: (a) expected value,  | iE ISH x , 646 

(b) variance,  | iV ISH x , (c) skewness,  | iISH x , and (d) kurtosis,  | ik ISH x , (i = 1, 2, 3). The 647 

corresponding unconditional moments (black curves) are also depicted. 648 

  649 
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 650 

Figure 2. Error je  Eq. (26) versus the total degree w of the gPCE representation of ISH for j = (a) 651 

ixAMAE , (b) 
ixAMAV , (c) 

ixAMA  and (d) 
ixAMAk , with ix  = 1x  (blue curves), 2x  (red curves), 652 

3x  (green curves). Note that
3xAMAE  is always smaller than 0.001%. Average slope of the rate of 653 

decrease of je  for the largest w values considered are indicated as a reference in (a)-(d). 654 

 655 

  656 
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 657 

Figure 3. Sketch of the critical pumping scenario taking place within a coastal aquifer of thickness 658 
'b . A constant freshwater (in blue) flux, '

fq , flows from the inland to the coastline (saltwater in red). 659 

A constant discharge, 
'

wQ , is pumped from a fully penetrating well located at a distance 
'

wx  from the 660 

coastline. Color scale indicating variable concentration of salt is only qualitative for illustration 661 

purposes. 662 

  663 
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 664 

Figure 4. First four moments of cQ  Eq. (27) conditional to values of TPe  (blue curves), J  (green 665 

curves), and wx  (red curves) within the parameter space: (a) expected value,  |c iE Q x , (b) variance, 666 

 |c iV Q x , (c) skewness,  |c iQ x , and (d) kurtosis,  |c ik Q x , ( ix  = TPe , J , wx ). The 667 

corresponding unconditional moments (black curves) are also depicted. Intervals of variation of TPe668 

, J  and wx  has been rescaled between zero and one for graphical representation purposes. 669 

 670 

 671 

  672 
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 673 

Figure 5. Error je  Eq. (26) versus total degree w of the gPCE representation of cQ , for j = (a) 674 

ixAMAE , (b) 
ixAMAV , (c) 

ixAMA  and (d) 
ixAMAk , ix  = TPe  (blue curves), J  (red curves), wx  675 

(green curves). 676 

 677 

 678 

  679 
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 680 

Figure 6. Sketch of the solute transport setting considered by Esfandiar et al. (2015).  681 

 682 

  683 
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 684 

Figure 7. Temporal evolution of the unconditional (a) expected value,  E C t 
  , (b) variance, 685 

 V C t 
 

, (c) skewness, ( )C t  
 

, and (d) kurtosis, ( )k C t 
 

, of normalized ( )C t . Vertical lines in 686 

(a) correspond to time steps 0.4t , 0.02t  and 0.96t , i.e., the times at which  E C t 
 

 = 0.02, 0.4, and 0.96, 687 

respectively. 688 

 689 

 690 

  691 
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 692 

Figure 8. Time evolution of the global sensitivity index (a) 
ixAMAE , (b) 

ixAMAV  and 
ixS  (dashed 693 

curves), (c) 
ixAMA , and (d) 

ixAMAk  of ( )C t  (xi = 10 ,1log ( )La  (blue), or 10 ,2log ( )La  (red)). 694 

 695 
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 697 

Figure 9. First four moments of 0.02( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 10 ,2log ( )La  698 

(red curves), at time t = 0.02t : (a) expected value,  0.02 10 ,( ) log L iE C t a 
 

, (b) variance, 699 

 0.02 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.02 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 700 

 0.02 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 701 

curves). 702 

 703 

 704 

 705 

  706 
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 707 

Figure 10. First four moments of 0.4( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 10 ,2log ( )La  708 

(red curves), at time t = 0.4t : (a) expected value,  0.4 10 ,( ) log L iE C t a 
 

, (b) variance, 709 

 0.4 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.4 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 710 

 0.4 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 711 

curves). 712 

 713 
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 715 

Figure 11. First four moments of 0.96( )C t t  conditional on 10 ,1log ( )La  (blue curves) and 10 ,2log ( )La  716 

(red curves), at time t = 0.96t : (a) expected value,  0.96 10 ,( ) log L iE C t a 
 

, (b) variance, 717 

 0.96 10 ,( ) log L iV C t a 
 

, (c) skewness,  0.96 10 ,( ) log L iC t a  
 

, and (d) kurtosis, 718 

 0.96 10 ,( ) log L ik C t a 
 

 (i = 1, 2). The corresponding unconditional moments are also depicted (black 719 

curves). 720 

 721 


