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Abstract. 

Over the years, the Standard Least Squares (SLS) has been the most commonly adopted criterion for the calibration of 
hydrological models, despite the fact that they generally do not fulfill the assumptions made by the SLS method: very often 
errors are autocorrelated, heteroscedastic, biased and/or non-Gaussian. Similarly to recent papers, which suggest more 
appropriate models for the errors in hydrological modeling, this paper addresses the challenging problem of jointly estimate 
hydrological and error model parameters (joint inference) in a Bayesian framework, trying to solve some of the problems 
found in previous related researches. This paper performs a Bayesian joint inference through the application of different 
inference models, as the known SLS or WLS and the new GL++ and GL++Bias error models. These inferences were carried 
out on two lumped hydrological models which were forced with daily hydrometeorological data from a basin of the MOPEX 
project. The main finding of this paper is that a joint inference, to be statistically correct, must take into account the joint 
probability distribution of the state variable to be predicted and its deviation from the observations (the errors). Consequently, 
the relationship between the marginal and conditional distributions of this joint distribution must be taken into account in the 
inference process. This relation is defined by two general statistical expressions called the Total Laws (TLs): the Total 
Expectation and the Total Variance Laws. Only simple error models, as SLS, do not explicitly need the TLs implementation. 
An important consequence of the TLs enforcement is the reduction of the degrees of freedom in the inference problem 
namely, the reduction of the parameter space dimension. This research demonstrates that non-fulfillment of TLs produces 
incorrect error and hydrological parameter estimates and unreliable predictive distributions. The target of a (joint) inference 
must be fulfilling the error model hypotheses rather than to achieve the better fitting to the observations. Consequently, for a 
given hydrological model, the resulting performance of the prediction, the reliability of its predictive uncertainty, as well as 
the robustness of the parameter estimates, will be exclusively conditioned by the degree in which errors fulfill the error model 
hypotheses. 
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1.  Introduction 1 

In hydrologic simulation, many parameters are not directly observable or easily inferred from measured data. For this reason, 2 
these parameters must be estimated indirectly by an inverse process (also called calibration) that conditions the parameter 3 
estimates and the model response on historically observed input-output data (Pokhrel and Gupta, 2010). Model parameter 4 
inferences are based on a likelihood function which quantifies the probability that the observed data were generated by a 5 
particular parameter set (Box and Tiao, 1992). Over the years, the Standard Least Squares (SLS) criterion has been the most 6 
commonly adopted method for the calibration of the unknown parameters in hydrological modeling, although it has long 7 
been known that errors of hydrologic models are generally autocorrelated and heteroscedastic (Sorooshian and Dracup, 1980) 8 
not fulfilling the underlying hypotheses to SLS. Also, model inputs and model structural errors are important sources of 9 
uncertainty and they are ignored by the SLS scheme. I.e., the SLS parameter estimates are adjusted with a particular 10 
calibration data set to partially compensate the input errors (Kavetski et al., 2003; Schoups and Vrugt, 2010) and/or the 11 
structural errors (Schoups and Vrugt, 2010) yielding a set of biased parameters. 12 

The present paper is framed as a formal Bayesian aggregated approach to characterize the parameter and total predictive 13 
uncertainty, with a direct method for handling the bias, autocorrelation, heteroscedasticity and non-normality of the 14 
hydrological model errors. This approach follows to that proposed in Schoups and Vrugt (2010), but in present paper we have 15 
introduced significant improvements. Schoups and Vrugt (2010) proposed a formal likelihood function based on a general 16 
error model (called GL error model) that allows for model bias and for autocorrelation, non-stationarity, and non-normality 17 
of model errors. This formal approach preserved the advantages of being developed from a theoretical basis and having the 18 
possibility of checking the assumptions, while at the same time it improved flexibility and reduced the need for unrealistic 19 
assumptions about the errors. That study was based on the joint inference of both the hydrological and error model 20 
parameters (hereinafter joint inference). The main contribution of that research was the treatment of the error 21 
heteroscedasticity and non-normality with a direct method instead of using a transformational one, as it had been previously 22 
used in several case studies (Bates and Campbell, 2001; Kuczera, 1983; Reichert and Mieleitner, 2009; Vrugt et al., 2009b). 23 
However, according to Schoups and Vrugt (2010), something in the method seemed not to work properly: the analysis 24 
performed with heteroscedasticity, autocorrelation, and non-normality error parameters for the second case study (Guadalupe 25 
River basin) gave results with “large and meaningless” prediction uncertainty bands. These authors pointed out that the 26 
reason was the large inferred value for the autocorrelation coefficient. To avoid this problem, the authors decided to adjust 27 
the autocorrelation parameter to an observed sampling value, rather than inferring it jointly and automatically. 28 

Evin et al. (2013) described the challenges of fitting hydrological model parameters jointly with the autocorrelation and 29 
heteroscedasticity parameters of error models, and found a solution to the aforementioned problem in Schoups and Vrugt 30 
(2010). The key to the problem solution depended on how the autoregressive model was applied. Applying it directly to the 31 
errors can produce instability in the computations and, as a result, a poor error model with large predictive uncertainty. This 32 
instability could be avoided by applying the autoregressive process to the studentized errors. Thus, the heteroscedasticity 33 
model was performed on errors (instead on innovations) and the de-correlation process was applied on the previously 34 
variance-stabilized errors. 35 

In a useful and comprehensive research on the comparison of inference methodologies, Evin et al. (2014) detected that 36 
problems remained in the joint estimation of both hydrological and error model parameters. They concluded that the joint 37 
inference could be non-robust due to multiway interactions between the hydrological parameters (related with the water 38 
balance in their case study) and the error model parameters, particularly, heteroscedasticity and autocorrelation error model 39 
parameters. 40 

Moreover, several related researches have avoided a full joint inference either without the modeling of the error’s 41 
autocorrelation (Cheng et al., 2014; Westra et al., 2014) or using a transformational (or indirect) method for the treatment of 42 
the error heteroscedasticity (Bates and Campbell, 2001; Cheng et al., 2014; Del Giudice et al., 2013; Kuczera, 1983; Reichert 43 
and Mieleitner, 2009; Vrugt et al., 2009b). Even there are authors who combine the Markov Chain Monte Carlo (MCMC) 44 
sampling of the hydrological parameters with a maximum likelihood estimation of the error model parameters conditioned on 45 
each MCMC hydrological parameter sample (Zheng and Han, 2015; Han and Zheng, 2016), making a sort of pseudo-joint 46 
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inference. However other authors as Scharnagl et al.(2015) tried the joint inference without success, finding similar problems 47 
to those exposed in Schoups and Vrugt (2010) or Evin et al. (2013, 2014). 48 

Consequently, the general purpose of our research is to find out the reasons and to overcome the drawbacks identified in the 49 
previous studies, defending the reliability of the Bayesian joint inference methodology. This defense is necessary because 50 
non-using the joint inference involves a range of problems (Evin et al., 2014): i) the use of a faulty error model when 51 
calibrating the hydrological parameters produces biased parameter estimates and an incorrect parameter and predictive 52 
uncertainty estimates; ii) the estimation of error model parameters conditioned on a particular estimate of hydrological 53 
parameters (assuming that they could be biased) ignores interactions between both sets of parameters, and may produce an 54 
incorrect estimation of the predictive uncertainty. 55 

The specific objectives covered by this paper are the following. Firstly, we have improved the formal general likelihood 56 
function for parameter and predictive inference of hydrological models developed by Schoups and Vrugt (2010), 57 
implementing the previously mentioned recommendation proposed in Evin et al. (2013). Secondly, this paper seeks to shed 58 
some light on the causes of the incorrect behavior of the joint inference which has been detected in Schoups and Vrugt 59 
(2010), Evin et al. (2013, 2014) and Scharnagl et al. (2015).  60 

Todini (2007) pointed out that “(…) uncertainty (…) is 'conditional' upon the forecasting model prediction”. That idea is the 61 
basis to understand that the concept of predictive uncertainty must be linked with the conditional distribution of a predicted 62 

variable given its related model prediction namely ( )sp y y . Therefore, the existence of that conditional distribution 63 

implies also the existence of its joint distribution ( ), sp y y , which is the foundation of the general framework proposed in 64 

this paper. When we define the conditional distributions through any of its statistical features (i.e. shape, position, etc.), it is 65 
important to note that we are defining in parts their parent joint distribution. So, these parts must comply with the necessary 66 
conditions/restrictions to conform all together such joint distribution. In particular, two necessary conditions are the Total 67 
Variance Law and the Total Expectation Law (for details about these laws see for example Blitzstein and Hwang, 2014), 68 
which relate the marginal and conditional distributions of a given joint distribution. This paper enforces both Total Laws to 69 
the heteroscedasticity and non-constant bias models, since they are part of the conditional distributions modeling and, hence, 70 
they belong to the joint probability density function (hereinafter pdf). The presented case studies will show how not enforcing 71 
the Total Laws could be the origin of the previously found problems with the Bayesian joint inference. 72 

The next section presents the generalized error statistical model followed by this research. “General” in the sense that error 73 
model permits the possibility for the errors to be autocorrelated, heteroscedastic, biased and/or non-Gaussian. Section 3 deals 74 
with the joint Bayesian parameter inference. A new formal generalized likelihood function is presented and the methods for 75 
obtaining the posterior of parameters and the predictive distribution are outlined. Section 4 describes the different inference 76 
settings and how to apply the Total Laws on them. Section 5 applies the exposed methodology to estimate the parameter and 77 
predictive uncertainty, through the joint inference with several error models and two lumped hydrological daily models, using 78 
hydrometeorological data from a basin in the Model Parameter Estimation Experiment (MOPEX) data set (Duan et al., 2006). 79 
The fulfillment of assumptions in the hypothesized error models, as well as several indicators of performance will be tested. 80 
Section 6 discusses the results and section 7 summarizes our findings. 81 

2.  Generalized error statistical model 82 

2.1 Why do we need a reliable error model? 83 

Let us consider a random variable of hydrological predictive interest to be forecasted, for which the observations are made 84 
and which will be called the predictand y  (e.g. the streamflow at a catchment outlet q , or any other state variable of 85 
interest). The predictand y  can be sampled at N constant time steps and it is jointly observed and sampled with a set of 86 

predictors or model inputs, X  (e.g. precipitation, temperature, etc.). This research will consider X  as deterministic 87 
variables, which are able to explain “something” about the predictand’s behavior. 88 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-9, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 17 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



Page 3 of 39 
 
 

 

Let us also consider any model output sy  (e.g. the simulated streamflow sq , or some other observable and simulated state 89 

variable) as a random variable; not because a stochastic model is used (which is not our case), but by the fact that we can 90 
observe that these simulated variables generally do not match their observations. In this sense, Todini (2007) pointed out that 91 
“ (…) a scatter will always be observed in the q-qs plane (…) a representation of the joint sample frequency of q and qs that 92 
can be used to estimate its joint probability density”. That is to say, there is an inherent uncertainty whose origin is in the 93 
model structure soundness, in the observed data errors of predictand and predictors, and ultimately in the inherent 94 
unpredictability in deterministic terms of the natural phenomena. Montanari and Koutsoyiannis (2012) concluded that 95 
uncertainty is unavoidable in Hydrology so it is impossible to produce a fully deterministic model that would eliminate the 96 
uncertainty, and modeling schemes need to explicitly recognize its role. 97 

As stated in Todini (2007), two different objectives can be differentiated in hydrological modeling: parameter estimation and 98 
hydrological prediction. Parameter estimation is the procedure for obtaining parameter values with a physical meaning, which 99 
help us to understand the nature of the modeled processes. That is to say, the aim of the hydrological parameter estimation is 100 
not (it should not be) to get the best fit with the observations, but achieving the most plausible estimates with the best 101 
possible error model for the given observed data set. Hydrologists should assume the fact that, given a correct error model 102 
(actually a correct likelihood function), the most plausible parameter set can produce simulated results which show a poor fit 103 
to the observations, even in the calibration period. In other words, an inference with the correct error model yields the most 104 
plausible parameter set, which will not necessarily yield the best fit to the observed data, but will produce the best possible 105 
result, taking into account the limitations of the hydrological model and the observational errors. In a classical Frequentist 106 
context, the most plausible parameters provide the Maximum Likelihood and in a Bayesian framework are the Maximum a 107 
Posteriori (from now MAP). 108 

With regard to the problem of making predictions about some variable of interest, the correct estimation of the hydrological 109 

parameters is not necessary, since the predictive uncertainty, ( )sp y y , can be obtained through the direct modeling of the 110 

joint distribution of the predictand and its related model output random variable, namely the ( ), sp y y , as it was first shown 111 

by Krzysztofowic (1999) and many others later. Montanari and Brath (2004), under certain assumptions, carried out the 112 
predictive uncertainty assessment through the modeling of the joint distribution of the model errors and the model predictions 113 

( ), sp e y  instead of modeling ( ), sp y y , although all of them formulated the problem by using a meta-Gaussian model 114 

(Kelly and Krzysztofowicz, 1997). 115 

When we want to meet both objectives parameter estimation and predictive uncertainty assessment at the same time, we can 116 
address the issue through the modeling of the arising uncertainty from the uncertainty sources. For this task we can use two 117 
methods: the aggregate method or the disaggregate approach (Kavetski et al., 2006a, 2006b; Kuczera et al., 2006; Vrugt et 118 
al., 2008; Reichert and Mieleitner, 2009; Renard et al., 2010, 2011). The aggregate method, on which this research is focused, 119 
deals with modeling the hydrological model errors, considering the aggregated effects on them (i.e. bias, autocorrelation, 120 
heteroscedasticity, etc.), which are produced by all the uncertainty sources. This is made without the need to refer the 121 
particular contribution of each uncertainty source to these effects. If we are able to pack all the knowledge about the 122 
deviations of the model results from the observations, in an appropriate likelihood function (actually an error model), and the 123 
observed data meet the system observability conditions (Gelb, 1974), only then it will be possible a correct hydrological 124 
parameter estimation which yields unbiased, accurate and physically meaningful parameter values (Sorooshian and Gupta, 125 
1983). This estimation necessarily needs to be a joint inference of error and hydrological models in order to avoid biased 126 

parameters (Evin et al., 2014). Moreover, since the modeling of the joint distribution ( ), sp y y  can be equivalent, under 127 

certain assumptions which will be exposed in the following section 2.2, to the modeling of the joint distribution of the errors 128 

and the model predictions ( ), sp e y , then a correct error model will also yield correct predictive uncertainty estimation. So, 129 

the answer to the question posed in the title of this section is that the closer we get to the ideal conditions for a correct error 130 
modeling, which may be a difficult task in hydrology (Smith et al., 2015), the more exact and accurate will be both the 131 
parameter estimation and the predictive uncertainty evaluation. 132 
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2.2 The error model 133 

The relation between a predictand y  and a model prediction sy  can be defined as the composition of: i) a structural part 134 

which directly models the predictand expected dependence from the predictors, and ii) an additive or multiplicative random 135 
error ε . From the probability distribution of this random error, it is possible to derive the conditional probability distribution 136 
of the predictand. In fact, both distributions are the same when an additive error model is considered, namely 137 

( ) ( ), ,− =s s sp y y y p e y . When this is the case, we rely on the following relation: 138 

 { }( )0, , ,= +

s h ey y eθ sθ X  (1) 139 

Equation (1) states that a predictand value y  is obtained through the sum of a model prediction sy , and the error, “residual” 140 

or deviation e , which aggregates all sources of uncertainty. Model prediction, sy , is expressed as a function of an observed 141 

set of “k” predictors (or model inputs) { }1
1: 1:,...,=  



k
N Nx xX , the set of hydrological and error model parameters { },h eθ θ , 142 

and the initial conditions 0s . 143 

The aggregated error e  can be decomposed in two components: 144 

 |µ ε= +
se ye  (2) 145 

The first one in Eq. (2) is a systematic component, | se yµ , generally modeled as deterministic, and which could be non-146 

constant. The second component ε , is a random variable with zero mean and whose variance could also be variable. It is 147 

very important to note that | se yµ  is an error shifting function, which is only able to represent the expectations of the error 148 

conditional distributions (the error conditional bias), namely | se y sE e yµ =    , when the inferred errors fulfill the Total 149 

Expectation Law (TEL), also called the Iterated Expectations Law, or Adam’s Law: 150 

 [ ] { }  = sE e E E e y  (3) 151 

where, [ ]E  is the expectation operator. In other words, Eq. (3) tells us that the marginal (total) expectation of the error is 152 

equal to the expectation of all error conditional (on sy ) expectations. 153 

Besides, Eq. (1) could also be written as: 154 

 sy E y y ε = +   (4) 155 

where | ss s e yy yE y µ  = +   is the deterministic part of the predictand, and ε  is an additive random error. In the case that 156 

a hydrological model would yield unbiased outputs then | 0
se yµ =  and so s sy yE y  =  . It is important to note that we 157 

can have a zero-mean error marginal distribution, but this is not equivalent to have hydrological model without bias, since 158 

conditional biases | 0
se yµ ≠  could auto-compensate yielding a total expectation [ ] 0=E e . Bias is a non-random deviation 159 

in the simulated sy  value, due mainly to hydrological model structural deficiencies and systematic errors in forcing input 160 

data. 161 
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In this research, and without loss of generality, the basin outlet discharge is considered as the simulated variable of predictive 162 
interest. In fact, this is the general practical situation and we have selected it as the only explicative variable for the bias. In 163 
particular, we have assumed a straightforward double linear bias model defined by: 164 

 
( )

0

0 0

|

|

s

s

e y s

e y s sy y

if y

if y

y

y

γ

γ τ

µ

µ = −

≤

>

=

+
 (5) 165 

where γ , τ  and 0y  are error model parameters to be inferred jointly with the hydrological ones (in fact, all error model 166 

parameters will be jointly inferred with the hydrological ones). This double function aims at the consideration of two 167 
different expected error behaviors distinguishing the low flows (with a constant bias) from the high flows (with a linear bias). 168 

As aforementioned, errors could exhibit a non-constant variance. Following Schoups and Vrugt (2010), Evin et al. (2013, 169 

2014) and others, we assume in this paper a linear heteroscedasticity model, where sy  is the only explicative variable for the 170 

conditional error standard deviation 
se yσ . In this case, we can write: 171 

 
s

se y yασ κ= +  (6) 172 

where α  and κ  are error model parameters. It is important to note that function 
se yσ  represents to the standard deviation 173 

of the error conditional distributions, namely 2

s
se y V e yσ  =   , only if the inferred errors fulfill the Total Variance Law 174 

(TVL), also called the Variance Decomposition Law or Eve's Law: 175 

 [ ] { } { } = +    s sV e E V e y V E e y  (7) 176 

where [ ]V  is the variance operator. Equation (7) tells us that the marginal (total) variance of the error is equal to the sum of 177 

two terms: the first term assesses the expectation of the conditional (on sy ) variances of the error, and the second term 178 

evaluates the variance of the error conditional (on sy ) biases. On the contrary, when TVL is not fulfilled, function 
se yσ  179 

does not represent to the standard deviation of the error conditional distributions, and an error standardization process by 180 
using this function would be a simple error scaling, instead of a correct standardization. 181 

Having defined the models for the error bias and the error variance, we can also consider the possibility that the random 182 

component of the errors, | se yeε µ= − , still exhibits serial correlation. Theoretically, the more accurate the bias model is, 183 

the smaller the remaining error serial correlation shall be. This dependence (error autocorrelation) can be due to the 184 
“memory” effect, caused by the propagation of forcing and structural errors through model storage components (Kavetski et 185 
al., 2003). The error autocorrelation can be modeled, as in Schoups and Vrugt (2010), Evin et al. (2013, 2014) and others, 186 
using an autoregressive (AR) model. At this stage the modification proposed by Evin et al. (2013) about the methodology 187 
applied in Schoups and Vrugt (2010) is considered: that is, errors should be studentized before applying an autoregressive 188 
error model on them. According to Evin et al. (2013), the reason for this change in the original method lies in the 189 
mathematical behavior of the autoregressive equations, and is particularly related to the error accumulation properties which 190 
are different in both approaches (for more details see Evin et al. (2013)). So, the standardized errors are defined as: 191 

 ( )1 1
|η σ µ σ ε− −= − =

ss se ye y e ye  (8) 192 
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where ε  is the zero-mean additive random error, 
se yσ  is the modeled standard deviation of the error conditioned on the sy  193 

value and | se yµ  is the modeled mean of the error (actually its bias) conditioned also on sy . 194 

Coming again to the matter of the errors autocorrelation, the equations of pure autoregressive model have the following 195 
compact form (Box and Jenkins, 1994): 196 

 ( )
1

1 φ η φ η
=

 
= = 


−


∑

p
i

i p
i

B B z  (9) 197 

which expresses the p-order autoregressive model over the standardized errors η , where iφ  are the i-order autoregressive 198 

coefficients, B is the backshift operator η η −=i
t t iB  and z  are the resulting innovations. Innovations are mutually 199 

independent random errors which represent the measurement errors (e.g. in forcing data and discharge measures). They 200 

follow a probability distribution with a constant variance 2σ z . This variance, which should be considered as another 201 

(derived) parameter of the error model, can be evaluated according to the following expression (Box and Jenkins, 1994): 202 

 2 2

1
1ησ σ ρ φ

=

 
= − 

 
∑

p

z i i
i

 (10) 203 

where ρi  are the i-lagged autocorrelation coefficients of the standardized error series and 2
ησ  is the variance of the 204 

standardized errors. In this research we have used an AR(1) model as in Schoups and Vrugt (2010) and Evin et al. (2013, 205 
2014). Since the innovations z  are not standardized, they are subjected to a final transformation using their standard 206 
deviation: 207 

 1σ −= za z  (11) 208 

where σ z  is obtained from Eq. (10) and a  are the final standardized innovations, which is an independent random variable 209 

with zero mean and unit variance (namely a standard white noise). Substituting Eq. (8) in Eq. (9) and this in Eq. (11) we 210 
obtain the relation between errors and innovations: 211 

 ( ) ( )( )1 1
|σ φ σ µ− −= −

ssz p e ye ya B e  (12) 212 

At this point, we should establish the pdf of the standardized innovations obtained in Eq. (12). This research models the 213 
standardized innovations using the Skew Exponential Power SEP(0,1,ξ , β ) pdf, with two parameters (skewness ξ  and 214 

kurtosis β ). The SEP(0,1,ξ , β ) pdf, as shown in Schoups and Vrugt (2010), offers great flexibility by avoiding the a 215 

priori assumptions about specific forms of the innovations probability distribution. In fact, a SEP(0,1, ξ , β ) pdf may adopt 216 
a variety of forms, from the Normal to Laplace distribution, as well as it is capable to reproduce asymmetries and heavy tails. 217 
The analytical expression of the SEP(0,1,ξ , β ) pdf is defined as follows: 218 

 ( )
2

1
1

2
| , expξ β

β β ξ

σ
ξ β

ξ ξ
+

−

 
= − +  

p a w c a  (13) 219 

where  220 
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 ( ) ( )ξ ξµ σ
ξ ξ ξξ µ σ− += +sign aa a  (14) 221 

is a function of the standardized innovations a , and , , ,ξ ξ β βµ σ c w  are a function of skewness ξ  and kurtosis β  222 

parameters, as shown in Schoups and Vrugt (2010). 223 

As summary, the vector of error model parameters is { }0 1, , , , , , ,e yα κ γ τ φ ξ β=θ  and σ z  could be considered as a 224 

derived parameter. A major question related with the error model parameters must be pointed out. The application of the TLs 225 
on the error bias and variance models reduces the degrees of freedom in the Bayesian inference problem, and consequently, 226 
also reduces the number of independent error model parameters, namely the dimension of the parameter space. This will be 227 
clearly exposed in section 4.4. 228 

2.3 Why and when is imperative the enforcement of the Total Laws 229 

Firstly, we want to emphasize a key concept which was previously exposed in the introduction: predictive uncertainty must 230 
be linked with the existence of a joint probability distribution of the predictand observations and the related model 231 
predictions. Under the hypothesis of an additive error model, this will be equivalent to considering the joint probability 232 
distribution of the predictand errors and the model predictions, as it was made for example in Montanari and Brath (2004), 233 
albeit they worked the statistics in the NQT (Kelly and Krzysztofowicz, 1997) transformed space. We are actually modeling 234 
the conditional distribution of the error, given the model prediction. In other words, we are modeling indirectly the above 235 
mentioned joint probability distribution of errors and model predictions. This means that the error conditional distributions 236 
must fulfill the proper restrictions, in order to ensure that all of them make up the full joint distribution. The enforcement of 237 
the Total Laws (TLs) exposed in Eqs. (3) and (7) allows us to impose the necessary restrictions in order to achieve that the 238 
conditional and marginal distributions of the inferred errors belong to the same bidimensional joint distribution of these 239 
errors and the modeled state variable of interest (the simulated streamflow in this research).  240 

An incorrect error model will yield biased hydrological parameters (Sorooshian and Gupta, 1983) and, obviously, an 241 
incorrect uncertainty assessment. Two main causes can lead to this situation: i) an incorrect hypotheses about the error 242 
conditional distribution features (shape, mean and variance) or about the errors dependence structure; ii) making inferences 243 
without enforcing the TLs when we are modeling the error and state variable joint distribution through the definition of its 244 
conditional distributions. In order to better understand the TLs importance and implications, Fig. 1 shows what the TLs entail 245 
under different hypotheses for the error variance and bias models. 246 
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 247 

Figure 1. Schemes of decomposition of the state variable ( sy ) and its error joint distribution, in its conditional (blue) and marginal 248 
(green) distributions, under different bias and variance error models. 249 

Fig. 1-(a) shows a scheme which is representative of the SLS error model, with the hypotheses of homoscedasticity (errors 250 
with constant variance) and also a constant zero-bias. Therefore, all conditional distributions are a “copy” of the error 251 

marginal distribution. Both hypotheses implicitly entail [ ] 0sE e E e y = =   and [ ] sV e V e y =   ; i.e. the TLs given 252 

by Eqs. (3) and (7) are fulfilled, without the necessity of enforcing them. 253 

Fig. 1-(b) represents the Weighted Least Squares error model (WLS), with non-constant error variance and constant zero-bias 254 
hypotheses. This scheme shows the conditional distributions assuming a linear relationship between the errors standard 255 
deviation and the simulated state variable (similar to that proposed in Eq. (6)). With WLS it is needed to explicitly enforce 256 
the TVL on the variance model, in order to get an error marginal distribution with a variance equal to the average variance of 257 
the error conditional distributions. For this particular error model (WLS), Eq. (7) collapses in the expression258 

[ ] { } =  sV e E V e y . 259 

Fig. 1-(c) shows the case of having errors with a constant conditional variance and a non-constant linear bias. In this case, the 260 
marginal distribution is different from the conditional ones, although all these have the same shape. This is due to the non-261 
constant bias which affects the position of the conditional distributions. Moreover, it can occur (as in the example in Fig. 1-262 
(c)) the effect of errors autocompensation: the marginal distribution shows a zero-mean value whereas the conditional 263 
distributions exhibit bias. In this case, a non-constant conditional bias means that Eq. (3) for the TEL is not automatically 264 
fulfilled (must be enforced). With a constant conditional variance, the TVL in Eq. (7) simplifies to265 

[ ] { }   = +   s sV e V e y V E e y . 266 

Finally, Fig. 1-(d) shows the general case with both non-constant error conditional variances and bias. In this case, we must 267 
enforce on both variance and bias models the general expressions of the TLs (Eqs. (3) and (7)). Section 4 describes the 268 
inference settings for the case study and how the TLs are applied on each of them. On the contrary, section 6.1 will show the 269 
consequences of not enforcing the TLs. 270 
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3.  Inference 271 

3.1 Parameter uncertainty 272 

In Bayesian inference, it is necessary to construct a probability model based on the observed data of the variable of interest, 273 
as well as on the model parameters. Formal inference requires the setting up of a joint probability model to take all these 274 
random variables (i.e. observed state variables and model parameters) into account. Therefore, given the hydrological and 275 

error models, ,h eM , and also given the set of initial conditions, 0s , and an observation of the “k” predictors, 276 

{ }1
1: 1:,...,=  



k
N Nx xX , it must be constructed { }( ),, h ep y θ θ , the joint distribution of observations of the state variable of 277 

interest, y , and the hydrological and error model parameters, { },h eθ θ . This joint distribution, also called “the full 278 

Bayesian model” (Bolstad, 2010), is conditioned on ,h eM , 0s , X  and is formed by taking the product of two probability 279 

distributions: 280 

 { }( ) { }( ) { }( ) { }( ) ( ), , , , ,h e h e h e h ep y p y p p y p y= =θ θ θ θ θ θ θ θ     (15) 281 

Then, based on Eq. (1) that hypothesizes an additive error model, we have { }( ) { }( ), , |h e h ep y p ε=θ θ θ θ , where ε  is 282 

the random error solved from Eq. (2). The analytical expression for { }( ),h ep ε θ θ  is called the sampling distribution, 283 

when the parameters are considered as known. The same analytical expression is called the parameter likelihood function 284 

{ }( ), | ε h eθ θ , when the known variables are the observed data. The likelihood function incorporates the effect of the data 285 

on the prediction model, namely on the hydrological and error models jointly considered. Besides, the parameter prior 286 
distribution { }( ),h ep θ θ  describes the a priori knowledge we have about the hydrological and error models. Then, by 287 

applying Bayes’ Rule in its unscaled form on Eq. (15), the parameter posterior distribution is given by: 288 

 { }( ) { }( ) { }( ), , ,|ε ε∝ h e h e h ep pθ θ θ θ θ θ  (16) 289 

Since in section 2.2 we have already modeled the errors, we can derive from it the analytical expression for the likelihood 290 
function. This task is detailed in Appendix A, where the following log-likelihood function is obtained: 291 

 { }( ) ( )

2
1

1
1 1

2
, | log log

s

N N

h e
t t

y

w
N c a

βξ β
β ξε

σ
ε σ

σ ξ ξ

+

−
= =

≅ − −
+

∑ ∑
z

θ θ  (17) 292 

where: { },h eθ θ  is the set of hydrological and error model parameters; ε  is the random error; εσ
sq  is the conditional 293 

standard deviation of these random errors, which can be estimated by Eq. (6); σ z  is the standard deviation of innovations, 294 

estimated with Eq. (10); the terms , , ,ξ ξ β βµ σ c w  are a function of the skewnessξ  and kurtosis β , parameters of the SEP 295 

distribution (more details in Schoups and Vrugt (2010)); ξa  is a function of the standardized innovations given by Eq. (14); 296 

and N is the number of observations. 297 

Parameter posterior pdf describes the probability density that the model parameters assume particular values conditioned on 298 
the observed data. I.e. it describes the parameter uncertainty. In this study, both hydrological and error model parameters are 299 
conditioned simultaneously (joint inference) on observations. Computational sampling of the posterior is made through a 300 
Markov chain Monte Carlo (MCMC) algorithm. Modern MCMC algorithms, which are an evolution of the original 301 
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Metropolis algorithm (Metropolis and Rosenbluth, 1953), are currently used to “calibrate” the model parameters and to assess 302 
the uncertainties of these parameter estimates. Even high-dimensional and multimodal posterior distributions can be 303 
efficiently sampled by these recent MCMC algorithms after convergence of the chain (or chains) has been reached (Cowles 304 
and Carlin, 1996). The Differential Evolution Adaptive Metropolis algorithm DREAM-ZS (Schoups and Vrugt, 2010; Laloy 305 
and Vrugt, 2012) has been selected in this research to sample the posterior distribution of the parameters. The DREAM-ZS 306 
algorithm is a modification of the DREAM (Vrugt et al., 2008, 2009a) algorithm. DREAM-ZS simultaneously runs multiple 307 
Markov chains to explore the whole parameter space, uses an archive of past states to generate candidate points in each 308 
individual chain and automatically adjusts the scale and orientation of the proposal distribution. Such sampling is more 309 
efficient than an optimal random walk Metropolis. The R-statistic has been used to check whether the chains have converged, 310 
with a threshold value of R equal to 1.2 (Gelman and Rubin, 1992). In this research, the number of chains used in the 311 
inference configurations was 10. 312 

3.2 Predictive Uncertainty 313 

One of the main advantages to pursuing a formal method of Bayesian inference is the ability to make a correct estimate of the 314 

predictive uncertainty. Given the hydrological and error models, ,h eM , a formal definition of the predictive uncertainty for 315 

the prediction in a period with N time steps, adapted from Mantovan and Todini (2006) is given by the next equation: 316 

 ( )( ) { }( )( ) { }( )0 0| , , | | ,, , ,,
Θ

= ∫  

  s s h e h ep y y p y y p dy X θ θ θ Xs y sX θ θ  (18) 317 

where the left term ( )( )0| , , sp y y y X s  is the probability density of the predictand y , conditioned upon its N 318 

observations y , the set of initial conditions 0s , the observed predictors X , and necessarily also on ,h eM . Hence, the 319 

dependence on the parameters has been marginalized integrating over the entire domain of existence of these parameters; i.e., 320 
the ensemble of all possible parameter realizations. In other words, for assessing the predictive distribution (hereinafter PD) 321 
of the predictand, one has to take into account all possible model predictions (namely one per parameter vector realization), 322 
instead of only considering the prediction which corresponds to the most plausible parameter set. The first right term 323 

{ }( )( )| , , s h ep y y θ θ X  is the probability density of the predictand conditioned on the observed predictors and a unique 324 

set of parameters. The last right term { }( )0, | , , h ep θ θ y sX  is the posterior of the parameters given the observed 325 

predictors, the observed predictand and the initial conditions. This probability distribution can be derived by means of a 326 
Bayesian inferential process (as explained in section 3.1), and it is used to marginalize out the conditionality on the 327 
parameters of the prediction. 328 

The way of computing the PD is as follows. First a unique set { },h eθ θ , of hydrological and error model parameters, is 329 

sampled from their posterior distribution. After the parameter posterior sampling, the hydrological model is run for the 330 

sampled hydrological parameters hθ , getting a model simulation of the predictand ( ), s hy θ X . Then, by using repeatedly 331 

the prediction sampling equation given by: 332 

 ( ) ( )1ˆ , σ σ φµ −= + +

s sys h z pe yey y B aθ X  (19) 333 

we get the probability density of the predictand, conditioned upon a unique set of hydrological and error model parameters, 334 

namely { }( )( ), ,| 

s h ep y y θ θ X , where ŷ  is an estimated prediction of the predictand, conditioned on the previously 335 
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obtained model simulation ( ), s hy θ X  (i.e. on the hydrological model) and also conditioned on a unique realization from 336 

the error model. This error model realization is obtained through the previously sampled error model parameters eθ , using a 337 

random extraction a  from the SEP innovations distribution. To define with enough resolution this pdf of the predictand 338 

conditioned on ( ), s hy θ X , a sufficient number “s” of prediction samples { }1
1: 1:

ˆ ˆ ˆ,...,= s
N NY y y  must be obtained with the 339 

corresponding “s” random extractions from the SEP innovations distribution. Finally, all previous steps are repeated over 340 
multiple hydrological and error parameter posterior samples { } 1,...,

,
=h ie m

θ θ , generating an ensemble of predictions 341 

{ }
1,...,

ˆ
=i m

Y , in which the dependence on the parameters has been marginalized. The present paper considers the mean of that 342 

ensemble of predictions as the estimator for the expected prediction *ŷ , unconditioned to the parameters, formally: 343 

 ( ) * ,
0 1:

1 1

1ˆ ˆ| , ,
= =

  =  ∑∑






m s
i j

s N
i j

E y y
ms

sy X y y  (20) 344 

4.  Application to Rainfall-Runoff modeling 345 

This paper considers the simulated daily streamflow sq , as the state variable of interest to be predicted. The key concept is 346 

that, this state variable and its error belong to a bivariate population with a unique joint pdf. This belonging relationship 347 
imposes restrictions which must be fulfilled by both the state variable and the errors; actually by the parameters of 348 
hydrological and error models. That is to say, the error and hydrological inferred parameters, which generally are only 349 
conditioned by the observed data through the likelihood function, will also be conditioned by this belonging relationship 350 
expressed by the TLs in Eqs. (3) and (7). So, this section shows how to correctly perform the parameter joint inference of 351 
hydrological and error models, in order to reach the fulfillment of the TLs. 352 

4.1 The basin 353 

We have selected the French Broad River (hereinafter FB) basin. It is located in North Carolina (USA) and has an area of 354 
2448 km2. FB basin information can be obtained from the Model Parameter Estimation Experiment (MOPEX) data set (Duan 355 
et al., 2006). Besides, FB basin is a broadly known basin by the hydrologists’ community. Previous research related with this 356 
paper also performed inferences in this basin, as the works of Schoups and Vrugt (2010) or Evin et al. (2013, 2014). This 357 
basin is a representative humid catchment where actual evapotranspiration is energy-limited, hence runoff production 358 
opportunity is high: FB basin has a mean annual rainfall of 1495 mm, and a mean annual potential evapotranspiration of 820 359 
mm. Five years (from 01/01/1962 to 31/12/1966) of observed daily forcings (precipitation and potential evapotranspiration) 360 
and observed daily streamflow were used to identify hydrologic and error model parameters. The two previous years were 361 
used as warm-up period. 362 

4.2 The hydrological models 363 

Two hydrological models have been chosen to illustrate the theoretical issues on which this research deals with. The reason 364 
for the election is mainly their use in researches related with the present paper. 365 

The first one is the CRR model, which was also used in Schoups and Vrugt (2010) or Schoups et al. (2010). CRR is a 366 
conceptual spatially lumped hydrologic model for the simulation of daily rainfall‐runoff processes, and it has seven 367 
parameters to calibrate: the maximum interception (Imax, units of mm), the Soil water storage capacity (Smax, units of mm), 368 
the maximum percolation rate (Qsmax, units of mm/d), the evaporation parameter (αe, dimensionless), the runoff parameter 369 
(αf, dimensionless), the fast reservoir constant (Kf, units of days) and the slow reservoir constant (Ks, units of days). The 370 
model considers the processes of interception, throughfall, evapotranspiration, runoff generation, percolation, and surface and 371 
subsurface routing of water to the basin outlet. 372 
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The second model is the well-known GR4J. It is also spatially lumped and was developed to provide, on average, good 373 
performance across a wide range of catchment conditions (Perrin et al., 2003). The GR4J model, with only four parameters, 374 
is a more parsimonious model than CRR. These four parameters are: the production store capacity (θ1, units of mm), the 375 
groundwater exchange coefficient (θ2, units of mm), the one day-ahead maximum capacity of the routing store (θ3, units of 376 
mm) and the base time of the unit hydrograph (θ4, units of days). 377 

In order to infer the parameter posteriors (as explained in section 3.1), we have assumed non-informative Priors. The 378 
assumption of uniform Priors for all parameters is acceptable since a sufficient number of daily data points (N=1825) 379 
supports the parameter inference. 380 

An important question to be remarked is that snow accumulation and snowmelt are not accounted for in any of both models, 381 
although these processes occur in the FB basin, but with low significance. Therefore, it is expected that this model 382 
misspecification will have a non-severe influence in the results, but also an undermining of either the reliability of the 383 
inferred parameters or the reliability of the prediction. These consequences will be evaluated in the performed inferences. 384 

4.3 Implemented error models 385 

In this paper, we are going to perform different inferences considering four error models which, sorted in crescent order of 386 
complexity, are: SLS, WLS, GL++ and GL++Bias. Besides, for the WLS and GL++ error models, the inferences will be also 387 
performed with and without the enforcement of the TLs. This later inferences are called NTL inferences and they are an 388 
illustrative example of the problems which can arise from the joint inference when TLs are neglected. 389 

The SLS (Standard Least Squares) error model is the standard approach in regression analysis. For SLS, the errors are a zero-390 
mean measurement random noise, so they are serially independent and, normally and identically distributed. SLS is 391 
considered as the reference inference, since it is the most common method in parameter estimation. 392 

The WLS approach (Weighted Least Squares) considers all the same hypotheses that SLS, except that WLS applies a 393 
heteroscedastic error model which weights the errors by their standard deviation as in Eq. (6). WLS needs to apply the TVL. 394 
However, section 6.1 will show what happens with the WLS inference without the enforcement of the TVL (which is called 395 
WLS-NTL inference). 396 

The GL++ is an evolution of the GL error model described in Schoups and Vrugt (2010). The modifications on GL are two. 397 
Firstly we have included the recommendation given by Evin et al. (2013): errors must be studentized before applying an 398 
autoregressive model on them. Secondly, the joint inference has taken into account the enforcement of the TLs. Therefore, 399 
GL++ assumes zero-mean errors and the same heteroscedasticity model as in the WLS, but relaxes the hypothesis of error 400 
independence through a first order AR model (Eq. (9)). The resulting innovation has a variance given by Eq. (10) and is 401 
distributed according to a SEP distribution described by Eqs. (11) to (14). The Log-likelihood function in Eq. (17) includes 402 
all these assumptions, assuming an unbiased conditional error. Again, section 6.1 will show the results of the GL++NTL 403 
inference, in order to illustrate what occurs to this kind of error model when TVL is not enforced. 404 

Finally, the GL++Bias error model assumes all hypotheses of GL++, but relaxes the hypothesis of having zero-mean 405 
conditional error distributions. A bias model is hypothesized according to Eq. (5), which tries to correct these conditional 406 
biases. Therefore, GL++Bias is the full error model described in section 2.2. 407 

4.4 Enforcement of the Total Laws 408 

On all the above described error models, it will be applied the enforcement of either one or both TLs, except on SLS (because 409 
it is not needed) and on the NTL cases. In the case of WLS and GL++ approaches, they must yield inferred errors which 410 
fulfill the simplified expression of the TVL given by: 411 

 [ ] { } =  sV e E V e q  (21) 412 
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This conditioning to TVL allows us to reduce one degree of freedom in the inference problem: the intercept α  from the 413 
heteroscedasticity linear model will be a function of other parameters and the state variable. So, this error parameter does not 414 
need to be sampled in the computational Bayesian inference process. Following the calculations in Appendix B, we obtain: 415 

 [ ] [ ]( ) [ ]0.52α κ κ= − −s sV e V q E q  (22) 416 

Eq. (22) is the condition that must meet the intercept parameter α  in order to achieve that the inferred errors with the WLS 417 
and GL++ approaches, are able to fulfill the TVL. 418 

In the case of the GL++Bias error model, both error variances and bias are supposed to be non-constant. In this case we must 419 
enforce on both variance and bias models the general expressions of the TLs given by Eqs. (3) and (7). In this way, this 420 
enforcement (as shown in Appendix B) allows us to set the following four parameters: 421 

For the linear heteroscedasticity model given by Eq. (6), 422 

i) The intercept parameter, α  423 

 [ ]( )1 1

0.5
2

1α κ κ   = − −   s sV e V q E q  (23) 424 

ii) The slope parameter, κ  425 

 
[ ] [ ]

2

1 2

0.52

0α
τ

κ
  − +   =
    − 

≈
  

1 2 s

2 2
s s

V e V e V q

q
for

E q E
 (24) 426 

It is important to note that the later equation, which yields κ  explicitly, is only valid for small values of parameter α . If 427 
not, parameter κ  should be calculated in an iterative way by solving Eq. (B13). 428 

And for the double linear bias model given by Eq. (5), 429 

iii) The intercept parameter, γ , for the low-flows population 430 

 [ ]1γ = E e  (25) 431 

iv) The slope parameter, τ , for the high-flows population 432 

 
[ ] [ ]

20

τ
−

=
 −  

1 2

s

E e E e
q E q

 (26) 433 

where the subindexes 1 and 2 distinguish the low and high streamflow populations respectively. The four Eqs. (23) to (26) 434 
allow that inferred errors by GL++Bias be able of fulfilling both TLs. Additionally, these imposed equations remove four 435 
degrees of freedom from the inference problem. That is to say, GL++Bias has only four (and not eight) free error model 436 

parameters to be sampled by the MCMC algorithm. These free parameters are: the bias parameter 0q , the SEP parameters β  437 

and ξ , and the autoregressive coefficient 1φ . 438 

 439 
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5.  Results 440 

5.1 The reference inference: SLS 441 

The target of the SLS method is the mean squared error minimization of the prediction, and errors are assumed to be 442 
independent, homoscedastic and Gaussian with zero-mean. Therefore, a SLS calibrated hydrological model must yield the 443 
best fitting to the observed values. With this aim, the SLS method tries to compensate the model misspecifications and the 444 
data errors through the parameter values, by a departure from their “true” value. We consider the parameter “true” values as 445 
the generally unknown parameter set, which would be inferred in a calibration without model structural deficiencies or biased 446 
data errors: i.e. only with random measurement errors. 447 

SLS yields error marginal variances in the case study for both hydrological models (0.34 mm2/d2 and 0.43 mm2/d2 for CRR 448 
and GR4J respectively) which are the minimum reached in all performed inferences (compare RMSE values in Table 1). This 449 
situation can be expected, since this is the way to reach the target of the SLS inference. Another interesting feature is the 450 
(marginal) mean of the errors, which is not zero (i.e., SLS unbiased errors hypothesis is not fulfilled), and it is slightly greater 451 
with CRR than with GR4J (-0.11 mm/d and -0.02 mm/d respectively). In fact, as it was also expected, SLS inference does not 452 
fulfill any of its underlying hypotheses about the errors (Fig. 2): normality, homoscedasticity and independence. Regarding 453 
the normality assumption (Fig. 2, top panels), the error distribution has an excess of kurtosis, for both hydrological models. 454 
The non-compliance of the homoscedasticity is clearly shown in middle panels of Fig. 2: the funnel-shaped scatter plot of the 455 
standardized errors versus the simulated streamflow shows that error variance varies with the streamflow magnitude. To 456 
assess this heteroscedastic property numerically, it has been calculated a moving variance of the standardized errors, by 457 
taking a moving window through the scatter plot, with a length of 60 data, over which the variance is calculated. The result of 458 
this calculation is the red line drawn over the scatter. The flatness of this line would indicate the homoscedasticity of the 459 
errors and the line is far to be flat. Finally, the errors independence hypothesis can be judged through the autocorrelation 460 
function shown in Fig. 2 (bottom panels). These graphs also show the 95% Anderson’s limits (Anderson, 1942) for null 461 
correlation hypothesis. As it can be observed, SLS yields a clear not null autocorrelation for the first ten lags, for both 462 
hydrological models. 463 

Table 1 shows the Log-likelihood value for each of the inferred error models and it is clear that the worst values are for SLS 464 
(-1625 with CRR and -1819 with GR4J hydrological model). On the contrary, as shown in Tables 2 and 3, SLS generally (if 465 
the parameters are identifiable) yields the parameter estimates with the lowest uncertainty: namely, with the smallest sample 466 
coefficients of variation (CV). In this case study, GR4J model shows perfectly identifiable inferred parameters and with little 467 
uncertainty. However, CRR model shows two non-identifiable parameters, αe and αf, which are highly uncertain parameters 468 
in comparison with the other in SLS (see Table 2), showing CVs of 0.20 and 1.77 respectively. 469 
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Figure. 2. Test of SLS error model hypotheses for CRR (left column) and GR4J (right column) hydrological models: normality of 470 
observed standard errors in top panels, homoscedasticity evaluation of errors in middle panels and independence assessment of the 471 
errors through the autocorrelation function in bottom panels (the 95% Anderson’s limits in solid black lines). 472 

Concerning the performance of the mean prediction, Table 1 shows that SLS has the highest NSE index among all inferred 473 
error models. On the one hand, it results a NSE=0.90 in CRR, whereas GR4J yields a NSE=0.87. On the other hand, CRR 474 

shows a Volume Error, defined as ( ) 1−= −sVE V V V , larger than the obtained with GR4J model. This result is coherent 475 

with the value for the marginal mean of the errors obtained for each model. In Fig. 3 are represented the observations q , the 476 

mean prediction *q̂  and the hydrological model prediction for the Maximum a Posteriori (MAP) parameter set 
MAPsq . This 477 

figure shows how CRR yields a nice fitting to the largest peakflow of the calibration period, but CRR obtains a moderate 478 
fitting to the rest of peakflows and a general overestimation of the low flows. A similar general behavior is achieved by GR4J 479 
model, as can be seen in the same Fig. 3. 480 

The validation of the predictive uncertainty for both hydrological models can be visually checked in Fig. 3: this figure shows 481 
the 95% prediction uncertainty band, resulting with a constant width for all the streamflow magnitudes (although a merely 482 
visual effect seems to contradict this). It is important to note that Fig. 3 also shows the parameter uncertainty band, but its 483 
extreme thinness means that, in this inference, the contribution of the parameter uncertainty to the total uncertainty can be 484 
neglected. 485 

Another more comprehensive method of testing the validity of the predictive uncertainty is through the analysis of the PD of 486 
the predictand with the PP-Plots tool (Laio and Tamea, 2007; Thyer et al., 2009; Renard et al., 2010). In Fig. 4 (left panel) the 487 
blue line shows a systematic bias (overprediction) with an uncertainty overestimation for the CRR model. In the same Fig. 4 488 
(right panel), a very small overpredictive bias and also an uncertainty overestimation is shown for the GR4J model when SLS 489 
inference is used. 490 
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Figure 3. Predictive performance and 95% uncertainty bands (parameter and total) with SLS inference on CRR (left) and GR4J 491 
(right) models (parameter uncertainty band is hardly appreciable). 492 

  
Figure 4. PP-Plots of the PDs for all performed inferences with CRR (left) and GR4J (right) models. 493 

5.2 WLS inference 494 

In this case study, the WLS inference does not fulfill any of its error model hypotheses, as SLS, with the exception of the 495 
homoscedasticity hypothesis. As in SLS inference, the errors are not Normal (Fig. not shown). The good variance 496 
stabilization of the inferred errors with both hydrological models can be observed in top panels of Fig. 5, where are depicted 497 
the scatter plots for the standard errors and for the stabilized errors. Over the scatters there are also two lines representing the 498 
corresponding moving variances, calculated as it was explained for the SLS inference. As it can be observed, the calculated 499 
moving variance for the errors has the same appearance as in SLS. But, the moving variance for the stabilized errors is 500 
practically a horizontal line; i.e., it represents a constant variance. However, bottom panels in Fig. 5 show how the stabilized 501 
errors have a higher autocorrelation than the raw errors. In other words, WLS solves the errors heteroscedasticity problem, 502 
but increases the problem of error serial dependence. The fulfillment of the homoscedasticity hypothesis is able to improve 503 
the Log-likelihood respect to SLS, in a 72% for CRR model whereas this improvement with GR4J is about 60% (Table 1). 504 
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Figure 5. Test of WLS error model hypotheses for CRR (left column) and GR4J (right column) models. In top panels, 505 
homoscedasticity evaluation for the observed errors (red dots and red line) and for the variance stabilized errors (black dots and 506 
grey line). In bottom panels, the independence assessment for observed errors and for the variance stabilized errors, through the 507 
autocorrelation function (the 95% Anderson’s limits in solid black lines). 508 

The performance of the WLS mean prediction and the negligible contribution of the parameter uncertainty to the total 509 
uncertainty are very similar to the SLS one (graphs not shown). Comparing both inferences in Table 1, WLS exhibits a 510 
slightly worse NSE index, but a better VE. The reduction in NSE is due to the fact that WLS gives a minor weight to the high 511 
flows during the calibration, yielding a poorer fit to the peakflows. 512 

An improvement with respect to SLS is that WLS has a very good prediction uncertainty assessment, with GR4J slightly 513 
better than with CRR, as it is shown in the PP-Plots of Fig. 4. But, the fact that WLS does not fulfill the error independence 514 
hypothesis implies that: i) there is a problem with the hydrological model structure and/or with the data reliability; and ii) we 515 
have a good uncertainty assessment of a distorted hydrological model which is being used with biased inferred parameters. It 516 
is expected that, out of the calibration period, these biased parameters will induce a poor performance of the hydrological 517 
model as well as of the uncertainty assessment. This was called model divergence phenomenon by Sage and Melsa (1971) 518 
and Sorooshian and Dracup (1980), long time ago. 519 

5.3 GL++ inference 520 

The inference with the GL++ error model fulfills practically all its hypotheses with both CRR and GR4J hydrological 521 
models. As it is shown in top panel of Fig. 6, CRR presents an error distribution with heavier tails than GR4J, but despite this 522 
difference, the fitting to the SEP distribution is good and similar for both hydrological models. The error autocorrelation is 523 
almost eliminated with both hydrological models, although as shown in Fig. 6 (bottom panel), still remains a very small but 524 
significant negative autocorrelation of the innovations for the first three lag times. 525 

Regarding the variance stabilization, it can be seen in Fig. 6 (middle panel) how the conditional variance of errors and 526 
innovations (represented as previously explained by a moving sample variance) are very similar almost for all the range of 527 
simulated streamflows. Hence, GL++ is not able to stabilize the error variances as WLS does it. The reason of this poor 528 
behavior of the variance stabilization is the error bias which has arisen with this GL++ inference, which is not modeled. This 529 
overpredictive bias can be clearly noticed for the CRR model: standard errors (red dots in the middle panel of Fig. 6) have an 530 
increasing, with the simulated streamflow magnitude, negative mean. This effect can also be observed in PP-Plots of Fig. 4, 531 
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where for the GL++ inference the curvature is pronounced and far away from an “S-shape”. Therefore, the GL++ error model 532 

infers the bivariate distribution ( ), sp e q  considering the position of all its error conditional distributions centered at zero 533 

(i.e. with a null conditional bias) and given this, it estimates its shape properties (e.g. its variance). The result is a poor 534 
performance of the variance model given by Eq. (6), which is not able to fit the correct amplitude of the bivariate distribution 535 
without considering correctly its location. In short, in presence of a non-constant bias, a variance model on its own is not able 536 
to correctly model the bivariate distribution of the simulated discharges and its errors. The expression of the TVL in Eq. (7) 537 
summarizes this idea, since it considers both conditional bias and conditional variance terms to obtain the total (marginal) 538 
variance of the hydrological model errors. 539 

  

  

  
Figure 6. Test of GL++ error model hypotheses for CRR (left column) and GR4J (right column) models. In top panels, the evaluation 540 
of the fitting to the SEP distribution, of the observed standard innovations. In middle panels, the homoscedasticity evaluation for the 541 
observed standard errors (red dots and red line) and for the observed standard innovations (black dots and grey line). In bottom 542 
panels, the independence assessment for observed errors and for the innovations, through the autocorrelation function (the 95% 543 
Anderson’s limits in solid black lines). 544 

In view of a better fulfillment of the error model hypotheses (compared with SLS and WLS), it is expected that the GL++ 545 
parameter estimation could be less biased than the corresponding to those classical schemes of inference (Schoups and Vrugt, 546 
2010). In fact, this is the reason for the poor performance shown by the biased prediction of the hydrological model: the most 547 
plausible parameter set, for both hydrological and error models, brings out (in form of a prediction bias) the deficiencies in 548 
the hydrological model and/or in the input data. 549 

Concerning the above mentioned overpredictive bias, Table 1 shows some of its effects. There is deterioration in the NSE 550 
index and VE for the mean prediction, with respect SLS and WLS inferences, for both hydrological models. It must be also 551 
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underlined the great difference between the performance of the two models which arises with GL++ inference. In contrast, 552 
with SLS and WLS inferences, the performance of both hydrological models resulted similar. The CRR performance has 553 
suffered an important deterioration, whereas the GR4J performance is still acceptable. The meaning of all these results is that 554 
GL++ inference forces a more realistic performance of the hydrological models than in SLS or WLS inferences: and this is 555 
indicating that GR4J is able to model this case study with a better performance than the CRR model. In other words, for this 556 
case study GR4J with only 4 parameters is less affected (it has a less biased mean prediction) by the structural and/or data 557 
deficiencies than the CRR model, which have 7 parameters. 558 

The reliability assessment of the PD, through the PP-Plots in Fig. 4, shows for CRR a large overpredictive bias, much bigger 559 
than the GR4J one, confirming the previously explained mean prediction performance for both models. Furthermore, the 560 
overprediction of both hydrological models (bigger for CRR) can also be observed in Fig. 7, where the mean prediction 561 
(green solid lines) is more often above observations (red dots). In relation to the uncertainty assessment, PP-Plots in Fig. 4 562 
show its correctness for both models. Besides, Fig. 7 shows the differences between CRR and GR4J in the appearance of the 563 
95% total uncertainty band: these differences are more visible in the streamflow peaks, where the overestimation in CRR also 564 
induces the greatest widening of this uncertainty band. 565 

  
Figure 7. Predictive performance and 95% uncertainty bands (parameter and total) with GL++ inference on CRR (left) and GR4J 566 
(right) models (parameter uncertainty band is hardly appreciable). 567 

5.4 GL++Bias inference 568 

As it has been underlined, GL++ inferences introduce a bias in the PD of both hydrological models. The bias model in 569 
GL++Bias inference, which was described in section 2 by Eq. (5), considers that error bias depends on the simulated 570 
streamflow, as in the variance model, but with the flexibility of a different behavior for low and high flows. Figure 10 571 
represents, for both CRR and GR4J hydrological models, a scatter of the errors jointly with their inferred variance and bias 572 
models. In this figure, it can be noticed the different behavior of the bias depending on the hydrological model. On the one 573 
hand, inference on CRR distinguishes (see zoomed window in Fig. 10) a different bias slope between low flows and high 574 

flows, with a threshold oq =1.96 mm/d. On the other hand, GR4J practically does not make this distinction and the inferred 575 

threshold oq =1.57 mm/d is very close to the minimum simulated streamflow. In any case, Fig. 10 shows the good fitting of 576 

the used deterministic simple bias model: the inferred lines (blue dashed), representing the error conditional means, are 577 
placed at the central position of the errors scatter. 578 

The inference with the GL++Bias error model yields a reasonably good fulfillment of the hypotheses about the errors. In any 579 
case, better fulfillment than previously analyzed inferences, for the case study. There are remaining problems which are 580 
described in what follows. This inference produces for both hydrological model (see Fig. 8, top panel) a pdf for the 581 
innovations with a high density for the zero and near-zero values; namely, a more kurtotic observed innovations distribution 582 
than the inferred SEP. Besides, and commonly to the previously performed GL++ inferences, the innovations autocorrelation 583 
for the first lags is not completely removed, although its values are relatively small (see Fig. 8, bottom panel). In respect to 584 
the variance stabilization, which had a poor performance in GL++, it can be observed in middle panel of Fig. 8 that the 585 
consideration of the bias model allows a good stabilization of the innovations variance, with a near-horizontal moving 586 
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variance line in the CRR case, whereas for the GR4J the stabilization is also acceptable, albeit the line is not completely 587 
horizontal. 588 

  

  

  
Figure 8. Test of GL++Bias error model hypotheses for CRR (left column) and GR4J (right column) models. In top panels, the 589 
evaluation of the fitting to the SEP distribution, of the observed standard innovations. In middle panels, the homoscedasticity 590 
evaluation for the observed standard errors (red dots and red line) and for the observed standard innovations (black dots and grey 591 
line). In bottom panels, the independence assessment for observed errors and for the innovations, through the autocorrelation 592 
function (the 95% Anderson’s limits in solid black lines). 593 

The performance of the GL++Bias error model combined with the CRR hydrological model is very different from the 594 
performance with the GR4J hydrological model. As it was explained in the GL++ inference, the CRR model showed a more 595 
biased prediction than GR4J. In GL++Bias, the proposed bias model is able to considerably improve the performance of the 596 
mean prediction in CRR (green line in Fig. 9), where prediction bias is practically removed. In the case of GR4J, the bias 597 
model produces an improvement of the prediction, which is more modest: a small overpredictive bias still remains with 598 
GR4J, after the bias model inclusion. 599 

Table 1 shows that CRR model with GL++Bias obtains for the mean prediction a NSE=0.76 and a VE=0.0%, whereas GR4J 600 
yields a NSE=0.80 and also a VE=0.0%. The null error in volume, confirms a fair performance (considered in average over 601 
all the calibration period) of the bias model. In general terms, the comparison between GL++ and GL++Bias shows that the 602 
CRR mean prediction performance has improved notably (from NSE=0.25 to NSE=0.76), but for GR4J the performance is 603 
nearly the same in both inferences (slightly decreasing from NSE=0.82 to NSE=0.80). We can conclude that the prediction 604 
bias which arises from the GR4J model with GL++ is small, but with a structure too complex to be well-reproduced by the 605 
bias model hypothesized by GL++Bias. On the contrary, most of the large bias which arises from the CRR model with GL++ 606 
can be corrected with the bias model given by GL++Bias. 607 
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Regarding the predictive uncertainty assessment, both GL++Bias inferences yield a reduction of the slope parameter in the 608 
variance model, in comparison with the corresponding GL++ inference (Tables 2 and 3, and black lines in Figs. 10 and 11). 609 
This reduction is larger for GR4J (from 0.35 to 0.15) than for CRR hydrological model (from 0.42 to 0.33). Due to this 610 
reason, the PD width for GR4J model is smaller than for CRR, which can be observed comparing the two 95% uncertainty 611 
bands in Fig. 9. That is to say, when GL++Bias error model is used, predictions with CRR are more uncertain than with 612 
GR4J, but are also less biased. The PP-Plots (Fig. 4) exhibit the good performance of the PD for both hydrological models: 613 
even the CRR model with the GL++Bias error model shows a near-perfect fit to the 1:1 line. 614 

Furthermore, looking at right panel of the Fig. 9, it is important to realize that the GL++Bias inference for GR4J model is the 615 
only inference that exhibits a significant contribution of parameter uncertainty to the total predictive uncertainty. This 616 
contribution seems to be underestimated in all the other performed inferences. 617 

  
Figure 9. Predictive performance and 95% uncertainty bands (parameter and total) with GL++Bias inference on CRR (left) and 618 
GR4J (right) hydrological models. 619 

 620 

  
Figure 10. GL++Bias error model features for CRR (left) and GR4J (right) hydrological models: inferred conditional variance 621 
(black line) and inferred conditional bias (dashed blue line) with the error versus qs scatter plot. The zoom window shows the 622 
performance of the inferred bias model for low flows. 623 

 624 

 625 

 626 

 627 

 628 
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6.  Discussion 629 

6.1 Comparison between enforcing (TL) or not enforcing (NTL) the Total Variance Law 630 

In this research, we are assuming hydrological model errors are part of a joint (bivariate) probability distribution between 631 
errors and simulated discharges at the catchment outlet. The conditional and marginal distributions belonging to a joint 632 
distribution must fulfill the TLs. As it was exposed in previous sections: i) SLS hypotheses “automatically” induce the TLs 633 
fulfillment; ii) when error statistical features are hypothesized as non-constant, and they are expressed with parametric 634 
functional forms as in Eqs. (5) and (6), the inference problem must be constrained to ensure the TLs fulfillment; iii) if the 635 
error model assumes no error bias, TEL is supposed to be “automatically” fulfilled. When TLs are not fulfilled, the inferred 636 
errors and the corresponding state variable (streamflow in this paper) cannot belong to the same bivariate joint distribution 637 
and therefore, the predictive uncertainty problem to solve is statistically incorrect. 638 

This incorrectness generates problems, mainly related with spurious parameter interactions, affecting the inference results 639 
and making them unsuitable and possibly non-robust (Evin et al., 2014). This section will demonstrate that not enforcing the 640 
TLs is, at least, one of the most important causes of these problems. This demonstration has been done for the WLS and 641 
GL++ error models comparing the results with and without (NTL) the TLs enforcement. Since these two error models assume 642 
no error bias, only TVL must be enforced in the joint inference. 643 

In the WLS comparison, we have found that results with and without TVL enforcement are very similar. This occurs with the 644 
two used hydrological models. The inferred hydrological parameters result similar (see Tables 2 and 3), so the hydrological 645 
model behavior is practically the same and the likelihoods are also similar (not shown). Concerning the error variance model 646 
parameters, they are not exactly equal, as Tables 2 and 3 show, but the difference seems to be negligible (e.g. for CRR model 647 
κ =  0.24 in NTL case and κ = 0.27 in TL case). Therefore, it seems that WLS inference would also be able to fulfill the 648 
TLs (as SLS), without the need of enforce them. However, this is not the case. WLS generally will not fulfill the TVL if this 649 
is not enforced. But this is not an important issue in the case of the WLS inference, as it is explained in the following. Let 650 

{ }ML,TL
,α κ  be the set of variance model inferred parameters that fulfills both the maximum likelihood and the TLs criteria. 651 

It can be demonstrated that with WLS, any other set of parameters such that { } { }ML ML,TL
, c ,α κ α κ= , where c 0>  is a 652 

proportionality factor, will have the same maximum likelihood value, but it will not fulfill the TVL. Hence, with the WLS 653 
error model, the same hydrological parameter estimation is inferred, as well as similar uncertainty bands are obtained, using 654 

{ }ML,TL
,α κ  or using any other { }ML,TL

c ,α κ . This means that WLS, in NTL case, is a bad-posed problem to estimate a 655 

unique identifiable set of variance model parameters. In the case study, for the CRR hydrological model, a proportionality 656 
factor of c = 1.125 has been obtained, as it can be checked in Table 2. 657 

Regarding the comparison of the GL++ joint inferences, with and without the TLs enforcement, this research demonstrates 658 
that when the error model considers both the autocorrelation (AR) and the heteroscedasticity models, not enforcing the TLs 659 
has a significant effect on the result of the inference (unlike to what has been resulted for WLS error model). Figure 11 shows 660 
the error scatter plots as well as the inferred linear variance models for the GL++ inferences with and without the TVL 661 
enforcement. In these cases, the effects of not considering the TLs with GR4J (right panel) are always substantially larger 662 
than with CRR (left panel). These effects are the following: i) an increment of the slope in the linear variance model (see Fig. 663 
11), from TL enforcement (black lines) to NTL (gray lines); ii) a change in the hydrological parameters, significant with 664 
GR4J (Table 3) and small with CRR hydrological model (Table 2); iii) an important erroneous uncertainty overestimation, as 665 
can be observed by the comparison between Figs. 7 (TL case) and 13 (NTL case), for the CRR model (left panels) and for 666 
GR4J (right panels); iv) changes in the PD or even radically different PDs, as it is shown for the GR4J model in the 667 
corresponding PP-Plot of the right panel in Fig. 4, where with GL++ there is a moderate overprediction, and with GL++NTL 668 
a strong underprediction; v) in NTL inferences it is observed a high correlation (as a spurious parameter interaction, which it 669 
does not exist when TLs are applied) between the slope parameter of the error standard deviation and the autocorrelation 670 
parameter (Fig. 12). This last feature was also reported in Evin et al. (2013, 2014). 671 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-9, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 17 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



Page 23 of 39 
 
 

 

  
Figure 11. GL++ and GL++NTL error model features for CRR (left) and GR4J (right) hydrological models. TVL enforcement case: 672 
inferred variance model (black line) and error versus qs scatter (red). NTL case: inferred variance model (grey line) and error versus 673 
qs scatter (grey). 674 

We have numerically tested in the case study the fulfillment or not of the TLs. Because WLS and GL++ assume no error bias, 675 
TVL in Eq. (7) simplifies to Eq. (21). For the CRR-GL++ inference the calculated error marginal variance value (left term in 676 
Eq. (21)) is 2.25 mm2/d2, which exactly matches the value for the mean of the conditional variances (right term in Eq. (21)). 677 
However, in the CRR-GL++NTL case, the calculated error marginal variance is 1.97 mm2/d2, which is very different from 678 
the mean of the conditional variances (3.31 mm2/d2). Therefore, in the NTL case, as it was expected, there is an imbalance 679 
between the marginal and conditional error variances. 680 

  
  
Figure 12. Posterior distribution of the slope parameter of the variance model, posterior distribution of the autocorrelation 681 
parameter of the AR(1) model and scatter plot between them, for inferences with CRR hydrological model: left panels with 682 
GL++NTL error model; right panels with GL++ error model. 683 
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Figure 13. Predictive performance and 95% uncertainty bands (parameter and total) with GL++ NTL inference on CRR (left) and 684 
GR4J (right) models (parameter uncertainty band is hardly appreciable). 685 

6.2 Hydrological parameter estimates depending on the error model 686 

It has already stated in previous sections that an incorrect error model (actually an incorrect likelihood function) can yield 687 
apparently very good mean predictions in calibration, but with biased hydrological parameters and an incorrect uncertainty 688 
assessment. The paradigm of this idea is the SLS error model, widely used in hydrological modeling. On the contrary, a 689 
correct consideration of the errors in the inference yields more suitable parameter estimation and correct hydrological 690 
predictions, showing the model deficiencies in the form of a biased model results and an acceptable uncertainty band, even 691 
with a poor fitting to the observed data. The analyzed case study has at least a known structural problem in both models, the 692 
neglected snow processes, and for sure other problems not yet identified in the model or in the data. All these circumstances 693 
predetermine the errors structure, departing it from the SLS hypotheses of zero bias, normality, independence and 694 
homoscedasticity. Previous sections have shown how the predictions and their uncertainty evolve as a function of the 695 
hypothesized error model, from the SLS to the GL++Bias. This section will show the “other side of the coin”: how the 696 
parameters change with the error model. 697 

To illustrate the effect of the error model on the inferred parameters, it has been chosen the GR4J model, since it is 698 
parsimonious and all its four parameters have been perfectly identifiable in all performed inferences, which did not occur 699 
with the CRR model. Figure 14 presents the four parameter marginal posteriors of GR4J hydrological model when they are 700 
jointly inferred with the SLS, WLS, GL++ and GL++Bias error models. There are important differences between the 701 
marginal posterior distributions, especially for parameters θ1, θ2, and θ3. Another important characteristic to analyze is the 702 
parameter uncertainty: for parameters θ1 and θ2 it tends to increase with the more sophisticated error models, whereas for 703 
parameters θ3 and θ4 it remains similar. Concerning the corresponding CVs (Table 3), systematically SLS gives smaller 704 
values. 705 

But the most paradigmatic and didactic proof of the necessity of making the parameter inference with a proper error model is 706 
the case of the GR4J parameter θ2 (the groundwater exchange coefficient). Figure 14 shows how the estimated θ2 suffers 707 
important changes in its value (and even in the sign!) depending on the inference. This has a deep consequence in the model 708 
conceptualization of the analyzed basin. For GR4J, a negative value of θ2 means that a deep (or regional) aquifer receives 709 
water from the basin. In contrast, a positive value of θ2 means that this regional aquifer feeds the basin with groundwater 710 
(whose origin is out of the basin). On the basis of our knowledge about the geology of FB basin, it does not have a deep 711 
aquifer with which exchange water. Hence a reasonable value for θ2 should be zero. I.e. the water balance of the basin must 712 
be closed without losses or contributions different to actual evapotranspiration or precipitation respectively. In absence of a 713 
regional aquifer, different values to zero are due to model and/or input deficiencies and they do not have any hydrological 714 
meaning, although they enable to close the water balance. In our case study, SLS inferred MAP value is θ2=-0.71 mm, WLS 715 
MAP value is still more negative, whereas with the GL++, we get a MAP value of θ2=-0.55 mm. All three inferences without 716 
bias need dewater the basin (negative values for θ2). Nevertheless, the most plausible inferred value for θ2 (the closest to 717 
zero) corresponds to GL++, the most correct among these three error models. 718 
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Regarding GL++Bias inference, its MAP value is θ2=2.89 mm. According to the previously exposed, in our case study this is 719 
an implausible value for this parameter (it is the most different from zero). Another important feature to note is that the 720 
uncertainty of θ2 with GL++Bias is the highest of all hydrological parameters and performed inferences, as it is shown in Fig. 721 
14 and reflected in the CV values for this parameter in Table 3. This high uncertainty is the main responsible of the thick 722 
predictive uncertainty band due to the parameters, which was shown in Fig. 9 (right panel). In short, neglecting the bias 723 
modeling or considering an incorrect error bias model produces a biased estimation of parameter θ2. In general, incorrect 724 
error models will produce biased parameter estimates. 725 

  

  
Figure 14. Evolution of the posterior distribution (box-plots) of the four GR4J model parameters with the four hypothesized error 726 
models. 727 

6.3 Performance of the different inferences 728 

There are several criteria in which we could rely to state why or why not an inference should be considered as a suitable 729 
inference, given a hydrological model. The first general criterion should be the degree of fulfillment of each error model 730 
hypotheses. In other words, assessing to which extent the inferred errors are unbiased, homoscedastic and independent, and 731 
also show a good fitting to the hypothesized distribution. This analysis has been exhaustively done in section 5. 732 

A second general criterion (which could be included into the previous one) is how accurate are the hypothesized error bias 733 
and variance models. This accuracy can be easily checked by testing if the inferred standardized errors η , defined in Eq. (8), 734 

have zero mean and unit variance. The mean and standard deviation of the standardized errors (η  and ηS  respectively) are 735 
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shown in Table 1 for the case study. This criterion is focusing on the goodness of the error standardization (hereinafter 736 
GoES). The meaning of getting other different values to the theoretical ones (zero or one respectively) is that we are shifting 737 
and scaling the errors but not making their correct standardization; namely, the hypotheses for the error bias and/or variance 738 
models are unsuitable. It is important to realize that the fulfillment of both TLs is a necessary but not sufficient condition to 739 
obtain standardized errors with statistics satisfying or near-satisfying their theoretical values: i.e. the suitability of the error 740 
model components is also a necessary condition. Previous works (Evin et al., 2013, 2014; Scharnagl et al., 2015), where TLs 741 

were not enforced, considered that the standardized errors variance 2
ηS  is, in any case, equal to one. However, inferred 2

ηS  742 

can be very different from the unit when TLs are far to be fulfilled. As an example with the GR4J hydrological model, this 743 

research got a value of ηS =0.2 for the GL++NTL inference, instead of the more correct value of ηS =0.95 for the 744 

corresponding GL++ inference (see Table 1). 745 

The third general criterion to distinguish a fair inference is based on the general reliability of the PD. This can be visually 746 
assessed by means of the PP-Plots (as was done in section 5). Moreover the reliability of the PD can be quantified through 747 
the reliability and the resolution (or degree of certainty) indexes, defined as in Renard et al. (2010) and shown in Table 1. 748 
Generally, an inference with a proper GoES also has high reliability indexes (as occurs with the CRR-GL++Bias inference), 749 
but the opposite is not necessarily true (as occurs with the GR4J-GL++Bias inference). Given several inferences with a 750 
similar PD reliability index, those with the lowest prediction uncertainty, namely with the highest resolution, are preferable. 751 

Finally, as the fourth general criterion, we should check and discard those inferences which exhibit parameter values whose 752 
meaning may not correspond to the knowledge we have about the basin behavior. This was already analyzed for one 753 
hydrological model in section 6.2. 754 

Therefore, only when all previous criteria are acceptably satisfied, we could pay attention to the performance of the expected 755 
prediction (tested by its NSE and VE indexes shown in Table 1). That is to say, prediction performance of the hydrological 756 
model is a consequence (rather than a selection criterion) and it should be subordinated to the fulfillment of all previously 757 
exposed criteria. It is important to realize that, in this way, it will be obtained a set of parameter estimates which are expected 758 
to be more robust than those obtained with the classical least-squared based optimization methods. 759 

These criteria have been applied to all the implemented inferences. Regarding SLS, the conclusion is direct: fails to meet the 760 
most of the requirements, but it has the useless property of having generally good performances of the expected prediction in 761 
calibration. Concerning WLS, this error model only fulfills with the error homoscedasticity hypothesis, and generally also 762 
exhibits good reliabilities of the PD in calibration. However, since WLS does not remove the errors serial dependence 763 
structure, it cannot be considered a correct error model when this problem appears. With respect to the GL++ and GL++Bias 764 
error models, conclusions are different depending on the hydrological model applied in the joint inference. But, a common 765 
behavior for these inferences is an acceptable fulfillment of the error model hypotheses, which is an important advance over 766 
the classical SLS and WLS error models. 767 

To complete the discussion about both GL++ and GL++Bias error models, we will focus on Fig. 15. This figure shows a 768 
reliability-resolution diagram where are represented all inferences. The reliability-resolution diagram is useful for comparing 769 
several inferences. It is important to note that the limits between classification zones in the diagram are subjective, based on 770 
our experience, and they are provided only for guidance. The lines in the diagram are the trajectories from the simplest to the 771 
more advanced error model, starting with SLS as the reference inference. Furthermore, the NTL inferences where TLs have 772 
not been enforced are also represented with red trajectories. The main aspects to be considered in relation with Fig. 15 are the 773 
following: 774 

i) As it has already been exposed, this diagram shows how WLS improves both reliability and resolution in 775 
relation to SLS, yielding a very good PD performance in calibration. Figure 15 also shows how WLS inferences 776 
yield similar points in the diagram between the NTL and TL cases, as theoretically expected (see section 6.1). 777 

ii) GL++ inferences deteriorate the PD reliability in comparison with WLS. The evolution from WLS to GL++, 778 
which involves the application of an autoregressive model on the errors, is able to “convert” any of the 779 
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parameter bias yielded by WLS into a bias in the prediction, but with the worsening of the PD reliability. It is 780 
expected that, the more the PD reliability difference between WLS and GL++ is, the more the parameter bias in 781 
WLS and the prediction bias in the GL++ are. According to this, it can be noticed (Fig. 15) that distance 782 
between WLS and GL++ in GR4J is much smaller than in CRR, indicating that GR4J has less structural 783 
deficiencies than CRR. I.e. GR4J is a better model for this case study. 784 

 785 

 
Figure 15. Reliability-Resolution diagram. Comparison of the PD performance for all inferences with the TLs enforcement: with 786 
CRR (continuous black trajectories) and with GR4J (dashed blue trajectories). Consequences on the PD when TLs are not enforced 787 
(NTL cases): with CRR model (continuous red trajectories) and with GR4J model (dashed red trajectories). 788 

iii) The enforcement of TLs on GL++ inferences improves the performance of the PD in resolution and/or 789 
reliability in respect to the corresponding GL++NTL inferences. In our case study and for the CRR model, the 790 
improvement is mainly on the resolution, whereas with the GR4J model the inference with the enforcement of 791 
TLs yields a great improvement on both resolution and reliability indicators. In fact, for both hydrologic 792 
models, we can see that the GL++NTL inferences show a PD performance even worse (in both resolution and 793 
reliability) than the corresponding SLS inferences. 794 

iv) The addition of a bias model to GL++ corrects in some degree the worsening in the reliability produced in the 795 
transition from WLS to GL++ for both hydrological models. The achieved reliability in the GL++Bias inference 796 
depends on the suitability of all the hypothesized error model components (bias, variance and dependence 797 
models) to reproduce the complexity of the error structure. The second criterion could be a good benchmark to 798 
test this suitability. So, for the CRR model, the GL++Bias inference yields the best reliability (see the good 799 
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fitting to the diagonal of the PP-Plot in Fig. 4) and it also produces the best GoES statistics, as shown in Table 800 
1. Therefore, the GL++bias inference seems to be the most suitable for the CRR model. Focusing on the GR4J 801 
model, GL++Bias inference slightly improves the reliability and the resolution, in relation to the corresponding 802 

GL++ inference. However, GL++Bias obtains GoES statistics ( ηS =1.5 and η =-0.28) which are moderately 803 

worse than for the GL++ inference ( ηS =0.95 and η =-0.26). We can conclude that the inferred simple error 804 

bias model is not as suitable for GR4J as it seems to be for CRR. 805 

7.  Conclusions 806 

This paper has addressed the challenging problem of jointly estimate hydrological and error model parameters in a Bayesian 807 
framework, trying to solve some of the problems found in previous related researches, as in the second case study of Schoups 808 
and Vrugt (2010) as well as in Evin et al. (2014), among others. 809 

Firstly, we have developed a new general formal likelihood function for parameters and predictive inference of hydrological 810 
models with correlated, biased, heteroscedastic, and/or non‐Gaussian errors, which is based on the general likelihood 811 
function developed in Schoups and Vrugt (2010), but with the methodological modifications proposed by Evin et al. (2013). 812 

Secondly, the detection of pitfalls in the joint inference methodology was not completed with the Evin et al. (2013) paper. In 813 
that paper and all previous related ones, the non-constant error variance and the error serial dependence were jointly modeled 814 

without considering that the errors and the simulated streamflow conform a joint distribution ( ), sp e q . Therefore, they also 815 

did not consider any relationship between the error conditional (on sq ) distributions and their associated error marginal 816 

distribution. The main finding of this paper is that a joint inference, to be correct, must take into account the joint distribution 817 

( ), sp e q  and consequently the relationship between its marginal and conditional distributions. This relation is defined by 818 

two general statistical expressions called the Total Laws (TLs): the Total Expectation and the Total Variance Laws. An 819 
important consequence of the TLs enforcement is the reduction of the degrees of freedom in the inference problem: namely, 820 
the reduction of the parameter space dimension. For the case of considering more than one state variable of interest, any joint 821 
inference must take into account the joint probability distribution of all variables to be predicted and its corresponding errors. 822 
This hyper-joint distribution must also fulfill TLs. 823 

In the presented case study, the Bayesian joint inference has been performed through the application of several inference 824 
models, as the known SLS or WLS and the new GL++ and GL++Bias. The Differential Evolution Adaptive Metropolis 825 
algorithm Dream-ZS (Schoups and Vrugt, 2010; Laloy and Vrugt, 2012) has been used to sample the posterior distribution of 826 
the hydrological and error model parameters. The inferences were carried out on two lumped hydrological models (the CRR 827 
model and the GR4J model) which were forced with daily hydrometeorological data from a basin of the MOPEX project: the 828 
French Broad basin, a wet basin of 2448 km2. The main conclusions derived from the case study analysis are summarized in 829 
the following paragraphs. 830 

Surplus non-random information is accumulated in the errors when a hydrological model is not able to process the inputs in a 831 
correct way to reproduce the state variable observations. This model incapacity is due to deficiencies (misspecifications) in 832 
the model structure and/or in the observed input/output data reliability. The non-random errors show several symptoms (e.g. 833 
marginal and/or conditional non-zero-mean distributions, autocorrelation) which alert us about the presence of problems in 834 
the model and/or data. In presence of these problems and, if we apply the “true” but generally unknown parameter set, 835 
hydrological model simulations could be far from the observed values. Having this in mind, it is important to note that only 836 
when the jointly inferred errors fulfill the hypotheses of the error model, the hydrological model shows the most realistic 837 
prediction and the less biased parameter estimates. If we do not want or cannot improve the hydrological model and data 838 
reliability, the error model must take into account (in an aggregated way) all these deficiencies. That is the reason why GL++ 839 
inference has brought to light the deficiencies of both hydrological models, as a bias in the prediction. Moreover, GL++ has 840 
enabled to determine that, for the case study, GR4J is a better model (because shows a less biased prediction) than CRR, 841 
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whereas the results of the SLS inference could suggest the opposite. In short, structural or data problems necessarily 842 
undermine either the reliability of the inferred parameters or the performance of the model results, depending on the chosen 843 
error model. 844 

The non-fulfillment of the TLs is statistically incorrect when we are modeling a joint pdf through the definition of its 845 
conditional distributions. Only simple error models, as SLS, do not explicitly need the TLs implementation. Non-fulfillment 846 
of TLs produces incorrect parameter estimates and little reliable predictive distributions, as it was shown in NTL cases. 847 
Probably this is also the main cause of the spurious parameter interactions found in Evin et al. (2014) and shown in Fig. 12 848 
for our case study. However, the TLs enforcement is a necessary but not sufficient condition for the correct parameter 849 
estimation and predictive uncertainty assessment: a misspecification or incorrect hypothesis about the errors statistical 850 
features can also yield biased estimates and little reliable predictive distributions, as it was also reported by Reichert and 851 
Schuwirth (2012). For example, we have demonstrated that ignoring the modeling of the error biases, when they exist, 852 
produces biased predictions. This has been shown with the GL++ inferences yielding biased predictions with both 853 
hydrological models. Besides, ignoring the bias or modeling it incorrectly produces biased parameters regarding the “true” 854 
parameter set. This was clearly shown for the parameter θ2 of the GR4J model. 855 

A Bayesian formal approach to address the inference of hydrological models, as proposed in this paper, breaks away with the 856 
paradigm of parameter estimation methods based on minimizing summary statistics of model errors. In this context, this 857 
research has followed several selection criteria which are useful to discard or accept different inferences. As summary and in 858 
sequential order: i) the fulfillment of the error model hypotheses, including the adequacy of the bias and variance models to 859 
the inferred errors; ii) the general reliability of the PD; and iii) the plausibility of the parameter values in the context of the 860 
hydrological knowledge about the modeled basin. However, given the hydrological model, the resulting performance of the 861 
prediction, the reliability of its predictive uncertainty, as well as the robustness of the parameter estimates, will be exclusively 862 
conditioned by the first criterion: the degree in which errors fulfill the error model hypotheses. 863 
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Appendix A 870 

This appendix shows how to obtain the general likelihood function given by Eq. (17). This new likelihood function evolves 871 
from the original version in Schoups and Vrugt (2010), implementing the methodological correction proposed in Evin et al. 872 
(2013) according to which errors must be studentized before applying an autoregressive error model on them. 873 

From the viewpoint of Bayesian statistics, not only variable observations but also model parameters are considered as random 874 
variables. Therefore, a density function of multivariate joint probability (hyper-surface) with the observations and the 875 
parameters { }( ), , h ep y θ θ  must be taken into account. If, on the generated hyper-surface, a cut is made by a hyper-plane 876 

that passes through a given vector of parameters, a so-called sampling distribution (or data distribution) { }( ), h ep y θ θ  is 877 

obtained, which gives the probability of the set of observations, y , conditioned on the values of this parameter vector. But 878 
when the cutting of the hyper-surface is made with a hyper-plane passing through the observations of the random variable, 879 
the concept of the likelihood function of the parameters conditioned on the observations { }( )|, 

 h e yθ θ  arises. The 880 

analytical expression of the likelihood is the same as for the data distribution. 881 
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Although the likelihood function is not a probability function, the probability of a set of model parameters, given the 882 
observations, is proportional to the likelihood of these parameters. In this paper, the hypothesized error model is additive and 883 
given by: 884 

 | |ε µ µ= − − = −
s ss e y e yy y e  (A1) 885 

and, when an additive error model is considered, we can write: 886 

 { }( ) { }( ) { }( ), , ,| | |ε ε= = h e h e h ep y pθ θ θ θ θ θ  (A2) 887 

The Conditional Probability Law establishes the following relation among the joint, marginal and conditional probabilities of 888 

any two random variables, 1ε , and 2ε , which are conditioned to a parameter vector θ : 889 

 ( ) ( ) ( )1 2 1 2 1, | | | ,ε ε ε ε ε=p p pθ θ θ  (A3) 890 

For convenience, we can split the series of random errors, { }; 1...ε ε= = T
n n N , into two vectors, and based on Eq. (A3) we 891 

can write: 892 

 { }( ) { }( ) { }( )1 2: 1, ,| ,| | ,ε ε ε ε=h e h e N h ep p pθ θ θ θ θ θ  (A4) 893 

In the application of the error model defined in section 2.2, two transformations on the random errors, ε , were made to 894 
convert them first to the studentized errors, η , and finally into the standardized innovations, a . The same transformations 895 
must be performed on Eq. (A4) so that: 896 

 { }( ) { }( ) { }( )
( 1)

11
1 1 1

1

|, ,| |, ε
ηε η σ η
ε =

−∂
= =

∂ s t
h e h e h eqp p pθ θ θ θ θ θ  (A5) 897 
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2: 1 2: 1 2: 1
2

1 1 1
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2 2 2 2

| , det | , |, , ,

,

,

| , | |, , ,,ε ε ε

ηε ε η η η η
ε

η η σ η η σ σ η η

=

− − −
− −

= = = =

∂
= = =

∂

= =

∏

∏ ∏ ∏ ∏
s s s

N

N h e N h e N h e
t

N N N N

N h e t h e t h ey y
t t t

y
t

p p p

p p p

θ θ J θ θ θ θ

θ θ θ θ θ θ
  (A6) 898 

In Eq. (A6), det J  is the absolute value of the Jacobian matrix determinant for the transformation in Eq. (8). Substituting 899 

Eqs. (A5) and (A6) into Eq. (A4) we can write: 900 

 { }( ) { }( ) { }( )
( 1)

1 1
1 1:( 1)

2

| | | ,, , ,ε εε σ η σ η η
=

− −
−

=

= ∏
s t s

N

h e h e t ey hy
t

p p pθ θ θ θ θ θ  (A7) 901 

By taking into consideration Eq. (9), we can write: 902 

 

{ }( ) { }( ) { }( )

{ }( ) { }( )

( 1)

( 1)

1 1
1 ( 1)

2

1 1
1

2

, , ,

,

| | |

| ,

,

|

ε ε

ε ε

ε σ η σ η η

σ η σ

=

=

− −
−

=

− −

=

= =∏

∏

s t s

s t s

N

h e h e t h ey y
t

N

h e h ey y
t

p p p

p p z

θ θ θ θ θ θ

θ θ θ θ
 (A8) 903 
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Using the approximation for t=1 given by Schoups and Vrugt (2010), Eq. (A8) can be rewritten as: 904 

 { }( ) { }( )1

1

| ,|, εε σ −

=

≅ ∏
s

N

h e h ey
t

p p zθ θ θ θ  (A9) 905 

Finally, if we apply the transformation performed in Eq. (11) to Eq. (A9), we obtain the final expression of the likelihood 906 
function: 907 

 { }( ) { }( ) { }( )1 1

1

| |, |, ,εε ε σ σ− −

=

= ≅ ∏

sy

N

h e h e h e
t

p p azθ θ θ θ θ θ  (A10) 908 

Since we have assumed in section 2.2 that the innovations, a , must fit a Skew Exponential Power distribution (SEP), term 909 

{ }( )| ,h ep a θ θ  is assessed by Eq. (13). To facilitate numerical computation, it is common to use the log-likelihood 910 

function. By taking logarithms on Eq. (A10), the resulting expression is: 911 

 { }( ) ( )

2
1

1
1 1

2
| log l, og

βξ β
β ξε

σ
ε σ
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+

−
= =

≅ − −
+

∑ ∑
s

N N

h e y
t t

w
N c a

z

θ θ  (A11) 912 

Appendix B 913 

The following lines explain in detail how to enforce the Total Laws in the inferences WLS, GL++ and GL++Bias. WLS and 914 
GL++ implicitly fulfill the Total Expectation Law (TEL), because they are supposed to have unbiased errors. Therefore, let’s 915 
start with the Total Variance Law (TVL) which must be enforced in all cases. From the properties of the variance operator, 916 
we can write the following expression applied to an error variance model: 917 

 2 2   σ σ σ     = −     s s se q e q e qV E E  (B1) 918 

Solving for σ 
 se qE  in the last equation we can write: 919 

 ( )0.5
2σ σ σ     = −     s s se q e q e qE E V  (B2) 920 

Considering the TVL given by Eq. (7) for a variance and bias error models, we can write: 921 

 [ ] 2
|σ µ   = +    ss

e qe qV e E V  (B3) 922 

and, solving for the first right term and substituting in Eq. (B2) we obtain: 923 

 [ ]( )0.5

|σ µ σ   = −   
  − ss s

e qe q e qE V e V V  (B4) 924 

In Eq. (B4) the expressions for σ 
 se qE , |µ  se qV  and σ 

 se qV  can be derived through the application of the 925 

expectation and variance operators on Eq. (5) for the bias model, and on Eq. (6) for the variance model. This is carried out as 926 
follows: 927 
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 ( ) ( ) [ ]
2

2σ σ σ κ
+∞

−∞

   = − =   ∫s s s
s s se q e q e qV E f q dq V q  (B7) 930 

where the expectation of the bias model is given by: 931 
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0
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| 0γ τ τ
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s
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 (B8) 932 

For the hypothesis of zero-mean errors, adopted by inferences WLS and GL++, our bias model is | 0µ = ∀
se q sq  and then 933 

| 0µ  = se qV . Therefore, substituting Eqs. (B5) and (B7) into Eq. (B4) and solving for the intercept parameter of the 934 

variance model, α , we obtain: 935 

 [ ] [ ]( ) [ ]0.52α κ κ= − −s sV e V q E q  (B9) 936 

which is the only non-independent parameter under the zero-mean error hypothesis and corresponds to the Eq. (22). 937 

Our model GL++Bias has the hypothesis of having not zero-mean errors. In this situation, we must enforce both TVL and 938 
TEL and, as a consequence, three more error model parameters are not independent. Applying the TEL in Eq. (3) with an 939 
error model with bias, we can write: 940 

 [ ] |µ =  se qE e E  (B10) 941 

Considering our bias model defined in Eq. (5) and using the results given by Eq. (B8) we obtain: 942 

 
[ ]
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0 0γ τ
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s

s s
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q E i

e

q fE e q q

q
 (B11) 943 

where, γ  is the second non-independent parameter. First expression in Eq. (B11) corresponds to Eq. (25). If we equate both 944 
expressions in Eq. (B11), for the streamflow threshold q0, we can obtain the expression for parameter τ , which is the third 945 
non-independent parameter and corresponds to Eq. (26): 946 

 
[ ] [ ]

20

τ
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 −  

1 2

s
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 (B12) 947 
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where, subindexes 1 and 2 distinguish the low and high streamflow populations respectively. Finally, since the 948 
heteroscedasticity model parameters, α  and κ , are the same for both streamflow populations, and taking into account 949 
equations (B5), (B6) and (B7) for their substitution into the Eq. (B4): 950 

 
[ ]( )
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1 1

2 2
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2
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2 2

α κ κ
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V e V q E q

V e V q E q
 (B13) 951 

From Eq. (B13), κ  can be solved iteratively, and it is the fourth and last non-independent parameter. When parameter α  is 952 
close to zero, an approximate explicit solution is given by: 953 
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 (B14) 954 

which corresponds to Eq. (24). 955 

 956 

  957 
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Table 1. Some performance indexes for SLS and inferences with TLs, for both hydrological models. 1065 

 1066 

 
CRR  GR4J 

 SLS WLS GL++ GL++Bias  SLS WLS GL++ GL++Bias 
Log-L -1625.5 -461.3 759.0 773.3  -1819.9 -726.1 742.2 749.9 

NSE* 0.90 0.87 0.25 0.76  0.87 0.85 0.82 0.80 

RMSE* 0.59 0.66 1.59 0.91  0.66 0.70 0.78 0.83 

VE* (%) 5.5 2.7 32.9 0.0  0.8 -3.6 2.8 0.0 

Sη --- 0.88 0.76 1.04  --- 0.79 0.95 1.5 

η --- -0.09 -0.73 0.04  --- 0.07 -0.26 -0.28 

Reliability 0.79 0.91 0.50 0.96  0.81 0.96 0.81 0.88 

Resolution 3.68 5.66 4.70 3.94  3.13 4.45 4.30 4.40 

* Values for the Mean Prediction       
 1067 
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Table 2. Maximum a posteriori (MAP) and coefficient of variation (CV) of inferred parameters, for all inferences with CRR 1070 
hydrological model. CVs equal or larger than 0.2 are marked in red colour. Inferred parameters by the TLs enforcement are 1071 
marked in shadow. 1072 

 1073 

    WLS GL++ GL++ Bias 

  SLS NTL TL NTL TL TL 

  MAP CV MAP CV MAP CV MAP CV MAP CV MAP CV 

CR
R 

Imax 10.00 0.06 2.32 0.18 2.07 0.17 0.49 0.47 0.48 0.42 0.96 0.42 

Smax 207 0.05 369 0.07 363 0.06 37 0.80 34 0.13 36 0.09 

Qsmax 7.60 0.07 3.67 0.08 3.76 0.07 16 0.76 12 0.12 8.84 0.11 

αe 97 0.20 12 0.09 12 0.09 89 0.33 90 0.28 85 0.29 

αf -0.12 1.77 -0.64 0.43 -0.60 0.38 -0.36 3.88 -0.768 0.72 -1.26 0.20 

Kf 2.46 0.02 3.14 0.03 3.15 0.03 1.98 0.04 2.05 0.04 1.83 0.03 

Ks 91 0.05 46 0.07 47 0.07 62 0.10 66 0.08 90 0.11 

Er
ro

r M
od

el
 

α 0.58 0.06 -0.08 0.08 -0.09 0.17 -0.29 0.09 -0.24 0.05 -0.21 0.42 

κ ---- ---- 0.24 0.03 0.27 0.02 0.52 0.06 0.42 0.03 0.33 0.09 

β ---- ---- ---- ---- ---- ---- 1.00 0.01 1.00 0.01 0.99 0.01 

ξ ---- ---- ---- ---- ---- ---- 1.03 0.03 1.04 0.03 0.95 0.02 

φ1 ---- ---- ---- ---- ---- ---- 0.98 0.00 0.95 0.00 0.94 0.00 

q0 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.96 0.05 

γ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -0.25 0.11 

τ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -0.38 0.29 
 1074 
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Table 3. Maximum a posteriori (MAP) and coefficient of variation (CV) of inferred parameters, for all inferences with GR4J 1078 
hydrological model. CVs equal or larger than 0.2 are marked in red colour. Inferred parameters by the TLs enforcement are 1079 
marked in shadow. 1080 

 1081 

    WLS GL++ GL++ Bias 

  SLS NTL TL NTL TL TL 

  MAP CV MAP CV MAP CV MAP CV MAP CV MAP CV 

G
R4

J 

θ1 991 0.03 1252 0.03 1254 0.03 1847 0.08 2210 0.08 2329 0.08 

θ2 -0.71 0.09 -1.36 0.07 -1.37 0.07 -4.92 0.10 -0.55 0.21 2.89 0.16 

θ3 153 0.03 162 0.04 163 0.04 79 0.04 81 0.04 65 0.05 

θ4 1.55 0.02 1.66 0.03 1.67 0.03 1.54 0.01 1.67 0.02 1.58 0.02 

Er
ro

r M
od

el
 

α 0.655 0.00 -0.001 12.14 -0.003 5.20 0.00 1.07 -0.17 0.07 -0.21 0.09 

κ ---- ---- 0.23 0.06 0.29 0.04 0.66 0.12 0.35 0.04 0.15 0.14 

β ---- ---- ---- ---- ---- ---- 1.00 0.01 1.00 0.01 1.00 0.01 

ξ ---- ---- ---- ---- ---- ---- 0.82 0.02 0.99 0.03 0.94 0.02 

φ1 ---- ---- ---- ---- ---- ---- 0.97 0.01 0.93 0.01 0.93 0.00 

q0 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1.57 0.13 

γ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -1.00 0.20 

τ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -0.32 0.13 
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