
We thank the reviewer for nicely summarizing the key aspects of our study and pointing 
out their importance. We have addressed all of his comments point by point and we 
have tried to respond as short and clear as possible. Moreover, we enormous 
appreciate the interest shown by reviewer, even in the specific details of our work as 
figures, tables, etc. We have revised the manuscript based on the suggestions and 
advice of the reviewer and we have done a big effort in the next replies. We hope that 
our answers successfully address his concerns and requirements, and the proposed 
modifications for the revised manuscript will be accepted for publication. 

 

 

Reviewer’s comment #1 

Case study: 

The French broad river catchment is a particularly wet catchment with a high annual 
runoff (800 mm), a high runoff coefficient (0.56), and a very small proportion of low 
flows. Conceptual hydrological models usually perform well for this type of catchment. 
As shown in Evin et al. (2013) and Evin et al. (2014), this catchment is atypical in the 
sense that adequate predicted streamflows (i.e. reliable and precise) are obtained even 
when the autocorrelation and heteroscedasticity parameters are jointly inferred. In 
other words, even unstable calibration schemes perform well on this catchment. I really 
struggle to see why the authors chose a catchment for which calibration issues are not 
apparent to demonstrate that their methodology solves calibration issues. 

Reply 

Reviewer is partially right. Previous papers of Evin et al. (2013, 2014) did not show any 
kind of problems with the FB basin. Reviewer has to realize that Evin et al. consider a 
Gaussian distribution for the innovations, in all cases. However, a posteriori checks that 
they perform on their inferences show that Gaussian hypothesis is non-realistic, even 
for the FB basin. In order to improve this point, our manuscript considers a SEP 
distribution, which allows the additional possibility of modeling the skewness and the 
excess of kurtosis for the innovations. Having a more flexible inference (two more 
parameters) is a key difference: although it may seem insignificant, it is the cause 
which produces the known inference problems (enlargement of the uncertainty bands, 
getting spurious parameter interactions and yielding unidentifiable autocorrelation 
parameter), also on FB basin, except when TLs are considered. 

We would suggest to the reviewer the reading of the reply RC1#5 to the reviewer-1. 

 

Reviewer’s comment #2 

I am also puzzled by the choice of the calibration/validation period. First, they apply the 
hydrological models on a short five-year period (1962-1966) whereas streamflows are 
available for a much longer period for this catchment (until 1998). Second, they do not 
apply the split-sample procedure which seems essential to assess the predictive power 
outside the fitted period. A major recommendation is thus to: 1. show the results of the  



calibration proposed in the paper on all the MOPEX catchments, as in Evin et al. 
(2014), 2. Apply the split-sampling procedure. If these two requests are fulfilled, a fair 
comparison with the results shown in Evin et al. (2014) will be possible. 

 

Reply 

A 5-years calibration period is exactly the same period (in length and range of dates) 
used in Schoups and Vrugt (2010): same basin, same period, and same CRR model 
(additionally, we have also used GR4J). About this matter, Schoups and Vrugt (2010) 
state: “Experience suggests that 5 years of daily streamflow data contains enough 
information about the parameters of conceptual rainfall‐runoff models…”. Brigode et al. 
(2013) states that “there is no clear consensus on the minimum length of calibration 
period for rainfall-runoff models, which is probably attributable to the specificity of the 
catchments and models used in those studies. Specifically … Anctil et al. (2004) 
obtained good GR4J performance with 3 to 5 year calibration periods and Perrin et al. 
(2007) showed that the calibration of the GR4J … with the equivalent of only 1 year of 
data can provide acceptable performance”. Actually, in our experience with better 
models (an also with more parameter involved), calibration period is possible with just 1 
year of daily data (Frances et al., 2007). 

We will add this information in the revised manuscript. 

Regarding the issue of the validation using a split-sample procedure, the topic of our 
paper is mainly about the hydrological model calibration via a statistical methodology. 
The paper tries to explain and solve the theoretical pitfall which is committed in a joint 
inference when TLs are not considered. Therefore, it is only necessary the comparison 
of the methodology with and without the mistake during calibration. We do not intend to 
demonstrate if GL++ and GL++Bias error models and the used hydrological models are 
absolutely the best ones for the analyzed case study: we agree, this would require a 
thorough validation at different periods to the calibration one. But, this is not the goal of 
the manuscript and we wanted to be as short as possible. 

We will make this clarification in the goals defined in the introduction of the revised 
manuscript. 

 

Reviewer’s comment #3 

Presentation: 

The current presentation of the manuscript is a bit messy. In particular, the main 
novelties of the paper are presented in several parts.  Section 2.1.  is a long 
introduction to the idea of conditioning the predicted streamflow to the simulated 
streamflow, which was already presented at lines 62-72. Section 2.2. presents this idea 
in mathematical terms.  Section 2.3. ("Why and when is imperative the enforcement of 
the total laws") tries to convince the reader that the proposed methodology is essential 
before the presentation of the results. I would suggest moving this section in the 
discussion. Finally, Section 4.4. formalizes how this idea can be applied in practice. 



Reply 

Regarding the structure of the document, we will change it according to the 
suggestions of reviewer-1 defined in RC1#9. 

The proposed methodology tries to transpose, what occurs with the error marginal and 
conditional pdf’s in a SLS inference, to other more “sophisticated” schemes of 
inference. We have not coined the Total Laws. We have only understood that these 
Laws always must (from a theoretical point of view) be fulfilled: by its own (as in SLS) 
or enforcing them. For this reason, we do not have to wait for results to assert that 
Total Laws must be theoretically always fulfilled. For this reason, the manuscript 
introduces the theoretical concept of TLs from the beginning, without waiting for the 
case study results. 

 

Reviewer’s comment #4 

The general tone of the presentation gives the impression that all the previous studies 
for which their methodology was not applied are incorrect. In my opinion, these 
developments, as all the other related studies, propose calibration schemes which 
have different desired properties. For example, Evin et al. (2013) show that applying an 
AR(1) process to standardized errors usually leads to more stable results than applying 
the AR(1) process to raw errors.  I would not say that we ‘must’ apply the AR(1) 
process to standardized errors but this approach is preferable since it leads to a more 
stable calibration schemes with more reliable and more precise predictive streamflows. 
In the proposed study, as discussed below, the obtained results are not especially 
impressive, and do not support statements like "The non-fulfillment of the TLs is 
statistically incorrect". I would appreciate if the authors could let the reader make its 
own opinion, without using the word ‘must’ too often (‘must’ is employed 34 times in the 
paper). 

Reply 

We are very sorry about the impression that the manuscript produces on the reviewer. 
Our paper brings to light theoretical concepts not used in previous researches. This 
does not mean that previous papers are useless. Surely our research will be also 
overcome in the future, but this is not the important thing. Our deep and sincere 
intention is only making a small but useful contribution to the hydrological community. 

Having said that, regarding the sentence “I would not say that we ‘must’ apply the 
AR(1) process to standardized errors but this approach is preferable since it leads to a 
more stable calibration schemes…”. If reviewer reads the comment RC1#5, he will 
have the arguments to understand the reason why we say “must” in that sentence: 
from our experience, recommendation of Evin et al. (2013) is necessary, jointly with the 
application of TLs, to avoid the “feared” and meaningless uncertainty band 
enlargement, even in the FB basin. Anyway, thanks to the comment of reviewer, we 
become aware that we have abused of word “must”. We will re-read the manuscript for 
correcting this issue. For now, Line 398 of original manuscript will be modified as: 
“Firstly we have included the recommendation given by Evin et al. (2013). As they mentioned 



and our experience confirms, errors should be studentized before applying an autoregressive 
model on them.” 

Regarding the sentence “I would appreciate if the authors could let the reader make its 
own opinion, without using the word ‘must’ too often”. We are very sorry for this abuse 
of “must”. Some of them are related with our belief that TLs always must meet, from a 
theoretical point of view. We have re-read the entire manuscript in order to improve 
and to smooth the expressions in the revised manuscript. For example, a compromise 
solution will be using:”must, from a theoretical point of view” and “should” in all other 
cases. 

 

Reviewer’s comment #5 

Interpretation of the results: 

- Lines 545-546:  "it is expected that the GL++ parameter estimation could be less 
biased than the corresponding to those classical schemes of inference". Since the 
‘true’ parameters are unknown, a bias cannot be computed and such a statement 
cannot be verified. I would suggest removing this sentence. 

Reply 

We take and share that idea from Schoups and Vrugt, (2010) (among others) and the 
proper reference is included in our manuscript in the same Line 546. They state: 
“Violation of SLS assumptions may introduce bias in estimated parameter values 
and affect parameter and predictive uncertainty [Thyer et al.,2009]”. 

They also state: ”Robustness of the GL inference results can be attributed to three 
factors: (1) by accounting for heteroscedasticity less weight is given to high flows, 
making the inference less sensitive to large flow events in different calibration data 
sets; (2) long tails of the Laplace distribution allow for a larger number of large errors, 
which again induces robustness against outliers and random variations in large flow 
events; (3) accounting for autocorrelation in the residual errors filters out measurement, 
model input, and model structural errors, resulting in less biased and more consistent 
parameter estimates [Vrugt et al., 2005]” 

From those three references (Schoups and Vrugt, (2010); Vrugt et al., (2005); Thyer et 
al., (2009)) and others as Sorooshian and Dracup (1980) or Sorooshian and Gupta 
(1983), and from our own experience, it can be concluded that: a correct error model 
which correctly considers those three elements (heteroscedasticity, dependence, non-
Gaussianity) should theoretically yield more robust parameters (with less bias) and 
more robust predictive distributions, than the classical error models. 

As we mention in Lines 547-549, “…this is the reason for the poor performance shown 
by the biased prediction of the hydrological model: the most plausible parameter set, 
for both hydrological and error models, brings out (in form of a prediction bias) the 
deficiencies in the hydrological model and/or in the input data”. That is to say, when 
there are problems with data and/or with the hydrological model conceptualization, 
there is a tradeoff between getting a good fitting of the hydrological model to the 



observations and getting a reliable calibrated parameter set. To get both things is 
theoretically impossible. This fact is shown by the GL++ error model of our manuscript. 

In the revised manuscript, we will add to this paragraph, all mentioned references. Most 
of them were already included in other parts of the original manuscript. We will also 
complete the explanations. 

 

Reviewer’s comment #6 

- Lines 562-563:  "In relation to the uncertainty assessment, PP-Plots in Fig.  4 show its 
correctness for both models." I do not understand this interpretation.  In Fig. 4 (and also 
in Fig. 5), we clearly see that GL++ calibration scheme leads to a systematic 
overprediction of the streamflows, for both hydrological models. 

Reply 

PP-Plots are a useful tool which is able to show us two different but related aspects 
about the predictive distribution. The first one is related with the bias of the predictive 
distribution, that is to say, with the shifting of the predictive distribution relative to the 
observations. Only when the PP-Plot crosses the diagonal line at probability 0.5, the 
predictive distribution is unbiased; otherwise we will have a systematic 
Overprediction/Underprediction. The second aspect shown by PP-Plots is about the 
correctness of the width of the bands, that is to say, the “quality” of the uncertainty 
estimation. For example, an inverse S-shaped PP-Plot (typically related with SLS error 
model, as reviewer can see looking at blue solid lines in Figure 4) indicates an 
Overestimation of the predictive uncertainty. On the contrary an S-shaped PP-Plot 
would indicate an Underestimation of the predictive uncertainty. Reviewer has to 
realize that these explanations are valid if the axes configuration is as in our 
manuscript. Some papers have inverted the axes; therefore the explanations will be 
also inverted. In the manuscript, Line 487, we reference the papers in which reviewer 
can find a much better exposition about this tool. 

Therefore, concerning the Lines 562-563 about GL++, the explanation is as follows. 
The first aspect to notice is the related with the bias of the predictive distribution: since 
the black solid line in Figure 4 does not cross to the diagonal at 0.5 (actually in any 
point) the predictive distribution is clearly biased. As the PP-Plot is under the diagonal 
there is an Overprediction: the more the distance of the PP-Plot to the diagonal, the 
greater the bias of the predictive distribution. Regarding the second aspect, the 
uncertainty assessment which is related with the amplitude of the bands, as the PP-
Plot does not have an S-shape, we can say that the uncertainty estimation is correct. 

We will improve these explanations in the revised manuscript. 

 

Reviewer’s comment #7 

- Lines 615-617:  "Furthermore, looking at right panel of the Fig.  9, it is important to 
realize that the GL++Bias inference for GR4J model is the only inference that exhibits a 
significant contribution of parameter uncertainty to the total predictive uncertainty. This 



contribution seems to be underestimated in all the other performed inferences." I 
strongly disagree with this statement.  The parameter uncertainty is related to the 
complexity of the calibration scheme.  For example, for the SLS calibration scheme, 
there is only one parameter to estimate for the residual error model, which is easily 
identified. The parameter uncertainty is thus logically small in this case. 

Reply 

In general, it is true that with less number of parameters, the uncertainty is smaller, if 
the model is correct. We found underestimation of parameter uncertainty using SLS as 
it was also found by Schoups and Vrugt (2010) and Thyer et al. [2009] among others. 
This occurs mainly due to fact that SLS neglects all sources of uncertainty different to 
measurement uncertainty. In hydrological modeling this can lead to an incorrect 
parameter inference. 

What we say in Lines 615-617 is just a description of the results. GL++Bias is the only 
inference which exhibits wide yellow bands (predictive uncertainty due to parameters). 
And the responsible of this widening is the θ2 parameter of GR4J model. In Table 3, 
the coefficient of variation for θ2 in GL++ is larger (0.21) than in GL++Bias (0.16). That 
is to say, θ2 parameter is more uncertain in GL++ than in GL++Bias. But, we can 
observe in Figure 7–right, how in GL++, parameter θ2 is not able to propagate its 
larger uncertainty through the hydrological model: yellow band is hardly appreciable. 
However in GL++Bias, θ2 smaller uncertainty produces a wider yellow band. The 
reason is that, in GL++Bias, the hydrological model is more sensitive to the value of θ2 
than in GL++. In other words, in GL++Bias, the data support strongly the optimal (MAP) 
value adopted by θ2, since variations from this optimal are not possible without 
modifying considerably the output. 

The aim of these explanations in the manuscript is merely to make a description of 
what occurs, and the main comparison is between GL++ and GL++Bias, since both are 
complex error models. The following comments #8 to #11 perhaps clarify better the 
issues about θ2 parameter.  

Of course, we will add these explanations in the revised manuscript. 

 

Reviewer’s comment #8 

- Lines 717-718: "Nevertheless, the most plausible inferred value for θ2 (the closest to 
zero) corresponds to GL++, the most correct among these three error models." The 
water balance parameter θ2 in GR4J tends to compensate global under/over-
estimations. In the absence of physical explanations, this parameter can thus be 
different from zero in order to reproduce the global volume of water.  In this case, it 
acts as a ‘bias’ parameter.   The fact that it is close to zero with GL++ is unclear to me, 
but how can the authors claim that it is the ‘most correct’ estimate when GL++ leads to 
a systematic over-estimation of the streamflows?  For an unexplained reason, with 
GL++, θ2 is not able to compensate the excess of water produced by the GR4J model, 
which is certainly not a desirable feature. 

 



Reply 

Firstly, θ2 is a hydrological parameter whose definition is groundwater exchange 
coefficient for the deep (or regional) aquifer of the basin. As reviewer correctly 
underlines, θ2 is able to compensate (and close) the global water balance. But, for 
doing that, a deep aquifer should exist in the basin. If this is not the case, θ2 should not 
compensate anything. Therefore, since any deep aquifer exists in this basin (Lines 
711-712), θ2 parameter should not do anything except adopting a zero or near-zero 
value. If we want a parameter which acts “as a bias parameter” we should consider it, 
but in an explicit way in the error model, as GL++Bias does. 

Reviewer is right: GL++ leads to a systematic over-estimation of the streamflows. GL++ 
is acting as a (very general) diagnostic tool. GL++ says to us: “these are the best 
results that your model and your data are able to yield; if you want better results 
improve the data, the model or both.” 

As we previously mentioned (reply #5), GL++ brings to light the tradeoff between 
getting a good fitting of the hydrological model to the observations and getting a 
reliable calibrated parameter set. To get both things is impossible when model and/or 
data have problems. 

 

Reviewer’s comment #9 

Figure 15 shows that the WLS calibration scheme offers the best combination of reso- 
lution and reliability. GL++ calibration scheme leads to overpredicted streamflows and 
G++bias fails when the CRR hydrological  model is applied (see the wide predictive 
limits in Fig. 9). It seems to also fail when the GR4J model is applied, since G++bias 
leads to meaningless parameter estimates (unrealistic estimates of θ2 in Fig. 14). 

Reply 

Regarding the WLS error model, reviewer can see our replies to reviewer-1 RC1#3 and 
RC1#6. 

We agree, GL++ calibration scheme leads to over-predicted streamflows. In fact as 
previously mentioned, GL++ is acting as an overall diagnostic tool on the inference: 
GR4J model plus the used input data are not able to reproduce the observations, as 
SLS makes us believe. 

GL++Bias with CRR does not fail. Figure 9 shows an “ugly” uncertainty band, but its 
reliability is quasi-perfect, as the green solid line in Figure 4 shows. Given that the 
check of the other error hypotheses is at least acceptable (as Figure 8 shows), we can 
conclude that the problem is in CRR model and not in the estimated uncertainty band: 
CRR yields results with large uncertainty in our case study. For finding a faulty 
inference, reviewer can see Figures 7 and 13, which compare GL++ error model with 
and without the TLs enforcement, for the two hydrological models: we can affirm that 
GL++NTL (Figure 13) fails. 

We agree with reviewer: GL++Bias error model is not the best error model for GR4J, 
and probably it is not also for CRR: it was not our goal to find the best error model for 



the analyzed case study. However, by checking the error hypotheses fulfillment we can 
affirm that they are far better than SLS and WLS (see section 5 of original manuscript). 
Regarding the θ2 parameter, we mention in Lines 717-718 that the most correct θ2 
estimation is the closest to zero (yielded by GL++). As GL++ is showing us that GR4J 
overpredicts (it needs dewater the basin), therefore a correct bias model would be able 
to correct this situation. Besides, looking at Figure 14, reviewer can see how the 
application of the bias model, at least moves θ2 parameter from the negative value in 
GL++ to a positive one. Therefore, it seems plausible that a better bias model be able 
to move the θ2 value towards zero. But, this is out of the scope of this paper and it will 
be done in future research. 

 

Reviewer’s comment #10 

If I understand correctly the conclusion, the authors  recommend  the application  of 
GL++ or GL++bias, the "fulfillment of the error model hypotheses" being the most im- 
portant criteria. In my opinion, the reliability and the resolution of the predicted stream- 
flows (second criteria) is by far the most important criteria.  From an operational point 
of view, unreliable or imprecise predictions are useless and indicate that the calibration 
scheme is inappropriate. 

Reply 

As we have mentioned previously, the aim of the paper is not to find “the best” error 
model. However, GL++ and GL++Bias are far better than classical error models, as we 
exposed previously. The only thing that we recommend is the enforcement of the Total 
Laws on inferences which consider jointly the variance and dependence models for the 
errors. The error models for the variance, the bias and the autocorrelation that we have 
used are susceptible of being improved, without any kind of doubts: but this is not the 
aim of the manuscript. 

Regarding the issue of how important is the reliability and resolution of the predictive 
distribution; we want to make an instructive reflection. Having a good reliability or 
resolution should not be important when the errors exhibit high autocorrelation, which 
indicates a misspecification of the hydrological model: e.g. this occurs with WLS error 
model. It is important to remember that, model misspecifications diminish the predictive 
power of the misspecified models, although apparently, they can exhibit good 
performance in calibration. The underlying cause of this good performance in 
calibration is the over-fitting through a “forced value” for parameters, rather than the 
correctness of the modeling. Kirchner, (2006) states “[…] to advance the science of 
hydrology, as opposed to the operational practice of hydrology (that is, to improve our 
understanding of how hydrologic systems work), we need to know whether we are 
getting the right answers for the right reasons […] advancing hydrologic science, rather 
than providing better predictions for operational purposes, although of course one 
hopes that the former may lead to the latter”. 

Therefore, from a “model calibration point of view”: if we strive for the error 
modeling (using error models with an adequate complexity) as we do it for the 
hydrological modeling, we will obtain benefits as, more reliable hydrological parameter 



estimation and also more robust predictive distributions. Therefore, we claim: First: The 
benefits of using a complex error model only arise by performing a joint inference of 
hydrological and error model parameters. Second: using a complex error model, with 
the aim of exploiting its benefits, requires obviously the fulfillment of its hypotheses by 
the inferred errors. Third: The definition of the error model through the definition of its 
conditional distributions, as made in our paper and all related ones, requires the check 
of consistency between the error marginal and these error conditional distributions. 
When this consistency does not occur by its own, we propose to use the TLs 
enforcement.  

That said, if the priority is related only with the “operational point of view”, rather 
than with trying to make a reliable parameter inference jointly with getting reliable 
predictive uncertainty estimations, the problem is very different. There also exist other 
much more efficient methodologies, generally used for this tasks (papers from authors 
Krzysztofowicz and Todini are good references). These methodologies are based on 
calibrated models (including black-box models), with any SLS-related calibration 
method, which feed an uncertainty Post-Processor. We explain this in Lines 98-132 of 
the manuscript. Reviewer can also read our reply RC1#6 to reviewer-1 for more ideas 
about the relative importance of reliability and resolution of the predictive distribution, in 
a model calibration context. 

 

Reviewer’s comment #11 

Parameter identifiability: 

The development of more complex calibration schemes is usually difficult due to strong 
parameter interactions and difficulties in identifying all the parameters.   This central 
issue has been extensively discussed in the literature (see, e.g., Renard et al., 2010) 
but is overlooked in the manuscript. The only exception is Figure 12, which shows that 
strong parameter interactions between the slope and the autocorrelation parameters 
are present with GL++NTL, but not with GL++. However, I suspect that other parameter 
interactions are present and not shown.  For example, I would be curious to see the 
correlations between θ2 and the other parameters with the GL++ calibration scheme, in 
particular with the parameter of the bias model in Eq.  (5). That would explain the high 
values of θ2 in Fig. 14. 

Reply 

Right: this is a very important topic even for us! Unfortunately, with the aim of not 
lengthening the article too much we only presented the result and figure more 
representative of the main objective of the paper. Figure 12, because this figure 
represents a faulty inference of parameter phi, but only when TLs are neglected. As we 
explain in RC1#5, “Besides (and the most important), it can be observed the extremely 
high inferred MAP value for phi (about 0.99) when TLs are neglected. In this case the 
posterior distribution of phi shows extreme asymmetry, with the mode at the value of 
one, the upper bound value for autocorrelation parameter. This problem was also 
reported in Scharnagl et al. (2015) for their Likelihood2. From our point of view, this is a 
synonym of having a non-identifiable distribution for the autocorrelation parameter, 



since for phi→1, the AR(1) process becomes nonstationary, as explained in Box et al. 
(1994).” Other interactions among parameters could be possible, but they have nothing 
to do with instability of the inference. 

Anyway, we will try to calm the curiosity of reviewer by showing three interesting 
figures about inferences with the GR4J model (not shown in original manuscript). The 
two first figures are about the most significant parameter interactions on GL++ and 
GL++NTL inferences. Top figure is from GL++ and the bottom one from GL++NTL (that 
is to say, GL++ without TLs). The main points to remark on top figure are: 

1- GL++ does not show high correlation among hydrological parameters 
2- The highest correlations are between θ1-kappa and θ1-phi. However, all 

parameters are perfectly identifiable, and this inference does not suffer the 
enlargement of the uncertainty bands. 

3- Correlations of θ2 are moderate or low 
4- Correlation between kappa-phi is moderate (0.64) 

 



 
 

The main points to remark on bottom figure, about GL++NTL are: 

1- GL++NTL shows a significant increment in correlations among hydrological 
parameters θ1-θ2 (0.39 vs 0.04) and θ1-θ3 (0.80 vs 0.46). Why this undesirable 
increment in correlations between hydrological parameters? They should not to 
be so strongly correlated, as GL++ shows. These increments in the hydrological 
parameter covariance matrix (Jakeman and Hornberger ,1993), when TLs are 
neglected, indicate that hydrological parameters catch less information from 
data than they do when inference considers TLs. Hence, from this point of view, 
GL++NTL inference is less efficient than GL++. This seems to be another more 
symptom of the theoretical pitfall. 

2- Correlations of θ2 are moderate but larger than in GL++, for θ1-θ2 and θ2-
kappa 

3- θ2 MAP value deserves special attention, because it takes the highest absolute 
value for all inferences: θ2=-4.92. If we accept that θ2=0 should be the correct 
value, NTL inference yields the farthest value from the correct, even farther 
than SLS (θ2=-0.71) or WLS (θ2=-1.37). 

4- Correlation kappa-phi is the highest (0.89). However, phi is identifiable with 
GR4J, differently to what occurs with CRR model (see Figure 12 in original 
manuscript). 

Therefore, with GR4J there are several cases of parameter interactions. The most 
harmful, from our point of view, are among hydrological parameters: but these occur 
only in GL++NTL inference. With CRR we found also the problem of a parameter phi 
non-identifiable (Figure 12 in original manuscript). 

Finally, we will show the figure of correlations among parameters, corresponding to 
GL++Bias (also with GR4J). 



 

The main points to remark on figure, about GL++Bias are: 

1- Hydrological parameters do not exhibit high correlations (as in GL++) 
2- All parameters are identifiable, including “gamma” for the bias model (this 

replies to the comment #13) 
3- Reviewer is very right. The highest correlations in matrix correspond to those 

between θ2 parameter and variance and bias error parameters: θ2-kappa 
(0.96), θ2-gamma (0.95) and θ2-tau (0.91). 
But, where is the problem? We previously explained (see reply #8) that the aim 
of the bias model, in our case study, is to explicitly recognize the necessity of 
dewatering the basin. We also mentioned that θ2 is not the parameter which 
has to do this task. Therefore the error model is complying with its function of 
trying to substitute to the θ2 parameter in the dewatering task. They are so 
correlated because they are doing the same function: trying to manage the 
water excess in the basin. But, in our case, the (erroneous) bias model is 
strongly dewatering the basin; therefore θ2 becomes positive (to bringing water 
from… some “virtual” aquifer) in order to compensate the excess of drainage by 
bias model. In short: 1- a correct bias model is necessary to allow θ2 gets a 
zero-value; 2- our bias model is not the proper one. 

For this comment and the two next, we will add these figures and comments as annex 
in the revised manuscript, if editor allow us, with the corresponding condensed 
paragraphs in the main text. 

 

 

 



Reviewer’s comment #12 

At lines 639-641, the authors claim that "This incorrectness generates problems, mainly 
related with spurious parameter interactions, affecting the inference results and making 
them unsuitable and possibly non-robust (Evin et al., 2014).  This section will demon- 
strate that not enforcing the TLs is, at least, one of the most important causes of these 
problems." To be demonstrated, the authors must show that these parameter interac- 
tions are systematically removed, and not only for a couple of parameters. 

Reply 

With previous reply to comment #11 for GR4J and with Figure 12 for CRR, we 
demonstrate how the actual problems with parameter interactions only arise in the 
inferences without Total Laws. The main detected problems are: 1- With GR4J the 
spurious interactions among hydrological parameters and 2- With CRR, the non-
identifiable autocorrelation parameter. We are not able to detect, in our case study, 
another more important effects related with parameter interactions. These problems 
appear when TLs are neglected and they do not when we enforce TLs. But see our 
long previous reply! 

 

Reviewer’s comment #13 

Bias: 

Since hydrological models usually have parameters  affecting the water balance (as the 
θ2 parameter of the GR4J model), I struggle to see how the parameters of the 
hydrological  models can be jointly inferred with the parameters  of a bias model.   I 
suspect that strong parameter  interactions  lead to the meaningless  estimates of θ2 
with GL++bias in Fig. 14. Furthermore, in Table 3, the MAP value of the γ parameter is 
exactly -1. This rounded value could indicate that a lower bound has been set to this 
parameter and that it cannot be identified with GL++bias. 

Reply 

See our previous reply to comment #11 

 

Reviewer’s comment #14 

Kurtosis: 

The β parameter indicates the kurtosis of the SEP distribution.  It is associated to the 
forth moment and can be interpreted in terms of flatness of the distribution.   In this 
study, as in Schoups and Vrugt (2010), this parameter always hits the lower (sic) 
bound (β=1) and seems difficult to identify.  I would suggest trying alternative 
calibration schemes without the kurtosis component. Calibration schemes with a 
Gaussian distribution instead of a SEP distribution in GL++ (without the TLs 
constraints) corresponds to calibration schemes tested in Evin et al. (2014) and could 
be interesting to compare to the calibration schemes of the manuscript. 



Reply 

We consider the SEP distribution of Schoups and Vrugt (2010), because is more 
general than Gaussian, but if the inference it requires, would also allow Gaussianity; 
therefore we have two more error parameters (skewness and kurtosis). As it is shown 
in Evin et al. (2013, 2014) results, these two additional statistical properties are 
necessary to model errors more correctly. 

We disagree with the reviewer’s affirmation “this parameter always hits the higher 
bound (β=1) and seems difficult to identify” The value of “1” is a valid and identifiable 
one, since it is which yields the maximum kurtosis. Moreover, our GL++Bias inference 
exhibits (see Figure 8) an excess of kurtosis that even SEP is not able to reproduce. 
Perhaps the Skewed Student distribution, as the used by Scharnagl et al. (2015) would 
have a better behavior than SEP. 

Of course, it would be interesting making other comparisons as with the Skewed 
Student distribution, using more hydrological models, experiments on more basins and 
also improving the error variance and dependence models. But we consider it is out of 
the scope of this manuscript and would enlarge unnecessarily the paper. More 
research is on-going for future papers. 
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