
Response to Referee #1

1 Samaniego et al. propose MPR to be a practical and robust method that provides consistent
(seamless) parameter and flux fields across scales owing to the inconsistent and unrealistic
parameter fields for land surface geophysical properties in many existing land surface and large-
scale hydrological models. Although this study is properly motivated, I am having a hard time
to understand what are the new advances from this manuscript comparing to Samaniego et
al., WRR 2011 and Mizukami et al., 2017, particularly given that Mizukami et al. is submitted
to WRR and perhaps under review.
Mizukami, N., Clark, M., Newman, A., Wood, A., Gutmann, E., Nijssen, B., Samaniego, L.,
and Rakovec, O.: Towards seamless large domain parameter estimation for hydro- logic models,
Water Resources Research, submitted., 2017

Thank you for the comment. We are sorry for not making clear enough the di↵erences between
Mizukami et al. (under review) (hereafter [MCN+2017]) and this manuscript. In the revised
manuscript we show clear di↵erentiations between [MCN+2017] and our study, see P8 L7↵,
P12 L16↵.
[MCN+2017] is aiming at the development of “a model agnostic MPR system called MPR-
flex which is applied to the Variable Infiltration Capacity (VIC) model to produce hydrologic
simulations over the contiguous USA (CONUS)”. In [MCN+2017] no attempt has been made
to verify the flux-matching condition of ET obtained with VIC using the MPR-flex parameter-
ization across scales.

In this manuscript (hereafter [SKT+2017]) we attempt to describe the progress towards seam-
less parameterizations in land surface or hydrological models. We present a short description
of what has been made (the literature on the topic is extensive) and provide a simple example
to visualize how many of the existing models are estimating a fundamental parameter such as
soil porosity di↵erently. We postulate, based on our own experience, a way forward that uses
MPR, provide a “Protocol for evaluation of model parameterization” (which is not publish
before), implement it to PCR-GLOBWB (also new and unpublished) and carry out a series of
experiments (based on the spirit of the E. Wood’s recommendation) to demonstrate how to
spot faulty parameterizations (also not publish before). We also compare the e↵ects of the
parameterization on three models (mHM, WaterGAP, and PCR-GLOBWB) as part of these
experiments (all using the same forcings and underlaying data). It should be clearly noted that
none of these basic components are part of [MCN+2017].

2 Another reason for my trouble of identifying new advances may be that lots of previous concepts
and methods (REA, REW, HRU etc.) are touched but in a rather scattered manner, i.e.,
without a coherent synthesis, thus making it di�cult to follow the authors’ logic chain to lead
to the new contributions from this study.

These topics were excluded of the manuscript due to space restrictions and to improve the
flow of the manuscript. We only refer to the HRU concept because it is commonly used for
parameterization of HMs.

3 ... By briefly glancing through Samaniego et al., WRR 2011 I was guessing that perhaps in this
study the major contribution is to introduce MPR as a robust parameter estimation approach
for land surface and/or large-scale hydrological models, which in my mind are not really the
same as those watershed-scale or highly-distributed hydrological models. For example, the ap-
plication of MPR to PCR-GLOBWB has been largely illustrated in this manuscript. However,
I am then confused again realizing there is another manuscript (Mizukami et al.) where MPR
has also been applied to PCR-GLOBWB.

The hydrological process implemented in a land surface model (LSM) can be similar to those of
a hydrological model (HM). We agree that LSMs and HMs are not the same because they aim
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at di↵erent purposes, and that the former ones tend to be much more complex than the latter
ones. The parameterization of soil parameters (e.g., soil porosity), however, can be based on
the same principles of soil physics, and is often found in a large number of LSM/HM as shown
in this manuscript.

The reviewer’s confusion may have been originated by weak formulations in P9 L2 or in P18
L16 (old). We clarified these sentences in the revised manuscript. MPR has been applied to
PCR-GLOBWB only in this manuscript up to now. The MPR-flex development presented in
[MCN+2017] is applied only to VIC up to now. See P8 L7↵, P12 L16↵.

4 I therefore strongly encourage the authors clearly articulate the major advancements in this
study. That said, I have a few specific comments as below.

Thank you for the recommendations. We explicitly point out the innovations of this study in
the revised manuscript. The text of the introduction was drastically reduced to focus only on
the state of the art that may lead to seamless parameterizations.

5 L2, Page 2. “must made” - “must be made”
Done

6 L6, P10. It is not a good practice to jump from Fig. 2 to Fig. 7 (whilst Fig. 3-6 not introduced
yet)
Thank you for spotting this error. It was amended in the revised manuscript.

7 L6-8, P13. I don’t think the argument so far can support this conclusion. Given the numerous
processes controling the propagation from soil porosity to evapotranspiration and the fact these
processes are very often presented & parameterized in di↵erent models with varying levels of
complexity (i.e., model structure uncertainty), I could not really make sense out of this con-
clusion from my own experience (in both watershed modeling and land surface modeling) either.

We did not intent to claim that MMS is better or worse than MPR. We were only comparing
the values obtained by MMS w.r.t. those estimated by MPR and estimate the di↵erences.
For sure we do not now at this scale which values are more close to reality, the only fact
we know is that the MPR estimates used in two HMs are good enough to close the water
balance in relatively well in over 300 basins over Pan-EU as shown in Rakovec et al. 2016.
http://doi.org/10.1175/jhm-d-15-0054.1.
Since we do not really need the MMS data set in this study, and the comparison may lead to
controversies, we decided to exclude these paragraphs from the revised manuscript.

8 L9-11, P13. As a modeler I could not agree with this conclusion either. A good parameter
estimation method should never alter the true value of a parameter with very clear physical
meaning, such as soil porosity. A parameter, no matter at what resolution(s). Rather, the so-
called predictive uncertainties mentioned here should be used a signature to diagnose whether
the model itself is su�ciently robust, not the other way around. Otherwise, we are playing
with the parameters to get the right anwer for the wrong reasons.

Depends at the scale at which the PTF is applied. An e↵ective paramater at 5 km resolution or
coarser is an “e↵ective” parameter representing the heterogeneity of the underlying land surface
and hence cannot be observed or measured directly but can only be estimated. Because of this
fact, the e↵ective values of porosity cannot compared directly with field samples. Binley, A.,
Elgy, J., & Beven, K. (1989). doi:10.1029/2008WR007695 and many other publications from
Beven and Blöschl, Wood etc. make this fact very clear. If a model is applied at point scale
(at most meters) then a parameter estimation method would lead to parameter vales that can
be obtained in laboratory. Since the MMS data set comparison was removed, this sentence
does not appear in the revised manuscript.
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9 L26-27, P15. Why is this well-accepted fact (among modelers at least) being used as a
hypothesis?

Thank for mentioning it. Our intention in this experiment is a sensitivity analysis rather than
a hypothesis testing. The text in the revised manuscript was revised accordingly.

10 L10-11, P16. Don’t follow the logic. According to L6-7, the majority-based approach in Noah-
MP is giving 2.3% HIGHER mean porosity than MPR. Why now the porosity field estimated
by Noah-MP tends to have lower water holding capacity values?

Thank for pointing out this inconsistency. L6-7 refers to the mean over whole Pan-EU. L10-11
refers to a analysis in Germany whose results are reported in Fig. 6. The text in the revised
manuscript was amended.

11 L19-21, P16. Does not read well. How could ”dynamic(s)” be enhanced or constrained?

“Enhancing” and “constrained” are inappropriate terms. We should have written increasing
or reducing the variance of soil moisture over time. This text was improved in the revised
manuscript.

12 L3-4, P17. Not so apparent to me. It appears to me PCR-GLOBWB does not perform bad
either. But this may be due to the di�culty to link the flux-matching test with the spatial
patterns here.

If the parameters for both models are estimated based on streamflow only, then the model
performance as reported in Table 2 tend to be comparable. ET estimates, however, di↵er
greatly as shown in Fig.7 . In this case, both models in this experiment use collocated grids
so that a cell at a coarser scale (30 arc min) have exactly the same number of underlying cells
at finer resolutions (5 arc min), everywhere and for all models. Consequently, flux matching
of ET made on two di↵erent resolutions is not a problem, and what is reported here is not an
artifact of matching “spatial patterns”. The text was improved to explain how the test was
performed.
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Response to Referee #2

1 The authors make a nice case for the value of their multiscale parameter regionalization (MPR)
method, analysing several aspects (and advantages) of the method. This is in principle a laud-
able thing to do. The manuscript itself, however, is quite frustrating to read. One the one hand
it remains completely unclear what the novelty is. Large parts of the manuscript essentially re-
peat what has already been published earlier (as also acknowledged in the references provided).

We are saddened by the fact that the reviewer consider that this manuscript lacks novelty. We
have rewritten the introduction and modify large parts of the manuscript. The novelty of the
manuscript is made more clear in the introduction and is based on the following key elements
(see also the response to Ref.1):

1.1 Attempt to synthesize the progress towards seamless parameterizations in land surface(LSM)
or hydrological models(HM). We provide examples to visualize how existing LSMs/HMs
are estimating a fundamental parameter such as soil porosity (not found in literature) to
make the case.

1.2 We propose, based on our own experience, a way forward that uses MPR and systematize
its application by providing a “Protocol for evaluation of model parameterization” (This
has not been publish before)

1.3 We implement this protocol to PCR-GLOBWB (also new piece of work and unpublished)

1.4 Carry out a series of experiments (inspired by E. Wood’s recommendation) to demonstrate
how to spot faulty parameterizations (also not published before).

1.5 Compare the e↵ects of the parameterization on three models (mHM, WaterGAP, and
PCR-GLOBWB) as part of these experiments (all using the same forcings and underlaying
data). Also unpublished and novel material.

It should be clearly noted that none of these key elements belong to Mizukami et al. (un-
der review) (hereafter [MCN+2017]). The main di↵erences between [MCN+2017] and this
manuscript can be found in P8 L7↵, P12 L16↵.

2 On the other hand, the argument remains in places quite imprecise with a lot of quite sweeping
(and not necessarily well substantiated) generalizations.

We have removed generalizations that are not fully substantiated with our experiments. We
would appreciate to know, which parts of our manuscript —according to the reviewer— need
to be further substantiated, in the case that our justifications are not yet satisfactory.

3 In addition, other approaches to parameter selection are quite outrightly dismissed while es-
sentially no critical discussion on potential drawbacks or limitations of MPR are provided.

There are a number of parameterizations approaches that have been tested in the literature.
We provide a long list of references of comparisons between MPR and the most common
techniques found in literature. These evaluations (HRUs, Standard regionalization, etc.) have
been carried out in independent studies which are cited in our manuscript. Here a short list:

3.1 MPR vs. k-NN regionalization:
Samaniego, L., Bardossy, A., & Kumar, R. (2010). Streamflow prediction in ungauged
catchments using copula-based dissimilarity measures. Water Resources Research, 46(2),
http://doi.org/10.1029/2008WR007695
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3.2 MPR vs. standard regionalization (no scaling)
Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization
of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5),
http://doi.org/10.1029/2008WR007327

3.3 Lumped HRU, Distributed HRU, vs. MPR:
Kumar, R., Samaniego, L., & Attinger, S. (2010). The e↵ects of spatial discretization
and model parameterization on the prediction of extreme runo↵ characteristics. Journal
of Hydrology, 392(1-2), 54-69. http://doi.org/10.1016/j.jhydrol.2010.07.047

3.4 MPR with satellite data (ungauged basin)
Samaniego, L., Kumar, R., & Jackisch, C. (2011). Predictions in a data-sparse region us-
ing a regionalized grid-based hydrologic model driven by remotely sensed data. Hydrology
Research, 42(5), 338-355. http://doi.org/10.2166/nh.2011.156

3.5 MPR vs. HRU
Kumar, R., Samaniego, L., & Attinger, S. (2013). Implications of distributed hydrologic
model parameterization on water fluxes at multiple scales and locations. Water Resources
Research, 49(1), 360-379. http://doi.org/10.1029/2012WR012195

3.6 MPR across scales US basins
Kumar, R., Livneh, B., & Samaniego, L. (2013). Toward computationally e�cient large-
scale hydrologic predictions with a multiscale regionalization scheme. Water Resources
Research, 49(9), 5700-5714. http://doi.org/10.1002/wrcr.20431

3.7 MPR in Pan-EU (transferability test, evaluation of states and fluxes more than 300 basins)
Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., et al. (2016). Mul-
tiscale and Multivariate Evaluation of Water Fluxes and States over European River
Basins. Journal of Hydrometeorology, 17(1), 287-307. http://doi.org/10.1175/

jhm-d-15-0054.1

Limitations and drawbacks of MPR w.r.t. to other methods have been mentioned in all our
publications (see above). Based on your recommendation, we provide in the revised manuscript
a summary of the limitations of MPR (see new section 3.5).

4 In an exaggerated way, the authors present their MPR method, which I think has formidable
potential, like in a product promotion folder.

We never intended that this manuscript is considered as a “promotion” folder because we
conducted a series of new experiments, showed a novel application to PCR-GLOBWB and give
recommondations regarding the MPR application for the scientific community. We make very
clear in the introduction the aims and scope of the manuscript.

5 I think the manuscript would strongly benefit from (1) considerably reducing the redundancies
with previous work (sections 1-3 can be *substantially* shortened) and (2) taking on a more
critical perspective towards MPR. I think that many in the community will agree that it is a
great tool. Instead of highlighting this over and over again, it would be more instructive to
learn were its limitations are to allow further improvement.

We reduced redundancies and improved the introduction greatly. Introduction was shortened
to focus on the main issue of the manuscript. We recapitulated the MPR technique to have a
self-consistent manuscript, if we move this section to an appendix, or refer to MPR to other
manuscripts, perhaps is not the optimal solution for the reader. We summarized as much
as possible. The flux matching postulation has not been published in present form before.
As indicated above, limitations of MPR will be clearly written in section 3.5 of the revised
manuscript .

6 In general, I think it may be more interesting for a wider audience if the MPR technique was
scrutinized and compared to other parameter selection and regionalization approaches *inde-
pendent* of the model it is used for. In this manuscript it is applied exclusively with mhm
if I understand correctly. In my understanding, it is a stand-alone method that should be
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applicable to any model. Would it not be fairer to be more consistent in the comparisons here,
i.e. compare mhm with/without mpr and/or other models with/without mpr?

We agree that the MPR method should be implemented to other models as well as model
comparisons with and without MPR should be conducted. The first point is addressed within
this manuscript by implementing MPR into PCR-GLOBWB using the herein proposed and
developed protocol. Further implementations are underway such as MCN+2017 to VIC. We
think the reviewer will admit that implementing a new parameterization technique like MPR
goes along with a substantial adoption of model code which needs a lot of experience and
knowledge of the model it is applied to. Therefore, several groups in the world are working
on that a literature about such comparisons will increase. As you may admit it is already a
substantial contribution to implement MPR to one model as shown herein (PCR-GLOBWB).
Comparisons with/and without MPR in mHM have been done, please see Kumar et al 2010,
Samaniego et al 2010ab, Kumar et al 2013, etc. and there will be soon a manuscript from
Rakovec et al. over 500 US basins showing the e↵ects of MPR/NO-MPR with mHM and
VIC. Regarding the general comparison of parameterization techniques we consider a set of
11 di↵erent models (CABLE, CLM, CHTESSEL, JULES, LISFLOOD, mHM, Noah-MP, PCR-
GLOBWB, WaterGAP2, WaterGAP3, and HBV) as a significant number of models.

7 The bottom-line is that I have the feeling that two quite independent things are not clearly
separated here: the regionalization technique (MPR) and the models (mhm, etc). Here the
text needs to become much more precise. Right now it seems to the reader that MPR is
compared to e.g. the HBV model. This is not a valid comparison as these are completely
di↵erent things. In contrast, it would be excellent to make the fact that MPR is a standalone
tool clearer, as this may result in more modellers actually picking up the idea for their very
own models (which they may not do at the moment due to its perceived exclusive association
with mhm).

Within this study we never intended to compare MPR to other models such HBV. We adapted
the text such that this possible confusions vanished. One of our intentions here is, however, to
compare parameters obtained with di↵erent models and thus with di↵erent parameterizations.
We have decided to take the water holding capacity and/or porosity of the top soil as an example
since this parameter is used in all LSMs/HMs and is somehow physically interpretable. We are
further remarking that we have a problem with our LSMs/HMs that we need to solve if we
would like to have scale invariant parameterizations and consistent model simulations. MPR
is a possible avenue, a hypothesis that we are scrutinizing over and over again in thousands
of river basins across the globe. You are right that MPR is freely accessible. It comes with
the mHM software package which is available at www.ufz.de/mhm as an open source code.
Currently, a model-agnostic version of MPR (called MPR-FLEX) is developed and presented by
[MCN+2017] and has been applied to VIC up to now. Consequently, MPR is NOT exclusive
from mHM now. We have also improved the text so that this “impression” that “MPR is
compared to e.g. the HBV model” has vanished.

Specific comments

1 p.2,l.5: why only over time and not also over space?

This paragraph is not appearing in the revised manuscript.

2 p.2,l.10-12: please avoid subjective terms as ”elaborate” or “sophisticated”

Done.

3 p.2,l.28-29: is this actually true? Why would process dynamics that emerge at larger scales
and that integrate several processes necessarily reduce ”realism”? It is surely possible, but I
do not think that it is a physical necessity. In any case, what is the meaning of ”realism” in a
situation where most of the system is de facto unobservable? How do we know if something
is ”realistic”?
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This sentence was removed from the introduction. But, in this respect, we have a pragmatic
approach, if a model is able to reproduce surrogate observations in evaluation mode, then we
consider that the unobservable states may be plausible. For this reason, we carried out the
study reported in Rakovec, et al. 2016 JHM (see above).

4 p.2,l.33-34: this is a sweeping generalization. What is actually meant by that? Why should
an observed quantity, such as for example the stream flow recession constant have no physical
meaning? Of course it has, albeit on the scale of the observation.

We are referring here to transfer function parameters, for example those constants of the
Clapp-Horberger PTF, which are basically found empirically and then used to link soil texture
values (observable) with soil properties that may or not be observable (e.g., porosity). We are
not referring to streamflow recession constant. The word streamflow was removed to avoid
confusions.

5 p.5,l.15↵ and elsewhere: many things are mixed together here and the logic is not convincing.
For a meaningful argument they need to be carefully disentangled. Is this about models?
About parameter selection/calibration procedures? Parameter region- alization? It reads as
if MPR does not rely on calibration, which is not correct. and why should lumped and/or
semi-distributed models not be run with MPR-derived pa- rameters? Would this for a, say
100km2 catchment, not be the same as if running a distributed model with a 10x10km2 grid
in mhm?

Based on this comment, we consider that our text is not clear enough. We reformulated the
text to highlight the most common regionalization techniques used in recent literature. Please
refer to Samaniego et al. WRR 2010 to see a diagram that represent the steps done to estimate
parameter for a given model. A simple conceptual model whose parameters are calibrated fail,
in general, to perform well at cross-validation. This is what we are referring to. MPR improves
transferability across scales and locations as shown in previous studies. In fact, this is what we
demonstrated in Kumar et al. 2010 JoH. MPR could be used to estimate lumped parameters
if a single cell covers the whole basin. In Kumar et al., mHM-MPR always performed better
than a lumped mHM with no MPR.

6 p.5,l.19 and elsewhere in the manuscript: much is made of ”discontinuities”. However, the
authors do not provide a clear definition of what they mean. Nature is, in places, discontinuous
(e.g. forest vs. grassland, north vs. south aspect, sharp transitions in geology, breaks topogra-
phy, etc). thus it is not clear why models should not represent these discontinuities. I suppose
that the authors want to say that between individually calibrated catchments discontinuities
can occur, where there are in reality no discontinuities. But this needs to be made clearer.

Thank you for the comment. In the revised manuscript we clarify our definition to avoid
confusions. An example of artificially induced discontinuities by parameter calibration is shown
is Fig. 4. We agree that there are natural discontinuities, we expect however, that it is unlikely
that everywhere the model parameter and fluxes/state fields follow exactly the boundaries of
the drainage area at a given location (see Fig.1 below). We call this negative e↵ect calibration
imprint, and we attempt to remove it with MPR. This artificial boundaries is what we call
discontinuities. Nevertheless, we provide references to literature in P4 L19↵ to illustrate our
definition. Please see also the obtained parameter fields in Fig.1 (rebuttal) (below) as obtained
by Merz and Bloeschl 2004 and by MPR from the study Rakovec et al. 2016 JHM.

7 p.5,l.21-23: sure, but is this not also the case for distributed models and dependent on the
calibration/parameter selection method?

This is the case for any model even if one uses MPR on a single basin. This is the reason for
showing the Fig.4a. Parameter estimation implies to have a representative sample. For this
reason we attempt always to perform parameter estimation on several basins simultaneously, see
Fig.4b. Single basin calibration is disadvantageous for any parameterization method because
artifacts of the data can be “over-learned” which, in-turn, induce large bias somewhere else.
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Figure 1: Non-seamless vs. seamless parameter fields

8 p.6,l.29 and elsewhere: ”CONUS”: not necessarily every reader will be exposed to large scale
studies employing these terms. Thus please avoid the use of fashionable abbreviations without
first defining them.

Sorry for not defining it before as it should be. Done.

9 p.8,l.7: a question cannot be postulated. Please rephrase.

Thank you for this remark. We mean “put forward”. It will be rephrased in the revised
manuscript.

10 p.8,l.10-11: what is meant by ”poor”. How do you define it?

A poor parameterization does not lead to flux-matching, exhibits low model performances
(say KGE) in cross-validation experiments across scales and locations, and exhibits artificial
“discontinuities”, i.e. non-seamless fields. This definition is be clearly mention in the revised
manuscript (e.g., Introduction).

11 p.9,l.3: over-parameterization is only addressed in MPR if simultaneously calibrated to a high
number of catchments and/or objective functions. Thus, it depends on how MPR is imple-
mented and applied. Please rephrase.

This sentence is now amended as suggested in the revised manuscript.

12 p.10,l.17-18: how do you know that the parameters are ”realistic”? See also comment above.
Does this not also strongly depend on the assumptions in the upscaling relationships? It is
always a question of how MPR (or other parameter selection techniques) are implemented and
not a defining proprietary feature of MPR.

This is a good question. The word “realistic” was removed to avoid confusion. The text
was amended to improve clarity. The application of MPR involve many assumptions, PTFs,
upscaling relationships, parameter estimation methods, etc. Visual impression of parameter
fields may be useful but it is subjective. For these reasons, we need a formalized approach such
as that described in Sec. 3.3: Protocol for evaluation of model parameterization, which
was put forward in this manuscript, and depicted in Fig.2. The experiments presented in Sec.
4 were introduced to addresses this question.
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13 p.13, section 4: in many parts of the section it is unclear what is meant: the individual models
or rather the parameter selection/regionalization techniques in the di↵erent model applications?
These are di↵erent pairs of shoes and need to be carefully separated.

We renamed the experiments to help explain the intention of this section. We also added a
short paragraph at the beginning of section 4 to elucidate the aim of these experiments. In
summary, we performed these experiments to help identify poor parameterization techniques
using several models.
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Response to Referee #3

1 The main points of the paper are: (i) state-of-the-art LSMs and HMs do not have consistent
and realistic parameter fields for land surface geophysical properties, and as a result do not
satisfy a flux- matching condition (ii) the MPR technique can be used as a generic parameter
estimation technique to greatly reduce these limitations (iii) a specific case of this improve-
ment is demonstrated using the PCR-GLOBWB model. In my view the innovation is in the
recognition of the problem across multiple models, the wider breadth of application of MPR,
and the protocol needed to achieve this. To some extent the purpose of the manuscript is to
demonstrate the very significant consequences of di↵erent parameter estimation approaches in
large-scale LSMs/HMs, and to show the advantages of using MPR. In my view this is a relevant
objective for scientific publishing, in relation to relatively new techniques such as MPR, be-
cause such examples provide specific examples to which the hydrological modelling community
can more easily relate (as opposed to reading about the MPR technique in the abstract, or in
relation to its application to a specific model). The main uncertainty for me is the extent to
which this material is also contained in the submitted manuscript by Mizukami et al, as that
manuscript is cited in relation to many of the main points made here. I leave this point for
the Editor to consider.

Thank you for the valuable comments and recommendations.

We described in detail the extend of Mizukami et al. (under review) (hereafter [MCN+2017])
and this manuscript in the Response to Referee #1 and Referee #2. The main di↵erences
between [MCN+2017] and this manuscript can be found in P8 L7↵, P12 L16↵.

[MCN+2017] is aiming at the development of “a model agnostic MPR system called MPR-
flex, which is applied to the Variable Infiltration Capacity (VIC) model to produce hydrologic
simulations over the contiguous USA (CONUS)”. In [MCN+2017] no attempt has been made
to verify the flux-matching condition of ET obtained with VIC using the MPR-flex parameter-
ization across scales.

In this manuscript (hereafter [SKT+2017]) we:

1.1 Attempt to describe the progress towards seamless parameterizations in land surface(LSM)
or hydrological models(HM). We present a short description of what has been made (the
literature on the topic is quite extensive) and provide a simple example to visualize how
existing LSMs/HMs are estimating a fundamental parameter such as soil porosity (not
found in literature),

1.2 Propose, based on our own experience, a way forward that uses MPR and systematizes
its application by providing a “Protocol for evaluation of model parameterization” (This
has not been publish before),

1.3 Implement this protocol to PCR-GLOBWB (also new piece of work and unpublished),

1.4 Carry out a series of experiments (based on the spirit of the E. Wood’s recommendation)
to demonstrate how to spot faulty parameterizations (also not publish before), and

1.5 Compare the e↵ects of the parameterization on three models (mHM, WaterGAP, and
PCR-GLOBWB) as part of these experiments (all using the same forcings and underlaying
data)

It should be clearly noted that none of these key elements belong to Mizukami et al. (under
review) (hereafter [MCN+2017]) .
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The scope of [MCN+2017] and [SKT+2017] are now clearly described in the first paragraph
of Section 3.2 and in Section 3.5 (limitations of MPR). We also amended the conclusion that
was misleading.

Specific comments

1 Title: “Toward seamless hydrologic predictions across scales” This might be interpreted by
readers as referring to seamless predictions across temporal scales, i.e. the linking of nowcast-
ing with NWP. Perhaps “Toward seamless hydrologic predictions across spatial scales”?

Thank you for the good suggestion. Done.

2 P2 L2 “trade-o↵s that must be made to reach a final objective” missing word

Done.

3 P2 L9 “numerical weather prediction, land surface schemes, and hydrologic models” It would
help to provide a reference or some text to enable readers to distinguish among these three
terms. Many would know two of these terms, but far fewer could reliably distinguish all three.

Key references are provided in the revised manuscript.

4 P2 L29 “In this case, one states that a physical process is parameterized.” It would be helpful
to introduce the concept of sub-grid phenomena here, to distinguish between phenomena
which are resolved by a given grid resolution, and those that are parameterised. Otherwise,
the concept of parameterisation and references to “the missing (complex) processes” remains
rather vague. The missing processes should all be sub-grid – anything else that is missing is
simply a missing process.

Thank for the recommendation. The concept of sub-grid phenomena that are not modeled will
be introduced in the the revised manuscript.

5 5. P3 L1 “Parameterizations in land surface models have increased in their complexity during
the past decades, but the procedures to estimate constants for the parameterizations have not
changed much.” Has anything changed as grid sizes got smaller? Did any processes become
resolved that were formerly parameterized?

By comparing versions of land surface models, for example, multi-processes (parameterizations)
have been introduced, e.g., in Noah-MP. Phenological processes and radiative transfer schemes
have become extremely detailed in the new versions of Noah-MP and other LSMs. Runo↵
generation mechanisms, on the other hand, have not changed much in most LSMs/HMs. We
make this clear in the Introduction (P2, L20↵) of the revised manuscript.

6 P3 L7 “The reasons for the lack of progress in creating scale-invariant parameterizations are
manifold.” At this stage you have not established that scale-invariant parameterizations are
either desirable or feasible (also relevant to P4 L24). From this point on in the paper it seems
that the parameterization problem can be solved by scale-invariant parameterizations, but that
there are no other credible paths being explored. I would like to see some mention in the
Introduction of non-MPR approaches to parameter estimation which are also taking a serious
approach to the problem. Alternative methods are unlikely to satisfy the flux- matching criteria,
but they might be partly competitive, e.g. (i) other spatial scaling attributes (e.g. sidestepping
the scaling problem by assuming scale-independent distribution functions), (ii) strong links to
mapped geophysical attributes (e.g. regularisation), (iii) strong links to observed functional
responses of hydrological systems (e.g. Yadav et al (Advances in Water Resources 30 (2007)
1756–1774)).

Good point. Potential alternative ways are mentioned in the Introduction P3 L8↵. We consider,
however, that exploring these alternative paths ways is out the scope of this manuscript to test
them.
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7 P4 L19 “The numerical constants can be specified with a great level of precision, but the
physical constants and parameters cannot be because they must be treated as random variables
(Nearing et al., 2016)” I don’t know the Nearing et al paper in detail, but I am surprised to hear
that something termed a “physical constant” really requires treatment as a random variable.
Surely if it is well enough defined to earn the moniker physical constant, then it can be
determined experimentally to relatively high accuracy for practical purposes? Are the authors
suggesting we should treat g as a random variable in hydrology because it is determined by
measurement, which is subject to error? On the other hand, I accept that parameters may
usefully be described as random variables.

Depends on the accuracy and precision with which we know a physical “constant”. Its de-
scription can be done by a density function having a know mean and quite small standard
deviation. For example, we know the value of the standard acceleration due to gravity with
high accuracy (no bias) and precision(very small stdev). In this case and for practical purposes
of parameter estimation, we could treat it as a constant. This is not necessarily the case for
other physical constants such as the thermal conductivity of a given soil type. In this case with
need a transfer-function of infer it based on soil texture fields and other predictors. This section
was, however, removed from the revised manuscript because the introduction was drastically
cut to better focus on the topic of the manuscript.

8 P4 I would like to see the term “seamless” defined in the introduction (the abstract provides
this, but not the introduction), and particularly an argument made for why seamlessness is (in
principle and/or in practice) a desirable attribute.

Good point. We provided a definition in the introduction P2, L13 of the revised manuscript
for consistency and to avoid miss interpretations.

9 P9 The paragraph starting on L3 seems misplaced. The rest of the section is a description of
MPR, whereas this paragraph is an assessment against criteria.

This section was restructured in the revised manuscript to better explain the MPR approach.

10 P9 L3 “Currently, MPR is the only method that consistently and simultaneously addresses the
scale, nonlinearity and over-parameterization issues” If scale, nonlinearity and over- parameter-
ization issues are the key criteria for assessment, then I would expect them to all be mentioned
in the introduction; however, only scale really features in the introduction.

Good point. These issues are briefly mentioned in the introduction. Many of these issues were
introduced in other publications related to MPR (e.g., Samaniego et al. 2010b).

11 P9 L26 This whole paragraph (slightly rewritten) might sit well in the introduction if there was
some material there on regularization procedures.

In this paragraph we analyze the e↵ects of MPR on over-parameterzation. The Introduction
was entirely rewritten, hence, we decided to keep this paragraph in this section. Thank you
anyway for the suggestion.

12 P9 L33 “Consequently, greater care should be taken in their selection.” It is unclear what
“greater” refers to. Are regularization functions being imposed without care? In which cases?

If a regularization function is poorly chosen, or lack important predictors, the resulting param-
eter value might be badly estimated and its posterior distribution could be poorly estimated.
For example, the Cosby et al. 1984 PTF is a very simple one (used in SCA-SMA) that relates
porosity to sand content only. The application of this regularization function will under/over
predict porosity in soils having low sand and high clay/loam fractions. See P2 L25, we mention
this example to make clear our point in the revised manuscript.

13 P11 L19 “Kling-Gupta e�ciency (KGE) of the compromise solution ¿ 0.6” Some justification
is needed for any threshold on KGE, as it is much easier to do well in some environments than
others.
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This part of the protocol remains still subjective. It depends of on many factors such as the
input forcings and quality of the land-surface properties. It is di�cult to give a justification, it
is only provided as a reference, and depends on the data quality, model, etc.

14 P12 L3 “minimize the occurrence of discontinuities and ease the transferability of model pa-
rameters across scales and locations” These criteria for success should both have been outlined
much earlier in the paper, either in the Introduction or at the end of the review.

Good point. We introduced them in the introduction P2, L14.

15 P12 L17 “which constitute the basis for the EDgE project” Needs a reference to the project,
or delete if not relevant.

We add the reference to http://edge.climate.copernicus.eu in the first reference to this
project P11 L25.

16 P18 L28 “MPR ... is feasible to implement in existing LSM/HMs whose goal should be
seamless parameter fields across scales.” The authors need to add an additional clause to this
sentence (based on material from earlier in the paper) so it is clear WHY seamless parameter
fields across scales are essential.

Good point. We added a small clause to make the point. P19 L2
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Abstract. Land surface and hydrologic models (LSM/HM) are used at diverse spatial resolutions ranging from catchment-

scale (1-10 kmin catchment-scale applications to ) to global-scale (over 50 kmin global-scale applications. Application of )

applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes

independent of the model resolutionand chosen resolution, i.e., fulfills a flux-matching condition across scales. An analy-

sis of state-of-the-art LSMs and HMs reveals that most do not have consistent and realistic parameter fieldsfor land surface5

geophysical propertieshydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB and Wa-

terGAP models are conducted to demonstrate the pitfalls of poor deficient parameterization practices currently used in most

operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge’s

1982 statement on the unsolved problem of parameterization in these models remains true. We provide a short Based on a

review of existing parameter regionalization techniquesand discuss a method for obtaining seamless hydrological predictions10

of water fluxes and states across multiple spatial resolutions. The , we postulate that the multiscale parameter regionalization

(MPR) technique is offers a practical and robust method that provides consistent (seamless) parameter and flux fields across

scales. A Herein, we develop a general model protocol is presented to describe how MPR can be applied to a specific model,

with an example of this particular model, and present an example application using the PCR-GLOBWB model. Applying

MPR to PCR-GLOBWB substantially improves the flux-matching condition. Estimation of evapotranspiration without MPR15

at 5arcmin and 30arcmin spatial resolutions for the Rhine river basin results in a difference of approximately 29. Applying

MPR reduce this difference to 9. For total soil water, the differences without and with MPR are 25and 7, respectively. Finally,

we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states

across spatial scales.
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1 Introduction

... “If it disagrees with experiment, it’s wrong”. Richard P. Feynman

Developing a theory and translating it into a numerical (computational) model is a complex task because of the crucial

trade-offs that must made to reach a final objective: to be able to reproduce the observations of a set of variables of interest.

According to , modeling is an interactive research process that starts with the observation of a natural system (e.g.,5

Land surface and hydrologic models (LSM/HM) are currently used at diverse spatial resolutions ranging from 1-10 km in

catchment-scale impact analysis and forecasting (Christensen and Lettenmaier, 2007; Addor et al., 2014) to over 50 km in

global-scale climate change simulations to estimate land surface boundary conditions of key state variables (Haddeland et al.,

2011; Bierkens, 2015; Wanders and Wada, 2015). The fundamental conditions behind the applicability of the same LSM/HM

model structure at different spatial scales requires that the model parameterizations are scale-invariant and that the model10

estimates similar fluxes across a range of spatial resolutions, i.e., it must fulfill the flux-matching condition across scales. A

parameterization is a simplified and idealized representation of sub-grid physical phenomenon that is either “too small, too

brief, too complex, or too poorly understood” to be explicitly represented by a model at a given resolution (Edwards, 2010).

Parameterizations require variables called predictors, effective parameters and constants also called transfer-, global- or super-

parameters (Pokhrel and Gupta, 2010). Superparameters are often parameters in empirical relationships that have been found15

with measurements in the field or in the laboratory. For example, regression parameters in pedo-transfer functions (Cosby et al.,

1984). They are often tuned to represent observed variables and often have no physical meaning. These parameters constitute

simplified surrogates to compensate for the water cycle over a river basin) and aims to create a “mental” abstraction of the

main elements necessary to faithfully describe the evolution of the system over time. Abstraction implies a reduction of system

complexity, often formalized by a set of equations, which we call a model . Consequently, a model constitutes an elaborate20

hypothesis of the dynamics of the system that should be falsifiable . Model predictions should be confronted with new data

to assess the ability of the model to reproduce them. missing sub-grid processes that are not accounted for within a modeling

system (Brynjarsdottir and O’Hagan, 2014).

The various types of environmental models (e.g., numerical weather prediction, land surface schemes, and hydrologic

models) that exist today are the result of this elaborate formalization process, which led to a set of equations based on25

fundamental physical principles whose numerical solution is possible using sophisticated numeric algorithms and increasing

computational resources. The scientific method used for modeling the water cycle has retained its fundamental structure since

1922, when L. Richardson wrote his seminal book in which the foundations for numerical weather forecasting were developed

. A similar framework was employed by four decades later in formulation of the blueprint for a “distributed” hydrologic model.

Interestingly, “distributed” was introduced to distinguish this new type of model from the lumped, black-box hydrologic model30

that neglected the spatial variability of the input forcing data, state variables and fluxes, or the semi-distributed hydrologic

models that partly accounted for this variability by subdividing the basin domain into sub-units (e. g., the Stanford Watershed

Model) linked by river reaches.
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The speed at which numerical algorithms can be executed has changed dramatically since the mid 1940sAn analysis of

state-of-the-art LSMs and HMs reveals that most LSMs/HMs do not have consistent patterns of effective parameter fields for

land surface geophysical properties across spatial scales, which indicates that their parameterizations are not scale-invariant.

Parameter fields often exhibit artificial spatial “discontinuities” such as calibration imprints circumscribing river basins bound-

aries, and consequently they are not seamless. There are several reasons explaining this parameterization deficiency. With the5

advent of electronic computersin 1945, the performance of general circulation models (GCMGCMs), numerical weather pre-

diction (NWP) models (Pielke Sr, 2013), land surface models (LSMs)(Liang et al., 1994; Sellers et al., 1997; Niu et al., 2011),

and hydrologic models (HMs) (Batjes, 1996; Lindstrom et al., 1997; van Beek et al., 2011; Samaniego et al., 2010b) has been

increased mainly by improving model conceptualization (i.e., the number of process descriptions) and/or spatial resolution if

since the storage capacity and computational power allowed for it . For example, the GCMs employed for the Assessment10

Reports of the Intergovernmental Panel on Climate Change (IPCC) have doubled their spatial resolution every five years since

1990 . Notably, increasing the model resolution by a factor of two implies approximately ten times as much computing power.

The hyper-resolution initiative in land surface/hydrologic modeling also opted for this pathway .

Despite the above mentioned improvements in model development, “there are scales and physical processes that cannot

be represented (or resolved) by a numerical model, regardless of the resolution” . Consequently, we simplify the process15

representations in our environmental models at the expense of physical realism. In this case, one states that a physical process

is parameterized. A parameterization is a simplified and idealized representation of the physical phenomenon at a given scale.

These simplifications require variables called predictors and constants, also called transfer-, global- or super-parameters which

are often tuned to represent observed variables (e.g., streamflow); and have no physical meaning. These constants often

constitute simplified surrogates to represent the missing (complex) processes that are not accounted for within a modeling20

system .

Parameterizations in land surface models have (Le Treut et al., 2007; Wood et al., 2011; Bierkens et al., 2014). As a result,

parameterizations in LSMs have also increased in their complexity during the past decades , but the (Sellers et al., 1997; Fisher

et al., 2014). The procedures to estimate constants effective parameters required for the parameterizationshave not changed

much. It is possible to assert that model parameterization is an old, ubiquitous, and recurring problem in land surface and25

hydrologic modeling for which no final solution has been found. This lack of coherent development has induced to conclude

that the “parameterization of hydrologic processes to the grid scale of general circulation models is a problem that has not

been approached, let alone solved. ” A short survey of existing LSM/HMs presented in Section 2 allowed us to conclude that

this statement is still valid, however, remained unchanged. For example, LSMs evolved from simple aerodynamic bulk transfer

schemes with uniform description of surface parameters during the 1970s, to detailed LSMs having consistent description of30

the exchange of energy and matter between the atmosphere, the vegetation, and the land surface (Sellers et al., 1997). State-of-

the-art LSMs, such as the Community Land Model version 4 (Bonan et al., 2011) and Noah-MP (Niu et al., 2011), however,

still use quite simple pedotransfer-functions based on work of Clapp and Hornberger (1978) and Cosby et al. (1984) to estimate

fundamental soil properties such as porosity (Oleson et al., 2013).
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The reasons for the lack of progress in creating scale-invariant parameterizations aremanifold. The most important is likely

Among the reasons that have prevented the improvement of parameterization techniques are: 1) the lack of procedures and

theories for linking physical properties (e.g., soil porosity) that can be measured at the field scale with “effective” parameter

values that represent the aggregate behavior of the land characteristics at the scale of a grid cell required in LSMs or HMs.

recognized that the theory and the “constants” required in the dynamic equations (hereafter called effective parameters) “must5

be appropriate to the size” of the grid element but suggested that these constants should be found experimentally (p.108),

if possible. Decades later, suggested that parameters should be selected so that simulations could be extended to ungauged

areas, and stated that, even with very detailed representative measurements, it will be “necessary to extrapolate results ...of

physical parameters to other points of the basin.” Linking effective parameters with point observations across a range of scales

implies a proper knowledge of scaling laws governing the phenomena at hand, the certainty of its invariance, and detailed10

knowledge of the spatial distribution of geologic formations and soil properties. Due to the non-linearity of the involved

processes, extrapolation across scales, which are orders of magnitude apart, is very problematic. In this regard, concluded

in his seminal paper that the state-of-the-art regarding “linking phenomena at field scales (10-100 ha) and catchment scales

(10-1000 km2) is an unresolved problem.” There have been many attempts to bridge this gap, but the results have not been very

successful .15

Another reason for this lack of progress is related to the approach to understanding the scaling problem mentioned by and 2)

Poor understanding of the scaling of parameters (Dooge, 1982) and its influence on the hydrologic hydrological response of the

entire system . As stated by : “the reason for this lack of progress is due in part to designing these experiments without regard

to resolving this scaling question.” The representative elementary area (REA) concept was introduced , but others concluded

that this concept has limited utility in hydrology and that there are many shortcomings related to its applicability . There is20

no general agreed upon theory that resolve this issue. The inclusion of sub grid-scale and surface system (Wood, 1997; Wood

et al., 1988). 3) Limited inclusion of sub-grid heterogeneity in hydrological parameterizations and multi-scale modeling of

hydrologically relevant variables have also been attempted . To the best of our knowledge, linking the REA concept and the

concept of multi-scale modeling in LSM/HMs has not been attempted.

In vadose zone hydrology, scaling attempts were pioneered by and followed by seminal works on fractal approaches ,25

stochastic perturbation methods , stream tube approaches , and connectivity-based methods . These theories have allowed for

finding relationships to scale hydraulic conductivity, pressure head, total porosity and other soil properties from the pore scale

to the field scale and have shown that effective parameters may be scale-dependent . They have only been used to upscale

evaporation and transpiration fluxes at the field scale and have not been used at larger scales until very recently. applied the

scaling proposed by to generate a global database of soil hydraulic properties. This data set, however, has not been used by any30

LSM/HMs up to now. The inverse modeling approach is frequently used to estimate soil-related parameters at regional scales

. Stochastic and geostatistical theories have also been applied in saturated porous media for upscaling measured point-scale

geophysical properties to the aquifer scale, including volume averaging theories and pre-asymptotic and asymptotic expansion

theories. More recently, coarse graining methods were introduced to reduce the complexity of complex groundwater models

and use effective aquifer parameters. Many of these seminal methodological and mathematical developments in scaling issues,35
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as suggested by Famiglietti and Wood (1995, 1994); Liang et al. (1996). 4) Lack of significant progress on the applicability

of seminal upscaling theories (Miller and Miller, 1956; Dagan, 1989; Gelhar, 1993; Neuman, 2010; Kitanidis and Vomvoris,

2010) developed for sub-surface hydrological problems , have not been applied or incorporated into regional-scale hydrologic

problems into LSM/HMs.

A third reason is related to the And 5) lack of transparency in most of the existing LSM/HM source code of codes with5

respect to the meaning, origin and uncertainty associated with the hard-coded numerical values (i.e., parameters) either in the

code or in the look-up tables . It has been shown that these hidden parameters constrain the agility of the numerical model

because they hinder the possibility of exploring their sensitivity on model outputs and the possibility of inferring them using

observations . Model source code is often mixed, with no clear distinctions between physical or numerical constants (e.g., the

acceleration of gravity g or ⇡
2 ) and empirical effective parameters such as the soil porosity of a given soil type . noted that10

model output fluxes in the NOAH-MP model are sensitive to two-thirds of its applicable standard parameters, but most are

hidden in the source code. From a statistical point of view, parameters and numerical constants are categorically very different.

The numerical constants can be specified with a great level of precision, but the physical constants and parameters cannot be

because they must be treated as random variables .(Mendoza et al., 2015; Cuntz et al., 2016).

In this study, we provide a short overview of the challenges and limitations of existing HMConsequently, it is possible15

to assert that model parameterization is an old, ubiquitous, and recurring problem in land surface and hydrologic modeling.

Considering this lack of coherent development during the past decades, we can still concur with Dooge (1982, p.269) and say

that the “parameterization of hydrologic processes to the grid scale of general circulation models is a problem that has not been

approached, let alone solved.”

There are potential methods available in the literature that may lead toward coherent parameterizations and prediction20

of water and energy fluxes in LSMs/LSM parameterizations in providing seamless predictions of water fluxes and states

across multiple spatial resolutions. Through several control experiments, we demonstrate that a large portion of the predictive

uncertainty in existing LSM/HMsoriginates from the poor estimation of effective parameters , which leads to a lack of scale

invariance and thus to their poor transferability across scales and locations. . For example: 1) sidestepping the scaling problem

of key model parameters by assuming scale-independent distribution functions with regionalized distribution parameters (Intsi-25

ful and Kunstmann, 2008), 2) find strong links between model parameters to mapped geophysical attributes via regularization

procedures (Pokhrel and Gupta, 2010), and 3) find strong links between of observed functional responses of hydrological sys-

tems and geophysical characteristics (Yadav et al., 2007). These methods, however, alone may not satisfy the flux-matching

criteria.

We In contrast with these existing methods, we argue that the multiscale parameter parameterization (MPR) technique30

(Samaniego et al., 2010b) offers a method to address the challenges of linking the framework to link the field scale (observa-

tions) with the catchment scale (Dooge, 1982)and to account . MPR also accounts for the effect of the spatial variability and

non-linearity of geophysical characteristics in the parameterization of hydrologic processes that operate at a range of spatial

resolutions (Dooge, 1982; Wood et al., 1988). Depending on the conditions imposed to the parameter estimation technique,

MPR can lead to parameterizations that satisfy the flux-matching criteria and hence contributes to obtain seamless parameter35
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and water flux fields. Because MPR relies on empirical transfer functions and upscaling operators to link geophysical proper-

ties with model parameters, it provides a very effective procedure to transfer “global parameters” to scales and locations other

than those used in model calibration (Samaniego et al., 2010a, b; Kumar et al., 2013b). This dependency on several transferable

coefficients also contributes to minimize a serious drawback of spatially explicit models called “over-parametrization” (Beven,

1995). Finally, we provide a modeling protocol that can be used as a guide to address the key question stated by :5

In this study, we analyze to which extend existing LSM/HM parameterizations are limited to obtain seamless predictions of

water fluxes and states across multiple spatial resolutions. Through several modeling experiments addressing Wood (1990)’s

query (i.e., “What modeling experiments need to be performed to resolve the scale question and what is the trade-off among

model complexity, the physical basis for land parameterizationsand observational data for estimating modelparameters?” ...”),

we demonstrate that a large portion of the predictive uncertainty in existing LSM/HMs originates from the deficient estima-10

tion of effective parameters, which leads to a lack of scale invariance and thus to their poor transferability across scales and

locations. These experiments also aim to help the modeler to reveal poor performing parameterizations, i.e., those that exhibit

non-seamless fields. Finally, based on our past experiences and aiming to address the challenges stated above, we develop

a protocol that systematizes the application of the MPR technique for any LSM/HM and demonstrate its effectiveness by

implementing it into the PCR-GLOBWB model.15

2 Parameterization of hydrologic and land surface modelsCurrent parameterization techniques

2.1 Representing spatial heterogeneity in HMs/LSMs: a brief reviewThe state-of-the-art

The core of the blueprint is embracing the spatial distribution of geophysical land-surface attributes in an HMmost common

parameterization techniques found in literature are: 1) look-up-tables (LUT), 2) manual or automatic calibration, 3) hydrologic

response units (HRU), 4) representative elementary watersheds (REW), 5) a priori regularization functions, 6) simultaneous20

regionalization/LSM. A large part of the literature in hydrology is devoted to streamflow prediction, which, according to , is a

hydrological variable that exhibits low dimensionality and represents the integral signal of a basin. As a result, regularization

functions, 7) dissimilarity-based metrics to transfer model parameters.

The simplest technique to assign a parameter value to a modeling unit (e.g., grid cell, HRU, sub-catchment) is based on a

LUT. In this case, a categorical index associated with a modeling unit links it with information taken from an external reference25

file (i.e., the LUT) which maps this index with parameter values that are usually taken from the literature. This technique is

commonly used in most of the “precipitation-runoff” models were conceived as lumped models or as semi-distributed models

and thus lead to poor spatial representation of geophysical parameters, state variables and fluxes(operational) LSMs such as

CABLE, CHTESSEL, CLM, JULES, Noah-MP (Kowalczyk et al., 2006; Viterbo and Beljaars, 1995; ECMWF, 2016; Oleson

et al., 2013; Best et al., 2011; Niu, 2011). A disadvantage of this method is the difficulty to perform sensitivity analysis (Cuntz30

et al., 2016). Moreover, the number of classes defined in LUT is often limited to a few (e.g., 13 soil classes in Noah-MP)

resulting in non-seamless parameter fields that are not continuous.
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Lumped Manual or automatic calibration is a commonly used technique to parameterize spatially lumped hydrologic mod-

els (e.g., Crawford and Linsley, 1966; Burnash et al., 1973; Lindstrom et al., 1997; Edijatno et al., 1999; Fenicia et al., 2011;

Martina et al., 2011; Andréassian et al., 2014; Singh et al., 2014) and semi-distributed models often exhibit reasonably good

efficiency in predicting streamflow observations at determined locations, but their performance is largely dependent on the

parameter calibration. Due to their excessive reliance on parameter calibration , there is a trade-off: the performance at interior5

points of the basin or at other locations becomes worse than that for calibrated outlets . A second hydrologic models (e.g.,

Leavesley et al., 1983; Kavetski et al., 2003; Lindström et al., 2010; Hundecha and Bárdossy, 2004; Merz and Blöschl, 2004;

Hundecha et al., 2016). The aim is to minimize the disagreement between model simulations and observations. In the majority

of the cases, the target variable is streamflow. The main drawback of this type of model parameterization technique is that the

parameter fields, which are obtained by combining colocating lumped model parameters from sub-basins, are unrealistic doubt-10

ful because they exhibit sharp discontinuities along the individually calibrated sub-basin boundaries despite having spatial con-

tinuity in basin physical attributes like soil, vegetation and geological properties that govern spatial dynamics of hydrological

processes (Li et al., 2012; Blöschl et al., 2013; Merz and Blöschl, 2004). In addition, these “patch patchwork quilt” parameter

fields exhibit significant sensitivity to the calibration conditions (Merz and Blöschl, 2004). Thus, these models models that

are parameterized with this technique may exhibit (1) poor predictability of state variables and fluxes at locations and periods15

not considered in calibration and (2) sharp discontinuities along sub-basin boundaries in state, flux and parameter fields (e.g.,

Merz and Blöschl, 2004; Lindström et al., 2010). Parameter fields derived using from basin-wise “calibrated” lumped models

lack spatial seamlessness, and thus are “inadequate representations of real-world systems” (Savenije and Hrachowitz, 2017).

Moreover, excessive reliance on parameter calibration leads to deficient performance at interior points of the basin or at other

locations at which the model was not calibrated (Pokhrel and Gupta, 2010; Lerat et al., 2012; Brynjarsdottir and O’Hagan,20

2014).

There have been many attempts to improve the realism and performance parameterization of lumped and semi-distributed

models by further discretizing the sub-basins into a given number of regions that exhibit nearly similar hydrologic responsesbehavior,

i.e., the so-called hydrologic response units (HRU) concept initially proposed by Leavesley et al. (1983) and further developed

by others (e.g., Flügel, 1995; Beldring et al., 2003; Blöschl et al., 2008; Viviroli et al., 2009; Zehe et al., 2014). Unfortunately,25

the results obtained in these modeling parameterization attempts have not been very successful in realistically representing the

spatial variability of model parameters, states and fluxes because of the lack of regionalized parameters and the unabridged

reliance on parameter calibration to improve model performance . Many attempts have been tested to enforce the continuity

and monotony of the (Kumar et al., 2010). Commonly, the effective parameters estimated for the HRUs are found by automatic

calibration. Efforts have been made to enforce continuity on parameter fields (Gotzinger and Bárdossy, 2007; Singh et al.,30

2012), but with somewhat limited success in during the transferability of parameters across scales and locations. In addition,

models parameterized using the HRU concept HRUs do not lead to mass conservation of water fluxes (i.e., flux-matching)

when applied to scales other than those used in for calibration (Kumar et al., 2010, 2013b). Recent attempts have been made

to improve the HRU concept to increase the seamless representation of parameters, states and fluxes (Chaney et al., 2016a).

However, this concept has not been tested for scalability and seamlessness of the estimated fields at coarse resolution. res-35
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olutions. Lately, a thermodynamic reinterpretation of the HRU concept was proposed by Zehe et al. (2014), but to date, the

implementation of this approach has not found its way into meso- to macro-scale LSMs/HMs.

Representative elementary watersheds (Reggiani et al., 1998) are an interesting theoretical concept, which scales mass

and momentum balance equations that, to the best of our knowledge, have not been used to estimate effective parameters at

meso- and regional scales. Recently, a thermodynamic reinterpretation of the HRU concept was proposed by , but to date, the5

implementation of this approach has not found its way into meso- to macro-scale LSMs/HMs.

A priori regularization functions (e.g., pedo-transfer functions) were introduced by Koren et al. (2013) to correct ensure the

“inappropriate randomness in the spatial patterns of model parameters”, i.e., the lack of seamlessness. Unfortunately, in this

case, the parameters (or coefficients) of regularization functions were not subject to parameter estimation or to the verification

of their ability to predict fluxes and states across various scales. The use of empirical point-scale-based relationships to link10

geophysical characteristics with LSM/HM parameters and the generalized assumption that their coefficients are universally

applicable with certainty (e.g., the coefficients in the Clapp and Hornberger (1978) pedo-transfer functions) is a major reason

are the major reasons for the proliferation of hidden parameters in LSM/HM code (Mendoza et al., 2015; Cuntz et al., 2016).

It is of pivotal importance to understand that these point-scale relationships should not be applied beyond the scale at which

they were derived.15

Many types of regionalization (or regularization) approaches have been tested for semi-distributed and distributed models.

According to Samaniego et al. (2010b), these approaches can be broadly classified into post-regionalization and simultaneous

regionalization approaches, depending on if the regionalization function parameters (or global parameters) are estimated after

(Abdulla and Lettenmaier, 1997; Seibert, 1999; Wagener and Wheater, 2006; Livneh and Lettenmaier, 2013) or during the

model calibration (Fernandez et al., 2000; Hundecha and Bárdossy, 2004; Gotzinger and Bárdossy, 2007; Pokhrel and Gupta,20

2010). None of these procedures consider the sub-grid variability of the model parameters or geophysical characteristics.

Livneh and Lettenmaier (2013) noted that most of these regionalization procedures exhibit limited transferability because of

the use of discrete soil texture classes as predictors, and very likely discontinuous parameter fields.

Recently, a dissimilarity-based regionalization technique was used by Beck et al. (2016) to generate an ensemble of global

parameters of the HBV model at a 0.5� resolution for global-scale hydrological modeling. A shortcoming of this approach25

is the use of ad hoc nearest-neighbor interpolation of parameter fields to fill gaps where no donor basins are available in

(geographically) surrounding regions(e. g., over the majority of Eurasia, Africa, South America, and South Europe). . Following

a similar concept of that of Beck et al. (2016), the HRU parameterization method proposed by Bock et al. (2016) for the CONUS

Contiguous United States (CONUS) will likely lead to discontinuous parameter fields because the calibration regions are fixed

to one hundred. The authors did not report the parameter fields obtained using this method. Consequently, it is very likely that30

LSM/HMs using this type of regionalized parameters would not exhibit realistic spatial patterns. Unfortunately, this hypothesis

cannot be properly tested because of the lack of studies revealing the spatial patterns of regionalized parameters obtained using

these regionalization techniques. for reasons similar to those mentioned above.

Many attempts have been made in the land surface modeling community to address Dooge’s challenges, especially with

respect to the transferability of model parameters across locations and scales and to obtain seamless parameter fields. One35
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of the earliest prominent experiments was conducted in the Project for Intercomparison of Land-surface Parameterizations

(PILPS) (Wood et al., 1998). In this project, calibrated LSM parameters were transferred from small catchments to their nearest

computational grid cells. The results indicated that LSMs exhibited poor transferability across space, leading to significant

differences in the partitioning of water and energy fluxes. For instance, Troy et al. (2008) used calibrated VIC model parameters

from small basins to generate parameter fields for continental-scale land surface modeling by “linearly interpolating to fill in5

those grid cell not calibrated” on a sparse grid. As noted by Samaniego et al. (2010b), this type of regionalization is not

adequate inadequate because of the nonlinearity of soil and geological formations. The spatial patterns of model parameters

that would be obtained by ad-hoc extrapolations based on calibrated parameters at from small basins or grid cells would most

likely lead to unrealistic parameter fields with significant discontinuities , as in those shown by the VIC parameters obtained in

a CONUS climate change projection assessment spatial discontinuities circumscribing river basins, as shown in recent studies10

by Wood and Mizukami (2014) and Mizukami et al. (2017) for the VIC model parameters.

Recent community-driven efforts, such as the Protocol for the Analysis of Land Surface Models (PALS) and the Land Surface

Model Benchmarking Evaluation Project (PLUMBER) (Haughton et al., 2016), indicate that the hurdles noted in PILPS have

not been overcome. Thus, it is possible to postulate that the poor required to gain understanding on whether the inferior

predictability of many LSMs evaluated with empirical benchmarks in the PLUMBER project (e.g., CABLE, CHTESSEL,15

JULES, Noah) may be the result of poor deficient parameterizations, among other factors.

2.2 The state-of-the-art Parameterization of LSMsoil porosity and available water capacity in selected LSMs/HM
parameterizationHMs

Recently, the Above mentioned challenges that we face in estimating key physical parameters in LSM/HMs has been intensively

discussed by many authors in many studies (Gupta et al., 2014; Bierkens et al., 2014; Bierkens, 2015; Clark et al., 2016, 2017;20

Mizukami et al., 2017; Peters-Lidard et al., 2017). To further visualize the problems discussed aboveand to understand the

deficiencies of current parameterization techniques, we selected a representative sample of LSMLSMs/HMs used for research

and/or operational purposes, namely: CABLE, CLM, JULES, LISFLOOD, Noah-MP, mHM, PCR-GLOBWB, WaterGAP2

(30 arcmin), WaterGAP3 (5 arcmin), CHTESSEL, and HBV. These models vary in process complexity and spatial resolution.

Soil porosity We selected soil porosity as an example to visualize existing shortcomings because it is one of the most25

common parameters in many LSMLSMs/HMs. This parameter controls the dynamic of several state variables and fluxes such

as soil moisture, latent heat, and soil temperature, and its sensitivity has been demonstrated in various studies (Goehler et al.,

2013; Cuntz et al., 2015; Mendoza et al., 2015; Cuntz et al., 2016). A representation of the porosity of the top 2 m soil column

in these models over the Pan-EU is shown in Figure 1. The Pan-EU domain was selected for depiction, but we note that the

problem is general and persistent across other domains (Mizukami et al., 2017). For cases in which an a HM does not use this30

parameter, the “available water capacity” (WaterGAP) or the “field capacity” (HBV) were selected as a surrogate due to their

similarity with porosity. Both surrogate fields are normalized (in space) to ease their comparison with the porosity fields. Soil

porosity is expressed in m3m�3 and can be compared to ease the comparison among different models.
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The following lessons can be learned from Figure 1: (1) There is a serious deficiency there is a large variability in the

parameterization of this key physical parameter because none of the analyzed models have comparable spatial patterns or

comparable estimates at a given location. Thus, its uncertainty is very large. It should be noted that the definition of this the

selected parameter is rather simple: it represents the ratio of the volume of voids to the total volume in the soil column. We

One can now wonder how large the uncertainty of other complex parameters whose relationship with soil properties is very5

nonlinear parameters would be (e.g., hydraulic conductivity) . (whose relationship with soil properties is very nonlinear. 2)

The degree of seamlessness strongly depends on the level of aggregation and the upscaling of underlying soil texture fields.

(For example, porosity for WaterGAP is substantially different in spatial pattern and magnitude for 30arcmin and 5arcmin

simulations. On the contrary, the spatial pattern and magnitude for porosity used in mHM remains almost unchanged for

application at 30 arcmin and 5 arcmin resolution. 3) A parameter field becomes highly discontinuous and patchy when, for a10

given model, the parameter is calibrated in a limited domain (or basins) and then extrapolated to other regions (e.g., as shown

in panel (k) of Figure 1, the panel corresponding to the HBVmodel). (). 4) These experimental results confirm the postulation

of Dooge (1982) that the parameterization of the existing state-of-the-art LSM/HMs at large and continental scales is still an

unsolved problem.

These facts The analysis of current parameterization techniques allow us to postulate put forward the following questions:15

(1) Why there are are there such large differences between models in estimating a physically interpretable parameter parameter

that has a physical meaning? (2) What are the consequences of poor parameterizations on the spatio-temporal dynamics of

state variables and fluxes? (3) What are the consequences of model calibration on parameter fields? (34) Are current model

parameterizations scale invariant? (45) Do the fluxes estimated with these models at various scales satisfy the fundamental mass

conservation criterion (hereafter denoted the flux-matching test)? (5) What are the consequences of poor parameterizations on20

the spatio-temporal dynamics of state variables and fluxes?

3 The MPR Seamless parameterization framework

3.1 The flux-matching postulation

The key postulation aiming at obtaining scalable (global) parameters that are transferable across locations and scales was

proposed by Samaniego et al. (2010b) and further tested in Kumar et al. (2013b, a) and Rakovec et al. (2016b). We hypothesize25

that

Flux matching across scales leads to quasi scale-invariant global parameters �̂, thus:

X

i

X

t

���Wi(�̂, t)ai �
X

k2i

wk(�̂, t)ak
���! 0, 8i 2 ⌦. (1)

Here, k denotes the sub-grid elements constituting a given modeling cell i with area ak. i denotes a modeling grid cell i

with area ai. Wi and wk denote fluxes at two modeling scales `1 and `01, respectively, with `1
`01

= ai
ak

⇣
`1
`01

⌘2
= ai

ak
. ⌦ denotes the30

modeling domain, e.g., a river basin, and t a point in time. It should be noted that the topology of the cells at either level is not
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specified. Normally, rectangular grid cells are used for convenience, but this is not a necessary condition. This stronger strong

flux-matching condition can be used as a penalty function or as an additional test to discriminate parameter sets obtained with

conventional parameter estimation approaches.

3.2 Regionalization and upscalingThe MPR approach

Multiscale parameter regionalization (MPR), proposed by Samaniego et al. (2010b), aims to estimate model parameters that5

are seamless across scales, satisfy the flux-matching conditions (see Section 3.1), and enable the transferability of global or

transfer-function parameters across scales and locations (Samaniego et al., 2010a, b; Kumar et al., 2013a; Wöhling et al., 2013;

Livneh et al., 2015; Rakovec et al., 2016a). The development of MPR is ongoing work. Regionalization functions used in MPR

for the mHM model (www.ufz.de/mhm) by Samaniego et al. (2010a) were further improved by Kumar et al. (2013b)and more

. More recently, a model-agnostic implementation of MPR has been proposed by Mizukami et al. (2017) .10

Currently, MPR is the only method that consistently and simultaneously addresses the scale, nonlinearity and over-parameterization

issues . The MPR approach also addresses the principle of scale-dependent subgrid parameterization (i.e., “net fluxes must

satisfy the conservation of mass”) proposed by but does not adhere to Beven’s other principles, such as that sub-grid parameterizations

may be data- and scale-dependent (principle 3 and 4), because exhaustive tests reported in the above mentioned references

carried out over hundreds of river basins do not appear to support them. We find MPR to be a robust technique that has the15

ability to provide “effective parameters” and is capable of addressing the scaling problem; in this sense, it diverges from the

Beven’s view that these “effective parameters” are an “inadequate approach to the scale problem”. Furthermore, MPR differs

on the regionalization and aggregation scheme (i.e., patch model areal weighting) proposed by tested in the VIC model in

over 500+ basins in the CONUS. The study of Mizukami et al. (2017), in contrast to the present study, does not include

flux-matching tests nor the evaluation of model skill across different spatial scales.20

The scaling problem in MPR is approached by addressing the existence of addressed by using process specific representative

elementary areas (REA) that determine the minimum computational grid size `1 at which the continuum assumptions can be

used without explicit knowledge of the actual patterns of the topography, soil, or rainfall fields (Wood et al., 1988). The REA of

a specific process, such as streamflow, can be determined by conducting a careful sensitivity analysis as shown by Samaniego

et al. (2010b). To estimate an “effective” model parameter (e.g., total soil porosity) at the selected modeling scale, it is first25

necessary to estimate its variability at a much finer scale `0 ⌧ `1 so such that the effects of its spatial heterogeneity can be

adequately represented. In other words, the parameter at the fine scale `0 represents the minimum support at which the proposed

equations are still valid. Barrios and Francés (2011) indicated that a suitable estimate of `0 for a given parameter could be near

its correlation length. The sub-grid variability of a parameter �0 depends, in turn, on the spatial heterogeneity of geo- and

bio-physical characteristics (u0), such as terrain elevation, slope and aspect, soil texture, geological formation, and land cover,30

which are now available at hyper-resolution for the entire globe. The mathematical relationships that link model parameters

with these characteristics at the finer resolution are called pedo-transfer, regionalization or regularization functions f (Clapp

and Hornberger, 1978; Cosby et al., 1984; Wösten et al., 2001). The constants required in these functions are usually denoted
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as global parameters �̂, thus �0 = f (u0, �̂). Note that the fields �0 and u0 are dependent on space and time, but the vector �̂

is not.

Regularization functions are commonly used in mathematics and statistics to solve ill-posed problems (which is the case

when the parameters of a distributed LSM/HM are determined by calibration) and/or to prevent over-fitting. The direct con-

sequence of the regularization is the substantial decrease in degrees of freedom of the optimization problem because the5

cardinality of the gridded parameter fields #�0 #{�0} is orders of magnitude larger than that of the vector of the global

parameters #�̂#{�̂}. Hence, MPR is a parsimonious (not over-parameterized) parameterization technique that offers spatially

continuous model parameter fields and removes spatial discontinuities in water fluxes and states, as observed by Gotzinger

and Bárdossy (2007) and discussed by Mizukami et al. (2017). From the Bayesian point of view, the regularization functions

impose a prior distribution on the model parameters. Consequently, greater care should be taken in their selection.10

The second step of the MPR approach consists of upscaling the sub-grid distribution of every a regionalized parameter to the

modeling scale. In other words, �1 = h�0i. Here, the symbol h·i represents an averaging or scaling operator that is parameter-

specific, and thus �1 denotes the upscaled effective parameter field. It is important to note that this scaling operator is not

necessarily the arithmetic mean.

A schematic representation of the MPR procedure can be seen in Figure 2. In short, the motto of MPR is “estimate first,15

then average” whereas other existing regionalization methods follow the opposite approach of “average first, then estimate.”

Because the processes in LSM/HMs are highly nonlinear, this sequence of operations does not commute. The consequences

can be dramatic (see Figure 7to be shown in the results section). The latter, which is the standard approach, does not preserve

fluxes/states across scales, whereas MPR does to a great considerable extent. The key question here is in finding the right

scaling rule for the model parameters such that the fluxes/states are preserved across a range of spatial scales.20

Model parameters at the `1 scale (i.e., 1 km to 100 km) are called “effective” parameters because they cannot be measured

by physical means at this resolution and can only be inferred by heuristic relationships f(·). Thus, it is essential that the

inequality `0 ⌧ `1 is fulfilled so that the law of large numbers leads to stable estimates of the effective parameter �1 having

low uncertainty. Since every LSM/HM (e.g., those mentioned in Section 2) contains “effective” model parameters, depending

on heuristic relationships (that are hidden in the source code in many cases (Mendoza et al., 2015; Cuntz et al., 2016)), it is25

logical that existing LSM/HMs are subject to parameter uncertainty. These models can be treated as stochastic models, even

though their governing equations are deterministic in nature and based on physical principles such as the conservation of mass

and energy (Clark et al., 2015; Nearing et al., 2016). Effective parameters should not be the pure result of a blind calibration

algorithm. MPR varies from other regionalization approaches in that the introduced relationships lead to realistic parameter

fields may lead to seamless parameter fields and model simulations fulfilling the flux-matching condition.30

Currently, MPR is the only method that consistently and simultaneously addresses the scale, nonlinearity and over-para-

meterization issues if global parameters are estimated simultaneously at multiple locations (i.e., basins). The MPR approach

also addresses the principle of scale-dependent subgrid parameterization (i.e., “net fluxes must satisfy the conservation of

mass” proposed by Beven (1995)) but does not adhere to Beven’s other principles, such as that sub-grid parameterizations may

be data- and scale-dependent (principle 3 and 4 in Beven (1995)), because exhaustive tests reported in the above mentioned35
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references carried out over hundreds of river basins do not appear to support them. We find MPR to be a robust technique that

has the ability to provide “effective parameters” and is capable of addressing the scaling problem; in this sense, it diverges from

the Beven’s view (Beven, 1995, p.507) that these “effective parameters” are an “inadequate approach to the scale problem”.

Furthermore, MPR differs on the regionalization and aggregation scheme (i.e., patch model areal weighting) proposed by

Beven (1995, p.520).5

The selection of regionalization functions and scaling operators is fundamental to ensure the transferability of global pa-

rameters across scales and to guarantee the seamlessness of parameter fields across scales, e.g., from `1 to 2`1 ... and so on.

Samaniego et al. (2010b) proposed that the key to determining them is the flux-matching condition mentioned above. A seam-

less parameter field �1 can be interpreted as the corollary of the flux-matching condition. Moreover, MPR employs geophysical

properties at `0 that allow for a representative sample at the hyper-resolution promoted by Wood et al. (2011) and Bierkens10

et al. (2014).

3.3 Protocol for evaluation of model parameterizationimplementing the MPR approach

The development of LSM/HMs and their parameterizations should be guided by a strict hypothesis driven framework (Nearing

et al., 2016) that aims at finding parsimonious and robust parameter sets that fulfill the flux-matching condition and a number

of efficiency metrics that are not used during the parameter estimation phase. A multivariate, multiscale evaluation assessing15

the reliability of model simulations should follow the scheme presented in Rakovec et al. (2016a). Based on our experience,

we suggest the following procedure previous experiences, we synthesize a formalized scheme (i.e., protocol) for systematically

implement the MPR technique in other LSMs/HMs with the aim to obtain a robust and seamless parameterization. A graphical

depiction of the estimation procedure at multiple scales is shown in Figure 2.

1. Retrofit the source code of an LSM/HM so that all model parameters are exposed to analysis algorithms. Parameters are20

the values of a model that can be considered random variables, i.e., those that are subject to various outcomes and can be

fully defined by a probability density function. Parameters should not be confused with numerical or physical constants.

2. Determine a set of the most sensitive model parameters through a sensitivity analysis (SA). For computationally expen-

sive LSMs such as CLM or Noah-MP, computationally frugal methods such as the elementary Effects method (Morris,

1991), its enhanced version such as that proposed by Cuntz et al. (2015), or the distributed evaluation of local sensitiv-25

ity analysis (DELSA, Rakovec et al., 2014; Mendoza et al., 2015) are of particular interest because use of the popular

standard Sobol’ method (Sobol’, 2001) can be computationally expensive although still possible (Cuntz et al., 2016).

3. Regionalize sensitive model parameters the that exhibit marked spatial variabilities. The selection of the regionalization

function f(·) can be guided by existing literature or by step-wise methods (e.g., Samaniego and Bárdossy, 2005). This

regularization step should be conducted at the highest available spatial resolution for all predictor fields. This resolution30

is denoted as level `0. The output of the regularization is the parameter field �0.
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4. Estimate effective parameter fields �1 using upscaling operators based on the underlying sub-grid variability �0. The

scale `1 is determined by synthetic experiments aimed at finding the optimal REA for processes related to the parameter

in question (Samaniego et al., 2010b; Kumar et al., 2013b).

5. Estimate the global-parameters �̂ using standard optimization algorithms (simulated annealing, shuffled complex evo-

lution (SCE), dynamically dimensioned search (DDS)) by minimizing a compromise metric that includes observations5

at multiple scales and locations (Duckstein and Opricovic, 1980; Rakovec et al., 2016a). The compromise metric could

also include hydrologic signatures to extract as much information from a time series as possible (Nijzink et al., 2016).

6. Perform multi-basin, multi-scale, multi-variate cross-validation tests to evaluate the robustness of the regionalization

functions, scaling operators, and global parameters (Rakovec et al., 2016a).

7. If the cross-validation tests provide satisfactory results (e.g., Kling-Gupta efficiency (KGE) of the compromise solution10

> 0.6), then evaluate the flux-matching condition given by eq. 1. If the total error is too large to be tolerated, repeat steps

3 to 8.

8. Evaluate the parameter seamlessness and the preservation of the statistical moments of fluxes and states across scales

(seamless prediction step in Figure 2).

It should be noted that any of the steps above can be tested within a sequential hypothesis testing framework (Clark et al.,15

2016). A substantial difference from a standard model optimization exercise is that the transfer function f(·) (step 3) and the

upscaling operator (step 4) can also be modified in the modeling protocol.

Failure to satisfy the imposed condition, such as the flux-matching test, after exhaustively testing the options in steps 3 to 6

may indicate deficits in process understanding and/or poor data. Consequently, the evaluation step should also provide guid-

ance on detecting and separating the errors stemming from process conceptualization (modeling) and input data. A graphical20

depiction of the estimation procedure at multiple scales is shown in Figure 2.

3.4 Seamless parameter fields across multiple scales using MPR

In Section 3.2, it was postulated that the MPR technique aims at estimating seamless parameter fields across scales which

minimize the occurrence of artificial discontinuities and ease the transferability of model parameters across scales and locations.

The latter has been tested and reported in many studies in Europe, USA, and other basins worldwide (Samaniego et al., 2011;25

Kumar et al., 2013b, a; Rakovec et al., 2016b, a). In this study, we provide evidence in favor of the former postulation.

To achieve this goal, the mHM model is parameterized using the multiscale parameter regionalization technique (MPR)

(Samaniego et al., 2010b) with hyper-resolution fields of geophysical characteristics at `0 = 500 m resolution as input. Among

them, the land cover data was obtained from the Corine data sets (land.copernicus.eu/pan-european/corine-land-cover), and the

soil texture information was derived from SoilGrids (soilgrids.org). These very detailed and homogenized soil texture fields30

provide the fractions of clay and sand, mineral bulk density, and fraction of organic matter for six soil horizons up to 2 m

deep. A hyper-resolution digital elevation model (DEM) over Europe (approximately 30 m) from the GMES RDA project
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(EU-DEM; www.eea.europa.eu/data-and-maps/data/eu-dem) was used to derive terrain characteristics such as slope, aspect,

flow direction. The underlying hydro-geological characteristics are based on the International Hydrogeological Map of Europe

(IHME; www.bgr.bund.de/ihme1500), available at a 1:1 500 000 scale. Details on the pedo-transfer function used for these

simulations can be found in Livneh et al. (2015). mHM global parameters were obtained by closing the water balance over

selected river basins in Europe (Rakovec et al., 2016a).5

Based on these settings, which constitute the basis for the EDgE project (edge.climate.copernicus.eu), we estimated porosity

fields at three modeling resolutions of `1= 5, 10, and 25 km, based on the same `0 support information. Following the MPR

procedure depicted in Figure 2, the parameter fields for the mHM model at these three resolutions can be estimated. Results

are shown in Figure 3.

The results illustrate that the MPR approach can preserve the spatial pattern of the porosity fields (see panels (a), (b) and10

(c) in Figure 3) and the first and second moments of its probability density function shown in panels (e)-(g). Two-sample

Kolmogorov-Smirnov tests indicate that there is insufficient evidence to reject the null hypothesis that any of the three pos-

sible pairs of empirical distributions were drawn from the same unknown distribution. Due to the similarity of the empirical

distribution functions (EDF) of the porosity fields This highlights that the MPR approach leads to consistent parameter fields

across scales. In this case, the mean value estimated at resolutions of 5, 10, and 25km is approximately porosity is estimated to15

be 0.42 m3m�3 in all three cases. m3 m-3 independent of the scale.

The recently derived soil porosity field at 15arcmin (⇡25km)over the Pan-EU , hereafter denoted as Miller-Miller Scaling

(MMS) , is included

3.5 Limitations of the MPR approach

The MPR approach, as any method, has some limitations. One of the crucial aspects of MPR is the selection of transfer20

functions and upscaling operators. Existing theories could be the first guess, but in the case that nothing is available, the protocol

proposed in Section 3.3 could be used to guide the search of robust transfer functions. Testing the model parameterization for

flux matching conditions across a range of basin and spatial scales may help to identify adequate upscaling operators. This

procedure, although tedious, is the only solution for the moment.

In the case that some state variables change over time (e.g., land cover/use), or during parameter estimation, the MPR25

algorithm have to be linked to the model because every time a global parameter (�̂) is re-estimated, all related model parameters

model (�1) have to be updated as illustrated in Figure 3d to visualize the effects of the pedo-transfer functions and the scaling

operators. It should be noted, however, that both approaches 2. The computational cost of performing MPR is therefore larger

than other parameterization method discussed before.

Another limitation of the applicability of the MPR technique until recently was its availability only as an intrinsic module of30

the mHM model (www.ufz.de/mhm). This implies that tailored algorithms (i.e., MPR and MMS) use the same input SoilGrids

data set at `0 = 1km. The main differences between both approaches stem from the type of regionalization functions and

upscaling operators used, and the procedure to estimate the PTF parameters. It should be noted that the flux-matching test

was only verified in MPR. To generate the MMS dataset, used the ROSETTA-based pedo-transfer-function (PTF) proposed by
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and the upscaling method described by . MPR, on the other hand, employs the PTF proposed by and the harmonic upscaling

operator proposed by (see for more details) . Both methods lead to seamless fields because they follow the principle “first

estimate then average” which considers the source code) to perform the regionalization and upscaling of parameters for a

target LSM/HM have to be developed from scratch, as it is demonstrated here as a case study for the PCR-GLOBWB model.

This activity is of course time consuming and not pleasing due to its complexity. For this reason, Mizukami et al. (2017) have5

started a community effort to develop a model-agnostic MPR implementation (MPR-flex), which has been so-far evaluated for

the VIC model.

The availability of high resolution bio-physical characteristics at the spatial scale `0 constitutes another limitation of the

applicability of MPR. Since the sub-grid variability of the soil porosity. The differences between the MPR and MMS derived

porosity fields (panels (c) and (d) of Figure 3), however, are striking. In general, MMS tends to have lower porosity values than10

MPR. The spatial mean of MMS is 5lower than MPR but its standard deviation is in the same range as that of MPR at 10km

resolution.In particular, variability is fundamental to estimate robust effective parameter values at coarser scales, the porosity

obtained by MMS over the northeastern part of Germany, eastern Europe, and Scandinavia are underestimated compared with

MPR . minimum scale at which a model can be applied (`1) is strongly determined by the data availability. For example, if the

soil data is available for the Pan-EU domain at `0=250 m, the `1 should not be lower than 1000 m, so that each modeling cell15

(`1) have a representative number of underlying sub-grid cells (`0).

The main advantage of MPR over MMS is that the former has the ability, if used in a LSM/HM, to preserve the mass

balance of water fluxes (eMPR has been mainly developed for a hydrologic model representing the water cycle. However,

land surface models also include the energy and carbon cycles and thus have greater complexity. In particular, they have more

detailed representation of vegetation. It is a topic for future research to develop a MPR approach (i.e., transfer functions and20

upscaling operators) for plant functional type-specific parameters such as carboxylation rate and the slope of the Ball-Berry

equation for stomatal conductance (Ball et al., 1987), which are required for a successful implementation of MPR in LSMs.

g., evapotranspiration) and states across scales, such that the resulting fields have similar spatial patterns and moments across

scales as shown in Figure 3(a-c

Finally, the computational effort for MPR is also considerably larger in comparison with other methods, because of its25

requirement to estimate model parameters (�0) at the highest resolution at which the bio-physical characteristics are available.

The computational time, however, could be substantially reduced by using a restart file (i.e., e-g). The method of , has yet to be

tested for these fundamental scaling properties when applied to LSMs/HMs. Nevertheless, this experiment allows to conclude

that the PTFs and the upscaling operators should not be applied independently from a LSM/HM because the resulting effective

parameterswould have large biases that would likely lead to large predictive uncertainties. a data set containing a copy of all30

parameters, state variables, and fluxes of a model at a given point in time). If this capability is available, the MPR estimation

can be greatly reduced for operational simulations because the effective parameter fields and past modeled states do not need

to be estimated often.
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4 Experiments that reveal inadequate parameterizations

4 Experiments to reveal non-seamless parameterizations

4.1 Visualization of artifacts in state and flux fields

In this section we perform four modeling experiments, inspired on Wood (1990)’s recommendation, to investigate: 1) the

effects of the over-calibration of global parameters on the spatial patterns of modeled state variables. 2) The effects of a5

parameterization technique on the spatial pattern of effective parameters. 3) The effects of a parameterization technique on the

dynamics of a state variable. And, 4) the effects of not satisfying the flux-matching condition on simulated flux across different

spatial scales. In these experiments four models are employed: mHM, Noah-MP, PCR-GLOBWB, and WaterGAP.

4.1 Effects of on-site model calibration

As noted in the introduction, on-site (basin-specific) parameter estimation based on HRU or similar techniques (based on10

such as clustering grid cells or sub-basins into regions that exhibit quasi-similar hydrological behavior) leads to non-seamless

parameter fields such as those reported in Merz and Blöschl (2004). Here, we go one step further to show the consequences of

this common practice on state variables such as soil moisture. Our postulation is that an on-site calibration of global-parameters

�̂ leads to biased state variables even with sophisticated regularization techniques such as MPR. To falsify this postulation, we

performed two model simulations denoted “on-site” and “multi-site” calibration schemes. In both cases, we used the mHM15

setup described in Rakovec et al. (2016b) over the Pan-EU domain at a 0.25� resolution.

In the first experiment, we performed simulation, we perform on-site calibrations at 400 river basins in the Pan-European

domain. Subsequently, the respective optimized parameter sets are used in each corresponding basin to generate the target

variable, in this case, the daily soil moisture of the top 1 m soil column. Lastly, daily soil moisture fields were are assembled

using the independent basin simulations for the entire Pan-EU domain. The results of this experiment are shown in panel (a) of20

Figure 4 for a day in August 2005. In the second experimentsimulation, the global-parameters �̂ are estimated simultaneously

for a set of 13 basins covering various hydro-climatic regimes in the Pan-EU domain. The corresponding soil moisture field for

the same point in time is depicted in panel (b) of Figure 4.

The first experiment simulation shows clear evidence of strong spatial discontinuity imprint in the soil moisture fields that

is easily identifiable because the shapes of the constituent river basins (Figure 4a) are apparent. Another interesting feature is25

a strong wet bias in a basin located in center of the Iberian Peninsula compared to its neighboring regions. Wet soils during

this period are very unlikely because the entire region was enduring a prolonged and extreme drought. Moderate dry-bias

is apparent in basins in southwest Germany, and a strong dry-bias was detected in basins in west Croatia, south Lithuania,

south Hungary and north Bosnia and Herzegovina. Conversely, the soil moisture field obtained with the multi-basin parameter

estimation does not exhibit these nuisances and thus can be regarded as a spatially seamless field. In this case, parameter30

estimation with a large sample of geophysical characteristics and many streamflow times series to estimate efficiency measures

leads to a well-posed parameter estimation problem.

17



Based on these results, it can be concluded that parameter sets obtained using the on-site parameter estimation technique

does not lead to seamless parameter fields or state variables. Moreover, automatic optimization algorithms, such as SCE or

DDS, tend to over-learn from time series with large observational errors, which in turn leads to poor identifiability of param-

eters (Brynjarsdottir and O’Hagan, 2014) and biased simulations, as demonstrated above. Consequently, parameter estimation

should be performed with a representative sample of basins that adequately cover the variability of hydrological regimes and5

geophysical properties (e.g., soil types) (Kumar et al., 2015). It is worth noting that if the parameters of a model are estimated

in a small basin with very few soil types, a single geological formation, or very flat terrain, then it is very likely that the

estimated parameters are biased to a specific basin setting andare not useful some parameters cannot be constrained during

calibration. The obtained parameter set is biased to the specific basin in which it has been estimated and, hence, it is not skillful

for seamless and continental scale simulations.10

4.2 Detecting effects Effects of ad hoc regionalization techniquesa parameterization technique on spatial patterns of
effective parameters

The effects of the commonly used parameterization techniques used to generate the porosity fields of LSMs (such as CHT-

ESSEL and Noah-MP depicted in Figure 1) are important to investigate. These fields were are obtained by combining the

majority (or dominant) upscaling operator and a look-up table containing categorical values of model parameters tabulated for15

a limited set of dominant soil types ( e.g., Niu (2011, p.20.), ECMWF (2016, p.137)). The majority upscaling is represented

as �1,i = �0,k, where �1,i denotes the upscaled parameter at grid cell i and �0,k is the parameter value corresponding to the

most common soil type class k in level-0 within i. The soil types are given in a deterministic look-up table with m classes, and

k 2m. The majority-based operator is mostly used for estimating grid-specific vegetation classes in LSMs (Li et al., 2013).

The porosity field, based on a majority upscaling for the Noah-MP model used in EURO-CORDEX (www.euro-cordex.net)20

at an approximately 12-km 12 km resolution, is depicted in Figure 1g. Compared with the other model derived porosity fields,

the Noah-MP field appears to be most homogeneously distributed in space, and it . It is very likely that the spatial heterogeneity

is under-represented in this case as the default soil LUT contains only thirteen soil classes. It should be noted that a model

such as CABLE that uses a porosity field with an approximately 100-km 100 km resolution has a larger variability than that of

Noah-MP at 12 km. However, one can argue that the underlying soil texture map , and not the upscaling method, might cause25

the lack of variability km.

To test this hypothesis, the The following experiment is carried out to evaluate whether the variability of the soil map or the

upscaling operator has a larger effect on the derived porosity field. The highest resolution soil map available for Europe was is

used and applied in the same manner to derive porosity fields as described above. The texture field is provided by the SoilGrids

dataset (soilgrids.org) at 1000-m 1000 m resolution (level-0). The upscaled porosity field was is generated at 5 km for the30

EDgE project(edge. climate.copernicus.eu). . The soil characteristics for Noah-MP were are estimated using the same look-up

table as in the EURO-CORDEX-Noah-MP case. The comparison of both parameter fields (i.e., EDgE-Noah-MP and EURO-

CORDEX-Noah-MP) and the main statistical moments describing the spatial variability of the porosity fields are shown in

Figure 5. The results clearly indicate the inappropriateness of the majority-based upscaling operator for this parameter in both
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cases. It led leads to reduction of the variance of the porosity field and to thus can be considered the least sensitive operatorat the

resolution of the level-0 data. This means that the informational content of the hyper-resolution soil maps, commonly available

globally, is almost lost.

Notably, although the overall mean of the porosity estimated using MPR over the Pan-EU domain for mHM (Figure 3a) is

only 6.6% lower than that calculated using the majority-based approach for Noah-MP (Figure 5a), the spatial patterns obtained5

by both models are very different. The evidence of this remarkable dissimilarity can also be visualized by comparing the

empirical density functions shown in Figures 3d and 5c, both corresponding to a field at `1 = 5 km and with the same input

data. A detailed evaluation conducted by Samaniego et al. (2012) in Germany showed that large porosity values estimated

with the majority-based approach could over-estimate those obtained with MPR by up to 40%, whereas in other locations,

under-estimation up to 15% from those estimated by MPR can be found.10

Other upscaling operators, such as the weighted arithmetic mean, are commonly used in LSMs in combination with the

mosaic approach. For example, in CLM (Oleson et al., 2013, see p. 160) the texture class of the sub-units of the cell, called

tiles, are provided in a look-up table. The upscaled porosity field obtained using this approach is shown in Figure 1 b at a 1�

(100 km) resolution. Methods based on the majority and weighted arithmetic mean operators exhibit some similarity and lack

spatial variability. In both cases, the spatial mean is approximately 0.43 m3m�3.15

Hydrologic models that do not use soil porosity tend to use a similar conceptualization and values denoted as the total

available water capacity (TAWC, WaterGAP versions 2 and 3) and field capacity (FC, HBV). For these type types of conceptual

models, normalized values of these parameters are used as surrogates for soil porosity. The consistency of the spatial patterns

of TAWC and FC are compared here instead of their actual values. A distinctive difference in the patterns can be observed. For

example, WaterGAP3 exhibits lower values than WaterGAP2, whereas the pattern of the normalized FC in HBV is the opposite20

in many locations (e.g., Spain, Germany, Scandinavia).

Details of the parameterization schemes used to estimate TAWC and FC are beyond the scope of this study. Interested

readers may refer to Müller Schmied et al. (2014) or Beck et al. (2016), respectively. However, the TAWC in WaterGAP

is obtained by linking the soil type provided by the FAO soil map with available water capacity values estimated by Batjes

(1996). Thus, no scaling rule or form of regularization is used in this case. The field capacity parameters used in HBV were25

determined using an ad hoc nearest-neighbor interpolation technique that relies on calibrated parameters from nearby similar

donor basins that might exhibit very different geophysical characteristics. The parameter fields obtained for two versions of

WaterGAP (30 arcmin, 5 arcmin) and HBV are depicted in Figure 1, panels i, j, and k, respectively. It can be concluded that

the procedure parameterization technique employed is not scale invariant by comparing the as revealed by distinct parameter

sets from both WaterGAP model versions, which were are operated at different resolutions. The regionalization proposed by30

Beck et al. (2016) leads to a patch-quilt patchwork-quilt field that does not resemble to any other field presented. The Evident

from the Figure Figure 1, the HBV field lacks seamlessness and becomes conclusive evidence that calibrated model parameters

cannot be transferred to other locations or interpolated in space by heuristic algorithmsthat may result in non-seamless fields

of water fluxes and states.
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4.3 Changes in Effects of a parameterization technique on the dynamics of water fluxes and statesa state variable

There is a complex interplay between soil moisture (SM) and latent heat (LH) in LSM/HMs. Improving our understanding of

soil-land-atmosphere feedback is fundamental to for making reliable predictions of water and energy fluxeson land systems.

In this context, it can be hypothesized that the parameterization we carry out a sensitivity experiment to investigate the effects

of soil related parameters parameterizations (e.g., soil porosity) has significant effects on related state variables and fluxes. To5

falsify this hypothesis, two on latent heat and soil moisture. Two contrasting modeling paradigms (Noah-MP and mHM) were

are employed.

The WRF/Noah-MP system is forced with ERA-interim at the boundaries of the rotated CORDEX-Grid (www.meteo.unican.

es/wiki/cordexwrf) at a spatial resolution of 0.11� covering Europe from 1989 to 2009. To ease the comparison, the process-

based hydrological model mHM (www.ufz.de/mhm) was is driven with daily precipitation and temperature fields generated10

by the WRF/Noah-MP system during the same period. The spatial resolution of mHM was is fixed at 5⇥5 km2. The main

geophysical characteristics in WRF/Noah-MP of land cover and soil texture are represented with a 1⇥1 km2 MODIS and a

single-horizon, coarse-resolution FAO soil map with 16 soil texture classes, respectively. The porosity field of Noah-MP is

estimated by applying a majority-based operator to values for different soil classes, as shown in Figure 1g5b.

The settings of the mHM model used in this experiment are described in Section 3.4. In contrast with those of Noah-MP, the15

global parameters of mHM estimated using the MPR technique are obtained by closing the water balance over selected river

basins in Europe (Rakovec et al., 2016a). The porosity fields obtained for mHM over the Pan-EU is are depicted in Figure 1f.

Notably, although the overall mean of the porosity estimated using MPR is only 2.3lower than that calculated using the

majority-based approach in Noah-MP (Figure 5), the spatial patterns obtained by both models are very different. The evidence

of this remarkable dissimilarity can also be visualized by comparing the empirical density functions shown in Figures 3d and20

5c, both corresponding to a field at `1 = 5 km and with the same input data3.

In general, it can be concluded that the porosity field estimated by Noah-MP tends to have lower water holding capacity

values than that of the mHM. Deviations of up to -6.8were detected in Germany, where a detailed evaluation was conducted

by . Within the same domain, the porosity values in Noah-MP could be up to 15less than those estimated by mHM. However,

at very few locations the opposite can happen, reaching values of 40over-estimation.25

The phase diagrams of the monthly fraction of soil water saturation fSM = ✓
✓s

(i.e., plots of monthly fSM(t) vs. fSM(t+1))

are subsequently estimated to investigate how the investigated to understand the effect of differences in porosity estimates of

the top 2 m soil column affect on the soil moisture dynamics (Figure 6). Two locations in Germany are selected in which Noah-

MP significantly systematically over- or underestimated the latent heat fluxes with respect to mHM (the latitude and longitude

coordinates of the center of the selected Noah-MP grids are A: (54�N ,10�E) and B: (51�N ,7�E), respectively). At location A,30

the majority-based approach underestimates the MPR soil porosity by -10%, whereas in location B, it overestimates it by 40%.

This experiment unambiguously shows that, at locations where Noah-MP over-estimates latent heat with respect to mHM,

the dynamic temporal variance (i.e., dynamic) of the monthly SM time series is enhancedsimulated by Noah-MP is almost
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doubled compared to that of mHM, leading to much lower soil moisture values (extreme droughts) (Figure 6a). Conversely,

underestimation of latent heat greatly constrains the reduces the variance of the soil moisture dynamics (Figure 6b).

4.4 Flux Effects of not satisfying the flux matching testcondition

In Section ??, it was 2, we postulated that ad hoc parameterization schemes do not necessarily fulfill the flux-matching test

performed with a flux simulated by a given model at two modeling resolutions ( e.g., `1 = 5 , and 30 arcmin). A detailed5

description of how to perform this test is provided in Samaniego et al. (2010b). The following experiment was is conducted

with three models: mHM, PCR-GLOBWB, and WaterGAP at the resolutions above to try to falsify this strong in an attempt to

falsify the above postulation. All models use the same forcings and geophysical information. The experiment was simulations

are conducted in the Rhine River upstream of the Lobith gauging station. All three models are driven by daily forcing with a

spatial resolution of 5 km, which was kindly provided by the EFAS team at JRC (www.eea.europa.eu). Additional details of the10

modeling settings of this experiment are provided in Sutanudjaja et al. (2015) and www.hyperhydro.org/. The KGE and bias

values of these three models obtained for both scales at the Lobith station during 2003 are reported in Table 2. The streamflow

daily streamflow time series during this year was is selected for evaluation because it exhibited exhibits strong temporal

dynamics, with wet conditions in the beginning of the year followed by a drought during the summer . These efficiency metrics

and fall seasons. The performances obtained for the three models are satisfactorily, but the results shown in Table 2 indicate15

that mHM is the only model that can have higher KGE efficiencies values regardless of the scalespatial modelling resolution.

The flux-matching test presented in Section 3.1 was is performed with simulated evapotranspiration (ET) because it is the

largest flux in the water cycle besides precipitation, and is prone to the largest predictive uncertainties . (Mueller et al., 2013).

To ease the comparison, collocated grids are employed for every model such that every coarser scale grid cell has exactly the

same number of underlying cells at finer resolution (5 arc min). The results of this test are shown in Figure 7. These results They20

reveal that mHM is the only model able to fulfill the exhibits the best flux-matching test, as apparently in this figurebetween

these two scales. This experiment also shows that the MPR technique implemented in mHM leads to ET fields that satisfy mass

conservation across scales and exhibit seamlessness that becomes apparent at higher resolutions (see are of similar magnitude

at both scales indicating a close conservation of mass (Figure 7a).

The PCR-GLOBWB and WaterGAP models reveal large inconsistencies in annual ETpreserving the spatial pattern of annual25

ET across two modeling scales, although the streamflow performance at the outlet is good (greater than 0.83 in both cases).

These results also confirm the postulation that “streamflow-related metrics are a necessary but not sufficient condition to

warrant the proper partitioning of incoming precipitation P into various spatially distributed water storage components (e.g.,

SM) and fluxes (e.g., ET)” (Rakovec et al., 2016b). Because all models are forced with exactly the same forcings, share the

same geophysical information, and have almost similar hydrological process descriptions, it can be safely concluded that30

the parameterization method used in the models should cause caused the ET mismatch. To falsify this postulation, the MPR

parameterization protocol proposed in Section 3.3 was is next applied to PCR-GLOBWB.
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5 Implementation of the parameterization protocol in PCR-GLOBWB

To evaluate the consistency of land surface fluxes before and after MPR implementation, we performed a sensitivity analysis

to study analyze the impact of MPR on evaporative fluxes and soil moisture content in PCR-GLOBWB (van Beek et al., 2011;

Wada and Bierkens, 2014; Sutanudjaja et al., 2016) over the Rhine River basin during 2003. The model was is used to simulate

the hydrological states at two different spatial resolutions (`1 =5 , and 30 arcmin), and the sensitivity to MPR implementation5

was is evaluated using a field difference method (in line with eq. 1):

�=

vuut 1

T

TX

t=1

✓
100

Wc(t)�wf (t)

wf (t)

◆2

(2)

where Wc and wf are the coarse (c) and fine (f ) resolution simulations of variable W , respectively, and T is the total time

series length.

The original PCR-GLOBWB parameterization does not include consistency in upscaling as enforced by MPR, leading to10

a larger difference in soil properties. Figure 8 depicts the porosity fields of this model before and after the implementation of

MPR. Panels (a) and (b) of this figure show clearly the problems mentioned in section 2, for example lack of coherence in

spatial patterns and the existence of spatial discontinuities of parameter fields at two scales. The porosity fields obtained with

the MPR technique shown in panels (c) and (d), on the contrary, exhibit a typical seamless spatial structure in which the main

features of the field can be distinguished across scales. It is worth noting that differences seen between Figure 8a and Figure 8c15

are not only due to the improved upscaling procedure, but also due to a modified pedo-transfer function. The parameters of the

pedo-transfer function have also been included in the calibration within the MPR approach.

These differences in soil hydraulic properties influence the derived hydrological properties, leading to changes in saturated

conductivity and storage capacity in the unsaturated zone. The considerable differences in ET fluxes are shown in panels (ca)

and (db) of Figure 7 9 and are the result of these changes.20

When MPR is employed, we see that the observe that the difference in actual average Rhine basin evapotranspiration between

the two scales � drops from 29% to 9.4% (Figure9). For the total column soil moisture, we find a stronger decrease in � from

25% to 6.9%, clearly indicating the benefits of MPR implementation. We also observe an a slight increase in the discharge

KGE performance compared with observations performance (KGE) at Lobith. The original KGEs were are 0.86 (`1 =5 arcmin)

and 0.93 (`1 =30 arcmin), whereas the KGEs with MPR implementation are 0.91 and 0.93, respectively. Another advantage25

is that PCR-GLOBWB is calibrated at a coarser resolution, whereas this model was is calibrated for each spatial resolution

individually in the original set-up and with lower consistency in the discharge simulation.

From these evaluations, we conclude that MPR implementation leads to significant improvement in the flux matching and

discharge simulations across scales, allowing for more consistency across scales for hydrological model simulations. Notably,

additional parameters in PCR-GLOBWB still need to be regionalized within the MPR framework, which could potentially lead30

to better performance and transferability.
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6 Conclusions

Hyper-resolution modeling initiatives (Wood et al., 2011; Bierkens et al., 2014) challenge the hydrological community to

intensify efforts to make water (quantity and quality) and energy flux predictions “everywhere" and for these predictions to be

“locally relevant.” The predictions should have small uncertainties to be useful for the end-users. These grand challenges also

imply that the next generation of land surface and hydrologic models must incorporate probabilistic descriptions of the sub-5

grid variability of geophysical land surface properties — such as POLARIS (Chaney et al., 2016b) and SoilGrids (Hengl et al.,

2017) — to cope with the large uncertainties that characterize the related process below the REA Representative Elementary

Area (REA) scale. Consequently, great efforts should be made in hyper-resolution monitoring at the global scale, in improving

the computational efficiency of LSM/HMs, and in the development of scale-invariant parameterizations for these models. In

this study, we have shown that the state-of-the-art is totally inadequate to parameterizations need to be improved to address10

this grand challenge, especially scale-invariant parameterizationwith respect to better fulfill the flux-matching condition.

We presented and tested revisited a technique called multiscale parameter regionalization Multiscale Parameter Regionaliza-

tion (MPR) (Samaniego et al., 2010b), currently originally available only in mHM but recently implemented in PCR-GLOBWB

and VIC as a part of this study. Moreover, we proposed a Parameterization Protocol as a guideline to apply MPR and to retrofit

existing LSM/HMs to make them sufficient for the task of addressing these grand challenges. ease the implementation of MPR15

in the latter. We also discuss the advantages and limitations of MPR which should be considered while applying this concept

to other LSM/HMs.

This study has shown that two models that use ad-hoc parameterizations can have reasonable efficiency with respect to

simulated streamflow but poor performance with respect to distributed fluxes such as evapotranspiration. The implementation

of this protocol in PCR-GLOBWB in this study increased the model efficiency by almost 6% and improved the consistency20

of simulated ET fields across scales. We have For example, the estimation of evapotranspiration without MPR at 5 arcmin and

30 arcmin spatial resolutions for the Rhine river basin resulted in a difference of approximately 29%. Applying MPR reduced

this difference to 9%. For total soil water, the differences without and with MPR are 25% and 7%, respectively. We have also

shown that the PCR-GLOBWB global parameters can be transferred across scales with a consistent ET patterns and model

efficiency.25

In general, it can be concluded that the estimation of global parameters is feasible with MPR and that these scalars are

transferable across scales and locations. The successful application of MPR implies that the averaging procedure of geo-

physical properties matters and that having the right physics with incorrect “effective” parameters leads to incorrect fluxes ,

states and feedbacks in the soil-vegetation-atmosphere continuuminconsistent fluxes and states. Consequently, MPR is a step

forward to quasi scale-invariant parameterizations and is feasible to implement in existing LSM/HMs whose goal should be30

seamless parameter fields across scales that do not exhibits artificial spatial “discontinuities” such as calibration imprints,

and that lead to consistent predictions across scales. We consider that this feature is the key for the next generation of LSM

and NWP models such as the “model for prediction across scales” (MPAS) (www.mmm.ucar.edu) and the “nested-domain

ICOSICON” (www.earthsystemcog.org/projects/dcmip-2012/icon-mpi-dwd). Furthermore, a proper implementation of MPR
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in process based (conceptual) models may contribute to recent efforts towards identifying their “effective” parameters through

observational datasets at the scale of interest (Savenije and Hrachowitz, 2017).

Finally, we would like to reiterate that a flux obtained from a land surface/hydrologic model should always be evaluated with

local observations when available and across scales. If “it disagrees with experiment, it’s wrong.”
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Table 1. Data sources and parameterization method used by models used in this study

Model Parameterization Method References Source code & Projects

CABLE Pedo-transfer functions,

look-up table, dominant

soil type

Kowalczyk et al. (2006) www.cawcr.gov.au/publications/technicalreports/

CTR_057.pdf

CLM Pedo-transfer functions,

look-up table, mosaic

approach

Oleson et al. (2013) www.cesm.ucar.edu/models/cesm1.2/clm/

CHTESSEL Look-up table, dominant

soil type

Viterbo and Beljaars (1995);

ECMWF (2016)

www.ecmwf.int/search/elibrary

HBV k-NN interpolation, cali-

brated parameter

Beck et al. (2016) www.gloh2o.org/hbv-simreg/

JULES Look-up table, dominant

soil type

Best et al. (2011) jules.jchmr.org

LISFLOOD Pedo-transfer functions,

mosaic approach, arith-

metic mean

De Roo and Wesseling (2000) ec.europa.eu/jrc/en/publication/

eur-scientific-and-technical-research-reports/

lisflood-distributed-water-balance-and-/

flood-simulation-model-revised-user-manual-2013

mHM MPR Samaniego et al. (2010b) edge.climate.copernicus.eu www.ufz.de/mhm

Noah-MP Look-up table, dominant

soil type

Niu (2011) www.jsg.utexas.edu/noah-mp www.meteo.unican.es/

wiki/cordexwrf

PCR-GLOBWB (Original) pedo-transfer

functions with averaged

predictors

van Beek et al. (2011); Wada

and Bierkens (2014)

pcraster.geo.uu.nl/projects/applications/pcrglobwb/

(New) MPR Samaniego et al. (2010b)

WaterGAP (2,3) Look-up tables Müller Schmied et al. (2014);

Batjes (1996)

www.uni-kassel.de/einrichtungen/en/cesr/research/

projects/active/watergap.html www.uni-frankfurt.de/

45218063/WaterGAP

Table 2. Efficiency of mHM, PCR-GLOBWB and WaterGAP obtained for the Rhine basin at Lobith station during 2003 for spatial resolu-

tions of 5 and 30 arcmin.

Model
5 arcmin 30 arcmin

KGE Bias [m3s�1] KGE Bias [m3s�1]

mHM 0.96 61.19 0.96 21.74

PCR-GLOBWB 0.93 -20.61 0.86 248.09

WaterGAP (3,2) 0.83 143.02 0.90 -41.99
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