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Abstract. The primary objective of this study is to develop a stochastic rainfall generation model that can match not only the 28 
short resolution (daily) variability, but also the longer resolution (monthly to multiyear) variability of observed rainfall. This 29 
study has developed a Markov Chain (MC) model, which uses a two-state MC process with two parameters (wet-to-wet and 30 
dry-to-dry transition probabilities) to simulate rainfall occurrence and a Gamma distribution with two parameters (mean and 31 
standard deviation of wet day rainfall) to simulate wet day rainfall depths. Starting with the traditional MC-Gamma model 32 
with deterministic parameters, this study has developed and assessed four other variants of the MC-Gamma model with 33 
different parameterisations. The key finding is that if the parameters of the Gamma distribution are randomly sampled each 34 
year from fitted distributions rather than fixed parameters with time, the variability of rainfall depths at both short and longer 35 
resolutions can be preserved, while the variability of wet periods (i.e. number of wet days and mean length of wet spell) can 36 
be preserved by decade-varied MC parameters. This is a straightforward enhancement to the traditional simplest MC model 37 
and is both objective and parsimonious. 38 

  39 
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1. Introduction 40 

Observed rainfall data generally provides a single realisation of a short record, often not more than a few decades. The direct 41 
application of these data in hydrological and agricultural systems may not provide the necessary robustness in identification 42 
and implication of extreme climate conditions (e.g. droughts, floods). In particular, for urban water security analysis of 43 
reservoirs, long-term hydrologic records are required to sample extreme droughts that drive the security of the urban system 44 
(Mortazavi et al., 2013). However, the observed data may still be suitable to calibrate stochastic rainfall models that can, in 45 
turn, be used to generate long stochastic streamflow sequences for use in reservoir reliability modelling. In addition to 46 
historical and current scenarios, the stochastic models are useful to evaluate the climate and hydrological characteristics of 47 
future climate change scenarios (Glenis et al., 2015). 48 

There is a major issue in the use of stochastic daily rainfall models. The daily models generally preserve the short-term daily 49 
rainfall variability (since they are calibrated to the daily resolution data) but tend to underestimate the longer-term rainfall 50 
variability of monthly and multiyear resolutions (Wang and Nathan, 2007). Such underestimation is critically important for 51 
the application of these models in hydrological planning and design. Preserving the long-term variability is important for 52 
drought security analysis of reservoirs because the reservoir water levels usually vary at monthly to multiyear resolutions. 53 
The underestimation of longer-term variability of rainfall may cause an overestimation of reservoir reliability in urban water 54 
planning (Frost et al., 2007). Therefore, preserving key statistics of wet and dry spells, and rainfall depths in daily to 55 
multiyear resolutions is important in stochastic rainfall simulation. 56 

Markov Chain (MC) models are very common for stochastic rainfall generation. A typical MC rainfall model is composed of 57 
two parts: a rainfall occurrence model that uses a transition probability between wet and dry days, and a rainfall magnitude 58 
model that uses a probability distribution of wet day rainfall depths (commonly a Gamma distribution) fitted to the observed 59 
data. The two-part MC-Gamma model is one of the most popular parametric models for daily rainfall simulation, primarily 60 
proposed by Richardson (1981) and known as Weather Generator (WGEN). In addition to rainfall, the WGEN also simulates 61 
temperature and solar radiation. While other models such as point process models (Cowpertwait et al., 1996) are also used 62 
for stochastic rainfall generation, this study has focused on MC type models. 63 

The first component of the MC model defines wet and dry days. This is determined by the state and order of the Markov 64 
process. Most MC models (Richardson, 1981; Dubrovský et al., 2004) use a simple two-state, first-order approach, that is, a 65 
day can be either ‘wet’ or ‘dry’ (two-state) and the state of the current day is only dependent on the state of the preceding 66 
day (first-order). Other models use higher states and orders – examples include, the four-state model (Jothityangkoon et al., 67 
2000), alternating renewal process model with negative binomial distribution of wet and dry spell lengths (Wilby et al., 68 
1998), bivariate mixed distribution model (Li et al., 2013), and multi-order model (Lennartsson et al., 2008). These models 69 
are more complex as the number of parameters required in the model increases with the number of states and orders of the 70 
Markov process. However, the two-state, first-order MC model can often reproduce the statistics of wet and dry periods as 71 
well as these higher state/order models (Chen and Brissette, 2014). Dubrovský et al. (2004) recommended that, rather than 72 
trying an increased order MC, one should consider other approaches for better reproduction of wet and dry days. Mehrotra 73 
and Sharma (2007) proposed a modified MC process using memory of past wet periods, which has been found to reproduce 74 
the wet and dry spell statistics reasonably well. They also tested a first-order and a second-order process in their modified 75 
MC model and found that the second-order process provided only marginal improvements over the first-order process. 76 
Another important finding of Dubrovský et al. (2004) was that the order of MC generally had no effect on the variability of 77 
monthly rainfall depths. 78 
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The second component of the MC model is the probability distribution for the wet day rainfall. As the distribution of wet day 79 
rainfall is generally right-skewed (Hundecha et al., 2009), it is common practice to use right-skewed exponential type 80 
distributions. Common distributions include the Gamma distribution (Wang and Nathan, 2007; Chen et al., 2010), Weibull 81 
distribution (Sharda and Das, 2005), truncated normal distribution (Hundecha et al., 2009), and kernel-density estimation 82 
techniques (Harrold et al., 2003). A number of other studies fitted a mixture of two or more distributions, for example mixed 83 
exponential distribution (Wilks, 1999a; Liu et al., 2011), Gamma and generalised Pareto distribution (Furrer and Katz, 84 
2008), and transformed normal and generalised Pareto distribution (Lennartsson et al., 2008). However, the Gamma 85 
distribution is the most commonly used distribution, because it has only two parameters, that can be calculated calculated 86 
from the mean and standard deviation (SD) of wet day rainfall, and which adequately represent the rainfall probability 87 
distribution functions. The parameterisation and application of the distribution in the model is straightforward. Although the 88 
Gamma distribution has been found to be appropriate for simulating most of the variability of rainfall depth (Bellone et al., 89 
2000), the major drawback of using a Gamma distribution is that its tail is too light to capture heavy rainfall intensities (Vrac 90 
and Naveau, 2007). Therefore, direct use of a Gamma distribution usually causes an underestimation of SD and extreme 91 
rainfall depths at monthly to multiyear resolutions. 92 

A number of methods have been developed in an attempt to resolve the underestimation of long-term variability. The major 93 
approaches for resolving this issue include (i) Models with mixed distributions, (ii) Nesting-type models, (iii) Models with 94 
rainfall-climate index correlation, and (iv) Models with modified Markov Chains. 95 

The models with mixed distributions concentrate on the upper tail behaviour of the probability distribution of wet day 96 
rainfall depths. Since a single component distribution cannot incorporate the extreme rainfall depths well, a mixture of 97 
distributions is introduced. In these models, rainfall above a threshold depth is defined as ‘extreme’ and two separate 98 
distributions are used to simulate the ‘extreme’ and ‘small’ rainfall amounts. Wilks (1999a) proposed a mixture of two 99 
exponential distributions with one shape parameter, but two scale parameters which are used to incorporate the extreme and 100 
small rainfall depths respectively. In other models, the ‘extreme’ rainfall depths are modelled by a generalised Pareto 101 
distribution (Vrac and Naveau, 2007) or stretched exponential distribution (Wilson and Toumi, 2005), while small rainfall 102 
depths are modelled by a Gamma distribution. Nonetheless, these models have difficulty in objectively defining the 103 
threshold corresponding to the ‘extreme value’. Wilson and Toumi (2005) defined extreme rainfall as daily totals with 104 
exceedance probability less than 5%. Although Vrac and Naveau (2007) used a dynamic mixture to avoid choosing a 105 
threshold for ‘extreme’, Furrer and Katz (2007) described the method as over-parameterised. Recently, Naveau et al. (2016) 106 
proposed a new model with smooth transition between the ‘small rainfall’ and ‘extreme rainfall’ simulation process to 107 
generate low, moderate and heavy rainfall depths without selecting a threshold. 108 

Nesting models adjust the daily rainfall series at different temporal resolutions to obtain statistics that are optimal for all 109 
resolutions. These models initially generate a daily rainfall series, which is then modified to adjust the monthly and yearly 110 
statistics. Several models (Dubrovský et al., 2004; Wang and Nathan, 2007; Srikanthan and Pegram, 2009; Chen et al., 2010) 111 
use the nesting method. They generally generate a daily rainfall series, then the generated daily rainfall data are aggregated 112 
to monthly rainfall values, and these monthly values are modified by a lag–1 autoregressive monthly rainfall model. The 113 
modified monthly rainfall values are aggregated to annual rainfall values and these values are then modified by another lag–114 
1 autoregressive annual model (Srikanthan and Pegram, 2009). The nesting-type models generally perform well to reproduce 115 
the rainfall variability at all resolutions. Dubrovský et al. (2004) also showed satisfactory performance of their nesting-type 116 
model to reproduce the variability of monthly streamflow characteristics and the frequency of extreme streamflow. Although 117 
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the nesting-type models preserve the daily, monthly and yearly statistics, they are generally based on subjective statistical 118 
adjustments and thus have a weak physical basis. 119 

Some parametric models introduced the influence of large-scale climate mechanisms such as the El Niño/Southern 120 
Oscillation (ENSO) in parameterisation (Hansen and Mavromatis, 2001; Furrer and Katz, 2007). Bardossy and Plate (1992) 121 
used the correlation between atmospheric circulation patterns and rainfall in a transformed conditional multivariate 122 
autoregressive AR (1) model for daily rainfall simulation. Katz and Parlange (1993) developed a model with parameters 123 
conditioned on the ENSO indices. Yunus et al. (2016) developed a generalised linear model for daily rainfall by using ENSO 124 
indices as predictors. Although the climate indices were often not strongly correlated to the rainfall, Katz and Zheng (1999) 125 
described it as a diagnostic element to detect a ‘hidden’ (i.e. unobserved) index which could be used to obtain long-term 126 
variability. Thyer and Kuczera (2000) developed a hidden state MC model for annual data, while Ramesh and Onof (2014) 127 
developed a hidden state MC model for daily data. The major drawback of this model approach is that the ‘hidden’ index is 128 
unobserved and its origin is unknown. 129 

Modified MC models concentrate not only on the order of MC, but also introduce modifications to the parameterisation of 130 
the MC process to better reproduce the rainfall variability. The transition probabilities are generally modified by considering 131 
their long-term variability (i.e. memory of past wet and dry periods), and the wet day rainfall depth is modelled using a 132 
nonparametric kernel-density simulator conditional on previous day rainfall (Lall et al., 1996; Harrold et al., 2003). The 133 
nonparametric kernel-density techniques usually used resampling of observed data (Rajagopalan and Lall, 1999). While 134 
these models perform reasonably well, they usually cannot generate extreme values higher than the observed extremes, 135 
because only the original observations are resampled in the model (Sharif and Burn, 2006). Mehrotra and Sharma (2007) 136 
proposed a semi-parametric Markov model, which was further evaluated by Mehrotra et al. (2015). To incorporate the long-137 
term variability, they modified the transition probabilities of the MC process by taking the memory of past wet periods (i.e. 138 
beyond lag-1) into account, while the wet day rainfall depths were simulated by a nonparametric kernel-density process. For 139 
raingauge data around Sydney, the semi-parametric model preserved the rainfall variability at daily to multiyear resolutions 140 
(Mehrotra et al., 2015). 141 

The MC models that focus specifically on resolving the underestimation of long-term variability involve subjective 142 
assumptions and limitations. In the models with mixed distributions, defining a certain rainfall depth as an extreme value is 143 
subjective. The nesting type models used empirical adjustment factors, generally without physical foundation. The hidden 144 
indices of hidden state MC models are unobserved. The models with modified MC parameters modified the transition 145 
probabilities of wet and dry periods to obtain long term variability, but used the kernel density technique to resample wet day 146 
rainfall depths from observed records. Therefore, they usually cannot generate more extreme values than the observed 147 
extremes. 148 

The overarching objectives of the research, that this paper forms part of, is to develop a stochastic rainfall generator that can 149 
be calibrated to daily rainfall data derived from dynamically downscaled global climate simulations and which also 150 
preserves long-term variability (Evans et al., 2014). A common problem with these simulations is that typical computational 151 
CPU limits mean that the length of the simulation is rarely more than a few decades, not long enough to facilitate stochastic 152 
assessment of the reliability of water supply reservoirs (e.g. Lockart et al., 2016). Accordingly, we need a rainfall simulator 153 
that can be calibrated and run at the daily timescale (to be used as input into a hydrology model at the daily resolution), but 154 
which has the right statistical properties (specifically variability about the mean) when averaged over periods out to a 155 
decade. In this paper, we develop and test five models against observed rainfall at two sites in Australia with contrasting 156 
climate.  157 
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Accordingly, this study details the development of a MC model for stochastic generation of daily rainfall. This MC model 158 
uses a two-state MC process with two parameters (wet-to-wet and dry-to-dry transition probabilities) for simulating rainfall 159 
occurrence and a two parameter Gamma distribution (mean and SD of wet day rainfall) for simulating wet day rainfall 160 
depths. Five variants of the MC model, with gradually increasing complexity of parameterisation, are developed and 161 
assessed. Starting with a very simple model against which the performances of the other models will be compared, each of 162 
the successive models provides better performance in reproducing the variability and dependence of observed rainfall over 163 
the range of resolutions from day to decade, and we assess the incremental improvements in performance against the 164 
incremental increases in model complexity.  165 

2. Data and Study Sites 166 

This study has used daily raingauge data from Sydney Observatory Hill and Adelaide Airport stations (station number 66062 167 
and 023034 respectively) obtained from the Bureau of Meteorology (BoM), Australia (Figure 1) for 1979-2008 (BoM, 168 
2013). These two stations have been used because they provide a contrast between a highly seasonal Mediterranean climate 169 
with low inter-decadal variability in Adelaide and a relatively non-seasonal climate with high inter-decadal variability in 170 
Sydney (see Figure 2). Risbey et al. (2009) also showed that the major climate drivers of rainfall (e.g. ENSO) in Sydney and 171 
Adelaide are different for all seasons. This paper also used the Oceanic Nino Index (ONI) and Inter-Decadal Pacific 172 
Oscillation (IPO) index at monthly resolution for 1979–2008 period (Folland, 2008; NOAA, 2014). These climate indices 173 
are used to develop two variants of the MC models discussed in section 4.2.2. 174 

3. Model Assessment Procedures 175 

3.1. Statistics for Assessment of Model Performance 176 

Each model developed in this study has been assessed to understand its ability to reproduce the distribution and 177 
autocorrelation of observed rainfall. Assessment of the distribution and autocorrelation are generally used to inform the 178 
suitability of the model for urban drought security assessment. The assessment criteria of each model consider its ability to 179 
reproduce (i) mean, SD and 95th percentile of rainfall depths at daily to multiyear resolutions, (ii) mean and SD of the 180 
number of wet days and mean length of wet spells at monthly to multiyear resolutions, and (iii) month-to-month 181 
autocorrelations of monthly rainfall depths and monthly number of wet days. The performances of the MC models for dry 182 
period statistics are found to be similar to the wet period statistics (the term ‘wet period statistics’ will hereafter refer the 183 
number of wet days and mean length of wet spells), and hence, only representative results for annual mean length of dry 184 
spells are shown. 185 

At daily and monthly resolutions, the distribution statistics are assessed for each month starting from January, while at 186 
multiyear resolutions, the distribution statistics are assessed for 1 to 10 overlapping years. Mean length (in days) of wet 187 
spells are calculated at monthly and annual resolution by extracting wet spells of one or more consecutive wet days (two 188 
successive wet spells are separated by at-least one dry day) and using equation 1: 189 

mean length of wet spell =  
(length of wet spells)

(occurrences of wet spells)
  

(1) 

Similar to wet spells, the mean length of dry spells are also calculated at monthly and annual resolution by extracting dry 190 
spells of one or more consecutive dry days. 191 
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3.2. Calculation of Z Scores 192 

For the distribution statistics (i.e. mean and SD) of rainfall depths and wet periods (number of wet days and mean length of 193 
wet spells), this study has calculated the expected value and error limit (SD) to calculate the Z score of a model simulation. 194 
The calculation of the Z score is as follows: 195 

1. Run the model 1000 times using the probability distribution of the parameters calibrated to the observed data, with 196 
each run being the same length as the observed data. 197 

2. Calculate the desired statistics (e.g. mean and SD of the daily rainfall depths) in each run, which gives 1000 198 
realisations of each statistic. 199 

3. For each statistic, calculate the mean (expected value) and SD (error limit) of the 1000 realisations. 200 
4. Calculate the Z Score of each statistic by comparing the expected value with the respective observed value 201 

(calculated from the observed data), as follows: 202 

Z Score = 
Observed value - Expected value  

SD
  

(2) 

A Z Score between –2 and +2 for a statistic indicates that the observed value falls within the 95% confidence limits of the 203 
simulated rainfall assuming a normal distribution approximates the sampling distribution of Z. A Z Score less than –2 or 204 
greater than +2 suggests that the statistic is over- or under-estimated respectively in the model simulation. 205 

4. Markov Chain (MC) Models 206 

This study has developed and assessed the following five variants of a Markov Chain (MC) model: 207 

• Model 1: Average Parameter Markov Chain (APMC) model, 208 
• Model 2: Decadal Parameter Markov Chain (DPMC) model, 209 
• Model 3: Compound Distribution Markov Chain (CDMC) model, 210 
• Model 4: Hierarchical Markov Chain (HMC) model, 211 
• Model 5: Decadal and Hierarchical Markov Chain (DHMC) model. 212 

4.1. Model 1: Average Parameter Markov Chain (APMC) model 213 

The first MC model – the APMC – is a traditional two-part MC-Gamma distribution model. This is similar to the rainfall 214 
generator proposed by Richardson (1981), widely known as the Weather Generator (WGEN) model. The exception is that 215 
the parameters in WGEN were smoothed with Fourier harmonics, which has not been done in the case of APMC parameters. 216 
Although APMC is not the final model of this study, it is the baseline modelling approach against which the more 217 
sophisticated models developed in this study are compared. 218 

The APMC simulates the daily rainfall in two steps: daily rainfall occurrence (i.e. wet and dry day) simulation by first-order 219 
Markov Chain, and wet day rainfall depth simulation by Gamma distribution. To incorporate the seasonal variability in the 220 
model, the APMC uses a separate set of parameters for each month, where the first month of the simulation is January. 221 

4.1.1. Rainfall occurrence simulation 222 

The APMC uses 24 (2 parameters × 12 months) MC parameters, transition probabilities of dry-to-dry day (𝑃!!) and wet-to-223 
wet day (𝑃!!), for wet and dry day occurrence simulation. In addition, the unconditional probability of a dry day (𝜋!) in 224 
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January is used to simulate rainfall occurrence for the first day of the series. In the model calibration, these deterministic MC 225 
parameters are calculated from the observed daily rainfall data. To calculate these parameters, a day with rainfall depth of 226 
0.3 mm and above has been considered a wet day, otherwise it was considered a dry day (similar to Mehrotra et al, 2015). In 227 
simulation, the MC parameters are used in a Monte-Carlo process to simulate the occurrences of wet and dry days. 228 

4.1.2. Rainfall depth simulation 229 

After simulation of the rainfall occurrence using MC parameters, the next step is to generate rainfall depths for the wet days. 230 
The rainfall depth for dry days is zero. The APMC rainfall depth simulation process assumes that (i) daily rainfall depth for 231 
wet days follows a Gamma distribution, and (ii) the rainfall depth for a wet day is independent of the rainfall depth of the 232 
preceding day. 233 

The Gamma distribution has two parameters α (shape parameter) and β (scale parameter) with mean 𝜇 = 𝛼𝛽  and variance 234 
𝜎! = 𝛼𝛽!. Since both 𝛼! and 𝛽! are directly proportional to and can be derived from 𝜇! and 𝜎! of wet day rainfall of the 235 
month i, during calibration of the model it is convenient to calculate 𝜇! and 𝜎! values from the daily rainfall observed data. 236 
The appropriate ratios of 𝜇! and 𝜎! can then be used in the rainfall depth generation process using the Gamma distribution. 237 
Therefore, 𝜇! and 𝜎! will be referred to as the Gamma distribution parameters in further discussions of this paper. 238 

In calibration of APMC, deterministic average values of 𝜇! and 𝜎! are calculated from the entire period of data record for 239 
each month. This gives 12 values of 𝜇 and σ each. In simulations, the rainfall depth for each wet day of a month i is 240 
generated using the 𝜇! and 𝜎! values of the respective month using the Gamma distribution. In generating the rainfall depth 241 
for a wet day, if a random sample from the Gamma distribution gives a rainfall depth less than 0.3 mm then the rainfall for 242 
that day is set to 0.3 mm (i.e. the threshold rainfall depth), while the rainfall depths for dry days are set to 0.0 mm. 243 
Chowdhury (2016) showed that setting rainfall below 0.3 mm to 0.3 mm for the lowest rainfall depth does not significantly 244 
affect the overall distribution of modelled rainfall depths. 245 

4.1.3. Independence of rainfall depths in successive wet days 246 

The APMC assumes that the rainfall depth for a particular day is independent of the rainfall depth of the preceding day. To 247 
validate this assumption, this study examined the autocorrelation of wet day rainfall depths, and only found very weak lag-1 248 
autocorrelations (r2 < 0.1) for both Sydney and Adelaide. This finding is consistent irrespective of seasonal variations. The 249 
conclusion is that the underlying assumption of daily independence of the APMC is consistent with the respective 250 
characteristic of the observed data.  251 

4.2. Model 2: Decadal Parameter Markov Chain (DPMC) Model 252 

Section 6 will show that the APMC significantly underestimates the rainfall variability at monthly to multiyear resolutions. 253 
The DPMC assumes that the inter-annual rainfall variability can be captured by the decade-to-decade variability of the 254 
parameters that APMC failed to capture. The idea is to divide the observed rainfall sample into sub-samples of 10-year 255 
lengths (similar models with climate-based sub-samples are discussed in section 4.2.2). For example, a 30-year rainfall 256 
sample is divided into three sub-samples of 10-years in length. Then, 4 × 12 parameters of 𝑃!!, 𝑃!!, 𝜇, and σ (one set of four 257 
parameters for each of the 12 months) are calculated from each of the sub-samples. The simulation proceeds in a way similar 258 
to the APMC, except that the deterministic, decadal average, parameters of DPMC are varied from decade to decade. 259 

4.2.1. Decadal variability of DPMC parameters 260 
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Figure 2 shows the DPMC values of 𝑃!! and µ for each decade along with APMC values (i.e. the 30-year averages) for 261 
Sydney and Adelaide. For Sydney, DPMC values of 𝑃!! and µ show clear variability between the three decadal samples and 262 
deviations from the APMC values. However, DPMC values of 𝑃!! and µ for Adelaide show less variability between the 263 
decadal samples. 264 

The use of decade-varied parameters in DPMC is subject to the question of how significant the decadal variability of these 265 
parameters is – is the decadal variability statistically significant or just sampling variability? Therefore, the statistical 266 
significance of the decadal variability of DPMC parameters were examined by Monte-Carlo simulations as per section 3.2. 267 
This examination suggested that the sampling variability of DPMC parameters in decadal samples is mostly within the 268 
sampling variability of their corresponding APMC values (not shown). This suggests that the decadal variability of DPMC 269 
parameters is not statistically significant. 270 

4.2.2. Potential impact of climate modes 271 

This study has also investigated other sub-sampling approaches of the MC-Gamma parameters similar to the DPMC. In 272 
these models, this study has calibrated the MC-Gamma parameters to sub-samples of rainfall timeseries divided according to 273 
the phases of IPO (e.g. positive and negative) and ENSO (La Niña, Neutral and El Niño). Since previous studies (Verdon-274 
Kidd et al., 2004) found that the inter-annual variabilities of East-Australian rainfall are influenced by these large-scale 275 
climate drivers, the idea behind these models was to introduce more inter-annual variability to the model by simulating 276 
rainfall for different phases of climate drivers with parameters calibrated to respective phases. These climate-based models 277 
are very similar to DPMC, except that the sub-samples are different. The following two types of climate-based models have 278 
been tested: 279 

• IPO based model: The observed data for every month was divided into two sub-samples according to the positive 280 
and negative phases of the monthly IPO index (e.g. for January, data of the years with positive IPO index and data 281 
of the years with negative IPO index are separated). Then, for each month, the MC-Gamma parameters (𝑃!!, 𝑃!!, 𝜇, 282 
and σ) are calibrated to each sub-sample. In simulation, the rainfall for the months of each IPO phase were 283 
modelled by using parameters of the respective phase.  284 

• ENSO based model: The observed data for every month was divided into three sub-samples according to monthly 285 
ONI index: La Niña (ONI ≤ –0.5), Neutral (–0.5 < ONI < 0.5), and El Niño (ONI ≥ 0.5). Then, the MC-Gamma 286 
parameters are calibrated to each sub-sample and the rainfall for the months of each ENSO phase were modelled by 287 
using parameters of the respective phase. 288 

4.3. Model 3: Compound Distribution Markov Chain (CDMC) Model 289 

The results in section 6 will show that neither APMC nor DPMC can satisfactorily reproduce the SD of rainfall depths for 290 
monthly to multiyear resolutions. Therefore, in the third MC model – the CDMC – this study has incorporated the long-term 291 
variability of rainfall depths by introducing random variability in µ and σ. However, for wet and dry period simulation, the 292 
CDMC still uses the deterministic parameters of 𝑃!! and 𝑃!!, as in the APMC. Thus this model stochastically varies the 293 
rainfall depth model, but not the rainfall occurrence model. 294 

In the CDMC, 𝜇! and 𝜎! are randomly sampled for each month of each year. The random sampling was done independently 295 
of the sampling for the preceding month/s. To estimate the distribution of 𝜇! and 𝜎!, this study has calculated 𝜇! and 𝜎! for 296 
every month of every year from the observed data. For example, from the 30-year observed data, for January (i = 1), this 297 
study has calculated 30 samples of 𝜇! and 𝜎! values each. 298 
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By testing the probability distributions of 𝜇! and 𝜎! values for each month, this study has found that both 𝜇! and 𝜎! values for 299 
each month are lognormally distributed. Figure 3 shows the lognormal probability plots of 𝜇! and 𝜎! values for July (i = 7) 300 
which is representative of the other months. The 𝑟! for log 𝜇! and log 𝜎! are generally above 0.90, indicating a very good fit 301 
of the lognormal distributions. Additionally, the hypothesis that log 𝜇! and log 𝜎! are normally distributed is supported by the 302 
Kolmogorov-Smirnov test at 5% significance level. In addition to the lognormally distributed 𝜇! and 𝜎! values, this study has 303 
also found that the log 𝜇! and log 𝜎! values for each month are strongly correlated with each other with correlation 304 
coefficient 𝑟!,! around 0.90 (Figure 4). Therefore, for each month i, this study has fitted a bivariate-normal distribution to the 305 
log 𝜇! and log 𝜎! values with parameters (𝜆!,!, 𝜁!,!), (𝜆!,!, 𝜁!,!) and 𝑟!,!. The 𝜆 and 𝜁 parameters denote the mean and SD of 306 
the log variate, while 𝑟! is the correlation coefficient between log µ and log σ.  307 

At the start of each month of each year of the simulation, the log 𝜇! is sampled from its fitted normal distribution log 308 
𝜇! ∼ 𝑁(𝜆!! , 𝜁!!

! ) for month i. Then, the log 𝜎! is sampled from the fitted conditional normal distribution: 309 

log 𝜎!  ⎸log 𝜇!   ∼  𝑁 𝜆!!  +  
𝜁!!
𝜁!!

 𝑟!,!  𝑙𝑜𝑔𝜇! −  𝜆!! , 1 − 𝑟!,!!  𝜁!!
!

  (3) 

These stochastically sampled 𝜇! and 𝜎! values are then used to generate rainfall in the wet days for the month in question, 310 
while the sequence of wet and dry days is determined using the deterministic APMC values of 𝑃!!,! and 𝑃!!,!. However, the 311 
sampled 𝜇! and 𝜎! values of a month (i) are not correlated to the 𝜇!!! and 𝜎!!! of the preceding month (i–1) as this study has 312 
found that the month-to-month autocorrelations of µ and σ values are not strong (Figure 5). 313 

4.4. Model 4: Hierarchical Markov Chain (HMC) Model 314 

The results in section 6 will show that the CDMC cannot satisfactorily reproduce the SD of wet periods for monthly to 315 
multiyear resolutions. Therefore, in the fourth MC model – the HMC – we introduce stochastic variation in both MC and the 316 
Gamma distribution models to incorporate long-term variability of rainfall depths as well as wet and dry periods. In 317 
calibration, for month i, the 𝑃!!,! and 𝑃!!,! are calculated for each month of each year from the observed data. For month i, 318 
these 𝑃!!,! and 𝑃!!,! values (e.g. 30 𝑃!!,! values for July from the 30-year observed data) are found to be normally distributed 319 
with values between 0 and 1 (Figure 6). Therefore, this study has fitted a truncated normal distribution, bounded by 0 and 1 320 
to the calculated 𝑃!! and 𝑃!! values. In simulation, for each year, the 𝑃!!,! and 𝑃!!,! are sampled from their truncated normal 321 
distributions. This procedure is similar to what was done for 𝜇! and 𝜎! to sample from bivariate-lognormal distribution. 322 
However, it does not include a bivariate distribution because the correlation between 𝑃!!,! and 𝑃!!,! was weak. 323 

4.4.1. Impact of autocorrelations on stochasticity of MC parameters 324 

In the HMC, the sampled MC parameters of each month are independent of the parameters of preceding month. However, 325 
this study has found strong month-to-month autocorrelations of the 𝑃!! and 𝑃!! for Adelaide (Figure 5a), although the 326 
autocorrelations are weak for Sydney (Figure 5b). Therefore, this study has tested an alternative to the HMC (referred to as 327 
HMC2), which uses a lag–1 autocorrelation equation (a similar equation was used by Wang and Nathan (2007) in their 328 
rainfall depth model) in the stochastic sampling of 𝑃!!,! and 𝑃!!,! from the truncated normal distribution. The following lag–1 329 
autocorrelation equation has been used to modify the randomly sampled 𝑃!!,! (same method used for 𝑃!!,!) for month i by 330 
correlating with the 𝑃!!,!!! of month i–1 (preceding month):  331 
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𝑃!!,! −  𝑚𝑒𝑎𝑛(𝑃!!,!) 
𝑠𝑑(𝑃!!,!)

=  𝑟×   
𝑃!!,!!! −𝑚𝑒𝑎𝑛(𝑃!!,!!!) 

𝑠𝑑(𝑃!!,!!!)
 + (1 −  𝑟!)!/!  

𝑃!!,! −𝑚𝑒𝑎𝑛(𝑃!!,!) 
𝑠𝑑(𝑃!!,!)

  (4) 

where, for a month i (e.g. January), 332 

• 𝑃!!,! 333 
• 𝑚𝑒𝑎𝑛(𝑃!!,!) is mean of the yearly-varied parameter values calculated from observed data for month i (e.g. mean of 334 

30 𝑃!!,! values for July), 335 
• 𝑠𝑑(𝑃!!,!) is SD of the yearly-varied parameter values calculated from observed data for month i, 336 
• 𝑃!!,!!! 337 
• 𝑚𝑒𝑎𝑛(𝑃!!,!!!) is mean of the parameter values calculated from observed data for month i–1, 338 
• 𝑠𝑑(𝑃!!,!!!) is SD of the parameter values calculated from observed data for month i–1, 339 
• r is lag–1 autocorrelation coefficient for observed month-to-month autocorrelation of 𝑃!! (constant for all month), 340 
• 𝑃!!,! is stochastic parameter value sampled from a truncated normal distribution fitted to the yearly-varied observed 341 

parameter values for month i,  342 
• 𝑃!!,!!!  is auto-correlated parameter value for month i–1 (used to simulate the dry days of the preceding month), 343 
• 𝑃!!,!  is the final auto-correlated parameter value which was used in simulation of dry days for month i. 344 

𝑃!!,!  for month i is sampled using a similar process. 345 

4.4.2. Impact of cross-correlations on stochasticity of MC parameters 346 

We observed a strong positive correlation between 𝑃!!,!, and log 𝜇! and log 𝜎!, although the correlations between 𝑃!!,!, and 347 
log 𝜇! and log 𝜎! are weak. Therefore, another alternative to HMC (refer as HMC3) was tested by using a multivariate 348 
sampling system for the 𝑃!!,!, 𝜇! and 𝜎!, while 𝑃!!,! remains independent. 349 

4.5. Model 5: Decadal and Hierarchical Markov Chain (DHMC) Model 350 

Section 6 will show that the CDMC, with APMC values of MC parameters, significantly underestimates the wet period 351 
variability at multiyear resolutions, while the HMC (including the two alternatives HMC2 and HMC3) with stochastic MC 352 
parameters, significantly overestimates the wet period variability at monthly resolution. However, we found that the DPMC 353 
can satisfactorily preserve the wet period variability at both monthly and multiyear resolutions, although it underestimates 354 
the rainfall depths variability. Therefore, in the DHMC model, this study has used the DPMC values of MC parameters (the 355 
parameter values vary for each decade of simulation) for simulation of wet and dry days, while the stochastic parameters of 356 
the Gamma distribution (same as CDMC) are used for simulation of wet day rainfall depths. 357 

5. Methodological Comparison of Five MC Models 358 

The following points discuss the key common features in the five MC models of this study, while other key methodological 359 
comparisons are shown in Table 1. 360 

• All models use first-order MC parameters to simulate the rainfall occurrences and Gamma distribution to simulate 361 
rainfall depths in wet days. 362 

• Simulation of rainfall depth for each wet day is independent of the rainfall depth of the preceding day. 363 
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• Separate sets of parameters are used for each month (e.g. 12 sets of MC and Gamma parameters) to incorporate 364 
seasonal variability. 365 

6. Model Comparison for Distribution Statistics 366 

This section compares the performances of the five MC models for the mean and SD of rainfall depths and wet period 367 
statistics (i.e. number of wet days and mean length of wet spells). 368 

6.1. Mean and SD of Rainfall Depths 369 

Figures 7, 8 and 9 compare the five MC models for the mean and SD of rainfall depths at daily, monthly and multiyear 370 
resolutions respectively. Figure 9 also compares the 95th percentile of multiyear rainfall depths. For mean and SD of rainfall 371 
depths, the performances of APMC and DPMC are similar. The performances of CDMC, HMC and DHMC are also similar, 372 
but different from APMC and DPMC. All five models preserve the mean (i.e. satisfactorily reproduce the observed mean) 373 
rainfall depths at all resolutions with Z scores between -2 and +2. However, the CDMC, HMC, and DHMC show a tendency 374 
to underestimate the mean with mostly positive Z scores (between 0 and +2). The APMC and DPMC preserve the SD of 375 
rainfall depths only at daily resolution and significantly underestimate the SD at monthly and multiyear resolutions for 376 
Sydney but preserve the SDs at all resolutions for Adelaide (Figure 7, 8 and 9). The CDMC, HMC and DHMC preserve the 377 
SD of rainfall depths at all resolutions for both stations except a slight tendency to underestimate the SD for February and 378 
November at daily resolution in Sydney. We conclude that those models with stochastic parameters for the Gamma 379 
distribution (i.e. CDMC, HMC, and DHMC) best preserve SDs at all resolutions for both stations. For the 95th percentile of 380 
rainfall depths, we found that models which can preserve the SD at a given resolution can also preserve the 95th percentile at 381 
that resolution and vice-versa. In Figure 9, the representative results at multiyear resolution (average of the absolute values 382 
of Z scores for daily and monthly resolutions are shown in Table 2) show that the CDMC, HMC and DHMC preserve the 383 
95th percentile for both stations but the APMC and DPMC underestimate the statistic for Sydney. 384 

6.2. Mean and SD of Number of Wet Days 385 

Figure 10 and 11 compare the five MC models for the mean and SD of number of wet days at monthly and multiyear 386 
resolutions respectively. All five models preserve the mean of number of wet days for both monthly and multiyear 387 
resolutions. For the SD of the monthly number of wet days, all models except HMC can satisfactorily reproduce the SD with 388 
Z scores between -2 and +2 for almost all months of both stations, while the HMC tends to overestimate the SD (Figure 10). 389 
For SD of multiyear number of wet days, the APMC and CDMC significantly underestimate the SD for Sydney but preserve 390 
the statistic for Adelaide. The DPMC and DHMC perform similarly and satisfactorily to preserve the SD of multiyear 391 
number of wet days for both Sydney and Adelaide, while HMC also preserves the statistic for both stations. We conclude 392 
that the models with decade-varied MC parameters (i.e. DPMC and DHMC) perform satisfactorily at reproducing the 393 
variability of the number of wet days at monthly and multiyear resolutions for both stations. 394 

6.3. Mean and SD of Mean Length of Wet and Dry Spells 395 

Figure 12 compares the five MC models for the mean and SD of mean length of wet and dry spells at annual resolution. The 396 
average of the absolute values of the Z scores for monthly resolution are shown in Table 2. The comparative performances of 397 
the five MC models for the mean and SD of mean length of wet spells at monthly (Table 2) and annual (Figure 12) 398 
resolutions are mostly consistent with their respective performances for mean and SD of number of wet days. All models 399 
except HMC preserve the mean and SD of mean length of wet spells, while the HMC tends to overestimate the SD (Figure 400 
12).  401 
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For the mean and SD of mean length of dry spells, we found that models that can preserve the wet spells distributions also 402 
preserve the dry spells distributions and vice-versa. As a representative result, the Z scores for the mean and SD of annual 403 
mean length of dry spells shown in Figure 12 indicate that all models except HMC preserve both mean and SD, while HMC 404 
overestimates the SD. Figure 12 also indicates that the DPMC and DHMC perform better (Z scores closer to zero) than the 405 
APMC and CDMC to reproduce the SD of annual mean length of dry spells.  406 

We conclude that models with decade-varied MC parameters (i.e. DPMC, DHMC) perform relatively better and more 407 
satisfactorily at reproducing the variability of the length of wet and dry spells. The HMC introduces too much variability in 408 
the length of wet and dry spells, while the APMC and CDMC tend to underestimate the variability. 409 

6.4. Potential Impact of Climate Modes 410 

Since the DPMC significantly underestimates the SD of rainfall depths at monthly and multiyear resolutions, the major 411 
target of the models with sub-samples according to climate modes such as IPO and ENSO indices (discussed in section 412 
4.2.2) was to preserve the SD of rainfall depths at monthly and multiyear resolutions. However, we found that these climate-413 
based models also significantly underestimate the SD of rainfall depths at month and multiyear resolutions with 414 
performances similar to the DPMC, and are therefore not considered further. 415 

6.5. Impact of Stochasticity of MC Parameters 416 

Since the HMC significantly overestimates the SD of monthly wet periods (i.e. number of wet days and mean length of wet 417 
spell), the major target of the HMC2 and HMC3 models (with a lag–1 autocorrelation equation and a multivariate sampling 418 
system respectively; see section 4.4.1) was to better preserve the SD. However, these models also significantly overestimate 419 
the SD of monthly wet periods with performances similar to the HMC (negative Z scores less than -2 for all months). We 420 
conclude that the models with stochastic, yearly varied, parameters for the MC part of the model (i.e. HMC, HMC2 and 421 
HMC3) consistently overestimate the variability of monthly wet periods. 422 

6.6. Overall Performances 423 

Table 2 shows the average of the absolute values of Z scores (average of 12 values at daily and monthly resolutions and 10 424 
values at multiyear resolution) for the distribution statistics of rainfall depths, and wet and dry periods at daily, monthly, 425 
annual and multiyear resolutions. It shows that models 1-4 (APMC, DPMC, CDMC and HMC) fail to preserve the following 426 
statistics: 427 

• the APMC fails to preserve the SD and 95th percentile of rainfall depths and SD of number of wet days at multiyear 428 
resolution for Sydney, 429 

• the DPMC fails to preserve the SD and 95th percentile of rainfall depths at multiyear resolution for Sydney, 430 
• the CDMC fails to preserve the SD of number of wet days at multiyear resolution for Sydney, 431 
• the HMC fails to preserve SD of mean length of wet spell at annual resolution for both Sydney and Adelaide. 432 

However, model 5, DHMC, has preserved all of the statistics for both stations. We conclude that the DHMC is better than 433 
other four models at reproducing the distributions of rainfall depths, and wet and dry periods for resolutions varying from 434 
daily to multiyear. 435 

7. Reproduction of Seasonal Autocorrelations 436 
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Figure 13 compares how the five MC models reproduce the month-to-month autocorrelations of the monthly number of wet 437 
days and monthly rainfall depths. For Adelaide (Figure 13a), the lag–1 and lag–12 autocorrelations are strong with 438 
systematic seasonal variation, which have been reproduced very well in the corresponding APMC, DPMC, CDMC and 439 
DHMC simulations, while the HMC (the model with stochastic MC parameters) tends to underestimate the autocorrelations. 440 
For Sydney (Figure 13b), the month-to-month autocorrelations of monthly number of wet days and monthly rainfall depthsin 441 
the data are weak and all models perform well. 442 

8. Discussion 443 

The primary motivation of this study was to develop a stochastic rainfall generation model that can reproduce not only the 444 
short resolution (daily) variability, but also the longer resolution (monthly to multiyear) variability of observed rainfall. 445 
Preserving long-term variability in rainfall models has been a difficult challenge for which a number of solutions have been 446 
proposed in the stochastic rainfall generation literature. The solutions developed and tested by this study are relatively 447 
simple MC models: two MC parameters (𝑃!! and 𝑃!!) of two-state, first-order processes defining the wet and dry days, and 448 
two Gamma-distribution parameters (µ and σ) defining the rainfall depths in wet days. For seasonal variability, the models 449 
operate at daily time step with monthly varying parameters for each of 12 months. Starting with the simplest MC-Gamma 450 
modelling approach with deterministic parameters (similar to Richardson, 1981), this study has developed and assessed four 451 
other variants of the MC-Gamma modelling approach with different parameterisations. The key finding is that if the 452 
parameters of the Gamma distribution and the MC model are randomly sampled from fitted distributions prior to simulating 453 
the rainfall for each year, the variability of rainfall depths at longer resolutions can be preserved, while the variability of wet 454 
periods (i.e. number of wet days and mean length of wet spell) can be preserved by decadally varying parameters for the MC 455 
model. This is a straightforward enhancement to the traditional simplest MC model, and the enhancement is both objective 456 
and parsimonious.  457 

The overall comparative performances of the models to reproduce the distribution and autocorrelation characteristics of 458 
observed rainfall are as follows: 459 

• For the simulation of the distribution of rainfall depths, the performances of the APMC and DPMC with 460 
deterministic Gamma parameters are similar, although DPMC with more parameters (e.g. the decadally varying MC 461 
parameters) performs slightly better. The performances of CDMC, HMC and DHMC are similar as they use the 462 
same stochastic sampling for the parameters of the Gamma distribution. 463 

• For the mean and SD of daily rainfall depths, all five models perform satisfactorily. Good reproduction of daily 464 
statistics is expected as the model parameters are calibrated to daily timeseries. While the APMC and DPMC 465 
reproduce the statistics almost exactly, the CDMC, HMC and DHMC show a slight tendency to underestimate the 466 
SD. This indicates that the stochastic parameters of these three models slightly affected their performances at daily 467 
resolution compared to the APMC and DPMC with deterministic parameters. 468 

• For the monthly to multiyear resolution, the APMC and DPMC reproduce the mean of rainfall depths well, but 469 
significantly underestimate the SD of rainfall depths. The underestimation of rainfall variability at monthly to 470 
multiyear resolutions by APMC-like models with deterministic parameters is a well-known limitation of these 471 
models (Wang and Nathan, 2007). Although the DPMC uses more parameters than the APMC, the DPMC has not 472 
significantly improved performance in reproducing the SD of rainfall depths at monthly to multiyear resolutions. 473 
Other models similar to DPMC (e.g. models with parameters varying for phases of IPO or ENSO) show similar 474 
performances to the DPMC and still systematically underestimate the SD of rainfall depths at monthly to multiyear 475 
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resolutions. This suggests that the use of deterministic parameters in DPMC-like models might not be adequate to 476 
satisfactorily reproduce the SD of rainfall depths at longer resolutions.  477 

• While the APMC and DPMC, with deterministic parameters for the Gamma distribution, significantly 478 
underestimate the SD of rainfall depths at monthly to multiyear resolutions, the CDMC, HMC and DHMC, with 479 
stochastic parameters for the Gamma distribution, preserve the SD of rainfall depths at monthly to multiyear 480 
resolutions. This indicates that the stochastic parameters for the Gamma distribution are useful to incorporate the 481 
longer-term variability of rainfall depths. However, these three models show a tendency to underestimate the mean 482 
of rainfall depths at all resolutions. 483 

• The models that can preserve the SD of rainfall depths can also preserve the 95th percentile of rainfall depths. 484 
• For the simulation of the distribution of wet periods, the performances of the APMC and CDMC are similar as both 485 

models use the same deterministic MC parameters. With a similar trend, the DPMC and DHMC perform better than 486 
the APMC and CDMC, while DPMC and DHMC use more deterministic MC parameters. The performance of the 487 
HMC, with stochastic MC parameters, is different (discussed below) from the other four models (that use 488 
deterministic MC parameters). 489 

• For the mean of wet period statistics (e.g. number of wet days and mean length of wet spells) at monthly to 490 
multiyear resolutions, all models except HMC perform similarly and satisfactorily, while the HMC tends to 491 
overestimate the mean. We conclude that introducing stochasticity from year to year into the MC parameters, as in 492 
HMC, degrades the performance. 493 

• For the SD of monthly wet period statistics, all models except HMC perform similarly and satisfactorily, while the 494 
HMC significantly overestimates the SD. This indicates that the stochastic MC parameters of the HMC introduce 495 
excessive variability in the wet period simulation at monthly resolution. This study has further examined two other 496 
variants of the HMC with different stochastic parameterisation of the MC process, but they did not perform better 497 
than the HMC. We conclude that introducing stochasticity from year to year into the MC parameters, as in HMC, 498 
degrades the ability to reproduce the variability about the mean of all of the wet period statistics. 499 

• For the SD of wet period statistics at annual and multiyear resolutions, the APMC and CDMC tend to underestimate 500 
the SDs. This suggests that the APMC values of MC parameters (same monthly parameter values for each year of 501 
simulation) limits the reproduction of the wet period variability at multiyear resolutions. However, the APMC and 502 
CDMC preserved the multiyear SDs for Adelaide, where the inter-decadal variability of MC parameters is less 503 
variable. This suggests that for locations with less variability of wet-to-wet and dry-to-dry day transitions, a single 504 
set of deterministic MC parameters is adequate, however for locations with more transition variability, a single set 505 
of MC parameters (i.e. not varying with time) is insufficient, as it cannot introduce enough variability. 506 

• The DPMC and DHMC with decade-varied MC parameters show a better ability to reproduce the SD of annual 507 
mean length of wet spells and SD of multiyear number of wet days. This suggests that the decade-varied MC 508 
parameters can significantly improve the simulation of wet period variability, although the decade-varied Gamma 509 
parameters cannot improve the simulation of rainfall depths variability. However, the HMC preserves the SD of 510 
multiyear number of wet days but overestimates the SD of annual mean length of wet spells. This suggests that the 511 
monthly and annually varying stochastic MC parameters can improve the simulation of wet period (i.e. number of 512 
wet days and mean length of wet spell) variability at multiyear resolutions, although they significantly overestimate 513 
the wet period variability at monthly and annual resolutions (i.e. they introduce too much variability). 514 

• The models that can preserve the wet spells distributions can also preserve the dry spells distributions and vice-515 
versa probably because the wet and dry days are modelled using similar transition probabilities of wet-to-wet and 516 
dry-to-dry days respectively. 517 
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• The autocorrelation assessments have shown that the APMC, DPMC, CDMC and DHMC can satisfactorily 518 
reproduce the strong lag–1 and lag–12 monthly autocorrelations of monthly number of wet days and monthly 519 
rainfall depths. However, the HMC (the only model with monthly and annually varying MC parameter values) 520 
tends to underestimate the autocorrelations, which is possibly due to excessive variability in wet period simulation 521 
at monthly resolution. 522 

9. Conclusions 523 

Each model developed in this study has advantages and disadvantages. The APMC and DPMC with deterministic parameters 524 
significantly underestimate the variability of rainfall depths at monthly to multiyear resolutions. This systematic 525 
underestimation of the rainfall depths variability at monthly to multiyear resolutions is critical for using the models in urban 526 
water security assessment as the reservoir water levels usually vary at these longer resolutions. The CDMC, HMC and 527 
DHMC with stochastic parameters of the Gamma distribution preserve the rainfall depths variability at all resolutions, but 528 
the CDMC and HMC have limitations in reproducing the variability of wet periods. The CDMC with APMC values of MC 529 
parameters tends to underestimate the multiyear variability of wet periods, while the HMC with stochastic MC parameters 530 
tends to overestimate the monthly variability of wet periods. However, the DHMC with decade-varied MC parameters (same 531 
as DPMC) performs better than the CDMC and HMC, and preserves the wet period and dry period variability at monthly to 532 
multiyear resolutions.  533 

Among the five MC models of this study, the overall performance of the DHMC is best. The DHMC model has (1) monthly 534 
varying MC parameters that vary from decade to decade, and (2) stochastic parameters for the Gamma rainfall distribution 535 
where the parameters are randomly varied from year to year using a probability distribution function that is derived for each 536 
month of the year. While the DHMC has great potential to be used in hydrological and agricultural impact studies (e.g. urban 537 
drought security assessment), there are two important limitations of the DHMC: 538 

• The DHMC tends to underestimate the mean of multiyear rainfall depths, which is probably linked to the use of 539 
stochastic Gamma parameters. A more sophisticated stochastic sampling strategy for the Gamma parameters might 540 
overcome this limitation. 541 

• The performance of the DHMC suggests that the use of decade-varied MC parameters are effective to incorporate 542 
the long-term variability of wet periods (although the use of decade-varied Gamma parameters in DPMC were not 543 
effective to incorporate the long-term variability of rainfall depths). However, other climate-based sub-samples (e.g. 544 
according to the ENSO phases) instead of decadal samples can be used for parameter calibration. This study tested 545 
the sub-samples according to the phases of IPO and ENSO climate modes with a focus on incorporating the long-546 
term variability of rainfall depths, but has not incorporated climate-based sub sampling into DHMC because 547 
DHMC had not been developed at the time this analysis was performed. A more comprehensive assessment of such 548 
ideas might improve the wet period simulation of the DHMC. 549 

In a subsequent paper, the performances of the CDMC, HMC and DHMC will be compared against the semi-parametric 550 
model of Mehrotra and Sharma (2007) using raingauge data from 30 stations around Sydney (those used in Mehrotra et al., 551 
2015) and the 12 stations (Figure 1) around Australia. 552 

10. Data Availability 553 
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• Daily rainfall data used in this study can be obtained from the Bureau of Meteorology, Australia website link 554 
http://www.bom.gov.au/climate/data/index.shtml by using weather station number 66062 and 023034 for 555 
Observatory Hill and Adelaide Airport stations respectively. 556 

• ONI and IPO indices used in this study can be obtained from the National Oceanic and Atmospheric Administration 557 
website link https://www.esrl.noaa.gov/psd/data/climateindices/list/ and Folland (2008) respectively. 558 

11. Code Availability 559 

Python codes for modelling and statistical analysis of this study are available from the first author. 560 

12. Author Contributions 561 

AFM Kamal Chowdhury has conducted the model development and statistical analysis of this study. Natalie Lockart and 562 
Garry Willgoose were the primary supervisors of this work and provided scientific oversight for the model development and 563 
statistical analysis. George Kuczera and Anthony Kiem provided more focussed advice on statistics and climatology.  564 
Nadeeka Parana Manage was involved in scientific discussions as a team member of our project team. 565 

13. Acknowledgments 566 

Funding for this project was provided by an Australian Research Council Linkage Grant LP120200494, the NSW Office of 567 
Environment and Heritage, NSW Department of Financial Services, NSW Office of Water, and Hunter Water Corporation. 568 

14. References 569 

Bardossy, A. and Plate, E. J.: Space-Time Model for Daily Rainfall Using Atmospheric Circulation Patterns, Water 570 
Resources Research, 28(5), 1247-1259, doi:10.1029/91wr02589, 1992. 571 

Bellone, E., Hughes, J. P. and Guttorp, P.: A Hidden Markov Model for Downscaling Synoptic Atmospheric Patterns to 572 
Precipitation Amounts, Climate Research, 15(1), 1-12, doi:10.3354/cr015001, 2000. 573 

BoM: Daily Rainfall Data, http://www.bom.gov.au/climate/data/index.shtml, Bureau of Meteorology (BoM), Australia, 574 
visited on 11/2013, 2013. 575 

Chen, J. and Brissette, F. P.: Comparison of Five Stochastic Weather Generators in Simulating Daily Precipitation and 576 
Temperature for the Loess Plateau of China, International Journal of Climatology, 34(10), 3089-3105, 577 
doi:10.1002/joc.3896, 2014. 578 

Chen, J., Brissette, F. P. and Leconte, R.: A Daily Stochastic Weather Generator for Preserving Low-Frequency of Climate 579 
Variability, Journal of Hydrology, 388(3-4), 480-490, doi:10.1016/j.jhydrol.2010.05.032, 2010. 580 

Chowdhury, A.F.M.K.: Development and Evaluation of Stochastic Rainfall Models for Urban Drought Security Assesment, 581 
PhD Thesis, The University of Newcastle, Australia, 2017. 582 

Cowpertwait, P. S. P., O'Connell, P. E., Metcalfe, A. V. and Mawdsley, J. A.: Stochastic Point Process Modelling of 583 
Rainfall. I. Single-Site Fitting and Validation, Journal of Hydrology, 175(1), 17-46, doi:10.1016/S0022-584 
1694(96)80004-7, 1996. 585 

Dubrovský, M., Buchtele, J. and Žalud, Z.: High-Frequency and Low-Frequency Variability in Stochastic Daily Weather 586 
Generator and Its Effect on Agricultural and Hydrologic Modelling, Climatic Change, 63(1), 145-179, 587 
doi:10.1023/b:clim.0000018504.99914.60, 2004. 588 

Evans, J. P., Ji, F., Lee, C., Smith, P., Argüeso, D., and Fita, L. 2014. Design of a Regional Climate Modelling Projection 589 
Ensemble Experiment – NARCliM, Geosci. Model Dev., 7, 621-629, doi:10.5194/gmd-7-621-2014, 2014. 590 

Folland, C.: Interdecadal Pacific Oscillation Time Series, Met Office Hadley Centre for Climate Change, Exeter, UK, 2008. 591 
Frost, A. J., Srikanthan, R., Thyer, M. A. and Kuczera, G.: A General Bayesian Framework for Calibrating and Evaluating 592 

Stochastic Models of Annual Multi-Site Hydrological Data, Journal of Hydrology, 340(3-4), 129-148, 593 
doi:10.1016/j.jhydrol.2007.03.023, 2007. 594 

Furrer, E. M. and Katz, R. W.: Generalized Linear Modeling Approach to Stochastic Weather Generators, Climate Research, 595 
34(2), 129, 2007. 596 

Furrer, E. M. and Katz, R. W.: Improving the Simulation of Extreme Precipitation Events by Stochastic Weather Generators, 597 
Water Resources Research, 44(12), W12439, doi:10.1029/2008wr007316, 2008. 598 



18 

 

Glenis, V., Pinamonti, V., Hall, J. W. and Kilsby, C. G.: A Transient Stochastic Weather Generator Incorporating Climate 599 
Model Uncertainty, Advances in Water Resources, 85, 14-26, doi:10.1016/j.advwatres.2015.08.002, 2015. 600 

Hansen, J. W. and Mavromatis, T.: Correcting Low-Frequency Variability Bias in Stochastic Weather Generators, 601 
Agricultural and Forest Meteorology, 109(4), 297-310, doi:10.1016/S0168-1923(01)00271-4, 2001. 602 

Harrold, T. I., Sharma, A. and Sheather, S. J.: A Nonparametric Model for Stochastic Generation of Daily Rainfall Amounts, 603 
Water Resources Research, 39(12), 1343, doi:10.1029/2003wr002570, 2003. 604 

Hundecha, Y., Pahlow, M. and Schumann, A.: Modeling of Daily Precipitation at Multiple Locations Using a Mixture of 605 
Distributions to Characterize the Extremes, Water Resources Research, 45(12), W12412, 606 
doi:10.1029/2008wr007453, 2009. 607 

Jothityangkoon, C., Sivapalan, M. and Viney, N. R.: Tests of a Space-Time Model of Daily Rainfall in Southwestern 608 
Australia Based on Nonhomogeneous Random Cascades, Water Resources Research, 36(1), 267-284, 609 
doi:10.1029/1999wr900253, 2000. 610 

Katz, R. W. and Parlange, M. B.: Effects of an Index of Atmospheric Circulation on Stochastic Properties of Precipitation, 611 
Water Resources Research, 29(7), 2335-2344, doi:10.1029/93WR00569, 1993. 612 

Katz, R. W. and Zheng, X.: Mixture Model for Overdispersion of Precipitation, Journal of Climate, 12(8), 2528-2537, 613 
doi:10.1175/1520-0442(1999)012<2528:MMFOOP>2.0.CO;2, 1999. 614 

Lall, U., Rajagopalan, B. and Tarboton, D. G.: A Nonparametric Wet/Dry Spell Model for Resampling Daily Precipitation, 615 
Water Resources Research, 32(9), 2803-2823, doi:10.1029/96wr00565, 1996. 616 

Lennartsson, J., Baxevani, A. and Chen, D.: Modelling Precipitation in Sweden Using Multiple Step Markov Chains and a 617 
Composite Model, Journal of Hydrology, 363(1–4), 42-59, doi:10.1016/j.jhydrol.2008.10.003, 2008. 618 

Li, C., Singh, V. P. and Mishra, A. K.: A Bivariate Mixed Distribution with a Heavy-Tailed Component and Its Application 619 
to Single-Site Daily Rainfall Simulation, Water Resources Research, 49(2), 767-789, doi:10.1002/wrcr.20063, 620 
2013. 621 

Liu, Y., Zhang, W., Shao, Y. and Zhang, K.: A Comparison of Four Precipitation Distribution Models Used in Daily 622 
Stochastic Models, Advances in Atmospheric Sciences, 28(4), 809-820, doi:10.1007/s00376-010-9180-6, 2011. 623 

Lockart, N., G. R. Willgoose, G. Kuczera, A. S. Kiem, A. F. M. K. Chowdhury, N. P. Manage, L. Zhang, and C. Twomey 624 
(2016), Case Study on the Use of Dynamically Downscaled GCM Data for Assessing Water Security on Coastal 625 
NSW, Journal of Southern Hemisphere Earth Systems Science, 66(2), 177-202. 626 

Mehrotra, R., Li, J., Westra, S. and Sharma, A.: A Programming Tool to Generate Multi-Site Daily Rainfall Using a Two-627 
Stage Semi Parametric Model, Environmental Modelling & Software, 63(0), 230-239, 628 
doi:10.1016/j.envsoft.2014.10.016, 2015. 629 

Mehrotra, R. and Sharma, A.: A Semi-Parametric Model for Stochastic Generation of Multi-Site Daily Rainfall Exhibiting 630 
Low-Frequency Variability, Journal of Hydrology, 335(1–2), 180-193, doi:10.1016/j.jhydrol.2006.11.011, 2007. 631 

Mortazavi, M., Kuczera, G., Kiem, A. S., Henley, B., Berghout, B. and Turner, E.: Robust Optimisation of Urban Drought 632 
Security for an Uncertain Climate, 74 pp, National Climate Change Adaptation Research Facility, Gold Coast, 633 
2013. 634 

Naveau, P., Huser, R., Ribereau, P. and Hannart, A.: Modeling Jointly Low, Moderate, and Heavy Rainfall Intensities 635 
without a Threshold Selection, Water Resources Research, 52(4), 2753-2769, doi:10.1002/2015WR018552, 2016. 636 

NOAA: Climate Indices: Monthly Atmospheric and Ocean Time Series: 637 
https://www.esrl.noaa.gov/psd/data/climateindices/list/, National Oceanic and Atmospheric Administration 638 
(NOAA), visited in 07/2014, 2014. 639 

Rajagopalan, B. and Lall, U.: A K-Nearest-Neighbor Simulator for Daily Precipitation and Other Weather Variables, Water 640 
Resources Research, 35(10), 3089-3101, doi:10.1029/1999wr900028, 1999. 641 

Ramesh, N. I. and Onof, C.: A Class of Hidden Markov Models for Regional Average Rainfall, Hydrological Sciences 642 
Journal, 59(9), 1704-1717, doi:10.1080/02626667.2014.881484, 2014. 643 

Richardson, C. W.: Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation, Water Resources 644 
Research, 17(1), 182-190, doi:10.1029/WR017i001p00182, 1981. 645 

Risbey, J.S., Pook, M.J., McIntosh, P.C., Wheeler, M.C. and Hendon, H.H.: On the Remote Drivers of Rainfall Variability in 646 
Australia, Monthly Weather Review, 137, 3233–3253, doi: 10.1175/2009MWR2861.1, 2009. 647 

Sharda, V. N. and Das, P. K.: Modelling Weekly Rainfall Data for Crop Planning in a Sub-Humid Climate of India, 648 
Agricultural Water Management, 76(2), 120-138, doi:10.1016/j.agwat.2005.01.010, 2005. 649 

Sharif, M. and Burn, D. H.: Simulating Climate Change Scenarios Using an Improved K-Nearest Neighbor Model, Journal 650 
of Hydrology, 325(1–4), 179-196, doi:10.1016/j.jhydrol.2005.10.015, 2006. 651 

Srikanthan, R. and Pegram, G. G. S.: A Nested Multisite Daily Rainfall Stochastic Generation Model, Journal of Hydrology, 652 
371(1–4), 142-153, doi:10.1016/j.jhydrol.2009.03.025, 2009. 653 

Thyer, M. and Kuczera, G.: Modeling Long-Term Persistence in Hydroclimatic Time Series Using a Hidden State Markov 654 
Model, Water Resources Research, 36(11), 3301-3310, doi:10.1029/2000wr900157, 2000. 655 

Verdon-Kidd, D. C., Wyatt, A. M., Kiem, A. S. and Franks, S. W.: Multidecadal Variability of Rainfall and Streamflow: 656 
Eastern Australia, Water Resources Research, 40(10), W10201, doi:10.1029/2004wr003234, 2004. 657 

Vrac, M. and Naveau, P.: Stochastic Downscaling of Precipitation: From Dry Events to Heavy Rainfalls, Water Resources 658 
Research, 43(7), W07402, doi:10.1029/2006wr005308, 2007. 659 

Wang, Q. J. and Nathan, R. J.: A Method for Coupling Daily and Monthly Time Scales in Stochastic Generation of Rainfall 660 
Series, Journal of Hydrology, 346(3–4), 122-130, doi:10.1016/j.jhydrol.2007.09.003, 2007. 661 



19 

 

Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J. and Wilks, D. S.: Statistical 662 
Downscaling of General Circulation Model Output: A Comparison of Methods, Water Resources Research, 34(11), 663 
2995-3008, doi:10.1029/98wr02577, 1998. 664 

Wilks, D. S.: Interannual Variability and Extreme-Value Characteristics of Several Stochastic Daily Precipitation Models, 665 
Agricultural and Forest Meteorology, 93(3), 153-169, doi:10.1016/S0168-1923(98)00125-7, 1999a. 666 

Wilks, D. S.: Simultaneous Stochastic Simulation of Daily Precipitation, Temperature and Solar Radiation at Multiple Sites 667 
in Complex Terrain, Agricultural and Forest Meteorology, 96(1–3), 85-101, doi:10.1016/S0168-1923(99)00037-4, 668 
1999b. 669 

Wilson, P. S. and Toumi, R.: A Fundamental Probability Distribution for Heavy Rainfall, Geophysical Research Letters, 670 
32(14), L14812, doi:10.1029/2005gl022465, 2005. 671 

Yunus, R. M., Hasan, M. M., Razak, N. A., Zubairi, Y. Z. and Dunn, P. K.: Modelling Daily Rainfall with Climatological 672 
Predictors: Poisson-Gamma Generalized Linear Modelling Approach, International Journal of Climatology, 673 
doi:10.1002/joc.4784, 2016. 674 

 675 
 676 

  677 



20 

 

15. Tables 678 

Table 1: Methodological comparison of the five MC models. 679 
 Wet and dry day simulation Wet day rainfall depth simulation 

APMC Uses deterministic MC parameters, 
same set of parameters for each 
simulation year. 

Uses deterministic Gamma parameters, 
same set of parameters for each 
simulation year. 

DPMC Uses decade-varied deterministic MC 
parameters. 

Uses decade-varied deterministic 
Gamma parameters. 

CDMC Same as APMC. 

 

 

Uses stochastic parameters (sampled 
from fitted bivariate-lognormal 
distribution) of Gamma distribution, 
parameters vary for each simulation 
year. 

HMC Uses stochastic MC parameters 
(sampled from fitted truncated normal 
distribution), parameters vary for each 
simulation year. 

Same as CDMC. 

DHMC Same as DPMC. Same as CDMC. 

 680 

  681 
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Table 2: Average of the absolute values of Z scores (average of the Z scores for all 12 months at daily and monthly 682 
resolutions, and average of the Z scores for 1 to 10 years at multiyear resolution) for Sydney (SY) and Adelaide (AD). 683 

The averaged Z scores greater than 2 are shown in bold. 684 

Variable Resolution 
Average of the Absolute Values of Z Scores 

APMC DPMC CDMC HMC DHMC 

  SY AD SY AD SY AD SY AD SY AD 

Mean of Rainfall 

Depth 

Daily 0.1 0.1 0.0 0.1 0.3 0.4 0.4 0.4 0.3 0.4 

Monthly 0.1 0.1 0.1 0.1 0.3 0.4 0.3 0.3 0.3 0.4 

Multiyear 0.1 0.1 0.1 0.2 0.9 0.9 0.7 0.3 1.0 0.9 

SD of Rainfall Depth 

Daily 0.1 0.2 0.1 0.2 0.6 0.4 0.7 0.4 0.7 0.4 

Monthly 1.9 0.9 1.4 0.7 0.5 0.6 0.6 0.8 0.5 0.6 

Multiyear 3.7 1.3 2.6 0.4 0.6 0.5 0.6 0.8 0.6 0.6 

95th Percentile of 

Rainfall Depth 

Daily 0.8 0.7 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.6 

Monthly 1.7 0.8 1.3 0.6 0.5 0.6 0.5 0.7 0.5 0.6 

Multiyear 2.6 0.3 2.0 0.3 1.0 0.2 0.5 0.4 1.0 0.2 

Mean of Number of 

Wet Days 

Monthly 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.1 0.1 

Multiyear 0.0 0.0 0.0 0.1 0.2 0.2 0.6 0.9 0.0 0.1 

SD of Number of 

Wet Days 

Monthly 1.0 0.9 0.8 0.8 1.0 0.8 1.7 1.8 0.8 0.8 

Multiyear 3.3 0.8 1.6 0.5 3.3 0.9 0.7 0.7 1.5 0.5 

Mean of Mean Wet 

Spell Length 

Monthly 0.4 0.5 0.3 0.4 0.4 0.5 0.4 0.5 0.3 0.4 

Annual 0.1 0.0 0.1 0.3 0.1 0.3 0.2 0.5 0.1 0.2 

SD of Mean Wet 

Spell Length 

Monthly 0.9 0.7 0.8 0.6 0.8 0.7 0.8 1.0 0.8 0.7 

Annual 0.2 0.2 0.3 0.6 0.3 0.4 2.6 2.3 0.3 0.6 

Mean of Mean Dry 

Spell Length 

Monthly 0.5 0.6 0.4 0.6 0.5 0.6 0.7 0.7 0.4 0.5 

Annual 0.1 0.0 0.2 0.0 0.1 0.0 0.3 0.4 0.2 0.1 

SD of Mean Dry 

Spell Length 

Monthly 0.9 1.3 0.8 1.2 0.9 1.3 1.1 1.3 0.8 1.3 

Annual 0.9 0.5 0.1 0.2 0.9 0.4 1.4 1.4 0.1 0.2 
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16. Figures 686 

 687 
Figure 1: Location map of 12 raingauge stations around Australia. This study has presented the assessment results of 688 
the developed models for Sydney and Adelaide stations (red circled) only. The shaded green, yellow and red colours 689 

indicate the coastal, inland and monsoonal areas respectively. 690 
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 692 
Figure 2: Comparison of the decadal variability of the DPMC parameters 𝑷𝟏𝟏 and µ (mm) with the APMC 693 

parameters. 694 

 695 
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 697 

 698 
Figure 3: Lognormal probability plots of 𝝁 and 𝝈 for July (typical of other months). 699 
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 701 

 702 
Figure 4: Correlation between log 𝝁 and log 𝝈 for July (typical of other months). 703 
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 706 
(a) 707 

 708 
(b) 709 

Figure 5: Month-to-month autocorrelations of 𝑷𝟎𝟎, 𝑷𝟏𝟏, 𝝁 and 𝝈 for (a) Adelaide and (b) Sydney. The shadings 710 
indicate 95% confidence limits.  711 
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 712 

 713 
Figure 6: Normal probability plots of 𝑷𝟎𝟎 and 𝑷𝟏𝟏 for July (typical of other months). 714 
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 717 
Figure 7: Comparison of the mean and SD of daily rainfall depths for the five MC models.  718 
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 719 
Figure 8: Comparison of the mean and SD of monthly rainfall depths for the five MC models. 720 
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  722 
Figure 9: Comparison of the mean, SD and 95th percentiles of multiyear rainfall depths for the five MC models. 723 
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 726 
Figure 10: Comparison of the mean and SD of monthly number of wet days for the five MC models. 727 
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 729 
Figure 11: Comparison of the mean and SD of multiyear number of wet days for the five MC models. 730 
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  733 
Figure 12: Comparison of the mean and SD of annual mean length of wet and dry spells for the five MC models. 734 
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     737 
(a) 738 

   739 
(b) 740 

Figure 13: Comparison of the autocorrelations of monthly number of wet days and monthly rainfall depths for the 741 
five MC models for (a) Adelaide and (b) Sydney. The shadings indicate 95% confidence limits. 742 


