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Abstract. Model intercomparison experiments are widely used to investigate and improve hydrological model performance.

However, a study based only on runoff simulation is not sufficient to discriminate different model structures. Hence, there

is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable

predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation

and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a5

revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to

investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and

evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located

in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models

were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework10

is enriched by the assessment of snow and evapotranspiration modeling against in-situ and satellite data. The results showed

that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures,

snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for

the snow cover area, snow water equivalent and runoff simulation especially, for nival catchments.

1 Introduction15

Hydrological models are widely applied in water engineering for design and scenario impact investigations. Depending on the

type of application, the catchment characteristics and data availability, different model conceptualizations and parameteriza-

tions are considered. In many cases, the choice of the model is the result of the modeler’s experience. However, hydrologists

have developed objective and rigorous frameworks to evaluate and improve hydrological models.

A common approach to discriminate different model structures is to conduct model intercomparison experiments. Such20

experiments have been helpful to explore model simulation performance of lumped (e.g., Duan et al., 2006; Breuer et al.,

2009), semi-distributed (e.g., Duan et al., 2006; Holländer et al., 2009) and distributed (e.g., Henderson-Sellers et al., 1993;

Reed et al., 2004; Holländer et al., 2009; Smith et al., 2012; Nijzink and Savenije, 2016) models in a consistent way using

the same input data. To go beyond specific analyses and provide general conclusions, multi-catchment experiments have been
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proposed by several authors (e.g. Perrin et al., 2001; Gupta et al., 2014) and are now used extensively. Most studies focus only

on runoff modeling performance, since runoff is the main data available at the catchment scale. However, as the runoff data are

used for both training the model and its validation, one may question the quality of the prognostic variables produced by the

model that have not been optimized through calibration, such as snow, evapotranspiration and soil groundwater (Hrachowitz

et al., 2014). Moreover, when focusing only on runoff simulation, we often fail to discriminate different model structures.5

However, interesting conclusions may be drawn when focusing on particular aspects of streamflow not used in the calibration

process: low flows (Staudinger et al., 2011) or high flows (Vansteenkiste et al., 2014) or on other hydrological variables, such as

soil moisture (Orth et al., 2015), snow (Parajka and Blöschl, 2006) and groundwater (Motovilov et al., 1999; Beldring, 2002).

In a similar way, this paper compares different model structures in terms of both runoff simulation and hydrological realism.

More specifically, we investigate the relative importance of model equations and spatial discretization on flow simulation,10

snowpack representation and evapotranspiration estimate. This correspondence between model and “reality,” often described

as “working for the right reasons” (Kirchner, 2006; Kavetski and Fenicia, 2011; Euser et al., 2013), is essential if the model

is to be used as a tool for improving the understanding of a hydrological system and/or used for prediction and extrapolation,

such as simulating the impacts of land use change, variability in climatological forcing, etc.

We apply this framework oto the MORDOR hydrological model (Garçon, 1996), which has been extensively used by Élec-15

tricité de France (EDF, the French electric utility company) for more than 25 years for operational applications. Recent changes

in the model structure have been made to improve model performance. Many alternative model structures have been tested,

which concern both model equations and model spatial discretization, and we selected the two best solutions. In this study we

present and compare these two new formulations with the historical version.

2 Data and study area20

The comparison of the three hydrological models is based on an extensive dataset composed of data from 50 catchments.

This dataset collects different operational case studies from EDF activities. These catchments are located in mountain regions,

manly in the Alps (10 catchments), the Pyrenees (5 catchments) and the Massif Central (29 catchments). Four catchments are

located in the northeast of France (Ardennes and Jura and Vosges regions), one in the northwest (Brittany region) and one in

Corsica. Figure 1 shows the catchment locations. Catchments were chosen based in quality and length of records criteria. The25

large hydroclimatic range of the dataset ensures the models’ consistency in different hydrological conditions.The average area

of the study catchments is 911 km², ranging from 20 to 7366 km² and the average of median elevation of the whole dataset is

981 m a.s.l., ranging from 109 to 2365 m a.s.l.

For each catchment the following data were collected: (i) discharge, (ii) rainfall, (iii) temperature, (iv) potential and actual

evapotranspiration, (v) fractional snow cover and local snow water equivalent.30

The discharge data are provided by EDF and French water management agencies. The average length of records at all these

stations combined is around 25 years, ranging from 9 years for Ouveze at Bedarrides (southern Alps) to 53 years for Sioule

at Fades (Massif Central). The whole discharge dataset consists of 1526 hydrologic years. The average runoff for the whole
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Table 1. Main components of MORDOR V0, V1 and SD models in terms of water balance, runoff production, snow model, routing scheme

and spatialization. For each module and model, the number of free parameters is given.

Module MORDOR V0 MORDOR V1 MORDOR SD

Water balance Calibrated PET from a statistical formulation

driven by temperature. 2 free parameters (see

Garçon (1996))

Forced by PET . Crop coefficient formulation. 2

free parameters (see Appendix A3).

Runoff production 4 storage (U , L, Z, N ) and 3 fluxes components

(surface, subsurface and base flows). Linear in-

flow and outflow of storage. 7 free parameters

(see Paquet et al. (2013)).

4 storage (U , L, Z, N ) and 3 fluxes components

(surface, subsurface and base flows). Nonlinear in-

flow and outflow of storage. 7 free parameters (see

Appendix A5).

Snow model Snow accumulation driven by the air tempera-

ture and hypsometric curve. Classical degree-

days formulation for snow melt. 11 free param-

eters (see Valéry et al. (2014b)).

Snow accumulation driven by air temperature and

parametric S-shaped curve. For snow melt: classi-

cal degree-days, cold content, liquid water content,

ground-melt component and variable melting coef-

ficient. 6 free parameters (see Appendix A4).

Routing scheme UH modeled by Weibull distribution. 2 free pa-

rameters (see Paquet et al. (2013)).

UH modeled by diffusive wave. 2 free parameters

(see Appendix A6).

Spatialization None None Orographic gradients.

2 free parameters (see

Appendix A2).

Total 22 free parameters 17 free parameters 19 free parameters

dataset is around 800 mm/year, ranging from 225 to 1635 mm/year. With regard to forcing data, rainfall and temperature are

gridded and provided by Gottardi et al. (2012). These data result from a statistical reanalysis based on ground network data and

weather patterns (Garavaglia et al., 2010). They are available for the 1948-2012 period at 1-km² / 1-day resolution. Concerning

the rainfall, the average amount for the whole dataset is around 1345 mm/year, ranging from 825 mm/year to 2000 mm/year.

The model time step differs from catchment to catchment and depends on hydrological characteristics (area, topography, time5

to peak, etc.). We modeled 44 catchments at the daily time step, one at the 12-h time step, two at the 8-h time step and three

at the 6-h time step. To obtain forcing at the subdaily time step, the gridded data are downscaled according to ground network

data at a finer time step, i.e., the hourly records of local gauges are used to compute areal precipitation and temperature at the

12-, 8- and 6-h time steps.

Evapotranspiration data used for validation come from the MOD16 satellite global evapotranspiration product (Mu et al.,10

2011), which has provided 1-km²/8-day land surface ET datasets since 2000 using the Penman-Monteith equation and a surface
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Figure 1. Localization of the catchments studied

resistance derived from MODIS surface data. It has be noticed that these data are not observations but modelled estimates which

can be subject to considerable uncertainty. Compared to local flux measurements, the MOD16 product has the great advantage

of providing spatially explicit large-scale ET estimates. Some studies have shown its consistency, even if it is known for being

affected by many uncertainties, especially in mountainous areas where the global meteorological input is clearly deficient or in

tropical and subtropical regions where it clearly underestimates ET (e.g., Trambauer et al., 2014; Hu et al., 2015; Miralles et al.,5

2015). Two types of snow data are used for model validation: fractional snow cover (FSC) and snow water equivalent (SWE).

The MOD10 satellite product (Hall et al., 2002) provides gridded snow cover time-series. This product has been available since

2000 at a 500-m / 1-day resolution, and is widely used for hydrological applications (e.g., Rodell and Houser, 2004; Parajka

and Blöschl, 2006; Thirel et al., 2013). In this study we average the gridded values at catchment scale in order to compute a

fractional snow cover. Snow Water Equivalent (SWE) data come from the EDF snow network, composed of cosmic ray snow10

sensors (NRC) (Kodama et al., 1979; Paquet and Laval, 2006). In this study we use three measurement gauges situated within

the Durance at La Clapiere catchment: Izoard (2280 m a.s.l), Chardonnet (2455 m a.s.l.) and Marrous (2730 m a.s.l.). SWE

time-series at these locations are available since 2001.

4



3 Methods

3.1 Hydrological model versions

3.1.1 MORDOR V0: Initial lumped formulation

The historical MORDOR model is a lumped conceptual rainfall–runoff model. Its structure is similar to that of many conceptual

type models, with different interconnected storage. Is is a continuous model that can be used with a time step ranging from5

hourly to daily. The required input data are a representative estimate of areal precipitation and air temperature.

The main components of the model are: (i) an evaporation function that determines the potential evaporation as a function of

the air temperature; (ii) a rainfall excess/soil moisture accounting storage U that contributes to the actual evaporation and to

the direct runoff; (iii) an evaporating storage Z, filled by a part of the indirect runoff component that contributes to the actual

evaporation; (iv) an intermediate storage L that determines the partitioning between a direct runoff, an indirect runoff and10

the percolation to a deep storage N ; (v) a deep storage N that determines a baseflow component; (vi) a snow accumulation

function calculated from the temperature and the hypsometric curve of the catchment and a rain-snow transition curve; (vii) a

snow melt function based on an improved degree-day formulation; and (viii) a unit hydrograph that determines the routing of

the total runoff.

In this configuration, the MORDOR V0 model has 22 free parameters (see Table 1) to be optimized during the calibration15

process. The model was developed in the early 1990s (Garçon, 1996). Since then, it has been extensively used at EDF for

operational inflow and long-term water resource forecasting, hydrological analysis and extreme flood estimation (Paquet et al.,

2013). Several hundred models have been calibrated in France and abroad (Mathevet and Garçon, 2010). A model inter-

comparison study (Mathevet, 2005; Chahinian et al., 2006) based on the assessment of 20 rainfall–runoff models, tested on a

sample of 313 catchments at the daily and hourly time steps, has shown that the MORDOR model is among the more efficient20

and robust rainfall–runoff model structures. Valéry et al. (2014a) also showed that the MORDOR snow module was among the

most efficient when compared to six well-known snow modules.

However, various reasons to improve the model have appeared recently: (i) an increase in model performance in terms of

floods and low-flow simulations may broaden model applications; (ii) representation of snow processes must be improved to

allow for snow data assimilation, particularly for long-term snow melt forecasts; (iii) representation of orographic meteorolog-25

ical variability should be taken into account; and (iv) simplification of the model’s structure and parameterization may improve

the efficiency of model calibration and reduce parameter equifinality (Beven and Freer, 2001).

3.1.2 MORDOR V1: Revised lumped formulation

The revised model formulation, hereafter called MORDOR V1, does not modify the overall catchment conceptualization. In the

following parts, we distinguish changes in: (i) the water balance formulation; (ii) the runoff production; (iii) the snow model;30

and (iv) the routing scheme. Special focus on the MORDOR V1 components and fluxes is given in Appendix A. In this configu-

ration, the MORDOR V1 model has 17 free parameters to be optimized during the calibration process (see Table 1 and Table 2).
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Water balance

The water balance formulation includes a simplified vegetation component, with a maximum evaporation that is derived from

the potential evapotranspiration PET using a crop coefficient (Allen et al., 1998). From the maximum evapotranspiration

MET , the model calculates actual evapotranspiration (AET) from three components: (i) a surface interception: net rainfall5

and evapotranspiration capacity are calculated from the subtraction of MET from rainfall (e.g., Perrin et al., 2003); (ii) an

evapotranspiration from the root soil, calculated as a linear function of the saturation level of the soil moisture accounting

storage U ; and (iii) an evapotranspiration from the capillarity water storage in the hillslope, calculated as a linear function of

the saturation level of the capillarity storage Z.

10

Runoff production

The model identifies three flux components: (i) surface runoff; (ii) subsurface exfiltration; and (iii) base flow. Surface runoff is

generated by excess water coming from U and L storage. It represents, in a pure conceptual way, both Hortonian and Hewlet-

tian runoff. Subsurface runoff is generated by L storage outflow, calculated as a nonlinear function of the relative saturation.

Base flow is generated by N storage outflow, calculated as a nonlinear function of the water content.15

Snow and glacier model

The snow model is derived from a classical degree-day scheme, with a few important additional processes: (i) a cold content

able to dynamically control the melting phase; (ii) a liquid water content in the snowpack; (iii) a ground-melt component; and

(iv) a variable melting coefficient, depending on the potential radiation assumed to model the changing albedo effect through-20

out the melting season. The accumulation phase is controlled by the discrimination of the liquid and solid fractions of the

precipitations. From the temperature, these fractions are derived from a classical parametric s-shaped curve (e.g., Zanotti et al.,

2004; Micovic and Quick, 1999). The snowpack is represented by three state variables: (i) the snow water equivalent; (ii) the

snowpack bulk temperature; and (iii) the liquid water content in the snowpack. Snow melt is calculated as the sum of superficial

and ground melts. Superficial melt is derived from a degree-day formulation, where the melting temperature is snowpack bulk25

temperature, updated at each time step based on air temperature. A glacier component may also be activated, which is based

on a simple degree-day formulation.

Routing scheme

The transfer function is applied to the sum of the runoff contributions. Its formulation is based on the diffusive wave equation30

(Hayami, 1951).

3.1.3 MORDOR SD: Semi-distributed formulation

The Semi-Distributed MORDOR model is an improvement of the MORDOR V1 model, which includes a spatial discretization

scheme. This discretization is based on an elevation zone approach, which is known to be both parsimonious and efficient for
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mountainous hydrology (Bergstroem, 1975; DHI, 2009). A special focus on MORDOR SD components and fluxes is given

in Appendix A. Figure 2 illustrates this discretization on the Durance at La Clapière catchment (2175 km², southern Alps),

with 10 elevation zones each representing between 5% and 18% of the total area. In this study, the number of elevation zones

depends on the hypsometric curve of the catchment according to the following criteria: (i) the relative area of each elevation

zone has to be greater or equal to 5% and less or equal to 50%; and (ii) the elevation range of each zone has to be lower than5

350 m.

In most MORDOR SD applications, spatial variability of meteorological forcings is summarized with two orographic gradients,

one for precipitation and one for temperature. In this way, we assume that in mountainous areas, spatial variability is mainly

driven by altitude. Most of the model state variables are calculated for each elevation zone. Only groundwater water content and

outflow are considered as global and are calculated at the catchment scale. In the configuration used in this study, MORDOR10

SD has 19 free parameters (i.e., 17+2 with two orographic gradients) to optimize during the calibration process (see Table 1

and Table 2).

3.2 Evaluation strategy

3.2.1 Hydrological signatures

The runoff signatures are viewed in such a way that streamflow data can be broken up into several samples, each of them a15

manifestation of catchment functioning (Euser et al., 2013; Hrachowitz et al., 2014; Westerberg and McMillan, 2015). Five

different signatures are used in this study and described in the following:

– the time serie of flow is obviously the first signature that has to be reproduced by the model (hereafter called Q);

– the long-term mean daily streamflow is used to focus on the capacity to reproduce seasonal variation of observations

(hereafter called Qsea);20

– the flow duration curve focuses on the capacity to reproduce streamflow variance and extremes (hereafter called FDC);

– the flow recessions during low flow period focuses on streamflow recessions (hereafter called Qlow);

– the lag−1 streamflow variation is the last signature focusing on short-term variability (hereafter called dQ and computed

as follows: dQ(t) =Q(t)−Q(t− 1)).

To go further, model realism is also evaluated in regards to three other hydrological variables: (i) the fractional snow cover25

(FSC); (ii) the snow water equivalent (SWE); and (iii) the actual evapotranspiration (AET ). However, these data suffer from

many limitations and uncertainties (see section 2). Consequently, a specific evaluation is conducted and explained in sections

4.2 and 4.3.
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Figure 2. Durance at La Clapiere catchment: (a) hypsometric curve; (b) elevation zones.

3.2.2 Model calibration

The model is calibrated using an efficient genetic algorithm inspired by Wang (1991). This stochastic population-based search

algorithm performs approximately 40,000 model runs during a classical calibration process.

The multi-criterion composite objective function (OF ) to be minimized during calibration is expressed as follows:

OF = (1−KGEQ) + (1−KGEQsea) + (1−KGEFDC) (1)5
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where KGE is Kling-Gupta Efficiency (Gupta et al., 2009), which combines three components: correlation, variance bias

and mean bias. The triple focus on time-serie, seasonal streamflow and flow duration curve can properly identify the different

components of the model. Numerous industrial applications of this OF , within a wide range of hydroclimatic conditions,

showed that it was well designed to calibrate the MORDOR model (e.g., Paquet et al., 2013).

3.2.3 Split sample test5

To evaluate the model, we adopted the split sample test advised by Klemeš (1986) and Gharari et al. (2013). For each catchment,

the entire data record was split into two periods (P1 and P2). In the tests, we first calibrated the models on period P1 and tested

them in validation mode on period P2. Then the role of the periods was reversed (calibration on P2 and validation on P1).

Therefore, a total of 100 calibrations (50 for P1 and 50 for P2) and 100 validation tests were run on the whole catchment set,

and the results were analyzed on this basis.10

3.2.4 Evaluation metrics

Model performance is quantified using the classical Nash-Sutcliffe Efficiency (NSE). This criterion is commonly used for

evaluation of hydrological models and is therefore suitable to use as a benchmark for this study. In addition, it allows to consider

different metrics for calibration and posterior evaluation. NSE criteria are systematically calculated for all the streamflow

signatures Q, Qsea, FDC, Qlow and qQ and for all the catchments. NSE criteria are also calculated for supplementary15

hydrological variables (FSC, SWE and AET ) but they are not systematically shown, considering the data limitation already

mentioned.

4 Results and discussion

This section presents the results of the model comparison. We focus on improvements in terms of model performance and the

representation of snow and evapotranspiration processes.20

4.1 Improvement of model performance

Figure 3 summarizes the model performance of the three model versions over the validation periods. Distributions of NSE

values over the 50 catchments (i.e., 100 simulations) are plotted for the five samples of observations described above (Q,

Qsea, Qlow, Qlow and dQ). It can first be noted that the three model formulations have good overall performance. The

NSE(q) values are above 0.8 in validation on more than 80% of the catchments. However, MORDOR V1 and MORDOR SD25

perform significantly better than MORDOR V0. This is particularly true for Q and dQ signatures. This is less significant for

Qsea and Qlow signatures and insignificant for Qlow. When considering NSE(q) values, MORDOR V1 and SD have scores

above 0.9 for about 10% of the catchments on validation periods. Another interesting result is the very close performance of

V1 and SD versions. In conclusion, the new formulation (V1) provides a spectacular improvement in performance on most
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Figure 3. Performance of the three versions of the model on the validation periods, for five streamflows signatures: (a) Q; (b) dQ; (c) Qsea;

(d) Qlow; (e) Qlow.

streamflow signatures. In contrast, taking into account orographic meteorological variability has no significant impact on model

performance.

To go further, we compare the mean NSE obtained for each hydrological signature and for the three model versions. At

the same time, we distinguish pluvial and nival catchments, according to the classification of Sauquet et al. (2008). The results

are illustrated in Figure 4. When considering the entire dataset, we confirm previous results: MORDOR V1 and SD have5

very similar performance, which is significantly better than the MORDOR V0 performance, especially for Q, dQ and Qsea

signatures (Figure 4a). Overall, the relative improvement in performance ranges from 1% to 10%. For the pluvial catchments

(Figure 4b), conclusions are the same, but overall performance is better. For nival catchments (Figure 4c), the picture clearly

differs. Overall performance is lower, which underlines the high complexity of processes on these catchments. Moreover,

MORDOR SD outperforms MORDOR V1 for all signatures. This improvement is especially significant for Qlow, Q and dQ10

signatures, but remains insignificant for the Qsea signature. Therefore, the semi-distributed scheme clearly shows its added

value for nival catchments.
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Figure 4. Mean NSE for each hydrological signature and for the three model versions: (a) for the entire catchments sample (50 catchments),

(b) for the pluvial sample (35 catchments), (c) for the nival sample (15 catchments).

Figure 5. Fractional Snow Cover Regime on eight mountainous catchments. Comparison of MOD10 FSC product with the three model

versions. For each catchment, the considered period is given. NSE values are calculated on FSC regimes.

4.2 Improvement in the representation of the snow processes

One of the objectives of this study was to improve the model representation of snow processes. Hereafter, we investigate this

question using two types of data. The first one is a catchment scale average of the fractional snow cover (FSC) provided by the
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Figure 6. Observed and simulated snow water equivalent (SWE) time-series on the Durance at La Clapiere catchment. NSE values are

calculated on SWE time-series.

Figure 7. Observed and simulated snow water equivalent (SWE) regimes on the Durance at La Clapiere catchment, for three measurement

stations: a) Izoard (2280 m a.s.l.), b) Chardonnet (2455 m a.s.l.), c) Marrous (2730 m a.s.l.). NSE values are calculated on SWE regimes.

MOD10 product, available over the 2000-2012 period. Due to uncertainties and missing data, we consider only the long-term

mean daily FSC. The second one is the snow water equivalent at the local scale, derived from our NRC observation network.

Figure 5 illustrates for eight mountainous catchments the regime of the modeled and observed fractional snow cover over

available periods (i.e., common periods between modeling and observations). These catchments have been selected among the

nival sample (15 catchments) considering data availability. On most of these catchments, MORDOR V0 and V1 show similar5

behaviour, characterized by a late snow melt and an overestimation of FSC during spring and autumn. On the other hand,

MORDOR SD provides a much more realistic FSC, especially during spring. Snowpack discretization within the catchment

makes it possible to better represent the snow cover evolution. Finally, taking into account orographic meteorological variability

significantly improves the FSC simulation, as illustrated by NSE values (see legends of Figure 5).
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Figure 8. Actual evapotranspiration regime on eight pluvial catchments. Comparison of MOD16 AET product with the three model versions.

For each catchment, the considered period is given. NSE values are calculated on AET regimes.

Figure 6 compares observed and simulated SWE time series over the Durance at La Clapiere catchment for the 2004-2012

period (observations are missing for 2008). The observations come from the Chardonnet NRC (2500 m a.s.l.). The MORDOR

V0 and V1 simulations (blue and green curves) correspond to the global SWE at the catchment scale, given that they do

not represent spatial variability. The MORDOR SD simulation (red curve) corresponds to elevation zone #8 situated close to

the NRC altitude. First, MORDOR V0 and V1 simulations are very similar and significantly underestimate the total amount5

of SWE. This is a clear conceptual limitation of such global formulations which only simulate bulk values that cannot be

compared to local observations. On the other hand, the semi-distributed scheme shows fairly good agreement when comparing

local observations to corresponding elevation zone modeling. MORDOR SD correctly simulates the interannual variability

of the maximum snowpack at this altitude, which varies from about 300 mm in 2005 to about 800 mm in 2007 and 2012.

The seasonal dynamic is also very realistic, since both accumulation and melting periods are well simulated. These results10

are confirmed by Figure 7 for the three snow gauges located over Durance at La Clapiere catchment (see Figure 2). We

compare the observed interannual SWE regime (2000-2012 period) with MORDOR V0,V1 and SD SWE. In Figures 7a, 7b

and 7c, MORDOR V0 and V1 SWE,respectively, are the same and correspond to the bulk SWE at the catchment scale. In

contrast, MORDOR SD SWE corresponds to #7, #8 and #9 elevation zones, respectively. Logically, the MORDOR V0 and

V1 SWE underestimation increases with elevation. Instead, SWE regimes simulated by MORDOR SD are consistent with15

at-site observations for all elevations.
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4.3 Improvement in the representation of the evapotranspiration processes

The realism of the hydrologic representation is also investigated considering the water balance, by comparing simulated ET

fluxes and MOD16 satellite-derived data available over the 2000-2012 period. Due to uncertainties and missing data, we

consider only the long-term mean daily ET. In addition, considering MOD16 limitations on mountainous areas, we focus on

eight low altitude catchments where it may be considered as realistic. These catchments have been selected among the pluvial5

sample (35 catchments) considering data availability. Figure 8 shows ET regimes on the available periods (i.e., common periods

between modeling and observations). Firstly, it’s worth noting that PET is considered very differently for the three model

structures. MORDOR V1 and SD use a PET estimated as described by (Oudin et al., 2005), which vary from 420 mm.yr−1

to 890 mm.yr−1 on the study catchments. On the other hand, MORDOR V0 uses an adjusted PET from temperature and

model parameters which vary 220mm.yr−1 to 1750mm.yr−1. Secondly, MORDOR V1 and SD use a crop coefficient-based10

formulation, which is not the case for MORDOR V0. These differences have a great impact on ET regimes. Compared to the

MORDOR V0 reference, ET is increased during spring and summer but decreased in autumn at the end of the growing season.

Comparison with MOD16 data suggests that this new seasonality is more realistic, as illustrated byNSE values (see legends

of Figure 8). In particular it removes the unrealistic increase of ET in autumn during vegetation senescence (see for instance

Allier and Ceze catchments). In this case, spatial discretization (MORDOR SD) has a second-order effect.15

5 Conclusions

In this study we validated improvements in an operational hydrological model, using a multi-catchment, multi-criterion and

multi-variable framework. From the historical version of the model, two alternative structures were evaluated. Within the first,

the physical equations were revisited to better represent the main hydrological components, such as evapotranspiration and

snow, and to reduce model parameters. The second alternative structure integrates this new formulation in an elevation zone20

spatialization (semi-distributed scheme).

A first evaluation focused on runoff simulation with a multi-criterion split-sample test. Five criteria were identified to focus

on various streamflow signatures. For each criterion, the two alternative models perform significantly better than the initial one.

On pluvial catchments, improvements are mainly due to the new physical formulation. In contrast, orographic discretization

provides the main gains on nival catchments. Finally, the new semi-distributed model shows significantly better performance25

for runoff simulation for all catchments and for all criteria.

The second evaluation was performed on two independent hydrological variables, not used for model training: snow and

evapotranspiration. The objective was to reinforce our conclusions, by performing a discharge-independent validation. The

results clearly demonstrate model improvement. This semi-distributed structure simulates snow processes quite realistically.

The simulation of snow cover and snow water equivalent are significantly improved. The realism of the water balance is also30

improved in the new model formulation. When compared with satellite proxy, the evapotranspiration dynamic is shown to be

substantially improved.
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This paper has therefore shown that MORDOR SD provides a very efficient tool for wide-ranging hydrological applications

to hydrological simulation in pluvial and nival catchments. The performance and versatility of this new model version are

very significantly improved. At the same time, its structure has been simplified, specially concerning snow processes, with

fewer free parameters. Currently, further experience with MORDOR SD is being gained as it is implemented in the EDF

flood-forecasting chain and in hydrological studies. An assimilation scheme is also being implemented, which integrates both5

discharge and snow measurement. Future work will focus upon implementation of a fully distributed version of the MORDOR

SD model over large-scale catchments and in ungauged contexts.

Appendix A: MORDOR SD

This section details the MORDOR SD model structure. Figure 9 shows the wiring diagram of MORDOR SD model. It is

important to underline that MORDOR V1 equations are exactly the same as MORDOR SD, differing only in that the watershed10

is not descritized into elevation zones.

A1 Watershed description

The MORDOR SD model is based on a succinct description of the catchment, through the following characteristics: (i) sbv

the watershed area [km²]; (ii) fice relative ice area [%]; (iii) flake relative lake area [%]; (iv) xlat latitude of the watershed

centroid [◦]; (v) f̄ l the mean of flow length of each gridcell to the outlet [km]; and (vi) the average elevation of watershed z̄.15

Furthermore, the watershed is descretized into several elevation zones. Each zone i is described by its relative area si [%] and

its median elevation zi [m]. Implicitly
∑i=Nb

i=1 si = 1, where i is the zone index and nb is the total number of zones. nb is equal

to 1 in the case of MORDOR V1.

A2 Forcing

The model has as input data, for each elevation zone i and timestep t, three forcings: (i) precipitation Pi(t) [mm]; (ii) air20

temperature Ti(t) [◦C]; and (iii) potential evapotranspiration PETi(t) [mm]. Often in the operational context only the areal

precipitation P (t) and temperature T (t) are available. In this case, the forcing data for each zone are computed through two

orographic gradients:

Pi(t) = P (t) · (1 +
gpz

1000
) · (zi− z̄) (A1)

Ti(t) = T (t) +
gtz

100
· (zi− z̄) (A2)25

where gpz is the precipitation gradient [%/1000 m] and gtz is the temperature gradient [◦/100 m]. In this case, the PETi(t)

could be computed with several formulas driven by Ti(t), for instance following the formula proposed by Oudin et al. (2005).

These equations are not used in MORDOR V1.
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Figure 9. Overview of MORDOR SD model components and fluxes.

A3 Water balance

From the potential evapotranspiration PETi(t), a maximum evapotranspiration METi(t) is computed using a crop coefficient

Kc, such as:

METi(t) = cetp ·Kc(t) ·PETi(t) (A3)

where cetp [-] is a correction factor of the total amount of PET . In its classical form, the Kc coefficient varies during the5

growing season and is defined for any crop using look-up tables (Allen et al., 1998). However, in an operational and meso-scale

context, a watershed-effective Kc must be defined, in order to accommodate various hydrological contexts and to efficiently

supply the water balance. In the model, the Kc formulation is:
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Figure 10. Schematic representation of MORDOR SD storage.

Ki
c(t) =Kmin + (1−Kmin) · (Rpoti(t)−min{Rpot(t)})

(max{Rpot(t)}−min{Rpot(t)})
(A4)

Ki
c(t) =

Ki
c(t)

K̄i
c

(A5)

with Kmin the minimum seasonal crop coefficient value and Rpot [W ·m−2 · day−1] the potential solar radiation. From

the MET , the model calculates the actual evapotranspiration (AET ) from three components: (i) surface interception ev0i(t)

according to the following formula: ev0i(t) =min(METi(t),Pi(t)); (ii) evapotranspiration from the root soil evui(t), see5

A5.1; and (iii) evapotranspiration from the capillarity water storage evzi(t), see A5.3.

A4 Snow module

The aim of storage S is to model the snow pack. Figure 10a shows the I/O and the state variables of this storage.

A4.1 Snow accumulation

For each elevation zone i and timestep t, the precipitation Pi(t) is divided into two components: (i) the liquid part pli(t), i.e.,10

rain, and (ii) the solid part ngi(t), i.e., snow. Then the inputs of the storage S are:

pli(t) = fliq(t) ·Pi(t) (A6)

ngi(t) = (1− fliq(t)) ·Pi(t) (A7)

where fliq(t) is the liquid ratio of precipitation founded on the classical parametric S-shaped curve:

fliqi(t) = 1− [1 + exp(
10

δT
· ((Ti(t) + efp)− t50))]−1] (A8)15
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where δT is the thermic range (set to 4 ◦C), t50 is the threshold temperature between the solid and liquid phases (set to 1 ◦C)

and efp [◦C] is an additive correction parameter, by default set equal to zero.

A4.2 Snow melt

For each elevation zone i and each timestep t, the snow pack is summarized by two state variables: the bulk temperature tsti(t)

and the water content wcti(t). The snow pack temperature is computed using an exponential smoothing function as follows:5

tsti(t) = min{lts · tsti(t− 1) + (1− lts) · (Ti(t) + efp),0} (A9)

where lts [-] is the smoothing parameter between the antecedent snow pack temperature and the actual modified air tempera-

ture. The melt runoff lfti(t) is composed of two parts: the surface melt lfti(t) and the ground melt gm. The latter is considered

constant in time and space. The surface melt changes according to the elevation zone i and the timestep t as follows:

lfsi(t) =Kf (t) · (Ti(t) + eft+ tsti(t)) (A10)10

where Kf is the melting coefficient and eft [◦C] is the additive correction parameter, by default set to zero. The melting

coefficient Kf (t) is computed via this equation:

Kf (t) = kf + (kfp ·
Rpot(t)

¯Rpot
) (A11)

where kf is the constant part and kfp the variable part of the melting coefficient, indexed on potential solar radiation. For a

given elevation zone i and the timestep t, the output of the snow model is the runoff lei(t) equal to the sum of the rainfall pi(t),15

the surface melt lfsi(t) and the ground melt gm.

A5 Runoff production

A5.1 Surface storage U

The storage U is intended to represent the water absorption capacity of the root zone. As shown in Figure 10b, the I/O of

storage U follows these equations:20

inU,i(t) = (umax−ui(t− 1)) · (1− exp(− lei(t)
umax

)) (A12)

outU,i = lei(t)− inU,i(t) (A13)

evui(t) = (METi(t)− ev0i(t)) ·
ui(t)

umax
(A14)

where ui(t) is the water content of storage U for the elevation zone i at the timestep t and umax [mm] is the maximum capacity

of the storage, assumed constant for all zones. This parameter is assumed to be the same for all zones.25
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A5.2 Hillslope storage L

The storage L is intended to represent the hillslope zone. As shown in Figure 10c, the I/O of storage L follows these equations:

inL,i(t) = outU,i(t) · [1− (
li(t− 1)

lmax
)2] (A15)

outL,i = outU,i(t)− inL,i(t) (A16)

vL,i(t) = kL · li(t)evl =
1

evl · levl−1
max

· li(t)evl (A17)5

where li(t) is the water content of storage L for the elevation zone i at the timestep t and lmax [mm] is the maximum capacity

of the storage, assumed constant for all zones. The parameter evl [-] is the outflow exponent. Then the surface runoff, rsurf,i(t),

provided by the elevation zone i is computed according to:

rsurf,i(t) = outL,i(t)−max(0, inL,i(t)− lmax) (A18)

A5.3 Capillarity storage Z10

The storage Z is intended to represent the capillarity of the hillslope zone. As shown in Figure 10d, the I/O of storage Z follows

these equations:

inZ,i(t) = vL,i(t) · [1− (
zi(t− 1)

zmax
)] (A19)

outZ,i = vL,i(t)− inZ,i(t) (A20)

evzi = (METi(t)− ev0i(t)− evui(t)) ·
zi(t)

zmax
(A21)15

where zi(t) is the water content of storage Z for the elevation zone i at the timestep t and zmax [mm] is the maximum capacity

of the storage, assumed constant for all zones. Then the subsurface runoff, rvers,i(t), provided by the elevation zone i, is

computed according to:

rvers,i(t) = kr · outZ,i(t) (A22)

where kr [-] is the runoff coefficient, ranging from 0 to 1.20

A5.4 Ground storage N

The deep storage N determines the baseflow runoff. As shown in Figure 10e, the I/O of storage N follows these equations:

inN (t) =

Nb∑
i=1

((1− kr) · outZ,i(t)) · si (A23)

rbase(t) = kN ·n(t)evn (A24)

where the parameter kN [mm ·hour−1] is the outflow coefficient and and the parameter evn [-] the outflow exponent.25
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A6 Routing function

The model identifies three flux components: (i) surface runoff rsurf ; (ii) subsurface exfiltration rvers; (iii) base flow rbase. The

global streamflow rt(t) is the sum of these three components, as follows:

rt(t) = (

Nb∑
i=1

rsurf,i(t)) · si) + (

Nb∑
i=1

rvers,i(t)) · si) + rbase(t) (A25)

The routing function used to transfer the global streamflow to the outlet is based on the diffusive wave equation (Hayami,5

1951):

f(t,cel,dif) =
f̄ l

2
√
πdif

· t− 3
2 · e−

(f̄l−cel·t)2
4·dif·t (A26)

where t is the timestep, cel is the celerity of the wave [km/h] and dif is the diffusion of the wave in [km2/h].

A7 MORDOR SD parameters overview

Table 2 summarizes the 19 free parameters of MORDOR SD model.10

A8 Technical details

The MORDOR SD model is written in FORTRAN 90. The model runs at different temporal resolution. The duration of a

simple model simulation (i.e., model run and evaluation criteria computation) is approximately 1 sec and depends on the time

step and on the length of time series. For instance a daily simulation over 50 years takes less than 1 sec and an hourly simulation

over 10 years takes approximately 2 sec. Concerning the calibration process (approximately 40,000 model runs), the algorithm15

takes approximately 10 min for a daily time step over 50 years and approximately 45 min for an hourly time step over 10 years.

The post-processing and graphical tools are developed in R language.
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Table 2. MORDOR SD free parameters, units, range and description.

Parameter Units Prior range Description

cetp - [0.8,1.2] PET correction factor

gtz ◦C/100m [-0.8,-0.4] Air temperature gradient

gpz %/1000m [0.1,0.7] Precipitation gradient

kmin - [0.1,1.5] Minimum seasonal crop coefficient

umax mm [30,400] Maximum capacity of the root zone

zmax mm [30,400] Maximum capacity of the capillarity storage

lmax mm [30,400] Maximum capacity of the hillslope zone

evl - [1.5,4] Outflow exponent of storage L

kr - [0.1,0.9] Runoff coefficient

kn mm ·hour−1 [10−10,10−1] Outflow coefficient of storage N

evn - [1,4] Outflow exponent of storage N

kf mm ·◦C−1 ·day−1 [0,5] Constant part of melting coefficient

kfp mm ·◦C−1 ·day−1 [0,5] Variable part of melting coefficient

efp ◦C [-3,3] Additive correction of temperature for

rain/snow partitioning

eft ◦C [-3,3] Additive correction of snow pack temperature

lts - [0.75,0.99] Smoothing parameter of snow pack temperature

gm mm · day−1 [0.4,0.8] Ground melt

cel km ·hour−1 [0.1,10] Wave celerity

dif km2 ·hour−1 [0.1,50] Wave diffusion
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