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helped us improve the manuscript. Below, we respond to the comments in a point-by-point fashion 
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Anonymous referee 1 

OVERVIEW  

The manuscript investigates the potential of assimilating passive microwave soil moisture 

observations in land surface modelling for improving surface and root-zone soil moisture simulation. 

Specifically, the assimilation of L-, C-, and X-band observations obtained by SMOS and AMSR2 

satellites into the AWRA-L model in Australia is carried out. In situ observations at surface and root-

zone are used for assessing the impact of satellite soil moisture assimilation.  

GENERAL COMMENTS  

The manuscript is well written and clear. The topic is surely of interest for the readership of HESS as 

the availability of multiple soil moisture products from satellite sensors poses the question on how to 

fully exploit their combination/integration for improving hydrological applications. The study 

investigates this aspect by using passive-based microwave retrievals at L-, C-, and X-band. Therefore, 

I believe the paper deserves to be published. The paper reads well and I have only a couple of 

suggestions that can be implemented to improve further, in my opinion, the significance of the 

paper.  

Comment #1 

 Two precipitation products are considered to assess the influence of their quality on soil moisture 

assimilation. It was recently done also in Massari et al. (2018, doi: 10.3390/rs10020292), and I 

believe it is a very interesting approach. However, a gauge-corrected product (research version of 

TRMM) and a gauge-based product are considered. I would suggest to consider also the real-time 

version of TRMM, better of TMPA, that is only satellite-based and would provide information of the 

impact of soil moisture assimilation in areas of the world in which raingauge are not present. I 

believe that it would not be too much work to be done, and the corresponding results would be of 

strong interest (at least for me).  

Response #1 

The results presented in our study are in fact based on the real-time version of TRMM, 

though we now see that the original manuscript wrongly refers to the research version. As 

you explain, by using the real-time version we can assess what the benefits of (joint) 

assimilation of the soil moisture products would be where good-quality precipitation data is 

not available.  

We have also assessed how model quality differs when using the research or real-time 

version of TRMM (Fig. R1). When using the real-time version, the agreement between top 

layer soil moisture and observational data is a bit lower than when the research version is 

used (by 0.04 on average), as expected. The quality of root-zone soil moisture is similar for 

both models. However, even for the top layer the difference in the quality of the TRMM 



precipitation products is relatively small when model results using AWAP gauge-based 

precipitation are used as a reference. As a result, the impact of soil moisture assimilation 

based on Δr is very similar for both TRMM precipitation products. On average, Δr is 0.01 to 

0.03 larger when the real-time version of TRMM is used than when the research version is 

used, depending on the soil moisture product assimilated. 

In the revised version of the manuscript, we clarify that the real-time version is used (P5 L8) 

and clarify our motivation to use it as follows (P9 L7-9): 

“By using the real-time version of TRMM, which is not gauge-corrected, we can assess the 

added value of soil moisture assimilation in regions where there are fewer rain gauges and 

precipitation data quality is therefore relatively poor.” 

 

Fig. R1. Correlations between model and field-measured soil moisture for the top layer and root zone when 

using different precipitation products. Correlations are based on actual (left) and anomaly (right) time series. 

TRMMRT is the real-time version of TRMM, TRMMRV the research version. 

Comment #2 

The analysis has split the assimilation in wet and dry periods, as in wet conditions AWRA-L model is 

not performing well. However, in many previous studies it was obtained that the higher impact of 

soil moisture assimilation is obtained in the transition periods between dry and wet conditions (and 

viceversa between wet and dry conditions). I would suggest including these periods in the analysis 

(again, it should be easy to be added).  

Response #2 

Thank you for your suggestion. We have analyzed the impact of assimilation for transitional 

conditions. However, we have found that assimilation is not necessarily more informative in 

these months than in the (shortened) wet and dry periods (Fig. R2). In the top layer, the 

impact of assimilation in the transitional period compared to the wet and dry seasons 

depends on the retrieval. For L-band, the impact of assimilation is highest in the transitional 

period (on average). For C-band, however, it is lowest,  and for X-band the impact is higher 

than the dry season, but lower than the wet season. For root-zone soil moisture, the impact 

of assimilation in the transition and wet seasons is similar (except for C band) and higher than 

in the dry season. Based on anomaly time series, assimilation is only informative in the top 

layer during transitional periods, and not for the root zone. 

In the revised version, we evaluate the impact of soil moisture assimilation for the 

transitional periods between the wet and dry seasons as well. Specifically, Fig. 4 of the 



manuscript has been replaced by Figure R2 and the text referring to the seasonality of the 

impact of assimilation has been updated to reflect the new results as discussed in the 

previous paragraph (P11 L8-16 and P12 L2-4). 

 

Fig. R2. The change in correlation (Δr) between modelled and field-measured top-layer and root-zone soil 

moisture after soil moisture assimilation, where Δr is calculated over the entire time period, as well as 

divided into the wet and dry seasons, as well as the transitional periods (a). In (b), the same is shown for 

anomaly time series.  

SPECIFIC COMMENTS   

Page 10, figure 3: The performance of the Open Loop simulation for root-zone soil moisture 

simulation should be added  

Agreed, we have added the performance of the open loop for the root zone to Figure 3 in the 

revised manuscript. 

Page 11, line 9: “no difference”. I suggest changing with “a small difference” or equivalent, as some 

differences are present also for root-zone soil moisture.  

 Agreed, this has been changed in the revised manuscript. 

Page 16, Discussion section: I suggest adding a paragraph of comparison with studies that have 

considered the joint assimilation of active and passive soil moisture products, to highlight the 

similarities and the differences.  

In the introduction of our study we reference two studies that jointly assimilated an active 

(both ASCAT) and a passive (both AMSR-E) soil moisture retrieval into land surface models, 

Draper et al. (2012) and Renzullo et al. (2014). Both of those studies are also (partly) based 

on Australian sites, resulting in some overlap with our study sites. The following paragraph 

discussing these papers has been added to the discussion section in the revised manuscript 

(P18 L18-29):  



“Though we are not aware of other studies jointly assimilating passive soil moisture 

retrievals, our results are in line with studies jointly assimilating active and passive soil 

moisture retrievals. Two studies, in particular, also use Australian study sites to evaluate the 

impact of (joint) soil moisture assimilation into land surface models. Draper et al. (2012) 

evaluated soil moisture assimilation at sites in the United States and south-eastern Australia, 

while Renzullo et al. (2014) focused on sites spread around Australia as in this study. The 

active and passive soil moisture retrievals were based on C-bane microwave data in both 

studies and therefore focus on complementary information in retrieval method, while in this 

study we focus on added value between microwave frequencies. Nevertheless, the 

conclusion of Draper et al. (2012) is very similar to that of this study, namely that joint 

assimilation leads to similar or better model performance than assimilating either retrieval 

individually. In contrast, Renzullo et al. (2014) stated that joint assimilation resulted in a 

compromise between the two retrievals. However, where reported, the correlations of the 

joint assimilation experiments were at most 0.02 lower than when assimilating the more 

informative soil moisture product individually in that study (Renzullo et al., 2014), suggesting 

that model performance is in fact similar.” 

RECCOMMENDATION  

On this basis, I found the topic of the paper relevant and interesting. Therefore, I suggest a minor 

revision before the publication in Hydrology and Earth System Sciences.  

 Thank you. 
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Review by J. M. Bergeron 

The manuscript provides useful insight into the added value of various combinations of soil moisture 

retrievals from different passive microwave frequencies by assimilating them individually and jointly 

into a hydrological model and comparing the results with in situ measurements. The manuscript is 

very well written, using clear language and properly justifying the use of the various methods used 

throughout the study. The method is sound and the discussion is thorough. Good work! 

I have a few questions and minor suggestions to further improve the manuscript.  

Comment #1 

My first question concerns the inflation factor. This inflation factor (let’s call it gamma) was applied 

increase the ensemble spread to avoid having a disproportionate ratio of model and observation 

errors, which would lead to observations having no impact on the model analysis. From my 

understanding of the text (p.7, l.15-16), the actual value of this inflation factor is not specified, but is 

chosen in such a manner as to avoid the model error (for both top layer and root zone?) from ever 

falling below 2%. Is this correct? In this case, what is the value of gamma?  

Response #1 

The inflation factor ensures that the model error does not fall below 2 %. The model error is 

based on the model error variance       
  , which is based on the top layer of the model 

since this is the layer that is most representative of the shallow depth of the soil moisture 

observations.  If we would have chosen a fixed inflation factor the 2 % error would only be 

ensured with a (very) large value. Therefore, we used a variable inflation factor. This inflation 

factor was calculated at each timestep where the model error was calculated as being 

smaller than 2 % by the equation: 

                
   

In the revised manuscript, we have added the following text to address this point (P7 L16-

18): 

“The variable inflation factor is applied only at time steps when the model error of the top 

layer falls below this value, and its magnitude is determined by the ratio between the desired 

and calculated model variance (      
 ) at that time step.”  

Comment #2 

My second question relates to variables boundaries. The inflation factor works well for unbounded 

variables, but problems may arise when an ensemble member approaches a boundary. Ensuring 

physical realism (e.g. by adjusting negative values to zero) may introduce a bias. How are boundaries 

handled for modelled variables?  

Response #2 

It is true that using an inflation factor on a bounded variable will introduce bias when the 

values are adjusted to its boundaries. However, to avoid using unphysical values, we adjusted 



negative values to zero and values above the storage capacity of a soil layer to its maximum 

value immediately after applying the inflation factor. This adjustment, being one-sided, will 

introduce bias in the modeled time series. However, as discussed in response to the previous 

comment, the inflation factor was only applied when  the model error fell below 2 % and its 

magnitude was set to ensure a model error of 2 %. Therefore, even in the worst case 

scenario, when the moisture store is predicted to be at capacity or empty, the magnitude of 

the bias is limited. 

A summary of this response has been included in the revised manuscript, explaining the 

consequences of the inflation factor on model time series when the values approach the 

physical boundaries of the soil moisture layers (P7 L18-23). 

Comment #3 

On a similar note, how do you perturb the observations? The errors attributed to the C-band 

retrievals is said to be 0.24 in AWRA-L wetness units and 0.18 for the other retrievals (p.16, l.29-30). I 

am assuming these are standard deviations? Either way, in the original EnKF procedure, the 

observations are perturbed to reach these errors. What type of distribution is used and how are 

observation boundaries handled? Using a Gaussian distribution on a bounded variable leads to values 

falling outside the boundaries. Also, observation values of 0% or 100% cannot be perturbed without 

introducing a bias. If this is the case, I believe a discussion on the matter would be beneficial.  

Response #3 

The observations were perturbed using a normal distribution, with the error values 

representing the standard deviation. As you mentioned, this can indeed lead to values falling 

outside the range of possible values in bounded variables such as soil moisture. Therefore, 

the values were adjusted to fall within the physical range: negative values were set to zero, 

values larger than one to one. This adjustment can indeed lead to bias.  

In the revised manuscript, we have added the following explanation (P 8 L1-5): 

“The observations were perturbed according to a Gaussian distribution with the triple 

collocation error estimates as standard deviations. Similarly to the variable inflation factor, 

perturbing soil moisture observations near the boundaries of the variables may result in 

values that are not physically real. The values falling outside the boundaries are therefore 

adjusted to the nearest limit. However, this process may introduce bias, especially where soil 

moisture observations are near its upper and lower boundaries.” 

Comment #4 

As for suggestions, the first concerns the title, which I believe is misleading. The manuscript showed 

there was little added value to the joint assimilation schemes compared with assimilating individual 

bands. While the possibility of added value was mentioned where individual soil moisture retrievals 

are more informative in different locations. 

Response #4 



Thank you for your suggestion. We have changed the title to “Joint assimilation of soil 

moisture retrieved from multiple passive microwave frequencies increases robustness of soil 

moisture state estimation”. 

Comment #5 

 I would also recommend mentioning the ensemble Kalman filter somewhere in the abstract as it is 

an important part of the method and would facilitate the search for relevant information for readers. 

Response #5 

 Agreed, we have added the fact we used an ensemble Kalman filter to the abstract (P1, L17). 
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Abstract. Soil moisture affects the partitioning of water and energy and is recognized as an essential climate variable. Soil 

moisture estimates derived from passive microwave remote sensing can improve model estimates through data assimilation, 15 

but the relative effectiveness of microwave retrievals in different frequencies is unclear. Land Parameter Retrieval Model 

(LPRM) satellite soil moisture derived from L-, C- and X-band frequency remote sensing were assimilated in the Australian 

Water Resources Assessment landscape hydrology model (AWRA-L) using an Ensemble Kalman Filter approach. Two sets 

of experiments were performed. First, each retrieval was assimilated individually for comparison. Second, each possible 

combination of two retrievals was assimilated jointly. Results were evaluated against field-measured top-layer and root-zone 20 

soil moisture at 24 sites across Australia. Assimilation generally improved the coefficient of correlation (r) between 

modelled and field-measured soil moisture. L- and X-band retrievals were more informative than C-band retrievals, 

improving r by an average of 0.11 and 0.08 compared to 0.04, respectively. Although L-band retrievals were more 

informative for top-layer soil moisture in most cases, there were exceptions, and L- and X-band were equally informative for 

root-zone soil moisture. The consistency between L- and X-band retrievals suggests that they can substitute for each other, 25 

for example when transitioning between sensors and missions. Furthermore, joint assimilation of retrievals resulted in a 

model performance that was similar to or better than assimilating either retrieval individually. Comparison of model 

estimates obtained with global precipitation data and with higher-quality, higher-resolution regional data, respectively, 

demonstrated that precipitation data quality does determine the overall benefit that can be expected from assimilation. 

Further work is needed to assess the potentially complementary spatial information that can be derived from retrievals from 30 

different frequencies. 
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1 Introduction 

Soil moisture plays an important role in the water and energy cycles, as it controls the partitioning of rainfall into 

evaporation, infiltration, and runoff (Seneviratne et al., 2010). For this reason, soil moisture observations have great potential 

to improve the performance of land surface models. There are various ways that soil moisture observations can be used to 

improve models, including in model calibration (e.g. Wooldridge et al. 2003; Wanders et al. 2014) and by constraining initial 5 

conditions (e.g. Jacobs et al. 2003; Massari et al. 2014). One of the most popular techniques to merge observational and 

model data is through data assimilation, which has been shown to improve model state estimates of surface and root-zone 

soil moisture (Renzullo et al. 2014; Draper et al. 2012; Reichle and Koster 2005), evaporation (Tian et al., 2017), and runoff 

(Brocca et al., 2010; López López et al., 2016). 

A variety of observation-based soil moisture estimates have been used in data assimilation, including field- (Aubert et al. 10 

2003; Lee et al. 2011), airborne- (Margulis et al., 2002) and space-borne (e.g. Reichle et al. 2007; Pauwels et al. 2001) 

measurements. Soil moisture datasets based on microwave remote sensing are of particular interest because of their global 

coverage, near-daily resolution and low sensitivity to atmospheric interferences. Several studies have assimilated satellite 

soil moisture retrievals derived from active (e.g. Pauwels et al. 2001; Brocca et al. 2011; Draper et al. 2011) and passive (e.g. 

Reichle et al. 2007; Liu et al. 2011; Gao et al. 2007; López López et al. 2016)  microwave sensors, as well as a combination 15 

of passive and active sensors (Draper et al. 2012; Renzullo et al. 2014).  

Aside from the distinction between active and passive microwave sensors, soil moisture retrievals can be retrieved from 

different frequencies. Common frequencies are L band (1.4 GHz), C band (6 GHz) and X band (10 GHz). Of these, L band is 

often assumed optimal for soil moisture retrieval because it is less sensitive to vegetation cover and the atmosphere than the 

higher frequency retrievals, as well as having a deeper signal depth (e.g. Schmugge 1978; Ulaby et al. 1986). At the same 20 

time, the lower emission intensity means that observation footprint increases with decreasing frequency, creating a trade-off 

between spatial detail on the one hand, and observation depth and interference from vegetation and the atmosphere on the 

other. Studies evaluating and comparing satellite soil moisture retrievals have empirically confirmed that errors in soil 

moisture retrievals tend to increase with increasing frequency (Dorigo et al., 2010). Also, L-band retrievals tend to 

outperform C-band retrievals over the more moderate vegetated regions (e.g. Holgate et al. 2016; Al-Yaari et al. 2014; van 25 

der Schalie et al. 2016). It may be expected that this higher accuracy leads to higher benefits of data assimilation, but this is 

yet to be demonstrated.   

Ultimately, the benefit of assimilation depends on the relative magnitude of errors in the retrievals and model, respectively. 

Holgate et al. (2016) and Renzullo et al (2016) found that model estimates of soil moisture already had better accuracy than 

those from remote sensing for some Australian sites, in which case there may be little benefit from assimilation. However, 30 

this may have been a function of the good quality precipitation estimates due to a relatively dense station measurement 

network. Precipitation estimates can be expected to be of considerably lower quality for many parts of the world, and there is 

a need to understand whether satellite data assimilation may be more beneficial under those circumstances.  
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Here, we assimilate passive microwave retrievals derived from three different frequencies, but using a common radiative 

transfer model. Our main objective is to understand differences between the retrievals in terms of their performance in data 

assimilation experiments and to investigate whether there is added value in their joint assimilation. In addition, we evaluate 

to what extent the benefit of assimilation depends on the quality of precipitation estimates used in modeling. 

2 Soil moisture data 5 

2.1 Satellite data 

Soil moisture data were derived from brightness temperatures from two space-borne sensors. The Advanced Microwave 

Scanning Radiometer 2 (AMSR-2) provides data for the C- (6.9 GHz) and X-band (10.65 GHz) frequencies. These data have 

spatial resolutions of approximately 50 (C band) and 38 km (X band), respectively, and are sensitive to the top 1–2 cm soil 

layer (Owe et al. 2008). The Soil Moisture Ocean Salinity (SMOS) provides L-band (1.4 GHz) brightness temperatures. 10 

These observations have a spatial resolution of 43 km and are expected to be sensitive to the uppermost 5 cm of the soil. We 

focus on retrievals based on the nighttime overpasses (i.e. descending for AMSR-2, ascending for SMOS) because at night 

the assumption of equal vegetation and surface temperature is better met (de Jeu 2003; Liu et al. 2011). It has also been 

shown empirically to produce better results (Holgate et al., 2016). Soil moisture data were derived from the C-, L-, and X-

band brightness temperatures using the Land Parameter Retrieval Model (LPRM, Owe et al. 2008) v6 with the 15 

parameterizations described in Parinussa et al. (2015) and van der Schalie et al. (2016). Despite the common retrieval 

models, the parameterizations vary with the frequency of the brightness temperatures. Lastly, all three datasets were 

resampled to a regular 0.25° grid. 

2.2 Field-measured data 

Field-measured top-layer and root-zone soil moisture data obtained from two networks, OzNet and OzFlux, are used as a 20 

benchmark. The OzNet network consists of 63 sites in southeastern Australia that measure soil moisture in the upper 5 or 

8 cm of the soil up to 90 cm depth every 20 to 30 minutes (Smith et al., 2012). OzFlux (www.ozflux.org.au) consists of 36 

sites in Australia and New Zealand where carbon, energy and water fluxes are measured. Three main criteria were applied 

for selecting suitable OzNet and OzFlux sites. First, only sites with at least 100 observations of top-layer soil moisture 

during the assimilation period were included. Second, only sites meeting the minimum number of triples for the triple 25 

collocation analysis were used. Finally, the data must be publicly available. Out of the 99 sites, 24 sites were selected. The 

sites consist of 12 OzNet sites and 12 OzFlux sites and cover a range of climate types based on a modified Köppen 

classification system developed by the Bureau of Meteorology (Fig. 1, details of sites in Table S1). The sensor 

measurements were converted to root-zone values based on weighted averages of the observed values, where weights 

correspond to the portion of the 90 cm root-zone layer closest to each sensor. Six OzFlux sites were excluded from the root-30 

zone analysis because they had no sensors below 50 cm depth.  
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Figure 1: Field-measured soil moisture stations from the OzNet and OzFlux networks plotted against the major Köppen Geiger 

climate zones. Stations indicated by crosses provide top-layer soil moisture data individually, sites indicated by a circle also 

provide root-zone data. 

3 Methods 5 

3.1 Hydrological model 

The landscape hydrology component of the Australian Water Resources Assessment system (AWRA-L) simulates the 

dynamics of hydrological states and fluxes at a continental scale (van Dijk, 2010) and is the model underpinning Australia’s 

water resources assessments and accounts (Hafeez et al., 2015). The grid-based model has a 0.05° resolution and is run at a 

daily time step. It is important to note that each grid cell is modelled independently, meaning that there is no lateral exchange 10 

of water between neighboring cells. 

AWRA-L consists of three soil layers that, in contrast to most land surface models, do not have a predefined depth (Fig. 2). 

Instead, each soil layer has a prescribed maximum water storage capacity. Soil wetness outputs are water storages relative to 

the available soil water, or the difference between wilting point and field capacity, and therefore range from 0 to 1. The 

water storage can be converted to volumetric water content when combined with soil texture data (Renzullo et al., 2014). 15 

Precipitation, reduced by interception and direct runoff, enters the soil column by the first soil layer. This top layer generally 

corresponds to a thickness of 5–10 cm and is also where soil evaporation occurs. The second layer is the shallow root layer 

and has a thickness of 10–20 cm. Conceptually, this layer is where shallow-rooted vegetation withdraws water for 

transpiration. The third soil layer, or deep root layer, has a thickness of 6–8 m and is accessed by deep-rooted vegetation 

only. Finally, there is an underlying groundwater store which can transfer water to the deep root layer by means of capillary 20 

rise. Runoff from the grid cell consists of the direct runoff from the surface and drainage from the groundwater store. The 

runoff can be used as an input for a routing model to calculate river discharge, but this is part of another AWRA model 

system component (Hafeez et al., 2015).  
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Figure 2: Schematization of the structure of AWRA-L showing the three soil layers, groundwater store, and the relevant 

hydrological fluxes. Net precipitation refers to the precipitation reduced by interception. 

AWRA-L was run at a point scale, at locations where field-measured soil moisture data were available. The model was 

forced with radiation, daily minimum and maximum temperature from Australian Gridded Climate Data (AGCD) provided 5 

by the Bureau of Meteorology (Jones et al., 2009). These data have a 0.05° resolution. Two datasets with different spatial 

resolutions and quality were used to prescribe precipitation on a daily basis. Tropical Rainfall Measuring Mission (TRMM) 

3B42 Research Version Real Time (GES DISC 2016) daily precipitation data with a 0.25° resolution were used for the main 

experiments. In an additional analysis, we use the model forced with higher-resolution gridded AGCD precipitation dataset 

as a benchmark. In this way, we assess whether precipitation data quality affects the potential for data assimilation to 10 

improve model performance. The assimilation experiments cover the period from July 2012 until April 2015, with model 

simulations starting in January 2005 to avoid errors in the initial conditions. The model version and parameterization (v0.5; 

van Dijk 2010) have not been calibrated with either satellite or field-measured soil moisture data. 

3.2 Data pre-processing 

Satellite soil moisture data were prepared for assimilation in several steps. First, satellite data were assigned to the model 15 

pixels using a nearest-neighbour approach. Next, the data were scaled to the model range to reduce bias. Previous studies 

have used a variety of methods for bias correction, such as linear rescaling between the minimum and maximum values 

(Brocca et al., 2011) or between model wilting point and field capacity (López López et al., 2016), first and second moment 

matching (Draper et al. 2009; Brocca et al. 2010), and cumulative density function matching (Reichle and Koster 2004; 

Draper et al. 2012). Each approach has its strengths and weaknesses. In this study, we apply a linear rescaling method 20 

matching the 5
th

 and 95
th

 percentiles of the observed dataset to the model data. We chose this approach because it retains the 

temporal distribution and scales it to the model dynamic range in a manner that avoids undue influence from outliers. 
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The errors for the three datasets were estimated using triple-collocation analysis (Dorigo et al., 2010; Scipal et al., 2008; 

Stoffelen, 1998). This analysis uses three datasets to quantify the error in each and operates under the assumption that the 

error structures are independent. One of the three datasets is chosen as a reference, and the other two datasets are rescaled to 

this dataset using linear rescaling factors provided by the triple collocation analysis. The errors are then produced in the data 

space of the reference dataset. Advanced Scatterometer (ASCAT) soil moisture was used to complete the required triplet 5 

with the AWRA-L open loop (i.e. no assimilation) and each of the passive microwave estimates in turn. ASCAT soil 

moisture data are derived from C-band (5.3 GHz) radar observations using a change detection algorithm (Wagner et al. 1999; 

Naeimi et al. 2009). The data have a near-daily temporal resolution and a spatial resolution of 0.25°. Before applying the 

triple collocation analysis, the ASCAT data were rescaled using the same 5
th

–95
th

 percentile scaling method that was applied 

to the passive microwave data. The choice of reference dataset is arbitrary in triple collocation analysis, but by using 10 

AWRA-L as the reference dataset all errors were expressed in model wetness units.  

In the joint assimilation experiments, we need to account for the difference in observation frequency of the SMOS and 

AMSR-2 soil moisture retrievals. On average, SMOS retrievals are available on 40 % of the days in the assimilation period, 

compared to nearly 75 % for AMSR-2 retrievals. Instead of subjectively adjusting the error estimates or weighting factors, 

we aggregated the time series with a higher observation frequency to the measurement intervals of the time series with fewer 15 

observations. In other words, for each day with a measurement in the SMOS time series, we averaged all observations in the 

AMSR-2 time series that occurred between the previous SMOS observation and the current observation. We limited the 

aggregation period to a maximum of seven days and assigned equal weights to all observations falling within the aggregation 

period. Alternatively, more recent observations could be given more weight, but as there are usually only one or two AMSR-

2 observations between SMOS observations, we consider a simple average to be suitable. The errors assigned to the resulting 20 

concurrent observation time series were recalculated using the triple collocation method to use as weights in the joint 

assimilation experiments. 

3.3 Assimilation procedure 

Soil moisture data were assimilated using an Ensemble Kalman Filter (EnKF) approach. This is a relatively simple and 

common method for assimilating observations into a variety of models (e.g. Draper et al. 2012; Reichle et al. 2002; Renzullo 25 

et al. 2014; López López et al. 2016) and consists of two steps. In the forecast step, ensembles are generated by perturbing 

the meteorological forcing data and propagating the model to the next time step. The ensembles are used to characterize the 

model error variances. In the analysis time step, the model states are adjusted towards the observations.  

The analysis time step is calculated as 

  
     

 
            

 
 ]          (1) 30 



7 

 

where   
 
 is the model forecast,   

  the model analysis,    the Kalman gain,    the observation and    the observation model, 

which relates the model state to the observations, all at time  . The Kalman gain expresses the relative weighting of the 

observations with respect to the model and is defined as 

       
           

    ,          (2) 

where    is the observation error variance for a certain location,       
  is the model error variance matrix, and     

  is the 5 

covariance matrix between the model states and model observations. Observational error is site-specific, but fixed in time. 

Model error variance is based on ensemble spread and varies over space and time (see below). If the model error is much 

lower than the observation error,    will approach zero and the observation will not impact the model analysis. Alternatively, 

if the observation error is much lower than the model error variance, the model analysis will be dominated by the 

observation. This assimilation updating procedure was applied to the first two soil layers of the AWRA-L model: the top 10 

layer and the shallow root layer. 

In ensemble-based assimilation techniques, the ensemble spread must accurately represent the model error (Reichle et al. 

2008; Turner et al. 2008). Especially after long periods with no rainfall, ensemble collapse can occur, which essentially 

prevents the observations from having any impact. One way to counter this is by applying a covariance inflation factor to the 

model ensembles (Anderson and Anderson, 1999). Here, we applied a variable inflation factor to ensure a minimum model 15 

error of 2 %. The variable inflation factor is applied only at time steps when the model error of the top layer falls below this 

value, and its magnitude is determined by the ratio between the desired and calculated model variance. Since soil moisture 

storage is a bounded variable, applying an inflation factor to ensemble members near the lower and upper limits of the 

variable may result in values that are not physically real. When applying the inflation factor resulted in negative values or 

values larger than the storage capacity of the layer, the values were adjusted to zero and the maximum value, respectively. 20 

This adjustment is necessary for the physical realism of the model, but may introduce bias. However, since the inflation 

factor is only used to ensure a model error of 2 %, the bias should be small even when the ensemble members approach the 

boundaries. 

A total of 100 ensembles were generated by perturbing the rainfall, radiation and temperature data in following Renzullo et 

al. (2014). Precipitation errors were multiplicative and drawn from a uniform distribution ranging ±60 % of (i.e. 0.4–1.6 25 

times) the forcing value. This error was based on spatial error estimates for the AGCD precipitation dataset (Jones et al., 

2009), but was also applied to the TRMM precipitation data. Radiation and temperature perturbations were additive, with 

assumed standard deviations of 2 K and 50 W m
-2

, respectively. A correlation structure was enforced to minimize unlikely 

combinations of the radiation, temperature and rainfall perturbations (in that order), specified by Renzullo et al. (2014): 

    
        

        
         

 .          (3) 30 
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The observations were perturbed according to a Gaussian distribution with the triple collocation error estimates as standard 

deviations. Similarly to the variable inflation factor, perturbing soil moisture observations near the boundaries of the 

variables may result in values that are not physically real. The values falling outside the boundaries are therefore adjusted to 

the nearest limit. However, this process may introduce bias, especially where soil moisture observations are near its upper 

and lower boundaries.  5 

3.4 Model evaluation 

Model performance was based on the agreement between model soil moisture and field-measured data. Specifically, we 

based model performance on Pearson’s r between the model ensemble mean and daily averages of the field-measured time 

series during the assimilation period. The impact of data assimilation on model performance is defined as the difference 

between r for the open loop and data assimilation scenarios, Δr. Other methods of evaluation, such as root mean square error 10 

and bias, were not included because AWRA-L simulates water storage in the soil layers rather than volumetric water content. 

The correlations were calculated using the actual time series as well as anomaly values, i.e. the deviations from the 

climatology. The climatology was calculated as the average of all days in the assimilation period (June 2012 to April 2015) 

falling within a 31-day window centered on a given day of the year. Correlations based on actual values reflect the ability of 

the modelled time series to capture the seasonal pattern of soil moisture, while r for anomalies reflect the ability to capture 15 

deviations from the seasonal pattern. Significance levels of Δr are based on the Steiger test for dependent correlations 

(Steiger, 1980), using a significance level of p < 0.05.  

The strong differences in the spatial representativeness is a complicating factor in the evaluation; for field measurements it is 

in the order of centimeters, the model has a grid resolution of approximately 5 kilometers, and the satellite data have a 

footprint of tens of kilometers diameter. Nevertheless, higher agreement with field-measured soil moisture increases 20 

confidence in model and satellite soil moisture estimates. 

3.5 Experimental setup 

Our main goal is to assess and compare the ability for soil moisture retrievals based on multiple passive microwave 

frequencies to improve the performance of the AWRA-L model. For reference, we compare model and satellite-based soil 

moisture to field-measured data as an indicator of the relative performance of the retrievals and of the potential for data 25 

assimilation to improve model estimates. Then, we address the main goal through three sets of experiments.  

First, each of the three datasets was assimilated individually. The impact of data assimilation (Δr) was used to compare the 

results of the experiments, thus comparing model performance against field-measured data for the data assimilation scenarios 

using the open loop model performance as a reference. The model simulations were evaluated over the entire study period as 

well as split into the wet and dry seasons, as well as transitional periods in between the wet and dry seasons. The wet and dry 30 

seasons where the wet season was were defined as the six-month period with the highest and lowest average top-layer soil 

moisture content, respectively, based on the open loop model simulation for each site. The transitional periods consist of the 
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remaining months. The results of this experiment are used to evaluate and compare the ability of each of the retrievals to 

improve model performance. 

Second, we assimilated each set of two soil moisture datasets (i.e. L-band and C-band, L-band and X-band, C-band and X-

band retrievals) jointly. In this experiment, the impact of assimilation was again assessed based on r. However, the 

performance of the single retrieval assimilation experiments was used as a reference rather than the open loop simulation. In 5 

this way, we evaluate the added value of joint assimilation with respect to assimilating the retrievals individually. 

Third, we repeated the single and joint assimilation experiments forcing the model with higher-resolution and higher-quality 

AGCD precipitation instead of TRMM precipitation. This experiment aimed to assess whether the quality of the 

precipitation data affects the impact of data assimilation on model performance. By using the real-time version of TRMM, 

which is not gauge-corrected, we can assess the added value of soil moisture assimilation in regions where there are fewer 10 

rain gauges and precipitation data quality is therefore relatively poor. For reference, we compared open loop model 

performance using the two precipitation datasets as an indicator of the difference in precipitation quality. Then, we compared 

the impact of data assimilation for the two datasets, based on the change in model performance after data assimilation (Δr).  

All three experiments were designed from an empirical rather than theoretical point of view.  We compare the effect of 

assimilating soil moisture retrievals based on multiple microwave frequencies, but additional factors would need to be taken 15 

into account to truly isolate the effect of frequency. First, despite the common retrieval model, parameterization of the model 

such as surface roughness and single scattering albedo differ. In addition, AMSR-2 retrievals use simultaneously retrieved 

passive microwave observations to derive the soil temperature, while SMOS retrievals use model temperature (van der 

Schalie et al., 2016). Second, we did not correct for differences in the characteristics of the sensors and platforms, such as 

viewing angle, overpass time, and observation depth. Third, the error characteristics of the soil moisture retrievals used to 20 

determine the weights of the observations in the assimilation scheme were allowed to vary between retrievals. This choice 

was deliberate, as applying a single error value to all retrievals may create a mismatch between the assigned error value and 

the quality of the observations. As a result, the difference in assimilation results reflects many characteristics of the retrievals 

and not only the frequency itself.  

4 Results 25 

We first assessed the potential for satellite soil moisture assimilation to improve the model based on a comparison against 

field observations. The model skill is variable, with r between field-measured and top-layer soil moisture as high as 0.8 and 

as low as 0.3. The skill of the model is generally higher for actual values (Fig. 3a) than for anomalies (Fig. 3b). At most sites, 

L-band retrievals have the highest agreement with field-measured data, followed by the X- and C-band retrievals, 

respectively (Fig 3a). For anomaly time series, however, L- and X-band retrievals perform similarly well (Fig. 3b). The 30 

results of the triple collocation analysis independently confirm these patterns, with lower errors for L- and X-band soil 

moisture and higher errors for C-band soil moisture (Fig. 3c). 
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Figure 3: Evaluation Correlations (r) between theof top-layer open-loop model soil moisture (OL) and satellite soil moisture 

observations against field measurements based on correlations (r) between July 2012 and April 2015 (a) and the same using 

anomaly time series (b). Correlations (r) between root-zone open-loop model and root-zone field measurements are also shown. 

The triple collocation errors for the satellite soil moisture retrievals in AWRA-L wetness units are shown in (c). Box plots show the 5 
inter-quartile range (box), outliers (+), the median (thick line) and the mean (o). Outliers are based on points at a distance larger 

than 1.5 times the inter-quartile range from the first and third quartiles. 

4.1 Evaluation against soil moisture 

Data assimilation generally improved the agreement between modelled and field-measured top-layer soil moisture, 

increasing r by up to 0.3 compared to the open loop scenario (Fig. 4a). Based on Steiger tests (see Sect. 3.4), the 10 

improvements in model performance are statistically significant at 75–90 % of the sites, depending on the assimilated 

retrieval. Assimilating L-band soil moisture has the largest impact overall (average Δr is 0.11), followed by the X-band 

(0.08) and C-band (0.04) retrievals, respectively. On a site-by-site basis, however, L-band soil moisture is not always the 

most informative. At 5 out of 24 sites (21 %), X-band retrievals are most informative, and at one site C-band retrievals are 

most informative (see Table S1). Modelled root-zone soil moisture also tends to improve after data assimilation, though 15 

model performance degrades slightly at about a quarter of the sites. The L-band and X-band retrievals have comparable 

results overall, though there is a slight advantage for L-band soil moisture on a site-by-site basis (most informative at 11 out 

of 24 sites, compared to 9 for X-band). Based on Steiger tests, about 90 % of the differences in r between these assimilation 

experiments are statistically significant. 
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Figure 4: The change in correlation (Δr) between modelled and field-measured top-layer (N = 24) and root-zone (N = 19) soil 

moisture (July 2012 to April 2015) after soil moisture assimilation, where Δr is calculated over the entire time period, the wet 

season and the dry season (a). In (b), the same is shown for anomaly time series. Box plots are defined as in Fig. 3. 

We examined the effect of season on the effectiveness of soil moisture assimilation by dividing the assimilation period into a 5 

wet and dry season, as well as transitional periods in between these seasons and dry season (see Sect. 3.5). For all three 

datasets, assimilation has a more positive effect on model performance of top-layer soil moisture in the wet season than in 

the dry season, though the difference for C-band assimilation is very small (Fig. 4a). The impact of data assimilation in the 

transitional periods between the wet and dry seasons depends on the retrieval. On average, the impact of data assimilation is 

highest in the transitional period for the L-band experiment, but lowest for the C-band experiment. For X-band retrievals, the 10 

impact of assimilation in the transitional periods falls in between the wet and dry seasons. The difference in model 

performance between the wet and dry seasons is largest for X-band assimilation and somewhat smaller for the other two 

datasets. In contrast, Tthere is no difference between the dry and wet seasons in terms of the effect of data assimilation on 

root-zone soil moisture is larger than for top-layer soil moisture. On average, data assimilation is informative in the wet 

season, while there is no change in model performance after assimilation in the dry season.. However, the variability 15 

between sites is considerable.     

The effect of assimilation is also evaluated for anomaly time series, which reflects the model performance at sub-seasonal 

timescales. Similarly to the analysis based on actual time series, data assimilation tends to improve model performance 

against field-measured data (Fig. 4b). However, the magnitude of the changes is somewhat smaller and degradations in the 

agreement between model and field-measured root-zone soil moisture can be more substantial. For top-layer soil moisture, 20 

assimilating L-band retrievals leads to higher model performance than the other two datasets overall, and it is also the most 
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informative at 13 out of 24 sites (54 %). In contrast to the evaluation of actual values, the C-band retrievals are most 

informative at more sites than X-band retrievals (at 8 compared to 3 out of 24 sites, respectively). On average, however, the 

changes in correlation are similar for both datasets (Fig. 4b). For root-zone soil moisture, the effectiveness of assimilation is 

similar between experiments. The added value of data assimilation for the top-layer is affected by the season, while this is 

not the case for the root zone. In contrast to the results for actual values, assimilation tends to be most effective for anomaly 5 

time series in the dry season instead of the wet season, especially for root-zone soil moisture. Assimilation during 

transitional periods between the wet and dry seasons is informative for the top layer, but not for the root zone. 

Time series plots of modelled top-layer soil moisture at three sites (see Fig. 1 for their locations) illustrate the contrasting 

effect of assimilation in the wet and dry seasons. In wetter months, the model tends to overestimate soil moisture in the open 

loop scenario (Fig. 5). Data assimilation results in lower soil moisture content in this period, more closely matching the field-10 

measured data. This is particularly true for the end of the wet season, as the transitional period between wet and dry seasons 

starts sooner in the field-measured data than in the open loop data. Periods where data assimilation leads to lower soil 

wetness also show lower evaporation rates. In drier months, however, the open loop simulation more closely matches the 

field-measured data, leaving little opportunity to improve the model. Sites where there is little to no rainfall in the dry season 

are particularly affected, as the assimilation tends to add noise to the otherwise smooth recession curves, as displayed by 15 

AU-Whr in Fig. 5. Furthermore, the time series show that the model error variance is reduced through the data assimilation. 
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Figure 5: Time series of precipitation forcing and modelled evaporation and top-layer model soil moisture in the open loop (grey 

line and shading) and after assimilating L-band retrievals (blue line and shading) at sites Y10 (a), AU-Whr (b), AU-DaS (c). Time 

series of rescaled L-band retrievals (circles) and field–measured soil moisture (green line) are included for reference. These sites 

are classified as a grassland, savanna and evergreen broadleaf forest, respectively. Shaded areas represent the 10th-90th 5 
percentiles of the model ensemble. 

It is noted that there is a considerable difference in the number of observations in the soil moisture retrievals, with more 

observations in the C- and X-band datasets (662–830 observations in three years) than in the L-band dataset (225–500 

observations). This difference in the number of observations could affect the impact of data assimilation, especially when 

evaluating the anomaly time series. However, correcting for the number and timing of observations by assimilating the 10 

concurrent retrievals also used in joint assimilation has a limited effect on results. The relative impact of the soil moisture 

retrievals is unchanged, though model improvement after data assimilation is slightly lower. The lower impact of data 



14 

 

assimilation is most likely because satellite observations, and thus model updates, are more infrequent. Fewer updates can 

result in a lower impact of data assimilation over a particular study period. 

4.2 Added value of joint assimilation 

Each combination of retrievals was assimilated simultaneously to assess whether there is complementary information in 

passive microwave bands of multiple frequencies. Joint assimilation of L- and C-band (or X-band) retrievals was superior to 5 

assimilating C-band (or X-band) retrievals individually, but performed similarly to assimilating L-band retrievals 

individually (Fig. 6a). On average, joint assimilation improved model performance compared to assimilating C-band (or X-

band) individually by 0.07 (0.03), but on average, the difference between joint assimilation and assimilating L-band 

retrievals individually was 0.00. Joint assimilation of C- and X-band retrievals improved performance compared to 

assimilating C-band retrievals individually, but overall slightly degraded model performance compared to assimilating X 10 

band individually. As a result, the sets including L-band retrievals as one of the two assimilated datasets outperform the joint 

assimilation of C-band and X-band retrievals. The difference between the combinations including L-band retrievals and the 

C- and X-band combination is statistically significant at nearly 90 % of the sites. When considering root-zone soil moisture, 

the main difference was that the added value of joint assimilation of L- and C-band (or X-band) retrievals was smaller when 

compared to assimilating C-band (or X-band) retrievals individually.  15 

Joint assimilation shows similar results when evaluating the anomaly time series. Again, joint assimilation of L-band soil 

moisture along with another dataset improved model performance compared to assimilating C- or X-band individually, but 

was not significantly different from assimilating L-band soil moisture individually (Fig. 6b). The joint assimilation of C- and 

X-band retrievals further improved model agreement with field-measured data at nearly half of the sites, but the difference 

between joint assimilation and single assimilation of either dataset for this set is not statistically significant. 20 
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Figure 6: The difference in model performance between the joint assimilation and single retrieval assimilation for surface (N = 24) 

and root-zone (N = 19) soil moisture (a), where model performance is based on the correlation (r) between modelled and field-

measured soil moisture (July 2012 to April 2015). The legend indicates which single assimilation experiment is used as a reference 

to evaluate the joint assimilation experiments. In (b), the same is shown for anomaly time series. Box plots are defined as in Fig. 3. 5 

Overall, joint assimilation resulted in higher model performance than assimilating the less informative of the two retrievals, 

but did not substantially change model performance compared to the more informative retrieval. We use the effect of joint 

assimilation of L- and X-band retrievals on model top-layer soil moisture as an example. In the single retrieval assimilation 

experiments (Sect. 4.1), the L-band retrievals were more informative than X-band retrievals at 18 sites, X-band retrievals 

were more informative at 5 sites, and they were equally informative at one site (Table S1). On average, model performance 10 

of the joint assimilation experiment was the same as assimilating the more informative retrieval individually (average change 

in correlation was 0.00). However, model performance improved compared to assimilating the less informative retrieval (i.e. 

X-band retrievals at 18 sites and L-band retrievals at 5 sites) individually by an average of 0.05. This change in model 

performance is higher than when we use X-band assimilation as a reference (like in Fig. 6), which showed an average 

improvement of 0.03. Over all joint assimilation experiments, model performance improved compared to assimilating the 15 

less informative retrieval individually by 0.02–0.07 on average. Model performance did not change substantially compared 

to assimilating the more informative retrieval (−0.02–0.00).   

4.3 Influence of precipitation data quality 

We repeated the assimilation experiments using a higher-resolution and better quality precipitation dataset to evaluate the 

importance of the quality of the prior model estimates. At all but three sites, forcing AWRA-L with AGCD precipitation 20 

leads to better open loop model performance than when TRMM precipitation is used (Fig. 7a). The r between model and 
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field-measured soil moisture differs by up to 0.3. The three sites where AGCD precipitation leads to lower model 

performance are located in northern Australia, where the density of precipitation gauges used to create the AGCD 

precipitation dataset is relatively low. The largest improvements in model performance when using AGCD instead of 

TRMM precipitation are found in south-eastern Australia, where the gauge density is relatively high.  

The impact of data assimilation was generally higher when the model was forced with lower-quality TRMM precipitation 5 

data. In other words, the change in model performance after data assimilation (Δr) was larger for the TRMM experiments 

than for the AGCD experiments (Fig. 7b). The difference was relatively large for X- and L-band retrievals, and relatively 

small when assimilating C-band retrievals. On average, data assimilation improved correlations with field-measured by 

0.01–0.05 more when the model was forced with TRMM precipitation than when forced with AGCD precipitation, 

depending on which retrievals were assimilated (0.01–0.04 for root-zone data). Despite the fact that data assimilation is less 10 

informative when AGCD precipitation is used, it generally still has a positive impact on model performance. Correlations 

between model and field-measured soil moisture increased by an average of 0.02–0.07 for top-layer soil moisture and 0.01–

0.04 for top-layer soil moisture, depending on the assimilated retrieval(s).  

Precipitation quality had a larger effect on model open loop performance based on anomaly time series (Fig. 7c) than based 

on actual time series. On average, the difference in the impact of data assimilation between precipitation datasets is similar 15 

for both precipitation datasets (Fig. 7d). However, the variability in the difference in the impact of data assimilation was 

higher for anomaly time series. 

 

 

Figure 7: The difference in open loop model performance based on r (a) and the difference between the impact of data 20 
assimilation based on Δr (b) between experiments using TRMM and AGCD precipitation data.  Panels (c) and (d) show the same 

for anomaly time series. Box plots are defined as in Fig. 3. 
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If we use the difference in open loop model performance as a proxy for precipitation quality, we can quantify the 

relationship between the difference in precipitation quality of the TRMM and AGCD datasets (i.e. data in Fig. 7a and c) and 

the corresponding difference in the impact of data assimilation (i.e. data in Fig. 7b and d). Pearson’s r between precipitation 

data quality and impact of data assimilation experiments vary between −0.83 and −0.57 for top-layer soil moisture, except 

when assimilating C-band retrievals individually (r = −0.22). The relationship for root-zone soil moisture is slightly weaker, 5 

with r between −0.79 and −0.32 (except r = −0.16 for C band). This means that where using AGCD and TRMM 

precipitation resulted in similar model performance, the impact of data assimilation on model performance was also similar. 

Where using AGCD precipitation resulted in higher model performance than TRMM, on the other hand, data assimilation 

had a smaller impact than when TRMM precipitation was used. 

5 Discussion 10 

We approached this study of the impact of assimilating satellite soil moisture retrievals based on different microwave 

frequencies from an empirical perspective. As discussed in Sect. 3.5, differences in the results of the assimilation 

experiments are affected not only by frequency, but also by differences in the characteristics of the sensors and platforms, in 

the parameterization of the common retrieval model, and in the error characteristics of the retrievals. A more theoretical 

approach is needed to untangle these confounding factors. 15 

Another important choice in the experimental setup was the rescaling technique. We chose a relatively simple linear 

rescaling technique to transform satellite observations to model space. Previous studies have suggested that more 

sophisticated bias correction techniques are more suitable (i.e. Yilmaz and Crow 2013), but these techniques usually assume 

that there is no consistent bias between the model and observations. Here, we found that the model was clearly biased in the 

wet season, especially for AU-DaS (Fig. 5). In those conditions, observations have considerable potential to improve model 20 

results, and that potential would be diminished by forcing the observations to match the incorrect model dynamics.   

Overall, L-band soil moisture retrievals showed the best agreement with field-measured data over the study sites (Fig. 3), 

which is consistent with previous studies (Al-Yaari et al., 2014; Holgate et al., 2016). Interestingly, errors did not increase 

with increasing frequency, and the X-band retrievals performed better than C-band retrievals. This may be typical of the sites 

studied here or of the AMSR-2 sensor, as previous studies have found that LPRM C-band retrievals from AMSR-2’s 25 

predecessor, AMSR-E, slightly outperform X-band retrievals (Gruhier et al., 2009; Parinussa et al., 2011). As expected, 

datasets with smaller errors were generally more informative in assimilation, especially for top-layer soil moisture. This can 

be attributed in part to the differences in the magnitude of the errors, as this affects the weight given to the observations in 

the assimilation procedure. On average, triple collocation errors for C-band retrievals were 0.24 (AWRA-L wetness units), 

compared to 0.18 for the other retrievals. Further research is needed to evaluate whether these differences in errors are due to 30 

the trade-off between spatial resolution and sensitivity to vegetation/atmosphere or whether they are the result of other 

factors. For the root zone, differences between the assimilation experiments are much less pronounced (Fig. 4). The similar 
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information content in L- and X-band retrievals, especially, implies that data assimilation systems can substitute one retrieval 

for the other without substantially affecting model performance. This is especially important for modeling systems that cover 

a relatively long time period that need to transition between microwave sensors and missions.  

Joint assimilation of two passive microwave soil moisture retrievals usually resulted in model performance that was similar 

to assimilating the more informative of the two retrievals individually, and improved model performance compared to 5 

assimilating the less informative retrieval alone (by 0.02–0.07 on average, Fig. 6 and Sect. 4.3). Therefore, joint assimilation 

appears especially useful to take advantage of the superior information in whichever retrieval is most informative in a 

particular location, without substantially degrading model performance by the retrievals that are less informative. This means 

that joint assimilation is of added value when no single retrieval is most informative in the study area, as was the case in this 

study. However, joint assimilation may not be of added value in studies where one soil moisture retrieval is most 10 

informative. Based on the results of this study, combining L-band retrievals (SMOS) with either the C- or X-band retrievals 

(AMSR-2) is most informative. However, the joint assimilation of C- and X-band retrievals performs surprisingly well 

considering the fact that errors between these retrievals, derived from the same AMSR-2 sensor, might not be expected to be 

fully independent. Theoretically, this would compound errors in data assimilation, and degrade performance, but this was not 

usually observed. Since we corrected for the number and timing of observations, this added value of joint assimilation can be 15 

attributed to other factors, which may include error characteristics, and characteristics of the sensors and microwave 

frequencies such as observation depth, spatial resolution, and viewing angle. 

Though we are not aware of other studies jointly assimilating passive soil moisture retrievals, our results are in line with 

studies jointly assimilating active and passive soil moisture retrievals. Two studies, in particular, also use Australian study 

sites to evaluate the impact of (joint) soil moisture assimilation into land surface models. Draper et al. (2012) evaluated soil 20 

moisture assimilation at sites in the United States and south-eastern Australia, while Renzullo et al. (2014) focused on sites 

spread around Australia as in this study. The active and passive soil moisture retrievals were based on C-bane microwave 

data in both studies and therefore focus on complementary information in retrieval method, while in this study we focus on 

added value between microwave frequencies. Nevertheless, the conclusion of Draper et al. (2012) is very similar to that of 

this study, namely that joint assimilation leads to similar or better model performance than assimilating either retrieval 25 

individually. In contrast, Renzullo et al., (2014) stated that joint assimilation resulted in a compromise between the two 

retrievals. However, where reported, the correlations of the joint assimilation experiments were at most 0.02 lower than 

when assimilating the more informative soil moisture product individually in that study (Renzullo et al., 2014), suggesting 

that model performance is similar in both cases.  

Finally, the quality of meteorological data, and precipitation, in particular, is an important driver of the performance of 30 

hydrological models. Top-layer soil moisture was more sensitive to using different quality precipitation datasets than root-

zone soil moisture (Fig. 7), which may indicate that errors between precipitation datasets are attenuated in the root zone. 

Data assimilation is more informative when the quality of precipitation datasets is relatively low, suggesting that assimilation 

is able to (partly) correct errors between low- and high-quality precipitation datasets. However, data assimilation is still 
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worthwhile when high-quality precipitation datasets are used (Sect. 4.3). This is despite the fact that the soil moisture 

retrievals have relatively coarse resolutions compared to the resolution of the model and AGCD forcing datasets. These 

results are in line with a flood forecasting study which also found that assimilating a soil moisture product based on active 

microwave was more informative when precipitation data quality was relatively poor (Massari et al., 2018).  

This study only examined the temporal aspect of differences and complementary information between the different datasets. 5 

The model was run for each site independently and did not consider spatial covariance. It is conceivable that including this 

spatial dimension could change the results, for example improving the added value of joint assimilation. The complementary 

spatial information in passive microwave retrievals could stem from the differences in the native footprint sizes of the 

different microwave frequencies, or from using sharpened soil moisture retrievals (i.e. Merlin et al. 2013; Piles et al. 2011; 

Kim and Hogue 2012; Gevaert et al. 2015). The spatial information could improve the spatial patterns of soil moisture in 10 

models, which could propagate into improved simulations of runoff and streamflow. 

6 Summary and conclusions 

Passive microwave soil moisture retrievals based on different frequencies but derived by a common retrieval algorithm were 

assimilated into the AWRA-L model. Model results were evaluated against field-measured soil moisture at 24 sites spread 

over the Australian continent to compare the ability. This evaluation compares the ability of the datasets to improve model 15 

soil moisture through data assimilation and assesses whether there is added value in joint assimilation. The study sites cover 

a range of climate and land cover types, but the evaluation is complicated by the differences in the representative area of the 

model and field-measured data.  

Data assimilation generally has a positive impact on the performance of model top-layer and root-zone soil moisture, 

increasing r with field-measured data by up to 0.3. Assimilation improves model performance more in the wet season, when 20 

the model skill is relatively low, than in the dry season, when the model skill is relatively high. When anomaly time series 

are evaluated instead of the actual values, however, assimilation is more informative in the dry season. The impact of data 

assimilation is also higher when the model is forced with global precipitation data when it is forced with higher-quality, 

higher-resolution precipitation data. 

Overall, assimilating L- and X-band retrievals had a more positive impact on model performance than assimilating C-band 25 

retrievals. L-band retrievals are slightly more informative than X-band retrievals when evaluating top-layer soil moisture, but 

these differences are not statistically significant and the advantage disappears when root-zone soil moisture is considered. 

The large overall consistency between assimilating L- or X-band retrievals, and even C-band retrievals in the root zone, 

implies that assimilation studies can temporarily or permanently switch between these retrievals with little to no effect on 

model performance. This is particularly advantageous for studies and applications which assimilate soil moisture over long 30 

periods of time and are thus obliged to use retrievals from different sensors and platforms. 
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When two passive microwave retrievals are assimilated simultaneously, model performance is similar to or better than 

assimilating either of the bands individually, especially when combining an AMSR-2 retrieval (C- or X-band) with SMOS 

retrievals (L-band). This means that joint assimilation can be of added value when different soil moisture retrievals are more 

informative in different locations. It is likely that including spatial aspects would increase the added value of joint 

assimilation due to the trade-off in passive microwave soil moisture retrievals between footprint size on the one hand and 5 

observation depth and sensitivity to vegetation and the atmosphere on the other. Additional studies focusing on spatial 

patterns of soil moisture are needed to quantify the complementary spatial information in passive microwave retrievals, 

whether at their native resolution or masking use of sharpened soil moisture datasets. 
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