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Abstract. The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical 

infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from 

probable maximum precipitation (PMP) by coupling hydrologic and hydraulic models has gained interest in recent years. 

Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss 15 

estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We 

developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte-Carlo 

simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of 

variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within 

the river basin and depend on the timing and superimposition of the flood peaks from the basin’s sub-catchments. In addition 20 

to the flood hazard component, the other components of flood risk, exposure and vulnerability, contribute remarkably to the 

overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a 

river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different 

precipitation patterns and the spatial organisation of the settlements within the river basin need to be considered in the 

analyses of probable maximum flood losses. 25 

1 Introduction 

Floods are one of the most damaging natural hazards, accounting for a majority of all economic losses from natural events 

worldwide (UNISDR, 2015). Managing flood risks requires knowledge about hazardous processes and the impacts of floods. 

Typically the impacts of design floods with a certain (extreme) return period (IPCC, 2012), or the impacts of worst-case 

floods are required for sound risk analysis and for the planning of risk reduction measures. In particular, for portfolio risk 30 

analyses of insurance companies, the estimation of the probable maximum loss is important for fulfilling financial 

regulations and stability criteria. Furthermore, critical infrastructure, such as power stations, has to be protected against 
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extreme floods. Since floods are expected to increase due to climatic changes (Asadieh and Krakauer, 2015; Arnell and 

Gosling, 2016; Beniston et al., 2007; Bouwer, 2013; Fischer and Knutti, 2016; Millán, 2014; Pfahl et al., 2017; Rajczak et 

al., 2013; Scherrer et al. 2016), flood risk analyses and the management of extreme events will become even more relevant 

(Smolka, 2006; Yuan et al., 2017). Hence, insurance companies as well as governmental institutions are increasingly 

interested in quantifying flood risks, and especially in estimating the impacts of probable maximum floods leading to high 5 

cumulative losses (Burke et al., 2016; Morrill and Becker, 2017) or the destruction of critical infrastructure (Hasan and 

Foliente, 2015; Mechler et al., 2010; Michaelides, 2014). 

An important aspect in flood risk analysis is the modelling of worst-case floods and their impacts (Büchele et al., 2006). One 

main question herein is the search for the upper physical limits of discharge in a river basin, i.e. the maximum outflow from 

a catchment that is possible with the given catchment characteristics and the maximum rainfall in the climate region (Felder 10 

and Weingartner, 2017). Here, the hydrologic modelling to derive probable maximum floods (PMF) from probable 

maximum precipitation (PMP) is an important first step as a basis for inundation modelling (Felder et al., 2017). The PMP is 

defined as “the theoretical maximum precipitation for a given duration under modern meteorological conditions” (World 

Meteorological Organization, 2009). Instead, the probable maximum flood (PMF) is defined as “the theoretical maximum 

flood that poses extremely serious threats to the flood control of a given project in a design watershed” (World 15 

Meteorological Organization, 2009). The PMF is estimated on the basis of the PMP and is commonly used in practice for the 

planning of hydropower dams. However, there is still a controversial discussion on the underlying concept of PMP, 

particularly on the assumption that the upper tail of flood distributions is bounded (Micovic et al., 2015). Comprehensive 

summaries of this discussion are provided by (Salas et al., 2015) and by (Rouhani and Leconte, 2016). Nevertheless, 

PMP/PMF estimation methods are continuously evolved and improved. Beauchamp et al. (2013), Lagos-Zuniga and Vargas 20 

M., (2014), and Felder and Weingartner (2016) discuss the role of the spatio-temporal distribution of the PMP on the PMF, 

while Rousseau et al. (2014) and Stratz and Hossain (2014) discuss climate change and stationarity issues. Hence, Faulkner 

and Benn (2016), Micovic et al. (2015), Rouhani and Leconte (2016), and Salas et al. (2014) propose to incorporate 

uncertainty bands into the PMP estimation.  

Nevertheless, the detailed triggering mechanism and the temporal evolution of large flood events, specifically of worst-case 25 

scenarios, are not yet fully understood. An important question concerns how the peak discharge and the volume of a flood 

depend on the intensity and track of the triggering precipitation events, i.e. the spatio-temporal pattern of precipitation 

(Adams et al., 2012; Bruni et al., 2015; Cristiano et al., 2017; Emmanuel et al., 2015, Emmanuel et al., 2016; Ochoa-

Rodriguez et al., 2015; Paschalis et al., 2014; Rafieeinasab et al., 2015; Zhang and Han, 2017). In addition to the storm track 

dynamics, the peak flow depends on the watershed characteristics (Singh, 1997). In mountainous catchments with a high 30 

topographical complexity, the storm track and the precipitation pattern are influenced by the mountain ranges. Furthermore, 

the river network is influenced by geological and tectonic structures and is thus more complex in mountainous terrain than in 

low-lying areas. Thus, in upland areas a high variability in the spatio-temporal pattern of a probable maximum precipitation 

event and the resulting river flows has to be assumed.  The definition of the spatio-temporal characteristics of PMP scenarios 



3 

 

is a crucial step in the analysis of the impacts of extreme flood events. Hence, different approaches in distributing PMP in 

space and time over a catchment have been developed recently (Beauchamp et al., 2013; Dodov and Foufoula-Georgiou, 

2005; Foufoula-Georgiou, 1989; Franchini et al., 1996, Felder and Weingartner, 2016). Regarding mountainous meso-scale 

catchments with an area of a few thousand km2, insights into precipitation patterns leading to the most extreme floods are 

rather rare. The precipitation pattern leads to a specific pattern of the outflows from the sub-catchments. Depending on the 5 

geometry of the main river network, this timing of the outflows from the sub-catchments influences peak discharge in the 

individual river reaches. Hence, the relative timing of peak discharge arrivals in river confluences as a consequence of the 

spatio-temporal distribution of the rainfall pattern has to be addressed (Nicótina et al., 2008; Nikolopoulos et al., 2014; 

Pattison et al., 2014; Emmanuel et al., 2016; Zoccatelli et al., 2011). Thus, a sound analysis of extreme floods in a complex 

river basin requires an assessment of the variability of chronological superimpositions of flood waves in tributaries and the 10 

effect of this on the probability of inundation. Neal et al. (2013) highlight the importance of spatial dependence between 

tributaries in terms of inundation probability and magnitude. Consequently, the amount of flood losses are also expected to 

vary with the timing of peak flows in the tributaries. Ochoa-Rodriguez et al. (2015) also stated that the temporal variation of 

rainfall inputs affects hydrodynamic modelling results remarkably. Emmanuel et al. (2015) showed that the spatio-temporal 

organization of rainfall plays an important role in the discharge at the outlet of the catchment and stated that a simulation 15 

approach is needed to study the effects of rainfall variability in complex river basins. The effects vary with the catchment 

size and its characteristics. Nevertheless, they state that there is a knowledge gap in this field. Probably the study that is most 

clearly focused on the role of the tributary relative timing and sequencing for extreme floods is presented by Pattison et al. 

(2014). They showed that tributary relative timing and synchronization is important in the determination of flood peak 

downstream. Thus, the distribution of extreme rainfall in space and time must play a critical role in determining the probable 20 

maximum flood (PMF) and the peak discharge at the catchment outlet.  

While the influence of rainfall variability on catchment response is under investigation, the further influence on flood losses 

is rarely investigated. To our knowledge, so far only Sampson et al. (2014) analysed in-depth the effects of different 

precipitation scenarios on flood losses. However, the Sampson et al. study focused on an urban area and on a (relatively) 

small scale. Hitherto, no studies were conducted in mountainous river basins to our knowledge.  25 

In addition to the variability in precipitation patterns, other uncertainties have to be considered in flood loss estimation. 

Besides uncertainties in hydrological modelling that are not considered in this study, other factors lead to uncertainties in 

inundation modelling and in flood loss estimation. Uncertainties in inundation modelling and flood risk analysis are 

addressed by Apel et al. (2008), Di Baldassarre et al. (2010), Gai et al. (2017), Merz and Thieken (2009), and Neal et al. 

(2013). Savage et al. (2015) and Fewtrell et al. (2008) describe the effects of spatial scale on inundation modelling. 30 

Altarejos-García et al. (2012), Chatterjee et al. (2008), Horritt and Bates (2001), Horritt and Bates (2002), Kvočka et al. 

(2015), and Neal et al. (2012b) discuss the effects of the chosen inundation model, its parametrization, and the role of input 

data on flood modelling results. Other uncertainties in flood modelling outputs are related to uncertainties in levee heights 

(Sanyal, 2017), or in the digital elevation models (Saksena and Merwade, 2015). Beside the uncertainties in flood modelling, 
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observational uncertainties also need to be recognized with recent studies highlighting the importance of observational errors 

in rainfall and discharge data (McMillan et al., 2012; Coxon et al., 2015). 

Furthermore, uncertainties in the economic models used to estimate flood losses and flood damages are relevant (Moel et al., 

2015). Herein, the input data, the choice of the impact indicators, the scale and the vulnerability models are relevant sources 

of uncertainty (Ward et al., 2013; Apel et al., 2008; Ward et al., 2013; Merz and Thieken, 2009; Moel and Aerts, 2011). In 5 

particular, vulnerability functions are considered as one of the most relevant sources of uncertainty in flood loss estimation 

(Ward et al., 2013; Sampson et al., 2014). Thus, uncertainty analysis is a key aspect in flood risk assessment. Some of the 

limitations and uncertainties mentioned above are addressed by several recent studies. Especially in a framework of coupled 

models, uncertainty and sensitivity analyses are important to assess the propagation of cascading uncertainties to the final 

result (Ward et al., 2013; Rodríguez-Rincón et al., 2015). Uncertainty analysis focuses on quantifying the spread of 10 

uncertainty in the model input on the model outputs, i.e. the forward propagation of the uncertainties to the prediction 

variables. In contrast, sensitivity analysis focuses on apportioning output uncertainty to the different sources of uncertainty 

(input factors). A global sensitivity analysis investigates how the variation in the output of a numerical model can be 

attributed to variations of its input factors (Pianosi et al., 2016). However, uncertainty analyses and sensitivity analyses of 

coupled models or model chains are rarely investigated topics.  15 

In summary, we identify a research gap in our understanding of the effects of spatio-temporal precipitation patterns on the 

amount of flood losses in a river basin. The main goals of this study are to analyse the effects of variability in probable 

maximum precipitation patterns on flood losses, and to compare these effects with other uncertainties in flood loss modelling 

in a complex mountain catchment (i.e. choice of inundation models or vulnerability functions). One important question is 

whether the variability in precipitation patterns is more or less influential than other uncertainties in flood loss estimation. A 20 

second question is whether the maximum discharge at the catchment outlet is a reliable proxy indicator for identifying the 

scenario(s) for worst case flood loss. 

2 Methods 

To address the above questions using a numerical experiment we constructed an inundation modelling framework composed 

of several coupled modules. The model chain was developed for the Aare River basin in Switzerland (3000 km2) and 25 

consists of five main components: a precipitation module, a hydrology module, a hydrodynamic routing module, a 

hydrodynamic inundation module and a damage module. The model chain computes the flood losses (model output) on the 

basis of a specified rainfall event (model input). In the following, the setup of the model chain is described. The uncertainties 

related to the precipitation pattern were subsequently compared with selected other uncertainty factors in the model chain, 

i.e. uncertainties related to the inundation modelling approach and to the chosen vulnerability functions. Hence, we 30 

conducted a global sensitivity analysis of the model chain with the objective to rank the uncertainty in the rainfall pattern and 

the uncertainties in the model setup (choice of sub-models) according to their relative contribution to the output variability 
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after Pianosi et al. (2016). The uncertainties in the model setup are considered in the sensitivity analysis by varying the setup 

of the submodules for flood modelling and loss modelling. 

2.1 Probable maximum precipitation and probable maximum discharge 

The probable maximum precipitation PMP for the whole catchment was estimated using the guidelines of World 

Meteorological Organization (2009). The method for distributing the PMP in space and time is based on a Monte Carlo 5 

approach proposed by Felder and Weingartner (2016). This approach aims at identifying a PMP pattern leading to the PMF 

by testing a high number of randomly generated spatio-temporal patterns under consideration of physical plausibility criteria. 

To consider the spatio-temporal patterns of precipitation in the river basin, the same amount of areal precipitation in the PMP 

scenario (300 mm for a 72 h event over 3000 km2) was distributed in different spatio-temporal patterns across the entire river 

basin in a Monte-Carlo-simulation framework after Felder and Weingartner (2016). We focused on a precipitation event 10 

lasting three days, since this time span corresponds to the typical event duration within the river basin and leads to the 

highest floods. The PMP scenarios are assumed to occur during the summer season with a height of the freezing level above 

the maximal altitudes. This means that snowfall is not considered. In a first step, a random temporal distribution of the total 

precipitation for the chosen duration was generated. The variation of rainfall between one time step and the following was 

limited to 20% at maximum. This avoids implausible temporal distributions. In a second step, the temporal pattern of the 15 

rainfall was distributed spatially in three meteorological regions, and in the sub-catchments within each meteorological 

region. The sub-catchments and the meteorological regions were defined to consider the relatively independent behaviour of 

specific parts of the catchment, e.g. lowlands and mountainous regions, in terms of precipitation amount and intensity. The 

randomly created precipitation pattern was checked against the spatial dependencies to fulfil a spatial consistency within 

neighbouring catchments. Intensive precipitation must be concentrated in adjacent meteorological regions and affiliated sub-20 

catchments. The concentration of intense rainfall in meteorological regions and thus in adjacent sub-catchments implicitly 

allows taking into account the storm movement and the effects of the mountain crests. For further details see Felder and 

Weingartner (2016). From a set of 106 Monte-Carlo simulations with a simplified but computationally efficient hydrological 

model based on unit hydrographs, we selected 150 scenarios with the highest discharge at the basin outlet in Bern. The 

number of scenarios is chosen to allow analysing the variability of PMP patterns but at the same time allowing to be 25 

computationally feasible. These precipitation scenarios are then used as inputs for the detailed rainfall-runoff model, which 

is set up for each tributary and delivers the input hydrographs for the hydrodynamic model. For the rainfall-runoff modelling, 

we used the hydrological model PREVAH (Viviroli et al., 2009b), which is a deterministic, semi-distributed, HRU-based 

model, where the hydrological response units are directly routed to the catchment outlet. The model is set up for 15 sub-

catchments that are located within the Aare river basin upstream of Bern using an hourly time steps. The calibration and 30 

validation of the hydrological model is described in (Felder et al., 2017). The output of the hydrologic model of each sub-

catchment is used as an upper boundary condition for the hydrodynamic model, in this case the 1D hydrodynamic model 

BASEMENT-ETH (Vetsch et al., 2017) that accounts for the retention effects of lakes and floodplains. The model is based 
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on the continuity equation and solves the Saint-Venant equations for unsteady one-dimensional flow. Lakes and their outlet 

weirs are considered in the hydrodynamic model. Here, we considered only the discharge from the lakes with maximal open 

weirs. No lake or reservoir regulation is considered, since lake regulation can be assumed as not relevant in case of extreme 

floods. The hydrologic and the hydrodynamic models were calibrated and validated separately, and then again together in the 

coupled version. The hydrologic model was calibrated with all available gauged observation data at the outflow of 8 out of 5 

the 15 sub-catchments. The models for the ungauged sub-catchments were regionalized by applying the parameter 

regionalization method proposed by Viviroli et al. (2009a). The 1D hydrodynamic model was calibrated by empirically 

adjusting the friction coefficients in the river channels with particular regard to the water surface elevation in the main 

channel at peak discharge. However, the coupled hydrologic hydraulic model was validated against the observation at the 

catchment outlet. In the validation period 2011-2014, the coupled hydrologic-hydraulic model has a NSE value of 0.85 10 

(Nash-Sutcliffe-Efficiency; Nash and Sutcliffe, 1970), and a KGE value of 0.85 (Kling-Gupta-Efficiency; Gupta et al., 2009; 

Kling et al., 2012). 

2.2 Inundation modelling 

The coupled simulations of the 150 rainfall patterns provide the basis for the inundation modelling. The 1D hydrodynamic 

model routes the water flow from the sub-catchments towards the catchment outlet. We defined the coupling points between 15 

the hydrological and the hydraulic model with a bottom-up approach: First, we delimited the floodplains for which the flood 

loss estimation will be valid (system delimitation). Second, we defined the upper boundary conditions of these floodplains. 

Third, we delimited the upstream catchments for the hydrological model based on the coupling points. However, the location 

of the gauging stations was considered as well in the definition of the coupling points, for calibrating and validating the 

hydrologic model. The 1D hydrodynamic model computes the level of the lakes and the outflow from the lakes. However, 20 

we used a 2D inundation model as reference model for estimating the flow depths in the floodplains required for flood loss 

analysis. We nested the 2D inundation models into the 1D hydrodynamic model (see a schema of the approach in Fig. 1) to 

avoid the computationally demanding simulation of the lake retention with the 2D model. We simulated all scenarios with 

the 1D model and nested the 2D model into the outcomes of the 1D model at specific locations (boundary conditions). 

Hence, the 2D model is always started after the simulation with the 1D model in a cascading approach. The lake outflow 25 

hydrographs and lake level hydrographs from the 1D hydrodynamic model and the hydrographs computed by the 

hydrological model that are directly flowing into the floodplains considered by the 2D models were used as upper or lower 

boundary conditions for the 2D flood inundation modelling. Minor tributaries are neglected as upper boundary condition. 

However, the outflows from their catchments are taken into account by aggregating all minor tributaries to sub-catchment 

level. The spatial setup of the model experiment, as well as the interfaces between the hydrological model and the 30 

floodplains modelled in 2D, are shown in Fig. 2. In the 1D model, the outflow from the sub-catchments is fed directly in the 

main river without considering flooding in the alluvial fans of the tributaries. In contrast, the outflows from the sub-
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catchments are fed into the 2D model at the coupling points as shown in Fig. 2. Thus, the 2D model considers flooding of the 

alluvial fans of the tributaries. 

We used the LISFLOOD-FP model for the 2D inundation simulation and as a basis for flood loss modelling. The model and 

it’s validation is described by Bates and Roo (2000), Bates et al. (2010), Neal et al. (2009), Neal et al. (2011), and Neal et al. 

(2012a). The model was set up with a subgrid representation of the channel and a spatial resolution on the floodplain of 50 5 

m. The digital terrain model (DTM) was upscaled from a Lidar DTM with a high spatial resolution (0.5 m). The basis of this 

terrain data is a digital terrain model (DTM) provided by the Canton of Bern. This terrain model was created from Lidar-

measurements collected in 2014 and 2015 with a resolution of about 4 points per m2. The Lidar data has been processed by 

the data provider to create a raster DTM with a cell size of 0.5 m. The buildings and the most important hydraulic structures 

in the main rivers (main bridges) were removed by this process. We corrected this raw raster model by a) manually 10 

eliminating the remaining hydraulic obstacles in the river reaches, b) correcting the height of the riverbanks in the Aare and 

Guerbe river reaches on the basis of dGPS measurements along the riverbanks, and c) interpolating the altitudes of the raster 

cells of the river bed on the basis of surveyed bathymetric cross sections provided by the Federal Office for the Environment 

(BAFU). The result is a DTM with a spatial resolution of 0.5 m and the above mentioned corrections. This hydraulically 

correct DTM provides the basis for the aggregation at coarser spatial resolution for the flood inundation models. 15 

The subgrid channel module requires the heights of the river bed and of the lateral dams, the river width, and the shape of the 

river bed. This data was computed at high resolution and aggregated onto the target resolution of the inundation model by 

conserving the cross-sectional area of the river channel from the high-resolution terrain model.  

The 2D hydrodynamic model was calibrated in terms of reproducing the stage-discharge relationships at the gauging stations 

and the known channel capacity along the river reaches. The model was validated on the basis of documented flooding. The 20 

fit of the inundation model (after Bates and Roo, 2000) computed on the basis of observed discharges of the flood event in 

August 2005 and a comparison between modelled and observed inundation extents ranges between 0.5 and 0.9, depending 

on the floodplain. The lower values can be explained by dam breaks that occurred in reality but are not considered in the 

model, or by recent changes in the river geometry since the last flood event (implementation of new flood defence 

measures).  25 

In addition to the 2D inundation model, we elaborated inundation maps from the 1D hydrodynamic simulations. We 

constructed water surface elevation (wse) maps by interpolating the wse values at the cross sections of the 1D model. The 

projection of these wse maps onto the digital terrain model (spatial resolution of 10 m) and the comparison with the DTM 

subsequently leads to a map of flow depths.  

 30 
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Figure 1: Schematic of the nesting approach. The 2D flood inundation models and the loss models are nested in a 1D routing 

model. 

 

2.3 Flood loss modelling 5 

In this study, we focused on structural damage to buildings (residential, public and industrial buildings) without considering 

losses to mobile assets, building contents and infrastructure. The flood loss module of this model chain consists of a dataset 

of buildings similar to that described in Röthlisberger et al., (2017) and Fuchs et al. (2015). Each building is represented by a 

polygon and is classified by type, functionality, construction period, volume, reconstruction costs, and number of residents. 

Furthermore, we delineated the height of the ground floor above sea level of each building on the basis of a Lidar terrain 10 

model with sub-meter resolution. 

The resulting flow depths (fdm) and water surface elevations (wse) from the hydrodynamic module were attributed to each 

building (exposure analysis) and used for deriving the object-specific degree of loss from the vulnerability functions and 

consequently for the estimation of object-specific losses. The flow depth was attributed to the building following two 

different approaches. The first approach is a direct attribution of the flow depth from the fdm maps to each building. The 15 

second approach is an indirect attribution where the flow depth at each building results from the difference between the wse 

raster of the flood simulation and the minimum ground floor level of the building. The idea behind this approach is to take 

into account local small-scale elevations of the houses. If a building footprint covers more than one cell, we used the 
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maximum flow depth of all relevant cells of the inundation map (Bermúdez and Zischg, 2018).The flow depth was used to 

calculate the degree of loss on the basis of a vulnerability function. The degree of loss resulting from the flow depth and the 

vulnerability function was subsequently multiplied with the reconstruction value of the building. This results in the expected 

loss to the building structure. The object-specific losses were subsequently summed to give the cumulative losses of a 

simulated precipitation scenario. 5 

Five vulnerability functions were considered in the damage calculation procedure. We used the functions of Totschnig et al. 

(2011) (V1), Papathoma-Köhle et al. (2015) (V2), Hydrotec (2001) (V3) as cited in Merz and Thieken (2009), Jonkman et al. 

(2008) (V4), and Dutta et al. (2003) (V5). We used different vulnerability functions because there is no regionally adopted 

and validated vulnerability function available for Switzerland, and because we aimed explicitly at exploring the range of 

uncertainties related to the choice of the function and its relevance for the maximum uncertainties in the outcomes. A direct 10 

validation of the vulnerability functions was not possible because of a lack of loss data at the level of single objects due to 

privacy restrictions. The selected vulnerability functions consider flow depths as the only input variable for the estimation of 

the degree of loss. We did not consider flow velocity because the inundation models used in this study do not provide flow 

velocities and we wanted to use comparable loss models. 

2.4 Benchmarking against other selected uncertainty factors 15 

The effects of variability in probable maximum precipitation patterns on flood losses are compared with selected other 

uncertainty factors. The comparison was made by following the parallel models approach first presented by Visser et al. 

(2000) for the example of climate simulations. Merz and Thieken (2009) adopted this approach for the identification of 

principal uncertainty sources in flood risk calculations. In summary, this approach computes a number of model runs with 

varying input parameters. In a first step, the minimum and maximum values of all simulation outcomes (flood losses in 20 

financial units in this study) were extracted. The difference between both is defined as the maximum uncertainty range 

(MUR). In a second step, the uncertainty range (URsub) of a specific subset of model runs was computed. The subsets from 

all model runs can be defined by specific criteria, e.g. a subset of all model runs with the same flood model or a subset of 

model runs using the same vulnerability function. The uncertainty range of this subset is given by the difference between the 

minimum and maximum values of all simulation outcomes of this specific subset. Third, the reduced uncertainty range 25 

(RUR) was computed according to eq. (1). This indicator describes the relative role of an uncertainty source to the maximum 

uncertainty range of all model runs. 

𝑅𝑈𝑅 =
(𝑀𝑈𝑅−𝑈𝑅𝑠𝑢𝑏)

𝑀𝑈𝑅
∗ 100%         (1) 

The RUR is related to the maximum uncertainty range of all models but is not relative to the RUR of other subsets. 

Furthermore, eq. (1) does not isolate all the contributions of the different components to the maximum uncertainty range but 30 

they remain intertwined, except the selected uncertainty factor. However, the RUR values of the subsets are comparable. A 

high value of RUR means that the subset contributes significantly to the maximum uncertainty range. Alternatively, a small 
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value of RUR (RUR << 100 %) indicates that the subset has a reduced effect on the overall uncertainty (Visser et al., 2000). 

In the model experiment for this study, we analysed the relative contribution of a) the spatio-temporal rainfall pattern, b) the 

choice of the inundation model and the exposure analysis approach, and c) the choice of the vulnerability function. Hence, 

we followed a hierarchical approach for the selection of the subsets. For assessing the contribution of the spatio-temporal 

rainfall pattern to the overall uncertainty, we analysed 150 rainfall scenarios (hierarchical level 1 - precipitation). For each of 5 

these rainfall scenarios, the losses were computed with two different flood inundation models (LISFLOOD-FP and 

BASEMENT-1D) in combination with two different exposure modelling approaches (flow depth fdm and water surface 

elevation wse) (hierarchical level 2 – flood model) and five different vulnerability functions identified previously 

(hierarchical level 3 – vulnerability). For each PMP scenario, 20 loss estimations were computed (four flood models times 

five vulnerability functions). Overall, the whole ensemble amounts to 3000 model runs (i.e. flood loss estimations). The 10 

RUR values were computed on the basis of subsets selected by the hierarchical levels representing the uncertainty factors 

considered in this analysis. 

3 Study area 

We set up the flood inundation models for the main valley of the Aare river basin upstream of Bern, Switzerland. The 

catchment elevation ranges from 500 to 4200 m a.s.l., with a mean elevation of 1600 m a.s.l. The southern part of the river 15 

basin consists of relatively high alpine mountains. Several alpine peaks within this area exceed 4000 m a.s.l., and parts of it 

are glaciated (8% of the total catchment area). The main valley of the Aare River basin consists of a relatively flat floodplain 

with two lakes, where widespread flooding can occur. The lakes are natural but artificially managed, and are oriented along 

an approximately east-west axis in the lowland part of the catchment. The study area covers 3000 km2, and the following 

main river reaches are considered in the model chain (see Fig. 2): 20 

(1) Hasliaare river, from Meiringen to Lake Brienz (floodplain: 15 km2, contributing area: 451 km2) 

(2) Lake Brienz static inundation model (lake area: 31 km2, contributing area: 1138 km2) 

(3) Interlaken, area between Lake Brienz and Lake Thun and the fan of the Lütschine River (floodplain: 28 km2) 

(4) Lake Thun static inundation model  (lake area: 50 km2, contributing area: 2450 km2) 

(5) Thun (floodplain: 8 km2) 25 

(6) Aare River reach between Thun and Bern (floodplain: 42 km2) 

(7) Gürbe River reach between Burgistein and Belp (floodplain: 15 km2, contributing area: 116 km2) 
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Figure 2: The Aare river catchment upstream of Bern, Switzerland. The sub-catchments of the hydrological model are divided by 

black lines. The black triangles indicate the coupling points between the hydrologic and the 2D inundation model. The 1D routing 

model covers all floodplains (red lines) and the lakes (blue). The floodplains that are covered by the individual 2D inundation 

models nested into the 1D routing model are marked and labelled in red. 5 

4 Results 

The main results of the coupled model simulations are the discharges at the outlet of each of the sub-catchments, the 

discharge at the outlet of the Aare river basin at Bern, and the flood losses for 150 PMP simulations. Figure 3 shows the 

hydrographs of the 150 PMP scenarios at the outlet of the river basin in Bern. The outflow from the river basin varies 

remarkably in peak discharge and time to peak. The peak discharges for each ensemble member were in the range 906 to 10 

1296 m3/s. Thus, the highest peak discharge is 43% higher than the lowest in the selected set of scenarios. Moreover, figure 3 

shows the discharges of the tributaries downstream of Lake Thun during peak flow of the Aare River at Bern. It is shown 

that the highest peak discharge at Bern depends on both, a high flow in the main river and high flows in the tributaries. 

Upstream of Thun, the synchronization of flood peaks is represented by the lake levels. 

The flood inundation modelling resulted in a set of flood maps representing the 150 PMP scenarios. The overlay of these 15 

flood maps leads to an inundation extent map that estimates a spatial probability of inundation, conditional to the rainfall 

sum of a PMP event in the river basin. Each inundation map is treated as equally weighted in the probabilistic map. This map 

represents the probability that a model grid cell is flooded in one PMP scenarios. An extract of this map is shown in figure 4. 

The map shows that not all of the PMP scenarios lead to flooding of the same areas. Thus, despite the narrow framing of 
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floodplains in mountainous areas by topography, a high variability in flood extent can be observed. The discharge in the 

Lütschine River at Interlaken and the lake levels of both lakes have the strongest influence on the inundation probability 

map. In particular, the level of Lake Thun and the flooding by the Lütschine River determine a remarkable portion of the 

flooded area. 

 5 

 

Figure 3: Hydrographs at the outlet of the Aare River basin in Bern resulting from the coupled hydrologic-hydrodynamic 

modelling of the 150 PMP scenarios. The left plot shows the superimposition of the tributaries downstream of Lake Thun during 

peak flow of the Aare River at Bern.  

 10 
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Figure 4: Detailed example of the conditional probability flood map for the floodplains of Thun and Interlaken. Predicted flood 

inundation extents can change significantly depending on the specific spatial properties of a few of the PMP scenarios and hence 

have lower mapped inundation probabilities. 

 5 

Depending on the chosen approach for inundation modelling and exposure analysis, the number of affected buildings varies 

remarkably. At minimum 2423 buildings and at maximum 5371 buildings are affected across the whole domain (not shown). 

The high variability between the PMP patterns is also shown by the number of exposed residents (figure 5). The exposure 

shows a bimodal distribution in the case of the 2D model and an unimodal distribution in the case of the 1D model. This is 

related to the exposure of houses at the alluvial fan of the Lütschine River. This floodplain is flooded only in some of the 10 

scenarios but when flooded, the number of affected buildings increases remarkably. This is not the case in the 1D model 

because this model does only consider flooding by the main river Aare and neglects the tributaries.  

The flood simulation mapped outputs (flow depth maps and water surface elevation maps) were used separately to calculate 

the flood losses at single building level. Subsequently, the flood losses at building scale were aggregated at a catchment 

level. Figure 6 shows the distribution of the aggregated flood losses. It is shown that – depending on the model ensemble 15 

member – the losses vary between 0.06 and 2.87 billion Swiss Francs (CHF). Thus, the losses are remarkably influenced by 

all the experimental uncertainty factors previously discussed in the modelling chain. However, even if the effect of the 

vulnerability function and the choice of the exposure analysis approach are not considered, the losses still vary markedly 

depending on the PMP scenario. Maximum losses are still approximately 3-5 times the minimum losses for some of the 

vulnerability functions. The vulnerability function V4  (Jonkman et al., 2008) results in the lowest losses. This function was 20 

calibrated for lowland floodplains and thus has generally lower degrees of loss. However, this vulnerability function might 

be more representative for the areas affected by lake flooding than the others. In the 2D fdm model runs, the exposure is 
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higher compared to the 2D wse model runs. In contrast, the losses are higher in the 2D wse run. This relates to the mean flow 

depths at the buildings. The mean flow depth over all affected buildings is 0.54 m in the 2D fdm model runs and 0.87 m in 

the 2D wse model runs. This results in higher losses although the number of exposed buildings is lower. The flow depths in 

the 1D fdm and 1D wse model runs are 1.08 m and 1.36 m, respectively. This explains the generally higher losses in the 1D 

model runs compared to the 2D model runs. 5 

 

 

 

Figure 5: Exposed buildings (left) and residents (right) aggregated at river basin level. Flood losses aggregated at river basin level. 

The variation between the PMP scenarios is shown in the y-axis, whereas the x-axis shows the variability inherent to the choice of 10 
the flood model (2D: LISFLOOD-FP, 1D: BASEMENT-1D) in combination with the approach for attributing flow depths to the 

buildings (fdm: flow depths are calculated on the basis of flow depths maps, wse: flow depths are calculated on the basis of water 

surface elevation maps and the object-specific ground floor level). 

The benchmark against other uncertainties such as the flood modelling in combination with the exposure analysis approach 

and the vulnerability functions shows that the uncertainties considered in the model experiment contribute significantly to 15 

the sensitivity of the model chain to the assumptions made. Each member of the ensemble runs represents a rainfall pattern 

and a resulting flood loss computed on a basis of a combination of a specific flood model with a specific loss model. The 

difference between the ensemble member with the absolute minimum and the member with the absolute maximum of flood 

losses represents the maximum uncertainty range MUR. The total number of runs was divided into subsets that represents in 

each case the uncertainty range of a specific combination of the variables. The difference between the member with the 20 

absolute minimum of this subset and the member with the absolute maximum of this subset represents the reduced 

uncertainty range URsub. Consequently, the reduced uncertainty range RUR is computed after eq. (1). The reduced 

uncertainty range RUR of all subsets ranges between 14 and 92 % of the maximum uncertainty range MUR. The reduced 

uncertainty range of the subset of ensemble members considering only the variability in rainfall scenarios lies between 42 
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and 92% with a median of 72%. Hence, the highest RUR of all subsets is dominated by the subsets regarding the variability 

in probable maximum precipitation pattern. Figure 7 shows the comparison between the RUR values of the subsets in which 

the variability of one of the three considered uncertainty factors was analysed. This analysis makes evident that the rainfall 

pattern contributes most to the maximum uncertainty range. 

 5 

Figure 6: Flood losses aggregated at river basin level. The variation between the PMP scenarios is shown in the y-axis, whereas the 

x-axis shows the variability inherent to the vulnerability functions. The diagram at the upper left shows flood losses that are 

calculated based on the flow depths as modelled by LISFLOOD-FP, the diagram at the upper right shows the flood losses that are 

calculated based on the water surface elevation and the object-specific ground floor level. The flood losses estimated by the 1D 

model are shown in the second row. 10 
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Figure 7: Reduced uncertainty ranges RUR of the subsets of model runs representing the three main uncertainty sources. 

 

In figure 8 (left column), we plotted the results of all model outcomes with focus on the 2D inundation model in terms of 

exposed number of buildings and persons, and in terms of flood losses against the peak discharge of the respective 5 

precipitation pattern at the catchment outlet. The hypothesis that the flood losses increase with peak discharge at the outlet of 

the river basin can be verified in the sense that there is a significant correlation. This relationship is weaker for exposed 

buildings and residents than for the flood losses. However, the rainfall scenario leading to the highest peak discharge at the 

basin outlet does not correspond with the highest flood losses. Instead, the flood losses are more correlated with high lake 

levels in Lake Thun (see figure 8, right column). The correlation between flood losses and the level of Lake Thun 10 

(Spearman’s rank correlation coefficient ranges from 0.54 to 0.94, depending on the flood model and the vulnerability 

function) is stronger than between losses and the peak discharge at the catchment outlet (Spearman’s rank correlation 

coefficient ranging from 0.43 and 0.71). Thus, in the Aare River basin, the level of Lake Thun is a more relevant proxy 

indicator for the amount of flood losses in the whole river basin than the peak discharge at the outlet of the river basin (i.e. 

the so-called PMF of the river basin). This can be explained by the local situation of the city of Thun where the density of 15 

the building stock is very high along the shoreline of Lake Thun and along the Aare River. The major area of the Aare river 

basin contributes to the lakes. Only 20% of the catchment area is located downstream of Lake Thun. Although the area of 

Lake Thun covers only about 2% of its contributing area, this means that the river basin exhibit relevant retentions areas that 

attenuates the outflow from the river basin and thus the PMF. Vice versa, this retention effect increases flood losses because 

a relevant number of buildings is located in neighbourhood of the lake shorelines. Likewise, not all of the PMP scenarios 20 

lead to flooding by the Lütschine river in Interlaken. As shown in figure 4, the floodplain of this river is flooded only in a 
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minority of the ensemble runs. Whether this floodplain is flooded or not accounts for up to 1500 exposed buildings and 

therefore up to one third of the total number of maximally exposed buildings in the whole river basin. Thus, the highest loss 

of all simulated scenarios is related to a combination of a high lake level in Thun with a high river discharge of the Lütschine 

river. This documents that the maximum loss depends on both, the spatio-temporal pattern of the rainfall and the internal 

organization of the river basin in terms of the spatial distribution of the values at risk (i.e. exposure) within the floodplains.  5 

 

Figure 8: This figure shows the aggregated flood losses for the 150 PMP scenarios. The red dots show the exposed entities and 

losses that are computed based on the flow depths, the blue dots show the exposed entities and losses that are computed based on 

water surface elevation. The figures in the last row show the losses resulting from all vulnerability functions. 

5 Discussion and conclusions 10 

In this study, we set up a coupled component model for estimating flood losses of extreme flood events in a complex 

mountainous river basin. On the basis of a Monte Carlo approach, we computed an ensemble of extreme flood events for 

different precipitation patterns of a three-day probable maximum precipitation scenario. With this model experiment, we 

analysed the effects of the spatial distribution of the rainfall within a mountainous river basin on flood losses. Furthermore, 

we benchmarked these effects with other uncertainties in flood loss modelling.  15 

The model experiment showed that the sensitivity of flood losses to the variability of spatial distribution of rainfall within a 

river basin with a complex topography is larger than for the other considered uncertainty factors. The PMP pattern 
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determines the magnitude and timing of the flood peaks coming from the sub-catchments and flowing through the 

floodplains along the main valleys and the lakes. Thus, the rainfall pattern could lead to a superimposition of flood waves as 

described by the model experiments of Neal et al. (2013) and Pattison et al. (2014). In addition to the superimposition of 

flood waves, it is shown that lake levels, as a proxy for the water volumes coming from different sub-catchments, are also 

relevant for the determination of flood losses. This complements the findings of Sampson et al. (2014) on the impacts of 5 

precipitation variability on insurance loss estimates. With the present study, we extended the Sampson et al. study with a 

focus on urban environments with a focus on complex mountainous river basins.  

Furthermore, the model experiment showed that the peak flow coming from a single sub-catchment can be responsible for a 

relevant share of the total sum of exposed buildings and flood losses. Thus, the physical variability of the river basin is 

coupled with the topological situation of the main settlements within the floodplains, i.e. the spatial pattern of exposure. The 10 

inundation probability maps and the variability in flood losses show that two floodplains are mainly responsible for a high 

amount of flood losses. This documents that flood losses depend on both, the spatio-temporal pattern of the rainfall and the 

internal organization of the river basin in terms of the spatial distribution or aggregation of the values at risk within the 

floodplains. Moreover, the spatial setup of the values at risk within the floodplains leads to its specific sensitivity to flood 

magnitude and lake level. However, these specific sensitivities of the single floodplains together with the variability in 15 

rainfall pattern lead to a specific sensitivity of the whole river basin to a certain pattern of rainfall. This behaviour has to be 

analysed and generalized in further studies and considered in the estimation of probable maximum flood losses.  

Despite the topographical confinement of the floodplains by the mountain hillslopes, the flooded areas vary markedly with 

different rainfall patterns. Thus, the probabilistic map shows a high spatial variability, caused by a few of the PMP scenarios 

significantly increasing inundation areas. Hence, also the flow depths at single buildings, and consequently the total flood 20 

losses, vary remarkably with rainfall scenario. This case study in a mountainous environment and in an environment with 

remarkable retention capacities due to the presence of lakes may even lead to an attenuated illustration of this effect. These 

retention effects attenuate the PMF on one side but control the flood losses on the other side if settlements are located 

alongside the lakes. Though, in mountain areas without lakes, the effects of spatio-temporal variability in precipitation 

patterns on flood losses may be even more accentuated. However, a modelling approach is needed to analyse these effects as 25 

stated by Emmanuel et al. (2015). 

Nevertheless, the other uncertainty factors considered in this study, i.e. the role of the flood model, the exposure assessment 

approach and the vulnerability functions, are also contributing markedly to the maximum uncertainty range. This is in line 

with the findings of other studies (Jongman et al., 2012; Moel and Aerts, 2011). Consequently, these uncertainties also have 

to be taken into account in a portfolio analysis or in the analysis of probable maximum flood losses.  30 

In summary, we conclude that the analysis of a broader set of extreme floods with different precipitation patterns leads to 

more a comprehensive view of flood losses in a river basin compared to standard deterministic PMP/PMF methods. The 

spatio-temporal characteristics of rainfall patterns must be considered in complex mountainous river basins. Moreover, the 

analysis of the probable maximum flood losses in a river basin should consider the systemic vulnerability of the floodplains 
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or the behaviour of floodplains as human-water systems as stated by Di Baldassarre et al. (2013, 2014). This involves the 

identification of key locations of exposure that contribute most to the overall flood losses. Probabilistic inundation maps 

provide a first overview of key locations of flooded areas with a high sensitivity against the rainfall pattern. Furthermore, it 

is shown that the presented model experiment provides a valuable instrument for the consideration of all components in the 

analysis of the variability of rainfall patterns to flood losses in a river basin, from hazard to exposure and vulnerability.  5 

However, the presented approach in simulating rainfall patterns has its limitations. Although it has been shown that it can 

reproduce former flood events (Felder and Weingartner, 2016) and results in more robust PMF estimations than a uniform  

rainfall distribution (Felder and Weingartner, 2017), it is not comparable to a regional climate model or weather forecast 

model. In future research, an inverse modelling approach may be followed by searching the worst case precipitation pattern 

leading to the worst case flood losses on the basis of the system characteristics of the river basin (sensitivities of floodplains 10 

and spatial setup of the river system). The calculation of the maximum expectable flood losses in a river basin should not be 

based exclusively on the PMF. In contrast to the initial hypothesis, we observed that other catchment characteristics in 

addition to the PMF could remarkably influence the flood losses. Consequently, in complex river basins it is recommended 

to analyse the sensitivity of the most relevant floodplains before analysing the probable maximum flood losses. 

 15 
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