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Response to Editor and Reviewers 

[1] We thank the editor and two reviewers for their comments and suggestions. We have made several revisions 

accordingly, which we explain below. The line numbers refer to the annotated m/s version with changes marked. 

Response to Editor 

I have read the very detailed comments from both reviewers, as well as the detailed responses you have provided to 

each of these comments. It strikes me that the points raised primarily require clarification, as they stem from 

confusion on the part of the reviewer. 

You have  several clear comments on how you propose to update the manuscript to help clarify the points made

raised. Mostly your suggestions are clear. However, in several cases you leave it as reply to the comment. I would 

encourage you to consider adding one or two words/phrases to help clarify the confusion. This is useful for those 

readers who may be equally confused but are not inclined to go through all the interactive comments and replies 

(which I would suspect to be the majority). 

[2] Agreed. We have made textual changes to pre-empt similar questions or issues wherever we saw an opportunity, 

as explained in our responses below. 

Response to Reviewer #1 

I think the comment on WR3A models is different should be addressed in the manuscript, as you are not clear if you 

will do this. It is I think important to point out that the structure of the model is important in being able to apply the 

approach presented, which precludes other perhaps simpler water balance type models. 

[3] Agreed, we have added such a sentence (see response [11]). 

On the flow diagram. This may indeed be useful, but as it primarily has the purpose to clarify, you may consider 

including it in the supplementary material. 

[4] We have made and included such a flow diagram. In revising we initially included it in the supplement, but it 

seemed a bit out of place there and so we moved it into the main text. We would gladly take advice, however. 

Response to Reviewer #2 

I agree that it is not necessarily beneficial to the readability of the manuscript if all the details on model formulations 

are included in the main manuscript. In fact this may even be detrimental. The suggestion to include these in the 

supplementary material is I think a good one, but I would also restrict that to not overburden these, as references are 

indeed given to more complete descriptions. I trust the authors can assess what additional information is useful here. 

The authors should of course clearly refer the reader to the supplementary material as appropriate in the main 

manuscript to ensure the link can be made where it is required. Perhaps that would also have helped this reviewer 

find the relevant detail.  

[5] In response to the reviewer comments we moved a description of the forcing and downscaling to the main text. 

With that gone, it appeared that the information that was previously in the Appendix could instead be provided in 

the main text without too much additional text, so we did that. We provided some more textual detail on the 

process descriptions. Including all energy balance equations would have to be added as a supplement, which did not 

seem to make much sense as the model equations are already documented online, as the editor points out. 

It may be worth considering including the figure providing comparison against FLUXNET values in the supplementary 

material, in support of the comments in the main text. However, I would include in the main text a comment that you 

do not consider these as true validation I presume due to the issue of representation. This is commented on but 

maybe useful to add that additional sentence to clarify. Also, what is mean by N=16-168. Is this a typo? 



[6] Agreed, we have taken the editor’s advice and included more detail in the supplement, and also added an explicit 

statement along the lines suggested. We agreed the N=16-168 was confusing and changed it. It was not a typo as 

such, N=16 was for the study of Yebra, and N=168 for our unpublished analysis, which is now in the supplement (in 

revising this number increased to N=169 due to an additional site) 

On the discussion on “before reaching ocean”, and the need for better maps of closed basins. I would add to this that 

the reaching of the ocean is often also influence by evaporation (and the increase of evaporation due to irrigation). 

So while the DEM may indicate the river reaches the ocean, water in the river in fact does not. You could consider 

that not reaching the ocean is due to either being a closed basin or due to anthropogenic influences. 

[7] Agreed, see responses [51]-[53] 

I would like to suggest the authors update the manuscript based on the comments and the suggestions they have 

made in response. In that update please clearly outline the changes. 

[8] Thank you. Below we outline the changes made. We also provide a copy of the m/s with the changes marked for 

the convenience of editor and reviewers. 

 

Response to Reviewer #1 

[9] We thank the reviewer for their comments and are glad that they enjoyed the m/s. We are also grateful for the 

editorial corrections and suggestions. Below we address the issues raised. 

 “The authors mention how all kind of modelling efforts will not produce independent and accurate estimates of 

irrigation water demand, but after the reading the objective I can only conclude that they will themselves do 

modelling as well. I think it would be good to refocus the introduction and state that models can have a valuable 

contribution but have their limitations and highlight how the authors would like to resolve these limitations.” 

[10] It is certainly true that our approach requires a model to assimilate the satellite observations into, and it is also 

true that additional assumptions are needed to translate water use estimates to irrigation water demand. We meant 

to emphasise that our method differs from existing methods in that it does not require mapping of the area irrigated 

or the extent of wetlands to estimate secondary evaporation. In revising, we added: 

“Such an approach still involves modelling and the assumptions inherent to it, but the greater use of 

observations should mitigate against errors arising from the modelling.” (l. 94-95) 

“I do not fully understand why this model is different from the other global water balance models out there. They 

authors should do a better job to highlight this, to emphasize why this model is better suited for this excursive than 

others” 

[11] The overall approach is different from existing models in that secondary evaporation is constrained by the 

satellite observations, rather than the result of simulation. If the reviewer refers to the W3RA model used in 

assimilation, then we believe a similar approach could be applied to other models, provided they have a coupled 

water and energy balance model and provided they are extended for data assimilation in the way described. We 

added: 

“The W3RA model used here it not the only suitable modelling framework for the approach described. A 

similar method could be applied with other local or global models. The main requirements are that the model 

has a coupled water and energy balance model that simulates LST, and that it is amenable to data 

assimilation.” (l. 168-171) 

“The quality of the forcing data is really low, how do the authors think this will impact the simulations and 

consequently the evaporation estimates?” 

[12] This question does not have a simple answer. The model takes several forcing data as input, the evaporation 

estimates are not equally sensitive to all of them, and the quality of forcing data also varies spatially and temporally 



(seasonally as well as at longer time scales due to advances in satellite sensors). Hence it is impossible to give a 

quantitative answer to the question, but with regards to evaporation (only), one observed issue is that of 

heterogeneous biases in air temperature in regions with strong relief. Fortunately, secondary losses occur mostly in 

areas with low relief (see original text).  To emphasise this more, we have added: 

“A systematic bias in the global estimates of governing variables (radiation, air temperature and humidity, 

wind speed) are likely to be less problematic than spatially variable bias in these low-relief areas.” (l. 596-

598) 

“Line 184-185 and Figure 1, I have the strong feeling that the model is biased in its estimates of E. Therefore, this 

would violate the basic assumption of a normal distribution with a mean of 0 around the observations. In addition, 

the authors cut-off the E’ updates, which is in my opinion another violation of the EnKF. I feel the others should make 

sure that the model is bias free before implementing a DA technique like the EnKF. Otherwise, they can show the 

global biases to convince the reader that this is only the case for Figure 1, but I have to strong suspicion that it is also 

a problem for other regions (as for most models). I think the authors should address this large limitation in their 

discussion or somewhere else in the manuscript.” 

[13] Does the reviewer mean the model is biased in the absence of secondary evaporation (i.e. in drylands)? We do 

not have evidence for that. We have evaluated the (“offline” or background) model against evaporation rates 

reported by the global Fluxnet network for non-irrigated environments and did not find any bias, which is not 

surprising given the model was partly trained on those same data. We added the details of the evaluation, previously 

described as “unpublished”, in a new supplement.  

[14] The reviewer suggests showing global biases, but there are no global ET observations (other than Fluxnet) to 

calculate those from. However, we do compare with estimates from other models and find that ours are well within 

that range (see discussion in original text).  

[15] We did not use EnKF but nudging based on energy balance model inversion.  

[16] The reviewer is correct that we did cut off the E’ updates. This was necessary to maintain internal physical 

consistency, but it is true that it may have introduced bias, particularly if the real E was consistently higher than the 

available energy, for example due to biases in meteorological forcing data. In revising the m/s, we have added: 

“Values of the updated λE′ were constrained to positive values below or equal to potential evaporation E0, 

and therefore any gross underestimation of E0 by the model due to errors in meteorological forcing data 

would have resulted in an underestimation of the true evaporation rate.” (l. 588-591) 

“The manuscript could significantly benefit from a flowchart describing the full updating, calibration, nudging and 

assimilation procedure. Which variable are subject to what and where and how? The manuscript is difficult to follow 

without.” 

[17] Thank you for the suggestion. Data assimilation procedures are often difficult and tedious to explain but we 

have added a flow diagram to attempt to illustrate it better, and added the following explanation: 

The methodology of our experiment includes two mostly separate components (Figure 1). The assimilation 

component integrates various MODIS products into the global hydrological model to estimate the dryland 

water balance and secondary evaporation. Subsequently, in an offline analysis the estimates of secondary 

evaporation were combined with mapping of irrigated crops to estimate a minimum irrigation requirement. 

Below follow details on the model, the data assimilation procedure, estimation of irrigation water use, and 

the different ways in which the results were evaluated. Details on the data used in the analysis can be found 

in the supplement to this article. 



 

Figure 1. Illustration showing the processing steps and data used in each step. Acronyms relate to input data that are 

described in the text.  

(l. 112-121) 

 

“Line 253-254 Why is the increase in the estimation evaporation not from missing model processes? Incorrect 

vegetation parameterization or something else. This assumption is vital for the manuscript and is not really 

supported by argument on the model’s quality to estimate evaporation in general. Has the model been validated 

against independent evaporation estimates?” 

[18] This was discussed in the original m/s (l. 558-567 in the annotated revised m/s): the assimilation of satellite 

vegetation observations goes some way to address errors in vegetation parameterization. However, the (necessary) 

assumption that the assimilation increment is due to irrigation has uncertainty associated with if (but only if) most of 

a grid cell is occupied by non-irrigated land. Hence also the recommendation that our approach should work better 

at higher resolution, which we hope to pursue.  

[19] Regards validation: see response [13]. 

“In addition, to the previous comment, the authors have not mention other forms of water use. I see no inclusion of 

domestic or industrial water use in the model nor in the estimates? Maybe these abstractions cause the errors in 

water basin closures.” 

[20] Domestic and industrial water use are not considered because these are typically non-consumptive uses (i.e., 

the water is returned to the environment after use). Possibly the main exception to this would be irrigation in urban 

landscapes, which the irrigation mapping does not capture well or at all. If those uses lead to surface cooling then 

the LST data assimilation will still have increased E estimates and so they are implicitly accounted for. In practice, 



consumptive urban or industrial water uses are unlikely to have a meaningful impact on the water balance of large 

basins. We added: 

“Domestic and industrial withdrawals are not considered here as a large fraction of these withdrawals is not 

evaporated but returned to the environment.” (l. 391-393) 

“Line 129-134 are the calibrated parameter spatially consistent or are they really tuned to the individual basins?” 

[21] Neither, they vary spatially as a function of climate aridity and land cover using predictive relationships derived 

from model calibration to evaporation, soil moisture and streamflow from a very large number of sites and small and 

unregulated catchments, respectively. This was described in the original m/s, but we added a bit more detail in l. 

155-162. 

“Line 134-135 Does the model have any lateral flow simulations of groundwater or surface water?” 

[22] No, only grid-based routing. 

“Line 150 a nudging factor of 0.99 is rather high, does this mean that the model is almost always wrong?” 

[23] Poor at predicting highly dynamic surface water extent, one could say, yes. (Like all global models, to the best of 

our knowledge.) We added: 

“(reflecting the low skill in the model to accurate predict surface water extent at 0.05° resolution)” (l. 184-

185) 

“Line 156-159 what is the spatial resolution of the Tair forcing, since it is very important for the LST simulations” 

[24] We agree that correct Tair is important, although the median bias correction step reduces most of the 

systematic difference, which we would argue is one of the novel aspects of our approach and one reason for its 

apparent success. These details were in the appendix, but we agree that they are probably important enough to be 

explained in the main text. Therefore we added: 

“Monthly precipitation and air temperature climatology data at 30′′ from the WorldClim dataset (Hijmans et 

al., 2005) were resampled to 0.05° and 0.25°; subsequently, the ratio and difference, respectively, between 

the data at the finer and coarser resolution were applied to the forcing data.” (l. 145-150) 

“Line 177 15degree, does this mean that the LST is spatially average over a 1500 by 1500km area???” 

[25] A 15x15° region is indeed about that size at lower latitudes. Note that this does not imply that LST is assumed 

homogenous across the area. This calculation is to remove the mean bias between daytime LST and time-of-overpass 

LST. We added “to remove systematic bias” (l. 213) 

“Line 508-510 the true error can also be larger. . . It is not said that it will be smaller due to the representativeness 

error.” 

[26] In theory, yes, although given the rather large sample such a statistical accident would be unlikely. Nonetheless 

we removed this statement, for the more important reason that the relatively large uncertainty in Fluxnet energy 

balance terms means that they do not provide a very reliable assessment of possible bias in our model estimates 

(see new supplement). 

“Line 581-583 As far as I understand most other models use sub-grid parameterization, which would allow for a 

partial coverage of the grid cell by irrigation areas. This statement is therefore potentially incorrect and should be 

removed to avoid misinforming the reader” 

[27] We respectfully disagree. The MIRCA2000 mapping suggests the grid cell is 100% equipped for irrigation. To our 

knowledge the published models assume that the entire equipped area is irrigated so the statement holds. Of course 

that assumption could be changed for another. 

 



“Line 619-623 I feel the units are incorrect, I guess the first estimates should be 75.5*10ˆ12 Km3 y-1 (as well as for 

the other estimates from this study, which are now 1000 times lower than other studies) 

[28] The units are correct. We could have written 75,500 km3 y-1 but felt using base units (m) was more appropriate, 

as neither unit is easily imagined. 

 

Response to Reviewer 2 

[29] We thank the reviewer for their positive and constructive comments. Below we respond to the issues raised. 

# “First of all, I find the manuscript a bit unbalanced in terms of contents. There is a lot of focus on methods and 

equations (esp. for irrigation), but relatively a few figures for results. This makes the manuscript very tedious to read 

with a lot of text and information. At the same time, some information that are critical to assess the results are either 

missing or in the appendix. For example, forcings and their spatial disaggregation, model formulations of LE and H, 

etc.” 

[30] We are sorry the m/s was tedious to read. We appreciate that the technical detail of the modelling and data 

assimilation can be a bit tedious, which is why we tried to minimise that aspect in the body text by transferring some 

of the material to the appendix and referring to existing studies where possible. We have added 2 figures: one 

illustrating the workflow, and one with some new analysis suggested by the reviewer. We hope this has made the 

m/s less tedious. 

[31] The referee also asks for additional material to be included and we therefore made some additions. We have 

added further details on “forcings and their spatial disaggregation” in the main text (see response [24]). The “model 

formulations of LE and H” were described in the methods section. The energy balance equation is the main model 

component of relevance here, but it is in essence a conventional implementation of the Penman-Monteith equation, 

which is well-known and the detail of the implementation is readily available online already. We did some additional 

text to explaining the approach however: 

“The surface energy and water balance is simulated using the Penman-Monteith model. The evaporative 

fluxes from transpiration, unsaturated soil, saturated soil and surface water are simulated subject to the 

overall constraint of potential evaporation E0 within the same Penman-Monteith framework. Wet canopy 

evaporation is simulated outside this constraint, for reasons described in Van Dijk et al. (2015), using a 

dynamic-canopy version of the event-based Gash model (Van Dijk and Bruijnzeel, 2001; Wallace et al., 

2013).” (l. 133-138) 

# “Definition of the secondary evaporation: There is no description on how groundwater’s contribution to LE/ET is a 

secondary source. In an idealistic theoretical situation, the capillary flux from groundwater will replenish soil moisture 

(at some point when the soil moisture is drying up), which would eventually increase LE. It is not clear if the model 

considers such capillary flux processes explicitly. I am curious about what fraction of ‘other’ sources is actually coming 

from groundwater-soil-LE pathway, and not groundwater-baseflow-surface water-LE pathway. The first one may 

have a critical influence on vegetation and carbon cycle processes.” 

[32] The model does consider capillary fluxes, but in the offline model those are ultimately constrained by longer-

term local rainfall, and therefore do not constitute secondary evaporation (i.e., it is derived from locally recharged, 

unconfined groundwater rather than lateral groundwater inflows). As our study demonstrates, data assimilation 

helps to estimate secondary evaporation from non-local water sources, but does not directly attribute it to a water 

source – that requires ancillary data. In some cases, the secondary evaporation may be from irrigation with water 

pumped from confined aquifers (which bypasses the capillary rise pathway). In other cases, it is possible that 

secondary evaporation is inferred, e.g. because rainfall is underestimated, capillary rise or deep root water uptake is 

more important than predicted by the background model (e.g., because the vegetation is more deeply rooted or 

groundwater is closer to the surface than assumed). There is obviously much more to be done to understand the 

global water balance in full detail. Our data provide a means of prioritising regions where there appears to be 



hydrological behaviour that is not easily explained by the background model, and therefore is worthy of further 

investigation. To make clear that capillary rise is possible within the model, we added the following words: 

“[The soil column is conceptualised as a three-layer unsaturated zone overlaying an unconfined groundwater 

store], from which capillary rise can occur.” (l. 130-131) 

# “Assimilation of LST into model: In the assimilation of LST into model, the basic assumption is that the model-

simulated partitioning of the energy fluxes (H and E) are correct. The corrections or ‘nudges’ for LST are back-

calculated from the modelled H, and these are propagated through spatial patterns of observed LST. But, there is no 

explanation of how ‘background’ H and LE are calculated in the model. Perhaps, these may be inferred from previous 

papers/reports on the model (?), but they are so critical for this study and results presented herein, they deserve to be 

in this manuscript.” 

[33] The basic assumption is actually not that the partitioning of H and LE is correct, but rather, that the estimated 

total available energy (A=H+LE) is correct. Data assimilation may change the estimate of H, and through that LE=A-H. 

To make this clear we added:  

“A fundamental assumption in this approach is that the partitioning between λE and H can be improved with 

information on LST, but that the estimate of available energy A is correct.” (l. 224-226) 

[34] The background H and LE are estimated using the conventional Penman-Monteith approach. We have added 

new details on that in the model description section (see [31]).  

# “One information that is imperative is whether the parameters of the modelled LE and H were optimized or not. If 

not, are the used parameter values are reasonable for a global-scale application?” 

[35] The most important parameter overall, surface conductance, was predicted from satellite-observed surface 

reflectances following Yebra et al. (2013) and tuned using a large data base of evaporation measurements 

(FLUXNET). Another important parameter, vegetation height (affecting aerodynamic conductance) was derived from 

remote sensing by Simard et al. (2011). We have added a few additional words to hopefully make the approach 

clearer: 

“Global datasets were also used to parameterise the distribution of different land surface types (Bicheron et 

al., 2008) and the properties of vegetation (Simard et al., 2011), soil (Shangguan et al., 2014), and aquifers 

(Gleeson et al., 2014; Beck et al., 2015).” (l. 150-152) 

and 

“[Five model parameters that were both relatively uncertain and influential were calibrated and 

regionalised] by climate and land cover type class, [using large global data sets of site measurements 

evaporation and near-surface soil moisture, and a global dataset of catchment streamflow records (the 

parameters represent proportional adjustments to initial estimates of, respectively, maximum canopy 

conductance, relative canopy rainfall evaporation rate, soil evaporation, saturated soil conductivity, and soil 

conductivity decay with depth).]” (l. 1487-153) 

# “Related to the above point, validation for model simulated LE and H is not shown or discussed. There are 

references to a previous study or an unpublished work but the findings of this study also warrant a section on 

evaluations at the global scale. I am aware that observed global ET and H data are not available, but a comparison 

with either FLUXNET observations (for sites) or other satellite-based ET products can provide a valuable benchmark.” 

[36] In response, we have summarised the result of the unpublished evaluation and included it as a new supplement. 

We believe putting it in the main text would be misleading readers into thinking it constitutes an assessment of the 

performance in estimating secondary evaporation, which it does not: the vast majority of flux towers are in 

environments without secondary evaporation. This was also the reason we initially did not think it a good idea to 

include it, but we can see that a reader might want to see anything that is referred to and that “unpublished’ 



therefore might not cut it. As the supplement makes clear, the flux tower observations also suffer from the energy 

balance closure problem which makes evaluation more ambiguous.  

[37] A comparison with other global ET products was discussed in the original m/s.  

# “Estimation of irrigation water use: Assumption of rooting depth: The parameter smax is dependent on the 

assumed rooting depth. The manuscript would benefit from a discussion on how these parameters vary globally, and 

to what extent do this variation affects the estimation of secondary evaporation from irrigated area.” 

[38] We follow the published methodology of Siebert and Döll (2010). The assumptions made here do not affect the 

estimation of secondary evaporation. They do affect is the calculated irrigation efficiency and therefore the estimate 

of irrigation water use. This is a perhaps subtle, but important distinction. We added additional text in to places to 

make sure this is clear: 

“The assimilation component integrates various MODIS products into the global hydrological model to 

estimate the dryland water balance and secondary evaporation. Subsequently, in an offline analysis the 

estimates of secondary evaporation were combined with mapping of irrigated crops to estimate a minimum 

irrigation requirement.” (l. 112-116) 

and 

“The estimation of I0 was done after, and entirely separate from, the data assimilation process, and therefore 

what follows had no bearing on the estimation of secondary evaporation.” (l. 267-269) 

# “Evaluation against discharge observations: In my subjective judgment, the improvement in the basins with 

discharge < 300 mm/y is mostly driven by Paraná because it has discharge with the largest magnitude. In reality, the 

river basins with large irrigation water withdrawal/use are also equipped with dams and are not of run-of-river type 

(with no reservoir). The secondary evaporation from these ‘dammed’ rivers also comprise of evaporation from 

reservoirs. So, in my opinion, it would be helpful to include the information of reservoir volume (e.g., from GranD 

database) in the analysis or the figure. This is important because the water evaporated from the reservoirs might 

actually be significant, especially because the irrigation requirement/use from this study is much lower than previous 

estimates.” 

[39] Actually, it is also due to the improved water budget for closed basins (dots on the vertical axis) and several 

other basins (e.g., Indus).  Our methodology does use remotely sensed water extent, and that would include 

reservoir surface area, so evaporation from reservoir surfaces is included in the estimates. 

# “Comparison with previous estimates: The manuscript addresses the minimum irrigation water requirement, which 

I understood as the actual gross irrigation water use (gross because it has both bare soil evaporation in irrigated 

areas+transpiration by crops). In most previous modeling studies, difference between PET and ET is used to calculate 

irrigation water requirement (and withdrawal). Current manuscript rightly points that there are several limitation to 

ET from irrigated areas. Despite that, it would make sense to compare the difference between PET and ET (Priestley 

Taylor is already used in the current study) with the bias of I0 against withdrawal.” 

[40] Unfortunately we did not grasp the analysis the reviewer proposes. In the original m/s, we did compare I0 to 

reported withdrawals in Fig 5 and l. 435-449, and this does provide some useful insights, discussed in l. 561-599. We 

could compare irrigation area ET to PET (as done for example in Fig. 2e in the revised m/s) but are not sure how to 

summarise such a comparison globally or what it would demonstrate. 

# “Forcing variables: The results of this study are extremely dependent on the biases in the WFD forcing data as well 

as the spatial patterns of HYDROCLIM data. It is not clear from the current analysis if the biases in secondary 

evaporation are related to WFD magnitude (over a half degree grid) or the spatial patterns of HYDROCLIM (over 0.05 

deg grids).” 

[41] The term ‘extremely’ is subjective, but given the Penman-Monteith energy balance approach used, the 

evaporation estimates will depend on the meteorological forcing data, as does any method to estimate evaporation. 



We used the relative spatial patterns in the high-resolution, station-based WorldClim dataset to downscale air 

temperature only (see [24]). Because we only assimilated satellite LST in areas with modest relief, we do not expect 

that the downscaling will have had much effect on secondary evaporation estimates. We also suspect that biases in 

air temperature in the WFD forcing data may in fact be less important than uncertainties in the radiation balance, 

wind speed, and perhaps specific humidity. Because we have not separately investigated or quantified these 

uncertainty sources, we prefer not to speculate and leave such interpretations to the reader. Nevertheless, in the 

revised m/s we acknowledge that uncertainties in the forcing data could have an impact on the results (l. 558). 

# “Temporal variation of secondary evaporation: I would have really learnt a lot on what is driving the secondary 

evaporation if there was a discussion on temporal variation of secondary evaporation at the global scale. This would 

provide insights on whether the secondary evaporation increases in wet season (for e.g., in water bodies such as 

wetlands and river channels because the surface area becomes larger) or in dry season in which the groundwater 

access by plant can be expected to be maximum.” 

[42] We thank the reviewer for the suggestion and have performed some additional analysis. We have added the 

following results: 

“There is a pronounced seasonal cycle in secondary evaporation at global scale (Figure 11). The rate of 

secondary evaporation is more than two times higher in northern summer than in northern winter. This is 

primarily due to the greater rate of evaporation from the many surface water bodies in formerly glaciated 

regions, including the American Great Lakes, as well as a higher rate of evaporation from the Caspian Sea. By 

contrast, secondary evaporation in regions located wholly or partially in the southern hemisphere show a 

much less pronounced seasonal cycle and a greater influence of water availability. Averaged over time, each 

of the regions considered makes a similarly sized contribution to secondary evaporation globally (10¬24%) 

with the exception of Antarctica (0.4%). 

 

Figure 11. Average (2001¬–2012) seasonal cycle of secondary evaporation at global scale (black line) and the 

contribution from different regions (colours corresponding to the map). All rates are expressed in mm d-1 for 

the global land area.” (l. 535-543) 

We are not sure whether these findings are very relevant from a global water cycle or climate system perspective, 

but if the reviewer finds them interesting then perhaps they satisfy a certain curiosity in other readers as well. The 

main driver of the seasonality is ultimately due to the legacy of glaciation, and so we have added the following to the 

discussion: 



“There is a strong seasonal cycle in secondary evaporation at global scale, driven by evaporation from 

extensive surface water bodies in formerly glaciated regions in the northern hemisphere. This illustrates the 

profound impact that glaciation has had on regional landscape hydrology, and its influence at global scale.” 

(l. 696-699). 

# “Evaporation larger than precipitation in southern Africa and Yucatan: The discussion focuses on the biases in the 

precipitation. If total E (primary + secondary) were correct, the signal should appear in the water storage changes. In 

that case, GRACE satellite measurements should show a declining terrestrial water storage. A comparison on loss of 

storage in the study period and the total E – P would provide a great motivation for future studies on what are 

driving such changes. Essentially, this would already help in refining the potential causes of the negative water 

budget.” 

[43] Again we thank the reviewer for the suggestion. Some knowledge of GRACE based trends was on our mind in 

interpreting the results, but we did not make this explicit. A previous GRACE model-data assimilation study some of 

the authors were involved in inferred that water storage did decrease slightly over the Yucatan peninsula between 

2003 and 2012 but increased quite strongly in southern Africa. Neither trend was predicted by an ensemble of 

hydrological models (particularly not for the African case), which led us to suspect deficiencies in the rainfall 

estimates driving those models. We expanded the discussion as follows.  

“We analysed global water cycle reanalysis data that integrated GRACE gravity observations in an earlier 

study (Van Dijk et al., 2014) for a largely overlapping period (2003–2012) to test this. For the African 

Southern Interior, the reanalysis demonstrated a clear increasing trend in subsurface storage (+12.3 mm y-1) 

that was not reproduced by an ensemble of models (+2.0 mm y-1). This suggests that the global precipitation 

estimates used by models were indeed too low for this period, as also concluded by Van Dijk et al. (2014). For 

the Yucatan peninsula, a slight storage decrease (-3.3 mm y-1) was inferred from the reanalysis, whereas the 

model ensemble suggested a slight increase (2.7 mm y-1). This does not suggest any underestimation of 

precipitation. A net use of groundwater does appear plausible in this case, though likely not enough to 

explain the secondary evaporation rates estimated here” (l. 622-632) 

Editorial Comments: 

# “Line 1: In my opinion, ‘estimates’ should be replaced by ‘simulations’. Essentially, the results are dependent on 

hydrological model simulations.” 

[44] We respectfully disagree. Satellite observations were assimilated to make the results less dependent on model 

simulations. 

# “Line 232: i=1,26 can be replaced by just 26.” 

[45] We used this notation to make the meaning of i in Ai in the same sentence clear. 

# “Line 259: There is no description for what Pg is. I assumed that it is precipitation for the grid cell.” 

[46] Apologies, this should have read Pirr. We corrected this. 

# “Figures 6-9: I recommend using the same color maps and scales in these figures. It is a bit confusing because the 

same color ‘blue’ means a different value in different figures.” 

[47] Thank you, we made this change.  

# “Table 1: Just curious that observed discharge in Nile is 0. Fascinating that no water from such large river basin 

reaches the ocean.” 

[48] Agreed. 

# “Line 534: can have affected –> can affect or could have affected” 

[49] Agreed, thank you. 



# “Line 621: wrong units: km3/yr –> m3/yr 

[50] Agreed, thank you.  

# “Line 671-673: –> Before reaching the ocean is misleading because a fraction of the open water evaporation is 

from rivers which do not drain to ocean (e.g., inland lakes). 

[51] For clarification, we changed this to: 

“Around 16% of globally generated water resources evaporate before reaching the oceans or from closed 

basins, enhancing total terrestrial evaporation by 8.8%.” (l. 752-754) 

[52] We do not consider the statement to have been misleading, however. Our phrasing was chosen for pragmatic 

reasons, although there is also a conceptual argument. The pragmatic reason was that, in identifying closed basins, 

we found it challenging to separate “truly” closed basins from basins that DEM analysis suggested were closed but 

which actually did appear to have an overflows according to independent reports. Surprisingly, it appears that there 

is no reliable global map of closed basins, and it took background research to identify the basins shown in Fig. 3. 

There were many other basins that the DEM suggested were closed but where we were not able to confirm that, 

meaning we ultimately did not identify all closed basins and therefore cannot make the distinction between 

secondary evaporation from (all) closed basins and all ocean reaching rivers.  

[53] The conceptual reason is that the referee’s argument can in fact be turned around: those rivers in ‘closed 

basins’ do not drain to the ocean because evaporation is so high. The difference between closed and ocean-draining 

basins is a threshold (lake) level, and some basins currently switch between these states depending on the difference 

between rainfall and evaporation, many others did in the past. We do accept that there are closed basins that would 

require a very large increase in rainfall indeed (or decrease in evaporation) to top the overflow threshold and start 

draining to the ocean, but it does mean that there is no fundamental difference between ‘closed’ and ‘open’ basins.  

[54] We do believe that a map of all (currently) closed basins would be a valuable information source for water 

balance studies, and are currently looking into producing one using DEM data of higher accuracy and resolution, but 

early indications are that it requires intensive quality control. If it had existed, we would have made the distinction. 

# “Line 674-678: Does the groundwater include baseflow-river-ET and groundwater capillary flux-soil moisture-ET? I 

am not sure if the second process can be categorized as the secondary evaporation.” 

[55] We are not entirely sure how to interpret this question. In case it answers the question, we did add: 

“[The soil column is conceptualised as a three-layer unsaturated zone overlaying an unconfined groundwater 

store], from which capillary rise can occur.” (l. 130-131) 

Thus, the primary evaporation estimates by the model do include the effect of capillary rise. However, if the primary 

evaporation estimates are too low data assimilation increases those estimates, and the difference will be (perhaps 

partly or wholly incorrectly) ascribed to secondary evaporation from lateral inflows. We discussed this in l. 501-504 

of the original m/s.  
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Abstract 14 

A portion of globally generated surface and groundwater resources evaporates from wetlands, water 15 

bodies and irrigated areas. This secondary evaporation of ‘blue’ water directly affects the remaining 16 

water resources available for ecosystems and human use. At the global scale, a lack of detailed water 17 

balance studies and direct observations limits our understanding of the magnitude and spatial and 18 

temporal distribution of secondary evaporation. Here, we propose a methodology to assimilate 19 

satellite-derived information into the landscape hydrological model W3 at an unprecedented 0.05° or 20 

c. 5 km resolution globally. The assimilated data are all derived from MODIS observations, including 21 

surface water extent, surface albedo, vegetation cover, leaf area index, canopy conductance, and land 22 

surface temperature (LST). The information from these products is imparted on the model in a simple 23 

but efficient manner, through a combination of direct insertion of surface water extent, evaporation 24 

flux adjustment based on LST, and parameter nudging for the other observations. The resulting water 25 

balance estimates were evaluated against river basin discharge records and the water balance of closed 26 

basins and demonstrably improved water balance estimates compared to ignoring secondary 27 

evaporation (e.g., bias improved from +38 mm/d to +2 mm/d). The evaporation estimates derived 28 

from assimilation were combined with global mapping of irrigation crops to derive a minimum 29 

estimate of irrigation water requirements (I0), representative of optimal irrigation efficiency. Our I0 30 

estimates were lower than published country-level estimates of irrigation water use produced by 31 

alternative estimation methods, for reasons that are discussed. We estimate that 16% of globally 32 

generated water resources evaporate before reaching the oceans, enhancing total terrestrial 33 

evaporation by 6.1·10
12

 m
3
 y

-1
 or 8.8%. Of this volume, 5% is evaporated from irrigation areas, 58% 34 

from terrestrial water bodies and 37% from other surfaces. Model-data assimilation at even higher 35 

spatial resolutions can achieve a further reduction in uncertainty but will require more accurate and 36 

detailed mapping of surface water dynamics and areas equipped for irrigation. 37 

  38 
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Introduction 39 

The generation of surface and groundwater resources is commonly conceptualised one-dimensionally 40 

as the net difference between precipitation, evaporation (including transpiration) and soil storage 41 

change. However, some part of the generated ‘blue’ water (Falkenmark and Rockström, 2004) 42 

subsequently inundates floodplains, accumulates in wetlands and freshwater bodies, or is extracted for 43 

irrigation. A fraction of that water will evaporate in this second instance. This ‘secondary 44 

evaporation’ directly reduces the remaining blue water resources available for ecosystems and 45 

economic uses downstream but also increases the use of water by terrestrial ecosystems before 46 

discharging into the oceans. At the global scale, our understanding of the magnitude and 47 

spatiotemporal distribution of secondary evaporation is limited by a lack of detailed water balance 48 

studies and direct observations. Until recently, land surface models ignore lateral water transport and 49 

secondary evaporation altogether or provide a rudimentary description. This is understandable, given 50 

the complexity and computational challenge in simulating the lateral redistribution and secondary 51 

evaporation of water at the global scale. However, it is increasingly clear that the lateral redistribution 52 

of water cannot be ignored in global water resources analyses (Oki and Kanae, 2006; Alcamo et al., 53 

2003), carbon cycle analysis (Melton et al., 2013) and regional and global climate studies (e.g., Thiery 54 

et al., 2017).  55 

Even approximate numbers on the importance of secondary evaporation in the global water cycle are 56 

not available. Oki and Kanae (2006) derived global bulk estimates of gross evaporation from lakes, 57 

wetlands and irrigation (combined 10.1·10
12

 m
3
 y

-1
) but their estimate was based on modelling only 58 

and included both primary and secondary evaporation. There have been some studies estimating 59 

irrigation water requirements at the global scale (Döll and Siebert, 2002; Wada et al., 2014; Siebert 60 

and Döll, 2010) but these studies were based on idealised modelling, did not attempt to separate 61 

between primary and secondary evaporation, and did not consider other sources of secondary 62 

evaporation. 63 

There have been attempts to use satellite observations to estimate the importance of secondary 64 

evaporation at a regional scale. For example, Doody et al. (2017) used MODIS-based evaporation 65 

estimates (Guerschman et al., 2009) over Australia to delineate areas receiving lateral inflows. They 66 

used ancillary data to attribute these to surface water inundation, irrigation, and groundwater-67 

dependent ecosystems, respectively. At the global scale, Wang-Erlandsson et al. (2016) used satellite-68 

based ET estimates from several sources to infer rooting depth, which provided some insights into the 69 

spatial distribution of surface- and groundwater dependent ecosystems.  70 

Historically, three contrasting approaches have been followed to estimate evaporation: water balance 71 

modelling; inference from land surface temperature (LST) remote sensing; and estimation based on 72 

vegetation remote sensing. All three approaches rely on meteorological data and effectively involve a 73 

land surface model of some description, albeit of variable complexity. Hybrids between the three 74 

approaches have also been developed over time to mitigate respective weaknesses (Glenn et al., 75 
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2011). For example, dynamic simulation of the soil water balance can provide a valuable constraint on 76 

satellite-based evaporation estimates in water-limited environments; provided precipitation is the only 77 

source of water for evaporation, and accurate precipitation estimates are available (Glenn et al., 2011; 78 

Miralles et al., 2016). However, where there are additional sources of water or unexpected soil 79 

moisture dynamics, applying this constraint can degrade evaporation estimates. 80 

Beyond dynamic hydrological models, evaporation products based more closely on vegetation remote 81 

sensing implicitly account for the effect of lateral water redistribution on transpiration, but often do 82 

not account for open water evaporation (Yebra et al., 2013; Zhang et al., 2016), with exceptions 83 

(Guerschman et al., 2009; Miralles et al., 2016). Satellite-observed LST has a direct, physical 84 

connection to the surface heat balance, and through the overall surface water and energy balance can 85 

provide a constraint on evaporation estimates. Several techniques have been developed to infer 86 

evaporation from LST, and many successful applications at local scale have been documented (Kalma 87 

et al., 2008). Over larger areas, the application of LST-based methods is complicated by the need for 88 

time-of-overpass estimates of radiation components, air temperature, and aerodynamic conductance 89 

(Kalma et al., 2008; Van Niel et al., 2011). There are promising developments that can overcome 90 

some of these challenges (Anderson et al., 2016), although they are yet to be fully evaluated.  91 

Arguably, the most promising approach to evaporation estimation is to combine water balance 92 

modelling, LST remote sensing, and vegetation remote sensing within a model-data fusion 93 

framework. Such an approach still involves modelling and the assumptions inherent to it, but the 94 

greater use of observations should mitigate against errors arising from the modelling. This prospect 95 

motivated the present study. 96 

Aim 97 

Our objective was to develop a methodology to assimilate optical and thermal observations by the 98 

MODIS satellite instruments into a 0.05° resolution global hydrological model to estimate 99 

evaporation and to evaluate the quality and quantitative accuracy of the resulting estimates as much as 100 

possible. Based on the resulting estimates, we wished to answer the following questions: 101 

 What is the magnitude of secondary evaporation of surface and groundwater resources in the 102 

global and regional water cycle? 103 

 What is the magnitude of irrigation evaporation and how does it relate to total agricultural water 104 

withdrawals?  105 

 What are the contributions of secondary evaporation from irrigation, permanent water bodies, 106 

ephemeral water bodies, and other surfaces? 107 

 Is secondary evaporation likely to have a noticeable impact on the global carbon cycle and 108 

climate system? 109 

 110 
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Materials and Methods 111 

The methodology of our experiment includes two mostly separate components (Figure 1). The 112 

assimilation component integrates various MODIS products into the global hydrological model to 113 

estimate the dryland water balance and secondary evaporation. Subsequently, in an offline analysis 114 

the estimates of secondary evaporation were combined with mapping of irrigated crops to estimate a 115 

minimum irrigation requirement. Below follow details on the model, the data assimilation procedure, 116 

estimation of irrigation water use, and the different ways in which the results were evaluated. Details 117 

on the data used in the analysis can be found in the supplement to this article. 118 

 119 

Figure 1. Illustration showing the processing steps and data used in each step. Acronyms relate to input data that 120 

are described in the text.  121 

 122 

Global water balance model description  123 

The World-Wide Water model (W3) version 2 is an evolution of the AWRA-L and W3RA group of 124 

models. The AWRA-L model is used operationally for water balance estimation across Australia at 125 

0.05° resolution by the Bureau of Meteorology. An overview of the operational AWRA-L model 126 
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(version 5) can be found in Frost et al. (2016b), with details on the scientific basis in Van Dijk (2010). 127 

Very briefly, the model operates at daily time step and is grid-based. Each cell is conceptualised to 128 

represent several parallel small, identical catchments. The soil column is conceptualised as a three-129 

layer unsaturated zone overlaying an unconfined groundwater store, from which capillary rise can 130 

occur. The unsaturated soil water balance and corresponding water and energy fluxes can be 131 

simulated separately for hydrological response units (HRUs) that each occupy a fraction of the grid 132 

cell. The surface energy and water balance is simulated using the Penman-Monteith model. The 133 

evaporative fluxes from transpiration, unsaturated soil, saturated soil and surface water are simulated 134 

subject to the overall constraint of potential evaporation E0 within the same Penman-Monteith 135 

framework. Wet canopy evaporation is simulated outside this constraint, for reasons described in Van 136 

Dijk et al. (2015), using a dynamic-canopy version of the event-based Gash model (Van Dijk and 137 

Bruijnzeel, 2001; Wallace et al., 2013). Sub-grid parameterisations are applied to simulate the area 138 

fractions with surface water, groundwater saturation and root water access to groundwater 139 

dynamically, based on the hypsometric curves (i.e., the cumulative distribution function of elevation) 140 

for each grid cell (Peeters et al., 2013).  141 

The W3 (version 2) model is a global implementation of AWRA-L (version 5) at the same 0.05° 142 

resolution. Important differences are as follows (details in Appendix A). Separate HRUs were not 143 

considered, however, the water balance of permanent water bodies is calculated separately. Global 144 

gridded climate time series and surface, vegetation and soil parameterisation data were used. In brief, 145 

MSWEP v1.1 (Beck et al., 2017) precipitation estimates and other meteorological data from the 146 

WFDEI v1 dataset (Weedon et al., 2014). Monthly precipitation and air temperature climatology data 147 

at 30′′ from the WorldClim dataset (Hijmans et al., 2005) were resampled to 0.05° and 0.25°; 148 

subsequently, the ratio and difference, respectively, between the data at the finer and coarser 149 

resolution were applied to the forcing data. Global datasets were also used to parameterise the 150 

distribution of different land surface types (Bicheron et al., 2008) and the properties of vegetation 151 

(Simard et al., 2011), soil (Shangguan et al., 2014), and aquifers (Gleeson et al., 2014; Beck et al., 152 

2015). We used the cumulative distribution function of Height Above Nearest Drainage (HAND; 153 

Nobre et al., 2015) for each grid cell instead of hypsometric curves, which we derived from high-154 

resolution global digital elevation models.  155 

Five model parameters that were both relatively uncertain and influential were calibrated and 156 

regionalised by climate and land cover type class, using large global data sets of site measurements 157 

evaporation and near-surface soil moisture, and a global dataset of catchment streamflow records (the 158 

parameters represent proportional adjustments to initial estimates of, respectively, maximum canopy 159 

conductance, relative canopy rainfall evaporation rate, soil evaporation, saturated soil conductivity, 160 

and soil conductivity decay with depth). Differences less relevant here include the addition of a snow 161 

water balance model with parameters from Beck et al. (2016) and grid-based river routing using a 162 

flow direction based on HydroSheds (Lehner et al., 2008) where available and HYDRO 1k elsewhere. 163 
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A range of W3-simulated water and energy balance terms has been made publicly available as part of 164 

‘Tier-2’ of the eartH2Observe project (Schellekens et al., 2017). The AWRA-L and W3 models have 165 

received extensive evaluation, demonstrating realistic estimates of evaporation, soil moisture, deep 166 

drainage, streamflow and total water storage (e.g., for more recent implementations, Tian et al., 2017; 167 

Frost et al., 2016a; Beck et al., 2016; Holgate et al., 2016). 168 

The W3RA model used here it not the only suitable modelling framework for the approach described. 169 

A similar method could be applied with other local or global models. The main requirements are that 170 

the model has a coupled water and energy balance model that simulates LST, and that it is amenable 171 

to data assimilation. 172 

Data assimilation  173 

All data assimilated here were derived from NASA’s Moderate Resolution Imaging 174 

Spectroradiometer (MODIS) instruments. The data included albedo, reflectance, leaf area index (LAI) 175 

and LST (details in Appendix A). We followed the following steps, except for LST. First, the MODIS 176 

band reflectances (product MCD43C4.005) were used to estimate vegetation cover fraction and 177 

canopy conductance following Yebra et al. (2015; 2013); surface water extent was estimated 178 

following Van Dijk et al. (2016); and MODIS albedo (MCD43C3.005), snow cover fraction 179 

(MCD43C4.005) and the MODIS GLASS LAI products product (Xiao et al., 2014) were used in their 180 

original form. Next, seven model states were updated using a simple nudging scheme. For each state, 181 

the observation and model error estimates were based on an assessment of the noise in the 182 

observational data, the expected dynamic rate of change, and the expected skill of the model. The 183 

resulting ‘gain’ factors (i.e. the relative weight of observations) varied from 0.5 for LAI and snow 184 

fraction to 0.99 for surface water fraction (reflecting the low skill in the model to accurate predict 185 

surface water extent at 0.05° resolution). The updated states were also used dynamically to update six 186 

related parameters of diagnostic model equations, including a parameter relating vegetation cover 187 

fraction to canopy conductance, another relating vegetation cover to LAI, and four parameters relating 188 

surface state to albedo.  189 

The approach to assimilate LST observations was different. In this case, the dynamic model was run 190 

one timestep forward to produce a background estimate of the surface energy balance and evaporation 191 

flux. The corresponding average daytime LST (Ts, K) was estimated from the average daytime 192 

sensible heat flux (H, W m
-2

) as 193 

 𝑇𝑠 = 𝑇𝑎 +
𝐻

𝜌𝑎𝑐𝑝𝑔𝑎
         (1) 194 

where Ta is air temperature (K), ρa air density (kg m
-3

), cp specific heat capacity (J kg
-1

 K
-1

), and ga(u) 195 

aerodynamic conductance (mm s
-1

). The latter is a function of wind speed scaled by the wind speed 196 

measurement and vegetation heights, respectively, following Thom (1975).  197 
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Poor characterisation of spatial gradients in radiative exposure, air temperature, and wind speed in 198 

areas with relief can cause a poor relationship between observed and modelled LST (Kalma et al., 199 

2008). Fortunately, secondary evaporation primarily occurs in regions with low relief. Therefore, data 200 

assimilation was only attempted for areas with an average slope less than 3% (as calculated from the 201 

higher resolution DEM; Appendix A). This threshold was empirically found to include a large 202 

majority of observed surface water inundation and mapped irrigation areas.  203 

A second challenge relates to the inconsistency between the observation time-of-overpass LST and 204 

model-predicted mean daytime LST. We assumed that time-of-overpass and mean daytime LST will 205 

have different spatial averages, but share a near-identical spatial pattern of deviations from the spatial 206 

averages. This assumption also helps to remove systematic bias, which is the largest source of error in 207 

MODIS LST estimates used here (MOD11C1.006; Wan, 2015). Previous assessments report errors in 208 

MODIS that are within 0.7 K under conducive atmospheric conditions but can increase to 3 or 4 K 209 

due to errors in atmospheric correction that tend to cause similar level of bias over a larger area (Wan 210 

et al., 2004; Wan, 2008; Wan and Li, 2008; Hulley et al., 2012).  211 

In the assimilation step, first the median observed and modelled LST were calculated for all low-relief 212 

grid cells within a spatial window of 15° latitude and longitude and subtracted from the respective 213 

gridded LST values to remove systematic bias. Subsequently, we calculated the difference between 214 

resulting observed and modelled LST values. The calculated difference was reduced by up to 1 K to 215 

conservatively allow for uncertainty in the assumptions and errors in the observations. Next, the 216 

model LST was updated with the remaining difference towards the MODIS-observed LST. An 217 

updated latent heat flux (λE′ in W m
-2

; the prime indicating the updated variable) can be calculated 218 

from the an inverted version of the energy balance equation as 219 

 𝜆𝐸′ = 𝐴 − 𝐻′ = 𝐴 − 𝜌𝑎𝑐𝑝𝑔𝑎(𝑇𝑠′ − 𝑇𝑎)      (2) 220 

where A is available energy (W m
-2

). To ensure physical consistency within the model context, λE′ 221 

was constrained to positive values below or equal to potential evaporation E0, calculated following 222 

Penman-Monteith theory (details in Van Dijk, 2010). Temporal consistency was ensured by recording 223 

the ratio λE′/λE and using it to adjust simulated λE for subsequent days until a new LST observation 224 

was available. Finally, E was calculated through division by the latent heat of vaporisation λ. A 225 

fundamental assumption in this approach is that the partitioning between λE and H can be improved 226 

with information on LST, but that the estimate of available energy A is correct. 227 

To illustrate the data assimilation, time series of observations and model results for one 0.05° grid cell 228 

in the Nile delta in Egypt are shown in Figure 1Figure 2. This grid cell was chosen because it 229 

represents one of comparatively few grid cells worldwide deemed to be 100% equipped for irrigation 230 

in global mapping (although annual maximum NDVI derived from Landsat suggests that only 80–231 

81% of the area is in fact irrigated; Figure 1Figure 2a). The processing steps are illustrated by a 232 

comparison of observed, background and analysis LST estimates for the year 2002 (Figure 1Figure 233 
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2b), and the resulting sensible heat flux (Figure 1Figure 2c) and daily evaporation (Figure 1Figure 234 

2d). Corresponding temporal patterns in the evaporative fraction (E/E0) show that data assimilation 235 

brings the temporal pattern of evaporative fraction in close agreement with satellite-observed 236 

vegetation cover fraction (Figure 1Figure 2e), which provides as a largely independent consistency 237 

test. 238 

 239 

 240 

Figure 1Figure 2. Illustration of method to assimilation MODIS land surface temperature observations. Data 241 

shown are for 2002, for 0.05° grid cell in the Nile River delta, Egypt (centred 31.075°N, 30.325°E). (a) 242 

Maximum normalised difference vegetation index (NDVI) derived from Landsat imagery provided by Google 243 
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Earth Engine, suggesting that effectively 81% and 80% of the grid cell was cropped in 1998 and 2014, 244 

respectively. (b) Land surface temperature: background (Ts, grey line), observed (Ts,obs, circles) and analysis 245 

(Ts′, red line) estimates for the grid cell with average bias across the 15° window removed. (c) Sensible heat 246 

flux: background (H, grey) and analysis (H′, red) estimates along with net radiation (Rn, blue). (d) Evaporation: 247 

background (E, grey) and analysis (E′, red) estimates along with potential evaporation (E0, blue). (e) 248 

Evaporative fraction: background (E/E0, grey) and analysis (E′/E0, red) along with vegetation cover fraction 249 

derived from MODIS NDVI (fveg, green). 250 

Irrigation water use estimation  251 

For irrigated areas, the long-term average difference between precipitation and total evaporation 252 

derived from data assimilation provides an estimate of the importance of additional water inputs. 253 

However, it cannot be interpreted directly as an estimate of irrigation water requirements, much less 254 

as an estimate of water withdrawals. This is because precipitation and crop water requirements are 255 

both unevenly distributed in time, and there is limited water storage capacity in the crop root zone. 256 

Additional water is lost from the root zone through drainage and runoff, which will need to be 257 

compensated by additional irrigation inputs. This field-level irrigation inefficiency does not 258 

necessarily change the long-term net water balance: provided total precipitation and evaporation do 259 

not change, the additional inputs will equal the additional runoff and drainage. However, such 260 

inefficiencies do need to be accounted for when estimating the total amount of irrigation water 261 

required (Siebert and Döll, 2010).  262 

Estimating total field-level irrigation water requirements is sensitive to assumptions about the 263 

capacity for added water to remain stored in the root zone irrigation and about strategies (e.g., 264 

pursuing a stable low or high soil moisture or paddy water level, suboptimal or soil moisture deficit 265 

irrigation, flood irrigation or partial drip irrigation, and so on). Here, we estimated a minimum field-266 

level irrigation requirement (I0 in mm), which can be taken as a conservatively low estimate of 267 

irrigation that represents highly efficient irrigation practices. The estimation of I0 was done after, and 268 

entirely separate from, the data assimilation process, and therefore what follows had no bearing on the 269 

estimation of secondary evaporation. 270 

We used global mapping by crop type to estimate I0 using a plausible range of published assumptions 271 

about water storage capacity. It was assumed that irrigation is just sufficient to replenish lost water 272 

without any direct drainage or runoff losses; that is, losses only occur when precipitation exceeds 273 

available storage capacity. Following Siebert and Döll (2010), we estimate the available root zone 274 

storage capacity (Smax in mm) capacity for i=1..26 irrigated crop types based on the estimated 275 

harvested area (Ai in ha) of each as contained in the MIRCA2000 dataset (Portmann et al., 2010). 276 

These numbers are combined with assumed rooting depth (zi) and the allowable fraction of depletion 277 

of available soil water pi (Allen et al., 1998) for each crop type as proposed by Siebert and Döll 278 

(2010). The plant available water content (θa) was estimated using global soil property data 279 

(Shangguan et al., 2014; see Appendix A), calculated as the difference between θ at field capacity and 280 
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permanent wilting point, assumed to correspond to water potential values of -3.3 and -150 m, 281 

respectively. In formula: 282 

𝑆𝑚𝑎𝑥 =
∑𝐴𝑖𝑧𝑖𝑝𝑖

∑𝐴𝑖
𝜃𝑎𝑓𝑖𝑟𝑟        (3) 283 

where firr is the fraction of the grid cell area that is equipped for irrigation (Portmann et al., 2010). 284 

This method produced a global average root zone storage of 51 mm per unit of irrigated land, with 285 

90% of values between 10–85 mm, with values depending primarily on the value of zi.  286 

Because we have observation-based estimates of evaporation, we do not simulate the influence of soil 287 

water status on evaporation, but instead, propagate a simple water balance model forced with 288 

evaporation estimates. In words, the change in soil moisture storage from one day (St) to the next 289 

(St+1) is the net result of gross rainfall onto the irrigated area (Pirr), evaporation from the irrigated area 290 

(Eirr), the minimum irrigation water application required (I0) and drainage (D), with storage and 291 

cumulative fluxes (all in mm): 292 

𝑆𝑡+1 = 𝑆𝑡 + 𝑃𝑖𝑟𝑟 − 𝐸𝑖𝑟𝑟 + 𝐼0 − 𝐷      (4a) 293 

Partial rainfall (Pirr) is proportional to the irrigation fraction and grid cell rainfall (P): 294 

𝑃𝑖𝑟𝑟 = 𝑓𝑖𝑟𝑟𝑃         (4b) 295 

It is assumed that any increase in the estimate of evaporation (E′–E) from data assimilation is due to 296 

irrigation, where this occurs, and therefore Eirr is given by: 297 

𝐸𝑖𝑟𝑟 = 𝑓𝑖𝑟𝑟𝐸 + (𝐸′ − 𝐸)        (4c) 298 

Any soil water additions more than maximum storage capacity (Smax) are assumed to become 299 

drainage, and irrigation is assumed to be just enough to prevent S<0: 300 

𝐼0 = 𝑚𝑎𝑥(𝐸𝑡 − 𝑃𝑖𝑟𝑟𝑔−𝑆𝑡, 0)       (4d) 301 

𝐷 = 𝑚𝑎𝑥(𝑆𝑡 + 𝑃𝑖𝑟𝑟𝑔−𝐸𝑡 − 𝑆𝑚𝑎𝑥, 0)      (4e) 302 

Rainfall interception losses are included in E. Surface runoff and residual drainage are assumed 303 

negligible when S<Smax. This is an important simplification, but consistent with the definition of a 304 

minimum irrigation requirement estimate that reflects optimal efficiency. The daily water balance 305 

model was evaluated with an initial state of S=Smax and propagated from 2000−2014. The first year 306 

was not used in subsequent calculations to allow for artefacts from the initial state chosen.  307 

Evaluation of basin water balance 308 

One test of the accuracy of secondary evaporation estimates is to evaluate whether their inclusion in 309 

the basin water balance improves agreement with observations. The difference between E′ derived 310 

from data assimilation and the background estimate E is interpreted to be derived from lateral inflows: 311 
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  𝐸𝑙𝑎𝑡 = 𝐸′ − 𝐸        (5a) 312 

For any basin, the total net amount of discharge from the basin (Qn) is the result of the gross amount 313 

of streamflow generated in all tributaries (Qg) minus secondary evaporation of flows downstream 314 

(Elat) and the change in storage derived from those flows (ΔSlat): 315 

  𝑄𝑛 = 𝑄𝑔 − 𝐸𝑙𝑎𝑡 − ∆𝑆𝑙𝑎𝑡      (5b) 316 

Natural storage variations in soil and groundwater and river channel storage are explicitly simulated 317 

by the model and not included in ΔSlat. Storage changes in other surface water bodies (e.g., lakes and 318 

reservoirs), river-groundwater exchanges, and induced soil or groundwater storage changes directly 319 

related to inundation or irrigation (including pumping) would affect ΔSlat. It is assumed here that the 320 

magnitude of ΔSlat is negligible compared to the other terms if fluxes are averaged over the period 321 

2001–2014. This needs to be considered when interpreting results for individual basins. 322 

We used discharge data for large basins to evaluate whether our estimates of Elat improved the overall 323 

agreement between modelled and observed Qn. The river discharge data used were drawn from the 324 

global database of end-of-river discharge records compiled by Dai et al. (2009). This includes data for 325 

925 rivers worldwide. Out of these, we considered only basins for which more than five years of data 326 

were available during 1995–2014. This longer period was adopted because few basins had sufficient 327 

measurements after 2000. To avoid errors arising from differences in the delineation of basins, we 328 

rejected basins with a catchment area less than 100,000 km
2
 and those with a reported drainage area 329 

that was more than 25% different from the DEM-derived basin area at the river mouth. For the 330 

remaining 38 large basins, the temporal and area-average discharge was calculated and compared to 331 

the modelled Qn and Qg (all in mm y
-1

). 332 

Closed or endorheic basins represent a special case where Qn=0 and can also be used to construct a 333 

water balance. The 0.05° flow direction grid was used to delineate all internally draining basins 334 

located between 72°N and 60°S (further poleward the DEM is affected by land ice). Adjoining 335 

endorheic basins were merged into contiguous regions to avoid incorrect basin delineation. From the 336 

resulting regions, all those with a surface area greater than 50,000 km
2
 were extracted, resulting in 13 337 

contiguous regions. For these regions, Eq. (5b) was evaluated and compared to the expected Qn=0.  338 

The LST data assimilation changes evaporation without adjusting other water balance terms and 339 

hence does not conserve mass balance. In both open and closed basins, this can produce a positive or 340 

negative Qn from Eq. (5b). A difference between estimated and observed Qn can occur for any of four 341 

reasons: Qg is underestimated, Elat overestimated, ΔSlat is non-negligible, or (for discharging basins 342 

only) recorded Qn is in error. 343 

Evaluation of apparent irrigation water use  344 

Evaluating estimates of secondary evaporation due to irrigation is challenging. Direct observations of 345 

evaporation from irrigated land are not widely available, represent point observations, and include 346 
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primary evaporation. At basin or country level, estimates of irrigation water use can be categorised as 347 

‘bottom-up’ or ’top-down’ estimates. Bottom-up estimates require scaling of estimated crop water use 348 

to field-level irrigation requirements. Top-down estimates involve estimating large-scale withdrawals 349 

(e.g., by differencing of discharge measurements along a river reach or measured bulk diversions) and 350 

accounting for “project” or scheme losses along the distribution network (Bos and Nugteren, 1990). 351 

Both approaches have large uncertainties but provide estimates of the order of magnitude of irrigation 352 

water use. 353 

Bottom-up estimates of irrigation water use at the global scale and for individual countries are 354 

available from previous studies (Siebert et al., 2010; Wada et al., 2014; Siebert and Döll, 2010). They 355 

involve soil-vegetation water balance modelling. Similar to the approach used here, these methods 356 

require assumptions about root zone storage capacity, the rate of drainage of water from the root zone, 357 

the permissible range of root zone soil moisture, and the efficiency of irrigation. Unlike the approach 358 

used here, they furthermore require assumptions about evaporation, usually following FAO’s crop 359 

factor approach (Allen et al., 1998) to model crop water use. The resulting one-dimensional irrigation 360 

water requirement estimates are subsequently extrapolated spatially using mapping of areas equipped 361 

for irrigation (e.g., Portmann et al., 2010), using assumptions about the number of crop rotations and 362 

the area factually irrigated. Each of these assumptions introduces errors and uncertainties. 363 

Nonetheless, a comparison with these studies should provide insight into the method developed here. 364 

An important source of uncertainty in our estimation of large-scale I0 is due to the diffuse spatial 365 

distribution of irrigated areas, which is further amplified in current mapping products. The mapping of 366 

areas equipped for irrigation contained in the MIRCA2000 dataset (Portmann et al., 2010) was done at 367 

0.08° grid resolution and linearly interpolated to 0.05° resolution in this study. Even at this high 368 

resolution, a large proportion of total irrigable land occupies only a small fraction of a grid cell 369 

(Figure 2Figure 3).  370 

 371 
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 372 

Figure 2Figure 3. Cumulative distribution curve or quantile plot describing the degree to which the global 373 

irrigable area is concentrated. It shows that, at 0.05° grid resolution, almost half of the total global irrigable area 374 

occupies less than 25% of a grid cell. 375 

 376 

The degree of concentration differs between countries for two reasons. Firstly, the true distribution of 377 

irrigation land varies; for example, irrigation tends to be highly concentrated in large surface water 378 

irrigation schemes (e.g., the Nile delta and Indus floodplains) but can be highly distributed where 379 

supplementary irrigation water is drawn from unregulated streams or groundwater. Secondly, the 380 

quality, resolution and predictive value of information related to irrigation area varies widely, which 381 

affects the accuracy of mapping (Portmann et al., 2010). The distribution of irrigation land introduces 382 

uncertainty in the attribution of E′ in grid cells with small fractions of irrigated land. We expect that 383 

the fraction of a grid cell that needs to be irrigated to create a measurable LST signal may be around 384 

10% but will vary spatially depending on the LST contrast between irrigated and non-irrigated land. 385 

To account for this uncertainty, we calculated the mean I0 (Eq. 4) per unit irrigation area for all grid 386 

cells with more than, respectively, 1, 2, 5, 10 and 25% of the area equipped for irrigation. These 387 

estimates were subsequently multiplied with the total area equipped for irrigation in each country. The 388 

coefficient of variation among the five estimates was calculated as a measure of estimation 389 

uncertainty. 390 

The AQUASTAT database (FAO, 2017) provides country-level estimates of agricultural water 391 

withdrawal (W in km
3
 y

-1
) from surface and groundwater. (Domestic and industrial withdrawals are 392 

not considered because a large fraction of these withdrawals is not evaporated but returned to the 393 

environment.) The estimates are derived by different methods for different countries, and likely 394 

include both bottom-up and top-down techniques. Estimates also relate to different periods or years. 395 

Despite these uncertainties, they currently represent official international statistics for each country. 396 
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Any comparison of field-level irrigation water application (I0) and large-scale water withdrawal (W) 397 

needs to account for inefficiencies in the entire water distribution network. These include evaporation, 398 

leakage and return flow on- and off-farm. ‘Project efficiencies’ that express the ratio of I0 over W can 399 

be estimated in principle, but this requires detailed ancillary data (Bos and Nugteren, 1990). In their 400 

global modelling study, Siebert and Döll (2010) proposed ratios range from 0.25 for irrigation 401 

dominated by paddy rice to 0.70 for efficient crop irrigation methods in Canada, Northern Africa and 402 

Oceania. We did not assume values but instead calculated an ‘apparent’ bulk project efficiency for 403 

each country, by dividing the ratio of modelled I0 over W reported in AQUASTAT. The credibility of 404 

the resulting values was subsequently interpreted within the framework developed by Bos and 405 

Nugteren (1990). 406 

Secondary evaporation and the global water cycle 407 

Total secondary evaporation was estimated as the sum of open water evaporation plus the difference 408 

E′−E , representing the difference between modelled primary evaporation E for a situation where 409 

precipitation is the only source of water (the background estimate) and total evaporation E′ resulting 410 

from LST assimilation (the analysis estimate). The resulting estimate of total secondary evaporation is 411 

a hypothetical and model-based quantity. Evaporation in the absence of lateral flows is counterfactual 412 

and not necessarily accurately estimated by the model, particularly in humid environments. 413 

Furthermore, all open water evaporation was included in secondary evaporation; we did not attempt to 414 

estimate the evaporation that might have occurred from the surface had it not been covered by water.  415 

The difference E′−E was distributed dynamically in proportion to the magnitude of each of three 416 

evaporation terms (i.e., transpiration, soil evaporation, and open water evaporation; wet canopy 417 

evaporation was left unchanged). A component of secondary evaporation was attributed to irrigation 418 

following the method described earlier. The remainder could be attributed to permanent water bodies, 419 

ephemeral water bodies, and a residual component that includes any evaporation from replenished 420 

wetlands and floodplains, as well as any use of groundwater sources beyond that simulated by the 421 

model to occur from shallow groundwater (Peeters et al., 2013). 422 

 423 

Results 424 

Basin water balance  425 

The combined surface area of the 51 basins used in evaluation (38 ocean-draining and 13 closed 426 

basins) was 63 million km
2
 or 47% of the ice-free land surface area (Figure 3Figure 4). For each 427 

region, the period-average measured discharge (zero in the case of closed basins) was compared with 428 

modelled Qg and Qn (Figure 4Figure 5, Table 1). Overall, accounting for secondary evaporation 429 

produced a very small improvement in the correlation between observed and estimated discharge 430 

(Figure 4Figure 5ab). However, the largest error contribution was from basins with high discharge 431 
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rates, where secondary evaporation represents a small fraction of Qg. A clearer improvement in the 432 

agreement was found for basins with less than 300 mm y
-1

 net discharge (Figure 4Figure 5cd). The 433 

explained variance (R
2
) increased from 0.67 to 0.71, and there was a reduction of the bias from +38 to 434 

+2 mm y
-1

. Water balance estimates were improved considerably for several basins, including the 435 

Indus River (‘I’ in Figure 4Figure 5cd), Nile River, the Great Basin in the USA, and the African Rift 436 

Valley (Table 1). The agreement could not improve where Qg estimates were already lower than 437 

observed, such as the Paraná and Fitzroy Rivers (‘P’ and ‘F’ in Figure 4Figure 5cd). Water balance 438 

estimates for some closed basins were also degraded, evident from negative Qn values (e.g., the South 439 

Interior and Rukwa basins in Southern Africa), implying that Qg was underestimated, secondary 440 

evaporation overestimated, or both (Table 1). 441 

  442 
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 443 

Figure 3Figure 4. Extent and area-average annual discharge for the 38 ocean-draining (orange to blue) and 13 444 

closed basins (dark orange) used in the evaluation. The two darkest blue colours indicate a discharge in excess 445 

of 300 mm y
-1

. 446 
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 447 

Figure 4Figure 5. Comparison of observed basin-average discharge (mm y
-1

) for large basins that are internally 448 

draining (i.e., zero discharge) or have adequate station discharge data with model estimates of (a) net discharge 449 

(Qn), that is, gross discharge (Qg) minus secondary evaporation, and (b) Qg only. (c) and (d) data for discharge 450 

below 300 mm y
-1

 only (cf. Table 1). Letters indicate Indus (I), Paraná (P), and Fitzroy (F) River. 451 

  452 
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Table 1. Area-average discharge (mm y
-1

) for selected basins as observed and estimated by the model in the 453 

presence (Qn) and absence (Qg) of secondary evaporation, respectively. Listed data for basins with discharge 454 

less than 300 mm y
-1

 only (cf. Figure 4Figure 5cd). 455 

Area-average basin discharge (mm y
-1

)  estimated 

 Observed Qn Qg 

Closed river basins    

 Great Basin, US - 1 42 

 Guzman, North America - -6 3 

 Mairan-Viesca, Mexico - -15 7 

 Patagonia, South America - 5 10 

 Titicaca-Chiquita, South America - -19 38 

 North Interior, Africa - -4 4 

 South Interior, Africa - -71 12 

 Rukwa, Africa - -56 115 

 Rift Valley, Africa - 35 107 

 Jordan  - -1 8 

 Arabian peninsula - 0 1 

 Central Asia - 57 80 

 Central Australia - -20 8 

Ocean-reaching rivers    

 Nile, Africa 0 13 96 

 Murray, Australia 1 -5 17 

 Orange/Senqu, Africa 7 -9 4 

 Colorado, US 23 33 46 

 Huanghe, China 24 61 73 

 Burdekin, Australia 48 70 82 

 Parnaiba, Brazil 76 94 113 

 Brazos, US 57 64 76 

 Fitzroy, Australia 54 6 26 

 Indus, Asia 58 172 228 

 Sao Francisco, Brazil 105 97 146 

 Niger/Issa Ber, Africa 88 78 92 

 Nelson, Canada 85 52 129 

 Paraná, South America 255 163 228 

 Elbe/Labe, Europe 172 224 243 

 Mississippi, US 204 198 225 

 456 

  457 
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Irrigation water requirements 458 

Spatiotemporal estimates of I0 at 0.05° and daily time step were aggregated to country-level estimates 459 

in km
3
 y

-1
 (Table 2). Also calculated were the coefficient of variation in I0 estimates (CVI0) caused by 460 

the treatment of ‘mixed pixels’ in irrigation mapping, FAO-reported annual W, and the apparent 461 

project irrigation efficiency. Global I0 for 2001–2014 was 680 km
3
 y

-1
 (standard deviation 110 km

3
 y

-
462 

1
). This value is lower than estimates of contemporary irrigation water use reported in the literature of 463 

1092 km
3
 y

-1
 (Döll and Siebert, 2002), 1180 km

3
 y

-1 
(Siebert and Döll, 2010) and 994–1179 km

3
 y

-1
 464 

(Wada et al., 2014). Estimates of I0 listed for seven countries by Döll and Siebert (2002) were all 465 

higher than those found here (Table 2), and even more than double for the USA (112 vs. 48 km
3
 y

-1
) 466 

and Spain (21 vs 5.1 km
3
 y

-1
). Quoted independent estimates were 113 km

3
 y

-1
 for the USA (Solley et 467 

al., 1998) and 15 km
3
 y

-1
 for Spain (J.A. Ortiz cited in Döll and Siebert, 2002).  468 

 469 

Table 2. Irrigation water withdrawal (W) as reported to FAO for the 20 countries with largest agricultural 470 

withdrawals, along with the estimated minimum field-level irrigation requirement (I0), the coefficient of 471 

variation in I0 estimates (CVI0) and the apparent project efficiency (I0 / W). 472 

Country W I0 CVI0 I0 / W  

  km
3
 y

-1
 km

3
 y

-1
 -  -  

India 688 152 0.07 0.22 

China 392 105 0.13 0.27 

United States of America 175 48 0.20 0.27 

Pakistan 172 49 0.01 0.28 

Indonesia 93 14 0.10 0.15 

Iran  86 5 0.22 0.06 

Viet Nam 78 15 0.05 0.19 

Philippines 67 5 0.16 0.07 

Egypt 67 30 0.02 0.44 

Mexico 62 19 0.22 0.31 

Japan 54 4 0.23 0.07 

Iraq 52 5 0.19 0.10 

Thailand 52 16 0.09 0.32 

Uzbekistan 50 11 0.02 0.21 

Brazil 45 16 0.39 0.36 

Turkey 34 6 0.36 0.16 

Bangladesh 32 20 0.08 0.63 

Burma 30 13 0.21 0.43 

Chile 29 2 0.22 0.07 

Argentina 28 5 0.47 0.17 

Global  2,767   680  0.16 0.25 
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 473 

Figure 5Figure 6. Comparison of country-level agricultural water withdrawal (W) (FAO, 2017) and estimated 474 

minimum irrigation requirement (I0) expressed as (a) total volume, and (b) depth per unit area of area equipped 475 

for irrigation for countries with >1 km
3
 y

-1
 withdrawals (N=91). Dotted lines show apparent project efficiencies 476 

between the two quantities. Countries indicated are (in a) Egypt (EG), Pakistan (PK), United States (US), China 477 

(CN) and India (IN), and (in b) Cambodia (KH), Senegal (SN), Mauritania (MR), United Arab Emirates (AE), 478 

Chile (CL), and the Philippines (PH). 479 

 480 

The I0 explains 96% in the variance in W by country (Figure 5Figure 6a), but total variance is 481 

dominated by only four countries, and the area equipped for irrigation explains already explains 86% 482 

of the variance. Volumes were divided by the total area equipped for irrigation to normalise for these 483 

effects. Normalised I0 explained 38% of the variance in normalised W (Figure 5Figure 6b). A high 484 

correlation between the two is not necessarily to be expected, as country-average project efficiencies 485 

will vary (represented by the lines in Figure 5Figure 6b). For example, a low efficiency is inferred and 486 

would be expected in the Philippines, where irrigation is dominated by paddy rice agriculture, 487 

whereas higher efficiencies would be expected in large schemes in arid countries such as Egypt and 488 

Mauritania. Nonetheless, apparent efficiencies are generally lower than would be expected based on 489 

benchmark estimates provided by Bos and Nugteren (1990). For example, using global volumes of I0 490 

and W, a project efficiency of 0.25 is calculated. This is lower than estimates of 0.36–0.43 assumed in 491 

previous studies (Döll and Siebert, 2002; Wada et al., 2014; Siebert and Döll, 2010). Physically 492 

impossible or implausible project efficiencies were also calculated for some countries, including 493 

Cambodia (I0/W >1), and the United Arab Emirates and Chile (I0/W<0.1) (Figure 5Figure 6b). 494 

Possible explanations for this will be discussed. 495 

  496 
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Secondary evaporation and the global water cycle 497 

We estimate that secondary evaporation contributed 41.2 mm y
-1

 or 8.1% to total evaporation from the 498 

global land area during 2001−2014 (Table 3), equivalent to 5.4% of terrestrial precipitation (759 mm 499 

y
-1

) and 16% of generated streamflow (258 mm y
-1

). Globally, only a very small percentage of all 500 

secondary evaporation (5%) was due to irrigation. Overall more important pathways for secondary 501 

evaporation were evaporation from permanent water bodies (48%), enhanced transpiration associated 502 

with wetland vegetation or greater-than-predicted groundwater uptake (27%), enhanced soil 503 

evaporation (11%), and evaporation from ephemeral water bodies (10%). Surface and groundwater 504 

inputs enhance global plant transpiration by an estimated 12.1 mm y
-1

, representing a 4.4% increase. 505 

Of this increase, 10% can be attributed to irrigation. 506 

 507 

Table 3. Estimates of annual primary and secondary evaporation (E in mm y
-1

) components for 2001-508 

−2014 expressed as water depths across the global terrestrial area (149·10
6
 km

2
). 509 

 

Primary E Secondary E Total Irrigation only 

wet canopy E 81.3 − 81.3 − 

transpiration 278.7 12.1 290.8 1.2 

soil E 107.0 4.9 111.9 0.5 

E from ephemeral water − 4.6 4.6 0.3 

E from permanent water − 19.6 19.6 − 

Total 467.0 41.2 508.2 2.0 

 510 

The spatial distribution of evaporation from irrigation areas (Figure 6Figure 7a) and permanent water 511 

bodies (Figure 6Figure 7b) largely reflects the irrigation and water mapping input data, respectively. 512 

The spatial distribution of other sources of secondary evaporation provides some new insights (Figure 513 

6Figure 7c). Globally, some areas with the greatest secondary evaporation volumes include receiving 514 

floodplains in tropical monsoonal regions. The main regions in South America include the Gran 515 

Chaco and Pantanal plains and Amazon floodplains (Figure 7Figure 8). The main regions in Africa 516 

the Southern Interior basin in Botswana and surrounding countries (including the Okavango Delta and 517 

other wetlands), and the floodplains of the White Nile River in South Sudan and the Inner Niger Delta 518 

(Figure 8Figure 9). Other areas with high secondary evaporation rates include the Yucatan peninsula 519 

in Mexico (Figure 7Figure 8), the boreal wetlands and ephemeral lakes of Canada and Scandinavia 520 

(Figure 7Figure 8 and Figure 8Figure 9, respectively), and the salt lakes and floodplains of inland 521 

Australia (Figure 9Figure 10). 522 

  523 
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 524 

Figure 6Figure 7. Spatial distribution of estimated secondary evaporation losses derived from (a) irrigation, (b) 525 

permanent water bodies, and (c) other sources, including wetlands and floodplains.  526 
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 527 

Figure 7Figure 8. Spatial distribution of secondary evaporation losses in the Americas. 528 

 529 
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 530 

Figure 8Figure 9. Spatial distribution of secondary evaporation losses in Eurasia and Africa. 531 

 532 
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 533 

Figure 9Figure 10. Spatial distribution of secondary evaporation losses in Eastern Asia and Oceania. 534 

  535 
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There is a pronounced seasonal cycle in secondary evaporation at global scale (Figure 11). The rate of 536 

secondary evaporation is more than two times higher in northern summer than in northern winter. 537 

This is primarily due to the greater rate of evaporation from the many surface water bodies in 538 

formerly glaciated regions, including the American Great Lakes, as well as a higher rate of 539 

evaporation from the Caspian Sea. By contrast, secondary evaporation in regions located wholly or 540 

partially in the southern hemisphere show a much less pronounced seasonal cycle and a greater 541 

influence of water availability. Averaged over time, each of the regions considered makes a similarly 542 

sized contribution to secondary evaporation globally (10–24%) with the exception of Antarctica 543 

(0.4%). 544 

 545 

 546 

Figure 11. Average (2001–2012) seasonal cycle of secondary evaporation at global scale (black line) and the 547 

contribution from different regions (colours corresponding to the map). All rates are expressed in mm d
-1

 for the 548 

global land area. 549 

 550 

Discussion 551 

Uncertainties in evaporation estimation 552 
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The uncertainty in estimates of secondary evaporation arises from three main sources: (1) estimation 553 

of ‘background’ evaporation E; (2) estimation of surface water evaporation; and (3) estimation of total 554 

evaporation E′ by LST assimilation. A formal assessment of error in each of these terms is not 555 

possible for lack of observations and will vary in space and time. Below we discuss what we expect to 556 

be the main sources of uncertainty in each component. 557 

An error in background model E may be compensated by data assimilation, but still leads to an error 558 

in the estimated secondary evaporation, calculated as E′–E. The main sources of error in E vary as a 559 

function of environmental conditions and the quality and density of the measurement networkon 560 

which the meteorological forcing data are based. In water-limited environments, the most likely 561 

sources of error in E are errors in precipitation estimates and the simulation of water availability in the 562 

root zone. The quality of precipitation estimates is relatively poor in many of the world’s dry regions 563 

(Beck et al., 2017). Information on the ability of vegetation to access deeper soil moisture and 564 

groundwater is important, particularly in ephemerally wet systems, but is not available at the global 565 

scale. In humid environments, the most likely sources of error in E are in the estimation of rainfall 566 

interception losses, the net available energy for evaporation, and surface conductance. As part of 567 

earlier model development, background E was compared with estimates derived from flux tower 568 

observations and compared with alternative ET estimation methods (Yebra et al., 2013; Van Dijk, 569 

unpublishedand supplement to this article). These evaluations showed little if any no systematic bias 570 

in E and a standard difference of 135–168 mm y
-1

 across sites (N=16–168). This total difference also 571 

includes errors in the flux tower-derived estimates (e.g., due to a lack of energy balance closure) and 572 

differences arising because the tower footprint is not representative of the grid cell. Therefore the true 573 

error in our estimates will be lower. 574 

Observation-based estimates of large-area evaporation from water bodies, wetlands and irrigated areas 575 

(i.e. >0.05°) are scarce. Some site measurements of wetland and irrigation evaporation have been 576 

published (e.g., Guerschman et al., 2009) but typically reflect an environment with very high spatial 577 

variation and therefore often cannot easily be compared to estimates at 0.05°. A coordinated effort 578 

that collates observations of secondary evaporation and combines these with historical time series 579 

remote sensing imagery (cf. Figure 1a) to generate estimates at a more representative spatial scale 580 

would appear necessary and valuable. 581 

Errors in the estimation of surface water evaporation are the combined result of errors in the 582 

estimation of open water evaporation rate and the mapping of surface water extent. Open water 583 

evaporation rate was estimated using the Priestley and Taylor (1972) approach. An important 584 

uncertainty in this approach is that it does not account for strong contrasts in near-surface water 585 

temperature. Surface water extent was mapped using 8-day MODIS shortwave infrared (SWIR) 586 

reflectance composites (Van Dijk et al., 2016). Systematic overestimation of water extent can occur in 587 

low relief regions with very low SWIR reflectance (e.g., lava outflowsfields), whereas 588 

underestimation can occur in regions with a dense elevated canopy that prevents water detection (e.g., 589 
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floodplain forests or mature flooded crops). Values of the updated λE′ were constrained to positive 590 

values below or equal to potential evaporation E0, and therefore any gross underestimation of E0 by 591 

the model due to errors in meteorological forcing data would have resulted in an underestimation of 592 

the true evaporation rate.  593 

The LST assimilation mitigates estimation errors in background and open water evaporation but is 594 

also subject to uncertainties of its own. The technique developed here relies on the assumption that 595 

there is a perfect correlation between spatial LST anomalies at the time-of-overpass (around 10 am 596 

local time) and daytime (sunrise-sunset) average values, or at least for the low-relief areas where LST 597 

was assimilated. A systematic bias in the global estimates of governing variables (radiation, air 598 

temperature and humidity, wind speed) are likely to be less problematic than spatially variable 599 

differences in those low-relief areas. In reality, tShere can be spatial differences in the temporal rate 600 

of LST change can arise, for example, as a function of from spatial differences in heat storage 601 

capacity and aerodynamic conductance (Kalma et al., 2008). Furthermore, we assumed a constant, 602 

maximum bias-adjusted error of 1K in the difference between observed and model background LST. 603 

Each of these choices can could have affected the efficacy of the assimilation.  604 

Nonetheless, assessment of temporal patterns in E′ (such as in Figure 1e) and the spatial patterns in 605 

secondary evaporation (Figures 6–9) agree with known areas receiving lateral inflows (e.g., wetlands) 606 

or irrigation. Less expected were the widespread high secondary evaporation rates in the northern 607 

Yucatan peninsula in Mexico and the Southern Interior in Southern Africa. The northern Yucatan 608 

peninsula is a low lying region with karst geology and forest are known to access shallow 609 

groundwater (Bauer-Gottwein et al., 2011). The Southern Interior includes several terminal wetlands 610 

(e.g., the Okavango Delta) and has unconsolidated alluvial deposits that contain productive aquifers 611 

(MacDonald et al., 2012) and it is plausible that at least some of the vegetation has access to deeper 612 

soil moisture or groundwater. In both cases, the background evaporation estimate (E) is constrained 613 

by precipitation and the corresponding simulated presence of soil- and groundwater within the root 614 

zone (E). Any underestimation of E leads to an increased estimate E′–E and therefore an increased 615 

estimate of secondary evaporation, without necessarily implying that all the water involved is derived 616 

from later inflows. An alternative measure of the importance of secondary evaporation is E′–P (Figure 617 

1011). These results suggest that period-average E′ exceeds P by in the order of 100 to 200 mm y
-1

. 618 

For the Southern Interior basin, we found an apparent overestimation of c. 72 mm y
-1

 (Table 1) which 619 

suggests that at least some of this difference is realistic. Underestimation of precipitation may also go 620 

some way towards explaining these differences: both regions are in transitional climates with a 621 

relatively strong, non-orographic precipitation gradient of 900–1400 mm y
-1

 (Yucatan) and 400–1100 622 

mm y
-1

 (Southern Interior), respectively. Combined with a low density of rainfall gauges (Hijmans et 623 

al., 2005), these gradients make a systematic bias in rainfall estimates more plausible. We analysed 624 

global water cycle reanalysis data that integrated GRACE gravity observations in an earlier study 625 

(Van Dijk et al., 2014) for a largely overlapping period (2003–2012) to test this. For the African 626 
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Southern Interior, the reanalysis demonstrated a clear increasing trend in subsurface storage (+12.3 627 

mm y
-1

) that was not reproduced by an ensemble of models (+2.0 mm y
-1

). This suggests that the 628 

global precipitation estimates used by models were indeed too low for this period, as also concluded 629 

by Van Dijk et al. (2014). For the Yucatan peninsula, a slight storage decrease (-3.3 mm y
-1

) was 630 

inferred from the reanalysis, whereas the model ensemble suggested a slight increase (2.7 mm y
-1

). 631 

This does not suggest any underestimation of precipitation. A net use of groundwater does appear 632 

plausible in this case, though likely not enough to explain the secondary evaporation rates estimated 633 

here. 634 

 635 

 636 

Figure Figure 1210. Mean difference between total evaporation and precipitation for 2001–2014 for (a) 637 

Botswana and (b) the Yucatan peninsula, and surrounding areas. 638 

 639 

Uncertainty in irrigation water requirement estimation 640 

The total estimate of minimum irrigation water requirement (I0) at the global scale was about a third 641 

lower than previous model-based estimates (Siebert et al., 2010; Wada et al., 2014; Siebert and Döll, 642 

2010). There are some likely explanations for this. Firstly, the diffuse distribution of areas equipped 643 

for irrigation (Figure 2Figure 3) means that the LST signal from irrigation will likely have been too 644 

small to estimate the associated I0 correctly everywhere. An insufficient LST signal is most likely for 645 

grid cells and countries with a temperate and humid climate and highly distributed irrigation, such as 646 

the US, where our estimate of I0 was twice smaller than published previously. Conversely, irrigation 647 

evaporation estimates should be more accurate in hot, arid regions with large and concentrated 648 

irrigation, such as Egypt’s Nile Delta (Figure 1). The temporal pattern of the evaporative fraction for 649 

this grid cell corresponds well with that of vegetation cover (Figure 1e) and assumes values that 650 
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appear realistic, even more so when considering that only around 80% of the grid cell was irrigated 651 

(Figure 1a).  652 

Second, previous studies have estimated crop water use (and from that, I0) using the FAO method of 653 

Allen et al. (1998). This method assumes a well-growing crop not affected by ineffective or 654 

insufficient irrigation, unfavourable weather, nutrition or soil, pests and diseases, or other growth-655 

limiting factors. The resulting crop water use estimates are likely to represent idealised conditions and 656 

may be higher than actual water use.  657 

Third, errors in irrigation area mapping are also likely to have played a role. It is noteworthy that the 658 

MIRCA2000 mapping used here (Portmann et al., 2010) indicated that 100% of the grid cell in Figure 659 

1a was equipped for irrigation. This is not the case: most unirrigated areas are settlements. Previous 660 

studies will have assumed the entire area was available for irrigation and this difference alone would 661 

cause their I0 estimates for this particular grid cell to be 25% higher. While these numbers relate to 662 

just a single grid cell, it serves to demonstrate that incorrect mapping of irrigation areas can have 663 

considerable impact on our I0 estimates. As another example, any irrigation outside the grid cells 664 

indicated to have at least some irrigable area in the MIRCA2000 mapping would be wholly attributed 665 

to non-irrigation forms of secondary evaporation.  666 

Despite these caveats, it is highly likely that true irrigation water application is greater than our 667 

estimate I0, as it was defined as a hypothetical quantity that might occur under conditions of optimally 668 

efficient irrigation. Previous studies have made similar assumptions. In reality, field-level irrigation 669 

efficiency is reduced by additional drainage below the root zone and any surface runoff that may 670 

occur. Further uncertainties are introduced through the necessary assumptions about rooting depth and 671 

root zone storage capacity. The comparison with FAO-reported W estimates suggests project 672 

efficiencies that are lower than those assumed in previous studies, but the overall correlation between 673 

country I0 and W volumes was high, and could not solely be attributed to differences in irrigated area 674 

(Figure 5Figure 6). A comparison of country I0 and W expressed as area-average rates indicates 675 

contrasts in project efficiency that are expected in several cases. In other cases, values are outside a 676 

plausible range. At least some of these poor estimates are likely related to the mentioned inaccuracies 677 

in irrigation mapping (e.g., Chile and the United Arab Emirates in Figure 5Figure 6b). 678 

Overall, the method developed here shows a promising approach to estimate irrigation water use. 679 

Estimation at an even higher spatial resolution should help to detect the LST signal more accurately 680 

where irrigation areas are dispersed and so produce better estimates of E′. This provides a powerful 681 

argument in support of ‘hyper-resolution’ water balance observation and modelling (Wood et al., 682 

2011). All satellite-derived inputs are available at a resolution that is about an order of magnitude 683 

finer (500–1000 m) than used here, and computationally data assimilation at this resolution is also 684 

already feasible. The main impediment is the resolution and quality of irrigation area mapping, which 685 

is required to attribute secondary evaporation to irrigation and other sources. The E′ estimates 686 
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themselves may assist in mapping, along with information on temporal vegetation patterns, open 687 

water mapping and relief, among others. This is an avenue we hope to pursue in future. 688 

Importance of secondary evaporation in the global water cycle 689 

Our analysis suggests that secondary evaporation makes a meaningful contribution to global 690 

evaporation (8.1%) and reduces the amount of discharge to the oceans by c. 16%. At the global scale, 691 

irrigation is responsible for only a small fraction of this reduction (c. 5%), with the remainder 692 

occurring from water bodies and wetlands. These global averages hide significant regional variation. 693 

For example, irrigation plays an important role in the evaporation of river flows in the Nile, Indus and 694 

Murray-Darling basins, where most of the discharge is evaporated before reaching the ocean. About 695 

half of total global secondary evaporation is from permanent freshwater bodies, including from some 696 

very large water bodies such as the Caspian Sea, the Great Lakes, and the African Rift Valley Lakes.  697 

There is a strong seasonal cycle in secondary evaporation at global scale, driven by evaporation from 698 

extensive surface water bodies in formerly glaciated regions in the northern hemisphere. This 699 

illustrates the profound impact that glaciation has had on regional landscape hydrology, and its 700 

influence at global scale. 701 

We estimated global terrestrial evaporation to be 508 mm y
-1

 per unit land area or 75.5·10
12

 m
3
 y

-1
 702 

total for 2001–2014, made up of 467 mm y
-1

 or 69.6·10
12

 m
3
 y

-1
 primary evaporation and 41.2 mm y

-1
 703 

or 6.1·10
12

 km
3
 y

-1
 secondary evaporation. This is close to estimates derived from previous studies. 704 

For example, Miralles et al. (2016) reported 13 estimates of terrestrial E, derived from a variable 705 

combination of satellite observations and modelling, with an average value of 69.2·10
12

 km
3
 y

-1
 and 706 

coefficient of variation (CV) of ±10%. Schellekens et al. (2017) reported a mean of 74.5·10
12

 km
3
 y

-1
 707 

(CV of ±6%) for an ensemble of 10 state-of-the-art global hydrological models and land surface 708 

models. Some of these differences are attributable to the differences in total area and period 709 

considered, but the different datasets also includes secondary evaporation losses to different degrees. 710 

Given these represent 8% of total evaporation, such inconsistencies help to explain differences 711 

between estimates. 712 

The partitioning between primary evaporation components is within the range of recently published 713 

estimates, though noting that those ranges are broad (Table 4). Secondary evaporation is fully 714 

responsible for open water evaporation and has no impact on wet canopy evaporation; both are a 715 

logical consequence of the way these terms are conceptualised. It is estimated that global transpiration 716 

and soil evaporation are both enhanced by about 4.5% due to secondary evaporation of surface and 717 

groundwater resources. Irrigation is responsible for a tenth of this increase, with the remainder due to 718 

natural processes. Because of the coupling between transpiration and carbon uptake, it can be 719 

assumed that these enhancements will increase global carbon uptake by a similar proportion. Once 720 

again these small contributions apply at global scale, but there are strong differences locally and 721 

regionally. 722 
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 723 

Table 4. Estimated percentage of total (or, between brackets, primary) terrestrial evaporation (E) 724 

contributed by different pathways, compared with estimates from two recent studies. 725 

Percent of total E this study Zhang et al. (2016) Miralles et al. (2016) 

wet canopy E 16 (17) 10 10-24 

transpiration 57 (60) 65 24-76 

soil E 21 (23) 25 14-52 

open water E 4 (0) − − 

 726 

Thiery et al. (2017) simulated the global impact of irrigation using coupled land surface and 727 

atmosphere models. They estimated an evaporation increase from irrigation of 418 km
3
 y

-1
; of similar 728 

magnitude to the 300 km
3
 y

-1
 we found. Despite this small contribution to total global evaporation, 729 

their modelling did predict small but meaningful reductions in high-temperature extremes over and 730 

near large irrigation areas; irrigation rates tend to be highest during hot and dry conditions. To the best 731 

of our knowledge, there have been no studies on the impact of wetlands and water bodies on regional 732 

and global climate so far. Given that we estimate these other forms of secondary evaporation to be 733 

twenty times greater than from irrigation, their impact on the atmosphere should be significant. 734 

 735 

Conclusions 736 

We presented a methodology to assimilate thermal satellite observations into a global hydrological 737 

model W3 at a resolution of 0.05° to estimate secondary evaporation of surface and groundwater 738 

resources. In addition, we used a simple irrigation water balance model to estimate minimum 739 

irrigation requirement (I0) globally. Our main conclusions are as follows. 740 

(1) The method developed produces realistic temporal and spatial patterns in secondary evaporation. 741 

Accounting for secondary evaporation measurably improved water balance estimates for large closed 742 

and open basins, reducing bias in the overall water balance closure from +38 to +2 mm y
-1

.  743 

(2) Our I0 estimates were lower than country-level estimates of irrigation water use produced by other 744 

model estimation methods, for three reasons. Firstly, at the 0.05° resolution, much of global irrigated 745 

land occupies only a small part of individual grid cells and may not reduce LST sufficiently to be 746 

accurately estimated. Second, our I0 estimates reflect actual evaporation, which can be lower than 747 

idealised crop water use estimates used in previous studies. Third, spatial errors in irrigation area 748 

mapping directly affect the attribution of secondary evaporation to irrigation. Overall, actual irrigation 749 

application will most likely be higher than estimated here but possibly lower than reported previously.  750 
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(3) The role of irrigation water use in secondary evaporation is minor at the global scale, accounting 751 

for 5% of total secondary evaporation and 0.4% of total terrestrial evaporation. Nonetheless, water 752 

withdrawals and irrigation evaporation are an important part of the water balance in some regions. 753 

(4) Around 16% of globally generated water resources evaporate before reaching the oceans or from 754 

closed basins, enhancing total terrestrial evaporation by 8.8%. Of this secondary evaporation, 5% is 755 

evaporated from irrigation areas, 58% from water bodies, and 37% from other surfaces.  756 

(5) Lateral inflows of surface and water resources were estimated to increase global plant 757 

transpiration by c. 4.5%. The impact on global carbon uptake would be expected to be of similar 758 

magnitude. Previous studies have predicted that irrigation evaporation affects regional and global 759 

climate. Given evaporation from wetlands and permanent water bodies is an order of magnitude 760 

larger, their impact on the climate system should be pronounced. 761 

There is scope for further improvement in accounting for natural and anthropogenic secondary losses 762 

by applying the model-data assimilation approach developed here at higher resolution. This is 763 

conceptually straightforward and computationally achievable. Key developments required include 764 

more accurate and detailed dynamic observational data on surface water dynamics and more accurate 765 

mapping of areas equipped for irrigation.  766 

Data availability 767 

The 5-km water balance estimates presented here are available via http://www.wenfo.org/wald/data-768 

software/. 769 
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