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Please Note: The reference of all line numbers refers to the revised manuscript 
without marked changes.  

Comment Reviewer 2 (L. Raso) 

 
The manuscript explores and discusses the application of k-Nearest Neighbors (kNN) 
method, a non-parametric machine learning technique, to estimate the predictive 
uncertainty in heteroschedastic streamflow forecasting. The paper is clearly written. It 
comes completed of a internet website where a user friendly interface makes 
application of kNN straightforward. The innovation is well framed in the recent 
literature on predictive uncertainty of heteroschedastic processes in hydrology, giving 
particular attention to comparable methods that estimates predictive uncertainty a 
posteriori. The authors clearly present advantages and limits of kNN with respect to 
other methods. Nonetheless, as already mentioned by the other referee, the limits of 
kNN in extrapolation, presently mentioned only in the conclusion, should deserve 
more emphasis. The manuscript brings a valid and innovative contribution to its field, 
and I suggest its acceptance. There are two issues, however, that could contribute to 
make the case for this methodology in a more convincing way, and some minor 
issues that deserve at least to be mentioned. 
 
The first main issue regards the selection of the k value, i.e. the number of data points 
considered similar to the instance to be estimated. Fixing k is a problem of kNN 
method. In general, when kNN is used for prediction, k is selected in order to 
maximize the predictive capacity, tested by a cross-validation on data. In the 
manuscript the criteria for selecting k is the stabilization of residuals probability 
distribution. Change in residuals distribution is quantified by the cumulative difference, 
defined at Equation (17). The reason why the stabilization of residuals distribution is a 
good criteria for fixing k is not clear. Moreover, this value is monotonic, hence it does 
not offer a clear-cut rule. The authors propose that k is to be selected when shape 
changes, but this rule, differently from what stated ad page 6 line 8, is not fitted to be 
used in an optimisation procedure. The second issue regards the estimation of 
quantiles. kNN use the closest k values to build up an empirical distribution made of 
situations (i.e. data-points) similar to the “true” distribution that one intends to 
estimate. When kNN is applied for regression, the value to be predicted is the 
expected value, then the algorithm takes the average of k nearest data-points. In the 
proposed application instead, the empirical distribution is used to estimate some 
quantiles. Quantile estimation, however, has a different convergence rule than the 
expected value, particularly critical in estimating tails. Convergence rules of empirical 
distribution at quantiles of interest is well described in [1], chapter 21. Error in quantile 
estimation decreases with root square of k, and it is larger for quantiles close to 1 and 
0. Using the 99th value from a set of 100 points as estimator of the 99th quantile may 
not be sufficient in guaranteeing sufficient convergence. Quantile estimation from 
empirical distribution introduce an error that must be considered, or at least 
discussed. 
 

The reviewer puts forth an important aspect of sampling errors due to the 
finitude of samples - the first two moments tend to less prone to errors 
compared to the tail estimates of a distribution. As in this study we use on 99 
samples to generate quantiles corresponding to 5% and 95%, the errors are 
not capped by O(1/(k)0.5). Therefore now the sensitivity of the technique to 
the sample size is didactically shown using two values of k  (99 and 199) - its 
impact on PICP and MPI for Brue catchment. We have extended Figure 9. 
Also, we now mention this dependence on k early on in the manuscript. 
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(page 5/Line 24-29, page 6 line 1-2). We thank the reviewer for bringing our 
attention to an informative piece of literature  on convergence statistics (van 
der Vaart, 1998). We have also added it as a reference in the manuscript.  
 

“Moreover, this value is monotonic, hence it does not offer a clear-cut rule. The 
authors propose that k is to be selected when shape changes, but this rule, differently 
from what stated ad page 6 line 8, is not fitted to be used in an optimisation 
procedure.” 
 
 

 Figure 9.  50% and 90% prediction intervals for Brue catchment using kNN resampling. 

The hydrographs are shown for two different k values (99, 199) and three different input 

variable vectors (Eq. (18), Eq. (19) and Eq. (20) for Input Variable Vector 1, 2 and 3 

respectively). This is the largest event in the validation time series. (50% prediction 
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interval is the interval between 25% and 75% quantiles of residual error, and 90% 

quantile is the interval between 5% and 95% quantiles. MPI and PICP correspond to 

whole validation time series.) 

 
We agree that Eq. 17 is a synthetic index and does not capture many aspects of 
distributional convergence. Nonetheless, the authors used it as a simple 
heuristic tool to agree on a reasonable value of k. The monotonicity of this index 
captures two aspects of the changing distribution. For small values of  k, the 
“Cumulative Difference” changes a lot and then the sampling error decreases. 
However, to incorporate the concerns of the reviewer, we have removed the line 
referring to optimization on k Page 6, Line 16, which could have been 
misconstrued as an optimization exercise for k value carried out in this study. 
Also, as mentioned before, we have added analysis related to  the sensitivity of 
k (Figure 9). We don’t seem to notice worrying changes in the PICP and MPI of 
the Brue catchment when changing k from 99 to 199. However, as expected, 
the MPI does get somewhat bigger. We discuss this dependence explicitly on 
Page 14/Line 20-24. 

 
 
In the discussion on verification index, the authors show that they are aware of 
thelimits in using few indicators. The authors state that "PICP and MPI [...] give a 
reasonable assessment of performance". But this is not further explained. There are 
likely good reasons to select these indicators, but this should be better explained in 
the text, considering also that the application is about flood forecasting. 
 

  The idea of checking PICP at 90 uncertainty bands is a common practice in 
hydrology. However, more tail events might become interesting for design 
problems, then the reliability of the whole error distribution is more interesting 
than the mere computation of PICP and MPI. Taking the advice of reviewer 1, 
we have also added another metric for performance – the Index Alpha (Eq. 
13/14). And the results are presented in Table 2. 

 
 
 In Equation 7, variables are standardized one at a time, losing information about 
covariance. Why not considering variables as a multidimensional distribution, then 
using the covariance matrix to standardise? This would make use of the mutual 
information about variables in a more efficient way. 
 
 

The individual normalization prevents the kNN conditioning to be exclusive to 
the dimension with higher variance. However, as the reviewer points out, there 
can be more advanced ways of normalization, like the usage of covariance 
matric which captures the linear dependence between different dimension of the 
input variable vector. We have not used tested techniques in this research. We 
are aware that better metrics to choose of input variable vector and for the 
normalization can improve the technique significantly. Hopefully in the future we 
can carry out more analysis to better delineate such technique. 
 
 

Other comments 
Page 3, line 24: add "than" after simpler 
 

Exact change made. 
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Page 5, line 12: "uncertainty in observational data is not considered", why can not it 
be included? 
 

Exact change made. 
 
Page 8 line 23: remove extra dot. 
 

Exact change made. 
 
Page 9 line 17: the adverb "just" looks like non necessary. 

Exact change made. 
 
Page 10 line 11: The result description would be easier to follow if the reference to 
the figure was placed at the beginning of this paragraph (from line 19 to line 11). 

Exact change made. 
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Abstract 

A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts 

as a post -processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-15 

based learning, it uses a k-nearest neighbour search for similar historical hydrometeorological conditions to determine 

uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The 

performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: Severn and Brue. 

Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative 

uncertainty estimators: Quantile Regression (QR) and Uncertainty Estimation based on local Errors and Clustering (UNEEC). 20 

Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability 

coverage. Analysis also shows that the performance of this technique depends of the choice of search space.  Nevertheless, 

Tthe accuracy and reliability of these uncertainty intervals generated using kNN resampling are at least comparable to those 

produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post 

processors, like QR and UNEEC, for estimating forecast uncertainty. An advantage of this method is thatApart from  its 25 

concept beingis simple and well understood, an advantage of this method is that  it is relatively easy to implement. and it 

requires little tuning.   

1 Introduction 

Hydrologic forecasts for real-life systems are inevitably uncertain (Beven and Binley, 1992; Gupta et al., 1998; Refsgaard et 

al., 2007). This, among other things, is due to the uncertainties in the meteorological forcing, in the modelling of the 30 

hydrologic system response and in the initial state of the system at the time of forecast. It is well accepted that, compared to 
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a simple deterministic forecast, additional information about the expected degree of accuracy of  that forecast is valuable and 

generally leads to better decision making (Krzysztofowicz, 2001). Various techniques have therefore been developed to 

quantify uncertainties associated with the meteorological model input (van Andel et al., 2013), the initial state of the model 

(Li et al., 2009) and with the hydrologic models themselves (Deletic et al., 2012; Coccia and Todini, 2011). Frameworks and 

guidelines have been developed to incorporate uncertainty analysis of environmental models effectively in decision making 5 

(Arnal et al., 2016; Reichert et al., 2007; Refsgaard et al., 2007). Broadly, there are three basic approaches to uncertainty 

estimation: i) explicitly defining a probability model for the system response e.g. (Todini, 2008), ii) estimation of statistical 

properties of the error time series in the post-processing phase of model forecast e.g. (Dogulu et al., 2015) and iii) methods 

using Monte Carlo sampling of inputs and/or parameters, aimeded at getting a range of quantifying the output 

probabilisticallymodel outputs e.g. (Beven and Binley, 1992; Freer et al., 1996). Many Other uncertainty estimations 10 

techniques may employ a combination of these approaches (Montanari and Brath, 2004; Del Giudice et al., 2013). Some 

techniques focus on one source of uncertainty, such as the model parameter uncertainty (Benke et al., 2008) or the model 

structure uncertainty (Butts et al., 2004), while others focus on combined uncertainties stemming from model parameters, 

model structure deficits and inputs (Schoups and Vrugt, 2010; Evin et al., 2013; Del Giudice et al., 2013). In this context, it 

is important to note that apart from estimating uncertainty of model parameters during calibration, uncertainty estimation for 15 

hydrologic forecasting requires quantification of predictive uncertainty, which includes includes uncertain system response 

additionally to new different combinations of model input parameters (Renard et al., 2010; Coccia and Todini, 2011; Dotto 

et al., 2012). 

 

In this paper, we will restrict ourselves to the class of uncertainty estimators  called post -processors. These methods usually 20 

do not discriminate between different sources of uncertainty. They “aggregate” all sources into a so-called residual 

uncertainty. Post-processing methods assume the existence of a single calibrated model with an optimal set of model 

parameters, and build a statistical or machine learning model of the residual uncertainty. Typically, these techniques relate a 

combination of model inputs and/or outputs to the model error distribution. Various post  processors have been developed 

and applied to hydrologic modelling, such as a meta-Gaussian error model (Montanari and Brath, 2004), Quantile 25 

Regression (Weerts et al., 2011), UNEEC (Solomatine and Shrestha, 2009), Quantile Regression (Weerts et al., 2011), and 

DUMBRAE (Pianosi and Raso, 2012). Quantile Regression (QR) is a relatively straightforward post-processing technique 

that relates the probability of residual errors to the model forecast (the predictand) by a regression model that is derived from 

historical forecasts and observations. QR has been successfully applied for uncertainty quantification in hydrologic forecasts 

with various modifications (Weerts et al., 2011; Verkade et al., 2013; Roscoe et al., 2012; López López et al., 2014; Hoss 30 

and Fischbeck, 2015). Whereas, UNEEC involves a machine learning technique for building a non-linear regression model 

of error quantiles (Solomatine and Shrestha, 2009). UNEEC includes three steps: 1) Fuzzy clustering of input data in the 

space of “relevant” variables; 2) Estimating the probability distribution function of residual errors for each cluster and 3) 

building a machine learning model (e.g. an artificial neural network) of the prediction interval for a given probability 
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(Dogulu et al., 2015). Many other uncertainty estimation techniques, such as DUMBRAE (Pianosi and Raso, 2012), HUP 

(Krzysztofowicz, 1999), Model Conditional Processor (Coccia and Todini, 2011), Bayesian revision (Reggiani et al., 2009) 

and Bayesian Model Averaging (Raftery et al., 2005) make explicit assumptions about the nature of the probability 

distribution function of error. This is not necessary for QR and UNEEC (Lopez et al., 2014; Dogulu et al., 2015). 

Nevertheless,  in QR and UNEEC assumptions need to be made about the form of the regression function that is used to 5 

calculate the quantiles.   

 

In an attempt to explore the utility of easier-to-implement post-processing techniques, we employ a simple non-parametric 

forecast method for residual uncertainty quantification. This method uses kNN search to learn about the past residual errors,  

which avoids having to make explicit assumptions about the nature of the error distribution and tuning of distribution 10 

parameters. Instance-based learning has been used in meteorology and hydrology before for resampling of precipitation and 

streamflows, most notably by Lall and Sharma (1996), who used the k-nearest neighbour (kNN) method for resampling of 

monthly streamflow sequences.  kNN search has also been used in a non-parametric simulation method to generate random 

sequences of daily weather variables (Rajagopalan and Lall, 1999). They defined a weighting function for probability where 

the predictand is resampled from k values. Jules and Buishand (2003) used nearest-neighbour resampling to generate multi-15 

site sequences of daily precipitation and temperature in the Rhine basin. Also, instance-based learning has been used as a 

data-driven model for hydrologic forecasting (Solomatine et al., 2008;Solomatine and Ostfeld, 2008). Beckers et al. (2016) 

use nearest neighbour resampling to generate monthly sequences of climate indices and related precipitation and temperature 

series for the Columbia River basin. Specifically in the context of error modelling, a version of UNEEC that uses kNN 

instance-based learning as its basic machine learning technique to predict the residual error quantiles, was compared to the 20 

original ANN-based UNEEC in Shrestha and Solomatine (2008). However, kNN can be also used without the complicated 

UNEEC procedure that includes fuzzy clustering. The application of kNN has also recently been tested for forecast updating 

by constructing a deterministic error prediction model (Akbari and Afshar, 2014). Similarly, it has been shown that model 

errors can be resampled using kNN, after explicitly accounting for input and parameter uncertainty, to generate uncertainty 

intervals (Sikorska et al., 2015). In this paper we extend the simplification of kNN resampling for uncertainty estimation. We 25 

present an application of the kNN method to generate residual uncertainty estimates for a predictand, using a fixed time 

series of input and fixed model parameters, and explore if this approach, being simpler that many other uncertainty 

quantification approaches mentioned above, is a useful or even a better alternative.  

 

To demonstrate its use, we employ a relatively simple configuration of kNN resampling to produce uncertainty intervals for 30 

hydrologic forecasting. The next section explains the method in more detail and describes the validation procedure, i.e. the 

performance indicators. INext, in section 3, the method is applied to two case studies, each with a different system response 

(discharge and water level). The performance of kNN uncertainty estimation as a function of forecast lead time is analysed in 

the first case study. Second case study is used to further validate the performance of kNN uncertainty estimation and analyse 
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its sensitivity to the choice of search space and the value of k. Also, the influence of systematic bias in the hydrologic model 

on the uncertainty intervals generated by kNN search is explored in the second case study. For both case studies, 

performance indices of kNN resampling are compared to those of QR and UNEEC. And finally in section 4, we discuss the 

usability of kNN search as a post-processor uncertainty estimator in hydrologic forecasting.  

2 Method 5 

2.1 kNN error model  

The kNN residual uncertainty estimator can be seen as a zero
th

 order local error quantile model built from a kNN search. Let 

us define a vector v in n-dimensional space of variables (the search space) on which the residual uncertainty is assumed to be 

statistically dependent.  

𝒗 = [𝑣1, … , 𝑣n] (1) 

The cumulative probability distribution function C of residual errors at prediction time-step t conditioned on 𝒗 = 𝒗t  is 10 

defined as: 

𝐶t(𝑒|𝒗 = 𝒗t) = 𝑃t(𝐸 ≤ 𝑒|𝒗 = 𝒗t) (2) 

Where P is the probability function and E denotes the random variable for residual errors. Residual error is defined 

throughout this paper as the difference between the simulated values and the observed values for a hydrologic quantity 

system response 𝑓, like discharge or water level. 

𝑒 = 𝑓simluated − 𝑓observed (3) 

We are making the assumption of stationarity in time so that past error distributions are representative of the future: 15 

𝐶t(𝑒|𝒗 = 𝒗t) = 𝐶p(𝑒|𝒗 = 𝒗t)  (4) 

The subscript p denotes historical time series. Therefore 𝐶p is the cumulative distribution function of residual errors from the 

past. In Eq. (4), 𝐶p  is being conditioned to the input variable vector  at time t. Nevertheless, as we only have single 

realizations of the error variable E for each historical point, we relax the constraint of 𝒗 = 𝒗t.  Instead, we assume that the 

nearby neighbours of 𝒗t in n-dimensional space will have a similar probability distribution of errors as 𝒗t and that these 

historical errors are samples from 𝐶p(𝑒|𝒗 = 𝒗t). An empirical probability distribution can thus be constructed using the kNN 20 

historical errors: 

𝐶t(𝑒t|𝒗 = 𝒗t) ≈  𝐶p(𝑒|𝒓p ≤ 𝒓k)  (5) 

where 𝒓p is the Euclidean distance in n-dimensional space of input variables.  

Formatted: Font: Italic
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𝒓p = |𝒗p − 𝒗t| =  √[∑(𝑣p
i − 𝑣t

i)2

n

i=1

]  

(6) 

𝒗p is the input variable vector of the past data point in the cloud of such past data points 𝒗 (Figure 1)and 𝒓k is the distance to 

the k
th

 nearest neighbour of 𝒗t. Choice of the input variable vector is a problem in itself since it should include only the most 

relevant variables that determine the forecast uncertainty. In this study, the input variable vector is chosen based on 

correlation between the candidate variables and the past errors. If the correlation between the error time series and a 

particular candidate variable is relatively high, then it can be included in the input variable vector space. Other, more 5 

sophisticated methods involving the mutual information can be used as well (Fernando et al., 2009). This will be exemplified 

in the case studies described in the next section. To represent relative importance of input variables used in the search, 

dimensions of the input variable vector space can be suitably weighted in. Also, the model-based methods can be used 

wheren the models are built for each considered candidate input variables set considered and the choice is made based on 

their relative performance. These, however, were not explored in this study; it rather focused only on the usability of k 10 

nearest neighbourkNN search in its most basic implementation for uncertainty quantification. Nevertheless, we do 

demonstrate the sensitivity of the uncertainty intervals on the choice of input variable vector.  

 

In order toTo level variables with different magnitudes, they are normalized. If 𝜎i represents the standard deviation of input 

variable iI calculated using the past data, then: 15 

𝒓p =  √[∑
(𝑣p

i − 𝑣t
i)2

𝜎i
2

n

i=1

]  

(7) 

Once, the input variable vector space is decided, the probability of non-exceedance of a forecast error is calculated 

empirically by sampling from the conditional error distribution:  

𝐶t(𝑒t|𝒗 = 𝒗t) ≈  𝐶p(𝑒|𝒓p ≤ 𝒓k) = 𝑗/𝑘 (8) 

where 𝑗 is the rank of value e (for which the probability of non-exceedance is being computed) in the ascending array of k 

error values. The kNN search is thus employed to generate a sample and to build an empirical error distribution for this 

predictive uncertainty quantification. Such a mathematical description does not employ explicit regression models for 20 

predicting quantiles, which can be seen as a disadvantage in extrapolating outside available data. Also, Aas thise 

configuration of kNN used in this research generates residual error quantiles, which capture the mismatch between 

measurement values and simulated values, the uncertainty in observational data is not considered. The generated quantiles 

are aimed to capture the measured system response and do not attempt to capture the true response of the hydrologic system. 

 25 
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As one would expect, due to the nature of our sampling approximation (Eq. (8)), the number of nearest neighbours, k, will 

affect the empirical conditional probability distribution of errors. If k is very large, many data points that are quite distant 

from 𝒗t (Figure 1) will be selected and the conditioning on the current forecast situation will not be valid. Large values of k 

will thus yield error distributions with larger uncertainty intervals - resembling the marginal error distribution. If k is small, 

the set of k errors will be small and subject to sampling error, so this set will not adequately represent the uncertainty 5 

distribution at 𝒗t.  The tail of a distribution is more prone to sampling errors compared to its mean. Thus, to attain an 

acceptable degree of convergence, many more samples are required for quantiles corresponding to bigger  prediction 

intervals (van der Vaart, 1998). For improved performance, the value of k can be subject to optimisation of some cost 

function: the optimal value of k could be the one that enables a reasonable estimate of the uncertainty quantiles and 

additionally we may require that the sensitivity of the error distribution to k is small. In this study, we carry out such 10 

optimization using quite a simple heuristic guideline - the value of k is varied until the probability distribution of errors 

stabilizes and becomes less sensitive on the value of k for a few model predictions. This will be We also demonstrate the 

sensitivity of uncertainty intervals to the value of k d by an example in one of the case studies.  The choice of this relatively 

simple procedure for error quantile generation using kNN resampling is a reasonable starting point to assess its potential for 

residual uncertainty. This study explores the potential of uncertainty estimation using kNN in as simple a way as possible. 15 

And then compare its performance to two other residual uncertainty estimators. More advanced application of kNN, for 

example using fuzzy weights and kNN sampling to assign prediction intervals (Shrestha and Solomatine, 2008) or through 

explicit consideration of uncertainty in parameter and input by sampling them from their distributions, has been successfully 

shown (Sikorska et al., 2015). 

 20 

 To summarize, the steps for uncertainty quantification using kNN resampling are as follows: 

1. Compose the input variable vector space (𝒗) on which uncertainty will be conditioned. Correlation analysis can 

help find the most relevant variables. 

2. Set the number of neighbours k. (It can be identified by optimization as well).  

3. For a forecast at prediction time-step t, identify the set of k nearest neighbours to the input vector 𝒗t. This set 25 

represents the hindcasts (forecasts in retrospect) most similar to 𝒗t.  

4. Use the residual errors from these k points to build an empirical error distribution for the forecast at time-step t.  

5. Finally, identify the errors corresponding to the required quantiles (probabilities of non-exceedance) from this 

empirical distribution (In this paper, we use 5-95% and 25-75%  quantiles).  

 30 

2.2 Validation methods 

Two Three statistical measures have been employed in this study to check the effectiveness of uncertainty estimation 

techniques, namely Prediction Interval Coverage Probability (PICPPI) and , the Mean Prediction Interval (MPIPI) (see, e.g. 
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Shrestha and Solomatine 2008; Dogulu et al., 2015) and Index Alpha (Renard et al., 2010). PICPPI represents the percentage 

of observations (C) covered by a prediction interval (PI) corresponding to a certain probability of occurrence (in our case 

90% and 50%).  

PICPPI =
𝑁in

𝑁obs

× 100%     
(9) 

where 𝑁in is the number of observations located within the PI and 𝑁obs  is the total number of observations. These metrics 

are calculated using the following equations: 5 

PICP90 =
1

n
∑ 𝐶90

n

i=1

× 100%,   PICP50 =
1

n
∑ 𝐶50

n

i=1

× 100%     
(10) 

         𝐶90 = {
1,            if  𝑞i,0.05 ≤ 𝑞i ≤ 𝑞i,0.95

0,                                              else
} , 𝐶50 = {

 1, if  𝑞i,0.25 ≤ 𝑞i ≤ 𝑞i,0.75

0,                                      else
}    

(11) 

PICP50 =
1

n
∑ 𝐶50

n

i=1

× 100%   
(12) 

𝐶50 = {
1,            if  𝑞i,0.25 ≤ 𝑞i ≤ 𝑞i,0.75

0,                                               else
}    

(13) 

where qi,0.95 and qi,0.05 are values with 95% and 5% probability of non-exceedance at time i. Thus the region bound within 

these two values will have a confidence interval of 90%. Similarly, 𝑞i,0.75 and 𝑞i,0.25 represent the boundaries for 50% C. 

The MPI is the average width of the confidence intervals corresponding to a particular probability. It is a measure of the 

magnitude of the uncertainty.  

MPI90 =
1

n
∑(

n

i=1

𝑞i,0.95 − 𝑞i,0.05), MPI50 =
1

n
∑(

n

i=1

𝑞i,0.75 − 𝑞i,0.25)    
(124) 

 

We also quantify the reliability of the predicted error quantiles by comparing it to the observed error quantiles. The 10 

mismatch between the observed (𝑞obs,j) and predicted (𝑗/100) error quantiles can be summarized by the Index Alpha (α).  

  α′ =
1

100
∑ |

100

j=1

𝑞obs,j − 𝑗/100| 
(13) 

 

 

α = 1 − 2α′  (14) 
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There have been discussions whether an isolated verification index can capture all the aspects that make a probabilistic 

forecast good or bad (Laio and Tamea, 2007).  The choice of a verification index for an uncertainty estimation technique 

should also be dependent on the purpose of hydrologic forecast. For example, Coccia and Todini (2011) evaluate the 

performance of Model Conditional Processor for flood forecasting using the predicted and observed probability of 

exceedance over a threshold. Also, in their study predicted error quantiles are compared to observed error quantiles. López 5 

López et al. (2014) and Dogulu et al. (2015) use PICP and MPI, among other verification measures, to access the 

performance of QR and UNEEC. This study will limit the comparison of kNN resampling with other techniques to PICP and 

MPI only, which give a reasonable assessment of performance. Nevertheless, it does not preclude the possibility that the 

uncertainty estimation techniques perform differently if evaluated using other indices. 

 10 

3 Case studies 

The performance of kNN resampling was evaluated by applying the technique to hydrological forecasting for several 

catchments in two different parts of England. The two case studies provide two different hydrologic conditions for testing 

and include different models for prediction. Also, different kinds of system responses are being predicted in the two case 

studies – water level and discharge. The accuracy of the quantified prediction intervals was deduced by using validation data 15 

sets. Also, the first case study was used to evaluate the impact of changing lead time on uncertainty of hydrologic models 

and its quantification using kNN resampling. 

3.1 Upper Severn catchment  

3.1.1 Catchment description 

Upper Severn region is located in the Midlands, UK (Figure 2). River Severn, with a total length of 354 km, is the longest 20 

river in the UK. Its course acts as a geographic delineation between England and Wales, finally draining into the Bristol 

Channel. The overall River Severn catchment area is 10,459 km
2
. Around 2.3 million people live in this region. The area is 

predominantly rural, but there are also a number of highly urbanized parts. The area covering the upper reaches of River 

Severn, from its source on Plynlimon to its confluence with the River Perry upstream of Shrewsbury in Shropshire, is called 

the Upper Severn catchment. The Upper Severn catchment is predominantly hilly. It is dominated on the western edge by the 25 

Cambrian Mountains and a section of the Snowdonia National Park (River Severn CFMP. EA, 2009). 

 

 

 

The Severn catchment has a diverse geology. The headwaters of the River Severnriver rise on Silurian mudstones, siltstones 30 

and grits and flow eastwards over these same rock formations.  These rock formations do not allow water to flow easily 



9 

 

through them. Therefore they are classified as non-aquifers with only limited potential for groundwater abstraction. Further 

west, in the Middle Severn section, the River Severn encounters sandstones, which are classified as a major aquifer and are 

highly permeable, highly productive and able to support large groundwater abstractions (River Severn CFMP. EA, 2009). 

The climate of the Severn catchment is generally temperate, experiencing modest to high precipitation dependingent on 

topography. Welsh Mountains can receive over 2,500 mm of precipitation per annum, whereas the rest of the catchment 5 

receives rainfall similar to the UK average - less than 700 mm per annum. The test forecast locations used in this study are 

Llanerfyl, Llanyblodwel and Yeaton. Table 1 lists the basin and hydrological information for these subcatchments (López 

López et al., 2014).  

 

3.1.2 Experimental setup 10 

Flood forecasting system for River Severn is organized in a sequential manner, being composed of a number of separate 

systems that are effectively linked. This forecasting system works with a high degree of automation and efforts have been 

made to involve a minimum amount of human intervention. . UK Environment Agency uses Midlands Flood Forecasting 

System (MFFS) to do flood forecasting and to help in warning operation. MFFS in turn is based on Delft-FEWS, Flood 

Early Warning System) platform (Werner et al., 2013). Within MFFS, there are lumped numerical models for rainfall-runoff 15 

(MCRM; Bailey and Dobson, 1981) and models for hydrologic (DODO; Wallingford, 1994) and hydrodynamic routing 

(ISIS; Wallingford, 1997). The rainfall input for MFFS is acquired from ground measurements via rain gauges, from radar 

measurements or from numerical weather prediction data. MFFS predict ahead in time the response of the Upper Severn 

subcatchments but, as expected, the quality of forecast deteriorates with increasing lead time.  

 20 

To do uncertainty analysis for MFFS, hindcasting or reforecasting is done and then simulations results are compared to the 

observed data. All the input time series used for hindcasting is taken from measured data. In this study, the reforecasting 

period was kept equal to that the one employed in the studiesy of (López López et al., (2014) and (Dogulu et al., (2015). The 

chosen period is from 1 January 2006 through to 7 March 2013. Data in the period till 6 March 2007 is used for the model 

spin up. The remaining period is used for the calibration and validation of the uncertainty estimation techniques. Forecasts 25 

are made on a 12 hourly basis – at 8:00 and 20:00 daily, up to a lead time of 48 hr. kNN resampling was applied for forecasts 

at 10 different lead times: 1, 3, 6, 9, 12, 18, 30, 36, 42, and 48 hr. To choose an input variable vector for kNN resampling, 

correlation analysis was done between residual error and contenders for input variable vector space, namely simulated water 

level (𝐻sim), measured water level (𝐻𝑜𝑏𝑠) and residual error (E𝑜𝑏𝑠)  from various time steps t. The analysis was done to 

assist in a manual selection of input variable vectors. The correlation between residual error and water level reduces fast with 30 

time lag between the two time series. Therefore it is enough to choose relatively simple and small dimensional input variable 

vector spaces. For lead times, 𝑙, up to 6 hours we chose: 
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𝒗 =  [𝐻t
sim, 𝐻t−l

obs, 𝑒t−l
obs]  (15) 

For higher lead times, uncertainty has only been conditioned on H𝑡
𝑠𝑖𝑚 as the residual error becomes less and less correlated 

with variable values at measured several hours behind the prediction time. 

𝒗 =  [𝐻t
sim]  (16) 

 Ninety nine values of residual errors were sampled from the nearest neighbourhood to generate an empirical distribution at 

each prediction step. This allowed us to get the ‘resolution’ of 1 percentile in the generated empirical distribution.  To 

develop confidence in the chosen value of k, we checked for a few prediction steps how sensitive the generated empirical 5 

distribution is to the value of k.   Four different instances of  𝐯𝐭 were chosen. Each instance represents a prediction step in the 

input variable vector space (the red circle in Figure 1), with different hydrologic conditions. The plots of the cumulative 

mean square difference between pdfs of varying k were generated. Cumulative mean square difference (Eq. (17)) just serves 

as an index to show how much the empirical pdfs change with changing k. We get a decreasing slope with increasing k. It 

shows that the pdfs become almost identical for values of k around 100.  If Pki
(e) is the probability density for a residual 10 

error e calculated through ki nearest neighbours using kNN resampling, for probability functions corresponding to discrete 

bin size  ∆e, the cumulative difference is defined as:  

Cumulative Difference =  ∑ ∑ [∆𝑒 ∙ 𝑃ki+1(𝑒) − ∆e ∙ 𝑃ki−1
(𝑒)]2

last e bin

first e bin

ki=k

ki=10

 

(17) 

The various values of ki that were tested are -10, 30, 50, 70, 90, 100, 110, 130 and 150.  Using the information from Figure 

3, a value of k = 99 does not seem to be heavily effected by sampling errors. Nevertheless, it is not a mathematically 

calibrated value of k and therefore is likely to be sub-optimal. However, it should still be able to provide reasonably 15 

representative samples from the error distribution, as is suggested by Figure 3.  

  

 

 

3.1.3 Results  20 

Figure 4 shows two hydrographs for the same event, where model predictions were made at different lead times. From the 

graph of lead time 48 hr it is evident that the error quantiles that kNN resampling produces are not forced to have zero mean. 

Therefore the model prediction can sometimes lie outside the predicted quantiles. This is because kNN resampling learns 

from past instances where the model has consistently under or overpredicted the flow, so it corrects for this bias. The 

hydrographs capture the low flows and the peaks well. It can also be seen that for high flows the errors are usually higher 25 

than for medium and low flows. The residual error distribution is thus heteroscedastic, i.e. the variance depends on the 

magnitude of the predicted flow. The autocorrelation can be checked by plotting errors versus time. Whereas performance of 
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an error model with regard to heteroscedasticity can be estimated by plotting reliability diagrams for different magnitudes of 

flow, which would mean different water levels in this case.  

 

The plotting of error time series (Figure 5).  for various lead times shows some recurring trends across all the three 

subcatchments. The errors are small for small lead time forecasts and the spread of error time series increases with increasing 5 

lead time. Moreover, the errors do not look to be autocorrelated for smaller lead times, whereas for the higher lead times 

autocorrelation becomes more prominent. This can be ascribed to the memory of the hydrologic system. If the system 

response is higher than what the model simulates for a particular lead time, then the system response is likely to be higher for 

the next time step as well. As the errors become larger, they tend to lose their independence property. This is captured by the 

error samples generated by kNN resampling as well. The rate at which autocorrelation deteriorates for observed residual 10 

errors corresponds well to the kNN resampling error samples’ autocorrelation. (Figure 5).  It can be seen that kNN 

resampling preserves the autocorrelation in the error time series without using an autoregressive model.   

  

To check the performance of kNN resampling for various flow magnitudes, the simulation values were divided into low and 

high flows - the lowest and the highest 10 percent of water levels simulated in the validation phase respectively. The 15 

reliability diagrams (Figure 6) shows that the overall performance of error quantiles for all water levels is good for low and 

medium lead times. The reliability decreases with high lead times (24 hr and above). The reliability plots show that kNN 

resampling performs better for high flows compared to lows flows, even for higher lead times. For lows flows and high lead 

times, the forecast probability of non-exceedance is higher than the observed relative frequency. Nevertheless, from 0.90 

probability of non-exceedance and above, the reliability curve comes back to the desired 45
0
 line.  For flood forecasting it is 20 

important to model the high and medium flows well. kNN resampling delivers quite reliable quantiles for such flow regimes. 

The deteriorating model performance with higher lead times gets reflected in the performance of kNN resampling quintiles 

as well.  

 

To assess the performance of kNN resampling relative to other established post- processor uncertainty estimation techniques, 25 

comparisons with QR and UNEEC have been carried out. The results for QR have been taken from  López López et al. 

(2014) and the results for UNEEC – from Dogulu et al. (2015). QR results for uncertainty estimation were available for the 

all the lead times as done using kNN resampling, and, from UNEEC, – only for lead times of  1, 3, 6, 9, 12, and 24 hr. 

Values of PICP and MPI are shown in Figure 7, together with results from UNEEC and QR. The Alpha Index (α) is reported 

for several lead times in Table 2. As expected, the mean prediction interval (MPI)MPI of all the uncertainty estimation 30 

techniques increases with increasing lead time. Comparison between kNN resampling and QR has been made for 3 locations 

and, 10 lead times in the validation period. Model simulations were run two times each day. Verification indices for 

uncertainty analysis were calculated separately for each lead time and each location.  Considering 90% and 50% quantile as 

two prediction intervals, this allowed for the evaluation of PICP and MPI 60 times (Figure 7). kNN resampling has higher 
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PICP in 67% of the cases and a smaller MPI for 73% of the cases. A comparison between kNN resampling and UNEEC was 

made for 3 locations and, only 5 lead times for the validation. For each location and each lead time, the 90% and 50% 

quantiles were generated, which allowed for the evaluation of PICP and MPI 30 times (Figure 7). The PICP of kNN 

resampling is higher in 60% of the cases and the MPI is smaller in 36% cases. Based on these results we concluded that, for 

this case study, kNN resampling generally produces narrower confidence bands and provides a better coverage of the 5 

probability distribution than the other methods in the majority of forecasts, especially showing better performance for the 

larger lead times. 

 

3.2 River Brue 

3.2.1 Catchment description 10 

River Brue, located in the south west of England, has a history of severe flooding. The test forecast location used in this 

study is Lovington, where the upstream catchment area is 135 km
2
 (Figure 8). The catchment is predominantly rural and the 

soil consists of clay and sand. This kind of soil and the modest relief give rise to a slowly responsive flow regime. The mean 

annual rainfall in the catchment is 867 mm, the mean river flow is 1.92 m
3
/s. and has a maximum flow of 39.58 m

3
/s. This 

catchment has been extensively used for research on weather radar, quantitative precipitation forecasting and hydrologic 15 

modelling.  

 

3.2.2 Experimental setup 

For Brue catchment the simplified version of the HBV rainfall-runoff model has been used (Bergström, 1976). HBV-96 

model is a lumped conceptual model (Lindström et al., 1997).  Like most other conceptual models, HBV consists of 20 

subroutines for snow accumulation and melt, soil moisture accounting and surface runoff, and employs a simple routing 

scheme. The input for the HBV model consists of precipitation (basin average), air temperature and potential 

evapotranspiration (estimated by modified Penmann method using automatic weather data available). Historical input data is 

available for a period of 1994-1996. Predictions are only made for 1 hr lead time. Uncertainty analysis is done for a chosen 

period from the 24th June of 1994 through to 31st of May 1996. Hindcasts were made on a daily basis, using a warm state 25 

from a historical run. The hindcasts were split into calibration and validation set at 24
th

 June 1995 for the uncertainty 

estimation techniques. The calibration data set was used to calibrate (train) UNEEC and QR, whereas and for the kNN 

resampling of errors using kNN algorithm. was allowed to learn only from this same calibration data setThe resampled errors 

were used to estimate prediction intervals for the vectors predictions from the validation data set. Each of the two data sets 

represents almost a full year of observations. Three input variable vectors wereas chosen based on the results of correlation 30 

analysis, from simple to complex. This allows to study the dependence on the choice of search space. Input variable vector 
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(ivv) 3 for kNN resampling and UNEEC is same for this comparison, whereas, QR only uses Qsim To make an appropriate 

comparison, the same variables have been used for kNN resampling as used for UNEEC in (Dogulu et al., 2015). The three 

input variable vectors isused are: 

𝒗(ivv1) =  [ 𝑄t
𝑠𝑖𝑚  ] (18) 

 

𝒗(ivv2) =  [ 𝑄t
𝑠𝑖𝑚 , 𝑒t−1

obs ] (19) 

 

𝒗(ivv3) 𝒗 =  [𝑅t−8
obs, 𝑅t−9

obs, 𝑅t−10
obs  , 𝑄t−1

obs , 𝑄t−2
obs , 𝑄t−3

obs , 𝑒t−1
obs , 𝑒t−21

obs ] (2018) 

 

where R is the effective rainfall, 𝑄 is the discharge and e is the residual error. Considering t as the prediction time, then the 

subscript of the various input variables represents the time and the superscript sim and  obs means they are simulated and 5 

observed values respectively.  The number of nearest neighbours was chosen to be 99 and 199,  to analyse its influence on 

uncertainty quantificationafter a similar manual calibration procedure as for the Upper Severn case study..  Uncertainty 

analysis was done for a calibrated HBV model as well as a model with a unit systematic bias. The bias was introduced to the 

simulation results of the calibrated model by simple addition. The aim of a biased model for uncertainty quantification using 

kNN resampling is to assess the performance of kNN resampling when the residuals are not zero mean.  10 

 

3.2.3 Results  

kNN resampling was applied to a single historical simulation and compared to observations. The simulated hydrographs for 

two eventshighest discharge event with 50% and 90% prediction intervals are shown in Figure 9. The residual distribution of 

kNN resampling is generally non-zero mean. Therefore we see that the prediction intervals may sometimes deviate from the 15 

deterministic model prediction quite significantly. The ability of kNN resampling to search for similar hydrologic conditions, 

like rainfall, and discharge in the past, and learn from the residuals, allows it to make more representative error distributions. 

For example, in Figure 9, the falling limb of hydrograph in event 2 shows that the prediction band generated by kNN 

resampling captures the observed flow almost perfectlyfor input variable vector 2 and 3, even though the model shows a 

noticeable mismatch with the measurements. This can be explained by considering the history of errors that the model made 20 

during such hydrologic conditions in the past. And as kNN resampling learns that the model consistently underestimates in 

such cases, the corresponding error distribution corrects for this bias.  The results of the PICP and MPI are shown in Ttable 

32 together with results from UNEEC and QR (Dogulu et al., 2015).  As can be seen from the table, kNN resampling’s 

performances is comparable betterto  that nof the UNEEC and QR for this case study. The prediction intervals generated by 

kNN resampling are smaller, compared to the other two uncertainty estimation techniques, while the coverage probability is 25 

similar. It indicates that kNN resampling is able to learn well from past data and condition the probability of residual errors 

well. The Alpha Index for the validation phase is also high (0.96). It is also noticed that three different input variable vectors 

Formatted: Font: Italic
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show different degrees of performance (Figure 9). The past errors, 𝑒t−1
obs, seem to be informative in this case, providing very 

narrow conditional error probabilities. 

 

Apart from evaluating the usability of kNN resampling for calibrated models, the performance of kNN resampling quantiles 

generated by kNN resampling for a model with systematic bias was also checked. Figure 10 shows that the performance of 5 

kNN resampling does not diminish under systematic bias. The reliability of the generated quantiles remains almost unfazed. 

As a systematic bias will not affect the autocorrelation structure of the residual errors, the autocorrelation of error samples 

generated through kNN resampling also remains unchanged. Nevertheless, we see a shift in the mean of the sample time 

series, which is roughly equal to unity.  The reliability of quantiles generated using kNN resampling for high flows (highest 

10% in the validation period) is pooreras good  thanas for all flows. Thus kNN resampling maintains its accuracy for flow 10 

regimes that are of interest in flood forecasting, like it did for Upper Severn catchments. The invariance of kNN resampling 

performance to model bias and high predictand magnitudes of makes it a robust post- processor uncertainty estimation 

technique, however, unlike in the case of Upper Severn subcatchments, the technique’s performance  diminishes for high 

flows. .   

  15 

4 Discussion and conclusions 

The application of kNN resampling to two cases studies shows that the forecast uncertainty intervals are relatively narrow 

and still capture the observations well. The expected increase of uncertainty for longer lead times is also reproduced well and 

the probability coverage of kNN resampling remains good as verified from historical observations. This is in accordance 

with previous research (Sikorska et al., 2015). The error samples generated by kNN resampling reproduce two important 20 

characteristics of residual errors in hydrologic models namely autocorrelation and heteroscedasticity.  Also, for applications 

to flood modelling, the high flows are most important and the uncertainty quantification by kNN resampling for both case 

studies, Upper Severn and Brue, shows reasonable reliability for this high flow regime. For Brue, the performance is poorer . 

This can be attributed to the inadequacy of  representative high flows in the calibration phase in combination with the choice 

of the input variable vector. The highest flow is calibration time series is 15.4 m
3
/s whereas in validation time series it is 29.9 25 

m
3
/s. Moreover, iIt is also shown that the technique is generally robust to the performance of the underlying deterministic 

model. If the model has systematic biases, kNN resampling learns from the past errors of the model and recreates the 

systematic bias in the empirical error distributions mean, thus maintaining the performance of prediction intervals. Our 

results on systematic error correction by kNN resampling substantiate the findings from previous research on forecast 

updating using kNN (Akbari and Afshar, 2014). These findings from this study are confirmed by two three quantitative 30 

indicators of forecast reliability. The comparison of kNN resampling uncertainty estimates to those generated by QR and 

UNEEC show that the mean prediction intervals (MPI) generated by kNN resampling are generally smaller. Significantly 
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smaller MPI using kNN resampling, as in the case of Brue, is in part, due to the conditioning on input variable vector, as 

compared to UNEEC and QR. As the value of k in this study has been restricted to 99 and 199, the error distribution tend to 

be much narrower than the marginal error distribution. The conditional distribution will turn into marginal distribution when 

the number of k is equal to the time steps in the calibration time series. A more quantitative dependence on k value and MPI 

will need further research. Apart from a narrow MPI, we also find that kNN resampling is generally able to capture the 5 

expected ratio of observations within its intervals (PICP) most of the times, or at least be close to the expected value.   

 

As in the case of all other data-driven methods, the applicability of kNN resampling depends on the availability of 

sufficiently long and representative historical forecasts and observations. The historical series should include several 

occurrences of forecasting situations that are similar to the current situation. In extreme cases, the kind of kNN search 10 

proposed here will select the most similar historical situations which may or may not be representative of the current 

situation. In contrast to the methods like QR and UNEEC that build explicit predictive regression models which are able to 

extrapolate for the data which is beyond the limits of the calibration (training set), kNN resampling does not extrapolate. 

This could be seen as a disadvantage. On the other hand, however, the extrapolation that is done by regression techniques 

could be also seen as doubtful. It is not a given that the most extreme historical situations are less representative for the 15 

uncertainty of an extremely high flow than an extrapolated result. The results of both case studies in this paper show that 

kNN resampling has a good or poor reliability for the highest values in the validation set, depending on the case study and 

the choice of input variable vector. Due to the non-parametric nature of kNN resampling, the increasing variance of residual 

errors for higher values of predictand is generally adequately taken into account.  

 20 

As kNN resampling, like other post  processors, learns about the residual error process from the past, the historical records 

should be representative of the current forecast conditions. In changing conditions, this may not be true. Changing conditions 

may be caused, for example due to climate change or more local changes in the catchment like deforestation, dam building 

etc.  This is a common problem for all data-driven statistical estimators and not unique to kNN resampling. Care needs to be 

taken to use data time series which do not outrightly violate the assumptions regarding the invariance of catchment and 25 

climate.  

 

One of the few calibration parameters of kNN resampling is the number of nearest neighbours k. In this study, k has been 

chosen by a simple heuristic technique. For optimal performance, it would be advisable to calibrate k for each application in 

a more systematic way. We do show for Brue that the sensitivity of the uncertainty intervals to the value of k is not 30 

significant, when changing it from 99 to 199.  However, Wwe also expect that the optimal value of k will depend on the 

length of the historical data series and on the uncertainty quantiles of interest. In the context of search space,Also, i in this 

research, the input variable vector has been chosen by correlation analysis. It can be recommended to use more sophisticated 

procedures for real life applications, which can capture the non-linear dependence between the error process and input 
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variable vector candidates. It is foreseen that iImprovements in performance can possibly be achieved by seeking a better set 

of input variables for each forecast location and lead time of interest. 

 

In conclusion, kNN resampling can be considered as a relatively simple machine learning technique to predict hydrologic 

residual uncertainty. The errors from the similar hydrologic conditions in the past are used as samples for the residual error 5 

probability distribution and the samples are collected by a k nearest neighbour search. The application of this technique to 

case studies Brue and Upper Severn subcatchments has shown promising results. In comparison to many other data driven 

techniques, kNN resampling has the advantage of avoiding assumptions about the nature of the residual error distribution: 

the instance-based learning approach is non-parametric and non-regressive and requires little calibration. The method was 

shown to be able to quantify hydrologic uncertainty to an accuracy that is comparable to other techniques like QR and 10 

UNEEC. Given the relatively small effort in setting up the method, the performance of kNN resampling in uncertainty 

quantification is more than acceptable when compared to other post- processor error models. 

 

User interface 

A website has been developed as part of this research to help generate uncertainty estimation intervals using kNN resampling 15 

for a given time series of  predictions. Address: www.modeluncertainty.com 
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Table 1: Basin information for Upper Severn subcatchments  

(EA, 2013 and Marsh, T. J. and Hannaford, J., 2008) 

Catchment Area  

(km
2
) 

Mean 

Annual Rain 

(mm) 

Mean 

Flow  

(m
3
/s) 

Max 

Water 

level (m) 

Llanerfyl 125 1077 >10 3.59 

Llanyblodwel  229 1267 6.58 2.68 

Yeaton 180.8 767 1.6 1.13 

 25 

 

Table 2: Index Alpha (𝛂) for  different lead times of Upper Severn subcatchments 



21 

 

 

 

Lead Time (h) 1 12 24 48 

Llanerfyl 0.92 0.87 0.79 0.64 

Llanyblodwel  0.93 0.95 0.93 0.90 

Yeaton 0.97 0.94 0.94 0.75 
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Table 32:  Performance of various uncertainty estimation techniques for Brue catchment. For kNN resampling and 

UNEEC the same input variable vector is used (Eq. (20)). For QR only Qsim is used. 

 PICP (Expected 90%) MPI (m
3
/s) 

UNEEC QR kNN UNEEC QR kNN 

Formatted Table
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Calibration  91.19  90.00  95.1186.3 1.58  1.69  0.4951 

Validation  88.29  82.33  92.1584.42 1.37  1.39  0.3921 
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Figure 1.  Dependence of error samples on the value of k. For larger values of k, points are at a greater distance from 

𝒗t (the prediction step), thus compromising the conditioning of the residual error probability distribution on 𝒗t (Eq. 

(5)). 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 



24 

 

 

 

 

 

 5 

Figure 2. Upper Severn subcatchments with gauging stations (From López López et al., 2014) 
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Figure 3.  Dependence of residual error probability function on the value of k for three didactic values of vt (each row). The 

probability is computed for error bins of size 0.005 units each. The graphs show that for k from around 90 to 120, the 

corresponding empirical error distributions become almost identical. 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 



26 

 

 

Figure 4. Prediction intervals for Yeaton catchment using kNN resampling. The hydrographs are shown for the two different lead 

times. 50% prediction interval is the interval between 25% and 75% quantiles of residual error, and 90% quantile is the interval 

between 5% and 95% quantiles. The reporting time interval is 12 hours. 
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Figure 5.  Plots of error samples and their autocorrelation (ACF).  The error time series generated using kNN resampling are in 

red. Black circles represent the observed errors, i.e. obtained after measuring water level and comparing it to simulated water 

level. M stands for measured and S for simulated. The lead time for each row of plots is given in blue. 
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Figure 6.  Reliability diagram from Upper Severn subcatchments for high, low and all flows. (Llanerfyl – blue, Llanyblodwel – 

green, Yeaton - red). 
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Figure 7. PICP and MPI comparison for Upper Severn subcatchments.  
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Figure 8. Brue catchment (from Shrestha and Solomatine, 2008) 
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Figure 9.  50% and 90% prediction intervals for Brue catchment using kNN resampling. The hydrographs are shown for two 

different eventsk values (99, 199) and three different input variable vectors (Eq. (18), Eq. (19) and Eq. (20) for Input Variable 

Vector 1, 2 and 3 respectively). This is the largest event in the validation time series. (50% prediction interval is the interval 

between 25% and 75% quantiles of residual error, and 90% quantile is the interval between 5% and 95% quantiles. MPI and 

PICP correspond to whole validation time series.) 5 
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Figure 10.  Effect on reliability of quantiles and autocorrelation of error samples on adding a systematic bias to the model 

artificially. kNN samples, generated using input variable vector 3, are plotted in red and observed errors in black circles. M stands 

for measured and S for simulated. 
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Abstract 

A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts 

as a post processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-15 

based learning, it uses a k-nearest neighbour search for similar historical hydrometeorological conditions to determine 

uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The 

performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: Severn and Brue. 

Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative 

uncertainty estimators: Quantile Regression (QR) and Uncertainty Estimation based on local Errors and Clustering (UNEEC). 20 

Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability 

coverage. Analysis also shows that the performance of this technique depends of the choice of search space.  Nevertheless, 

the accuracy and reliability of uncertainty intervals generated using kNN resampling are at least comparable to those 

produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post 

processors, like QR and UNEEC, for estimating forecast uncertainty. Apart from its concept being simple and well 25 

understood, an advantage of this method is that  it is relatively easy to implement.   

1 Introduction 

Hydrologic forecasts for real-life systems are inevitably uncertain (Beven and Binley, 1992; Gupta et al., 1998; Refsgaard et 

al., 2007). This, among other things, is due to the uncertainties in the meteorological forcing, in the modelling of the 

hydrologic system response and in the initial state of the system at the time of forecast. It is well accepted that, compared to 30 

a simple deterministic forecast, additional information about the expected degree of accuracy of  that forecast is valuable and 

mailto:owani@student.ethz.ch
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generally leads to better decision making (Krzysztofowicz, 2001). Various techniques have therefore been developed to 

quantify uncertainties associated with the meteorological model input (van Andel et al., 2013), the initial state of the model 

(Li et al., 2009) and with the hydrologic models themselves (Deletic et al., 2012; Coccia and Todini, 2011). Frameworks and 

guidelines have been developed to incorporate uncertainty analysis of environmental models effectively in decision making 

(Arnal et al., 2016; Reichert et al., 2007; Refsgaard et al., 2007). Broadly, there are three basic approaches to uncertainty 5 

estimation: i) explicitly defining a probability model for the system response e.g. (Todini, 2008), ii) estimation of statistical 

properties of the error time series in the post-processing phase of model forecast e.g. (Dogulu et al., 2015) and iii) methods 

using Monte Carlo sampling of inputs and/or parameters, aimed at getting a range of model outputs e.g. (Beven and Binley, 

1992; Freer et al., 1996). Other uncertainty estimations techniques may employ a combination of these approaches (Del 

Giudice et al., 2013). Some techniques focus on one source of uncertainty, such as the model parameter uncertainty (Benke 10 

et al., 2008) or the model structure uncertainty (Butts et al., 2004), while others focus on combined uncertainties stemming 

from model parameters, model structure deficits and inputs (Schoups and Vrugt, 2010; Evin et al., 2013; Del Giudice et al., 

2013). In this context, it is important to note that apart from estimating uncertainty of model parameters during calibration, 

uncertainty estimation for hydrologic forecasting requires quantification of predictive uncertainty, which includes uncertain 

system response additionally to different combinations of model parameters (Renard et al., 2010; Coccia and Todini, 2011; 15 

Dotto et al., 2012). 

 

In this paper, we will restrict ourselves to the class of uncertainty estimators  called post processors. These methods usually 

do not discriminate between different sources of uncertainty. They “aggregate” all sources into a so-called residual 

uncertainty. Post-processing methods assume the existence of a single calibrated model with an optimal set of model 20 

parameters, and build a statistical or machine learning model of the residual uncertainty. Typically, these techniques relate a 

combination of model inputs and/or outputs to the model error distribution. Various post processors have been developed 

and applied to hydrologic modelling, such as a meta-Gaussian error model (Montanari and Brath, 2004), UNEEC 

(Solomatine and Shrestha, 2009), Quantile Regression (Weerts et al., 2011), and DUMBRAE (Pianosi and Raso, 2012). 

Quantile Regression (QR) is a relatively straightforward post-processing technique that relates the probability of residual 25 

errors to the model forecast (the predictand) by a regression model that is derived from historical forecasts and observations. 

QR has been successfully applied for uncertainty quantification in hydrologic forecasts with various modifications (Weerts 

et al., 2011; Verkade et al., 2013; Roscoe et al., 2012; López López et al., 2014; Hoss and Fischbeck, 2015). Whereas, 

UNEEC involves a machine learning technique for building a non-linear regression model of error quantiles (Solomatine and 

Shrestha, 2009). UNEEC includes three steps: 1) Fuzzy clustering of input data in the space of “relevant” variables; 2) 30 

Estimating the probability distribution function of residual errors for each cluster and 3) building a machine learning model 

(e.g. an artificial neural network) of the prediction interval for a given probability (Dogulu et al., 2015). Many other 

uncertainty estimation techniques, such as DUMBRAE (Pianosi and Raso, 2012), HUP (Krzysztofowicz, 1999), Model 

Conditional Processor (Coccia and Todini, 2011), Bayesian revision (Reggiani et al., 2009) and Bayesian Model Averaging 
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(Raftery et al., 2005) make explicit assumptions about the nature of the probability distribution function of error. This is not 

necessary for QR and UNEEC (Lopez et al., 2014; Dogulu et al., 2015). Nevertheless,  in QR and UNEEC assumptions need 

to be made about the form of the regression function that is used to calculate the quantiles.   

 

In an attempt to explore the utility of easier-to-implement post-processing techniques, we employ a simple non-parametric 5 

forecast method for residual uncertainty quantification. This method uses kNN search to learn about the past residual errors,  

which avoids having to make explicit assumptions about the nature of the error distribution and tuning of distribution 

parameters. Instance-based learning has been used in meteorology and hydrology before for resampling of precipitation and 

streamflows, most notably by Lall and Sharma (1996), who used the k-nearest neighbour (kNN) method for resampling of 

monthly streamflow sequences.  kNN search has also been used in a non-parametric simulation method to generate random 10 

sequences of daily weather variables (Rajagopalan and Lall, 1999). They defined a weighting function for probability where 

the predictand is resampled from k values. Jules and Buishand (2003) used nearest-neighbour resampling to generate multi-

site sequences of daily precipitation and temperature in the Rhine basin. Also, instance-based learning has been used as a 

data-driven model for hydrologic forecasting (Solomatine et al., 2008;Solomatine and Ostfeld, 2008). Beckers et al. (2016) 

use nearest neighbour resampling to generate monthly sequences of climate indices and related precipitation and temperature 15 

series for the Columbia River basin. Specifically in the context of error modelling, a version of UNEEC that uses kNN 

instance-based learning as its basic machine learning technique to predict the residual error quantiles, was compared to the 

original ANN-based UNEEC in Shrestha and Solomatine (2008). However, kNN can be also used without the complicated 

UNEEC procedure that includes fuzzy clustering. The application of kNN has recently been tested for forecast updating by 

constructing a deterministic error prediction model (Akbari and Afshar, 2014). Similarly, it has been shown that model errors 20 

can be resampled using kNN, after explicitly accounting for input and parameter uncertainty, to generate uncertainty 

intervals (Sikorska et al., 2015). In this paper we extend the simplification of kNN resampling for uncertainty estimation. We 

present an application of the kNN method to generate residual uncertainty estimates for a predictand, using a fixed time 

series of input and fixed model parameters, and explore if this approach, being simpler that many other uncertainty 

quantification approaches mentioned above, is a useful or even a better alternative.  25 

 

To demonstrate its use, we employ a relatively simple configuration of kNN resampling to produce uncertainty intervals for 

hydrologic forecasting. The next section explains the method in more detail and describes the validation procedure, i.e. the 

performance indicators. In section 3, the method is applied to two case studies, each with a different system response 

(discharge and water level). The performance of kNN uncertainty estimation as a function of forecast lead time is analysed in 30 

the first case study. Second case study is used to further validate the performance of kNN uncertainty estimation and analyse 

its sensitivity to the choice of search space and the value of k. Also, the influence of systematic bias in the hydrologic model 

on the uncertainty intervals generated by kNN search is explored in the second case study. For both case studies, 
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performance indices of kNN resampling are compared to those of QR and UNEEC. And finally in section 4, we discuss the 

usability of kNN search as a post-processor uncertainty estimator in hydrologic forecasting.  

2 Method 

2.1 kNN error model  

The kNN residual uncertainty estimator can be seen as a zero
th

 order local error quantile model built from a kNN search. Let 5 

us define a vector v in n-dimensional space of variables (the search space) on which the residual uncertainty is assumed to be 

statistically dependent.  

𝒗 = [𝑣1, … , 𝑣n] (1) 

The cumulative probability distribution function C of residual errors at prediction time-step t conditioned on 𝒗 = 𝒗t  is 

defined as: 

𝐶t(𝑒|𝒗 = 𝒗t) = 𝑃t(𝐸 ≤ 𝑒|𝒗 = 𝒗t) (2) 

Where P is the probability function and E denotes the random variable for residual errors. Residual error is defined 10 

throughout this paper as the difference between the simulated values and the observed values for a hydrologic system 

response 𝑓, like discharge or water level. 

𝑒 = 𝑓simluated − 𝑓observed (3) 

We are making the assumption of stationarity in time so that past error distributions are representative of the future: 

𝐶t(𝑒|𝒗 = 𝒗t) = 𝐶p(𝑒|𝒗 = 𝒗t)  (4) 

The subscript p denotes historical time series. Therefore 𝐶p is the cumulative distribution function of residual errors from the 

past. In Eq. (4), 𝐶p  is being conditioned to the input variable vector  at time t. Nevertheless, as we only have single 15 

realizations of the error variable E for each historical point, we relax the constraint of 𝒗 = 𝒗t.  Instead, we assume that the 

nearby neighbours of 𝒗t in n-dimensional space will have a similar probability distribution of errors as 𝒗t and that these 

historical errors are samples from 𝐶p(𝑒|𝒗 = 𝒗t). An empirical probability distribution can thus be constructed using the kNN 

historical errors: 

𝐶t(𝑒t|𝒗 = 𝒗t) ≈  𝐶p(𝑒|𝒓p ≤ 𝒓k)  (5) 

where 𝒓p is the Euclidean distance in n-dimensional space of input variables.  20 

𝒓p = |𝒗p − 𝒗t| =  √[∑(𝑣p
i − 𝑣t

i)2

n

i=1

]  

(6) 

𝒗p is the input variable vector of the past data point in the cloud of such past data points 𝒗 (Figure 1)and 𝒓k is the distance to 

the k
th

 nearest neighbour of 𝒗t. Choice of the input variable vector is a problem in itself since it should include only the most 
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relevant variables that determine the forecast uncertainty. In this study, the input variable vector is chosen based on 

correlation between the candidate variables and the past errors. If the correlation between the error time series and a 

particular candidate variable is relatively high, then it can be included in the input variable vector space. Other, more 

sophisticated methods involving the mutual information can be used as well (Fernando et al., 2009). This will be exemplified 

in the case studies described in the next section. To represent relative importance of input variables used in the search, 5 

dimensions of the input variable vector space can be suitably weighted in. Also, the model-based methods can be used where 

models are built for each considered candidate input variable set and the choice is made based on their relative performance. 

These, however, were not explored in this study; it rather focused on the usability of kNN search in its most basic 

implementation for uncertainty quantification. Nevertheless, we do demonstrate the sensitivity of the uncertainty intervals on 

the choice of input variable vector.  10 

 

In order to level variables with different magnitudes, they are normalized. If 𝜎i represents the standard deviation of input 

variable i calculated using the past data, then: 

𝒓p =  √[∑
(𝑣p

i − 𝑣t
i)2

𝜎i
2

n

i=1

]  

(7) 

Once, the input variable vector space is decided, the probability of non-exceedance of a forecast error is calculated 

empirically by sampling from the conditional error distribution:  15 

𝐶t(𝑒t|𝒗 = 𝒗t) ≈  𝐶p(𝑒|𝒓p ≤ 𝒓k) = 𝑗/𝑘 (8) 

where 𝑗 is the rank of value e (for which the probability of non-exceedance is being computed) in the ascending array of k 

error values. The kNN search is thus employed to generate a sample and to build an empirical error distribution for this 

predictive uncertainty quantification. Such a mathematical description does not employ explicit regression models for 

predicting quantiles, which can be seen as a disadvantage in extrapolating outside available data. Also, as this configuration 

of kNN used in this research generates residual error quantiles, which capture the mismatch between measurement values 20 

and simulated values, the uncertainty in observational data is not considered. The generated quantiles are aimed to capture 

the measured system response and do not attempt to capture the true response of the hydrologic system. 

 

As one would expect, due to the nature of our sampling approximation (Eq. (8)), the number of nearest neighbours, k, will 

affect the empirical conditional probability distribution of errors. If k is very large, many data points that are quite distant 25 

from 𝒗t (Figure 1) will be selected and the conditioning on the current forecast situation will not be valid. Large values of k 

will thus yield error distributions with larger uncertainty intervals - resembling the marginal error distribution. If k is small, 

the set of k errors will be small and subject to sampling error, so this set will not adequately represent the uncertainty 

distribution at 𝒗t.  The tail of a distribution is more prone to sampling errors compared to its mean. Thus, to attain an 
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acceptable degree of convergence, many more samples are required for quantiles corresponding to bigger  prediction 

intervals (van der Vaart, 1998). For improved performance, the value of k can be subject to optimisation of some cost 

function: the optimal value of k could be the one that enables a reasonable estimate of the uncertainty quantiles and 

additionally we may require that the sensitivity of the error distribution to k is small. In this study, we carry out such 

optimization using quite a simple heuristic guideline - the value of k is varied until the probability distribution of errors 5 

stabilizes and becomes less sensitive on the value of k for a few model predictions. We also demonstrate the sensitivity of 

uncertainty intervals to the value of k  in one of the case studies.  The choice of this relatively simple procedure for error 

quantile generation using kNN resampling is a reasonable starting point to assess its potential for residual uncertainty. This 

study explores the potential of uncertainty estimation using kNN in as simple a way as possible. And then compare its 

performance to two other residual uncertainty estimators. More advanced application of kNN, for example using fuzzy 10 

weights and kNN sampling to assign prediction intervals (Shrestha and Solomatine, 2008) or through explicit consideration 

of uncertainty in parameter and input by sampling them from their distributions, has been successfully shown (Sikorska et 

al., 2015). 

 

 To summarize, the steps for uncertainty quantification using kNN resampling are as follows: 15 

1. Compose the input variable vector space (𝒗) on which uncertainty will be conditioned. Correlation analysis can 

help find the most relevant variables. 

2. Set the number of neighbours k. 

3. For a forecast at prediction time-step t, identify the set of k nearest neighbours to the input vector 𝒗t. This set 

represents the hindcasts (forecasts in retrospect) most similar to 𝒗t.  20 

4. Use the residual errors from these k points to build an empirical error distribution for the forecast at time-step t.  

5. Finally, identify the errors corresponding to the required quantiles (probabilities of non-exceedance) from this 

empirical distribution (In this paper, we use 5-95% and 25-75%  quantiles).  

 

2.2 Validation methods 25 

Three statistical measures have been employed in this study to check the effectiveness of uncertainty estimation techniques, 

namely Prediction Interval Coverage Probability  (PICPPI), the Mean Prediction Interval (MPIPI) (see, e.g. Shrestha and 

Solomatine 2008; Dogulu et al., 2015) and Index Alpha (Renard et al., 2010). PICPPI  represents the percentage of 

observations (C) covered by a prediction interval (PI) corresponding to a certain probability of occurrence (in our case 90% 

and 50%).  30 
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PICPPI =
𝑁in

𝑁obs

× 100%     
(9) 

where 𝑁in is the number of observations located within the PI and 𝑁obs  is the total number of observations. These metrics 

are calculated using the following equations: 

PICP90 =
1

n
∑ 𝐶90

n

i=1

× 100%,   PICP50 =
1

n
∑ 𝐶50

n

i=1

× 100%     
(10) 

         𝐶90 = {
1,   if  𝑞i,0.05 ≤ 𝑞i ≤ 𝑞i,0.95

0,                                    else
} , 𝐶50 = {

 1, if  𝑞i,0.25 ≤ 𝑞i ≤ 𝑞i,0.75

0,                                      else
}    

(11) 

where qi,0.95 and qi,0.05 are values with 95% and 5% probability of non-exceedance at time i. Thus the region bound within 

these two values will have a confidence interval of 90%. Similarly, 𝑞i,0.75 and 𝑞i,0.25 represent the boundaries for 50% C. 

The MPI is the average width of the confidence intervals corresponding to a particular probability. It is a measure of the 5 

magnitude of the uncertainty.  

MPI90 =
1

n
∑(

n

i=1

𝑞i,0.95 − 𝑞i,0.05), MPI50 =
1

n
∑(

n

i=1

𝑞i,0.75 − 𝑞i,0.25)    
(12) 

 

We also quantify the reliability of the predicted error quantiles by comparing it to the observed error quantiles. The 

mismatch between the observed (𝑞obs,j) and predicted (𝑗/100) error quantiles can be summarized by the Index Alpha (α).  

  α′ =
1

100
∑ |

100

j=1

𝑞obs,j − 𝑗/100| 
(13) 

 

 

α = 1 − 2α′  (14) 

 

There have been discussions whether an isolated verification index can capture all the aspects that make a probabilistic 10 

forecast good or bad (Laio and Tamea, 2007).  The choice of a verification index for an uncertainty estimation technique 

should also be dependent on the purpose of hydrologic forecast. For example, Coccia and Todini (2011) evaluate the 

performance of Model Conditional Processor for flood forecasting using the predicted and observed probability of 

exceedance over a threshold. Also, in their study predicted error quantiles are compared to observed error quantiles. López 

López et al. (2014) and Dogulu et al. (2015) use PICP and MPI, among other verification measures, to access the 15 

performance of QR and UNEEC. This study will limit the comparison of kNN resampling with other techniques to PICP and 

MPI only, which give a reasonable assessment of performance. Nevertheless, it does not preclude the possibility that the 

uncertainty estimation techniques perform differently if evaluated using other indices. 
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3 Case studies 

The performance of kNN resampling was evaluated by applying the technique to hydrological forecasting for several 

catchments in two different parts of England. The two case studies provide two different hydrologic conditions for testing 

and include different models for prediction. Also, different kinds of system responses are being predicted in the two case 5 

studies – water level and discharge. The accuracy of the quantified prediction intervals was deduced by using validation data 

sets. Also, the first case study was used to evaluate the impact of changing lead time on uncertainty of hydrologic models 

and its quantification using kNN resampling. 

3.1 Upper Severn catchment  

3.1.1 Catchment description 10 

Upper Severn region is located in the Midlands, UK (Figure 2). River Severn, with a total length of 354 km, is the longest 

river in the UK. Its course acts as a geographic delineation between England and Wales, finally draining into the Bristol 

Channel. The overall River Severn catchment area is 10,459 km
2
. Around 2.3 million people live in this region. The area is 

predominantly rural, but there are also a number of highly urbanized parts. The area covering the upper reaches of River 

Severn, from its source on Plynlimon to its confluence with the River Perry upstream of Shrewsbury in Shropshire, is called 15 

the Upper Severn catchment. The Upper Severn catchment is predominantly hilly. It is dominated on the western edge by the 

Cambrian Mountains and a section of the Snowdonia National Park (River Severn CFMP. EA, 2009). 

 

 

 20 

The Severn catchment has a diverse geology. The headwaters of the river rise on Silurian mudstones, siltstones and grits and 

flow eastwards over these same rock formations.  These rock formations do not allow water to flow easily through them. 

Therefore they are classified as non-aquifers with only limited potential for groundwater abstraction. Further west, in the 

Middle Severn section, the River Severn encounters sandstones, which are classified as a major aquifer and are highly 

permeable, highly productive and able to support large groundwater abstractions (River Severn CFMP. EA, 2009). The 25 

climate of the Severn catchment is generally temperate, experiencing modest to high precipitation depending on topography. 

Welsh Mountains can receive over 2,500 mm of precipitation per annum, whereas the rest of the catchment receives rainfall 

similar to the UK average - less than 700 mm per annum. The test forecast locations used in this study are Llanerfyl, 

Llanyblodwel and Yeaton. Table 1 lists the basin and hydrological information for these subcatchments (López López et al., 

2014).  30 

 



9 

 

3.1.2 Experimental setup 

Flood forecasting system for River Severn is organized in a sequential manner, being composed of a number of separate 

systems that are effectively linked. This forecasting system works with a high degree of automation and efforts have been 

made to involve a minimum amount of human intervention. UK Environment Agency uses Midlands Flood Forecasting 

System (MFFS) to do flood forecasting and to help in warning operation. MFFS in turn is based on Delft-FEWS, Flood 5 

Early Warning System) platform (Werner et al., 2013). Within MFFS, there are lumped numerical models for rainfall-runoff 

(MCRM; Bailey and Dobson, 1981) and models for hydrologic (DODO; Wallingford, 1994) and hydrodynamic routing 

(ISIS; Wallingford, 1997). The rainfall input for MFFS is acquired from ground measurements via rain gauges, from radar 

measurements or from numerical weather prediction data. MFFS predict ahead in time the response of the Upper Severn 

subcatchments but, as expected, the quality of forecast deteriorates with increasing lead time.  10 

 

To do uncertainty analysis for MFFS, hindcasting or reforecasting is done and then results are compared to the observed 

data. All the input time series used for hindcasting is taken from measured data. In this study, the reforecasting period was 

kept equal to the one employed in the studies of López López et al. (2014) and Dogulu et al. (2015). The chosen period is 

from 1 January 2006 to 7 March 2013. Data in the period till 6 March 2007 is used for the model spin up. The remaining 15 

period is used for the calibration and validation of the uncertainty estimation techniques. Forecasts are made on a 12 hourly 

basis – at 8:00 and 20:00 daily, up to a lead time of 48 hr. kNN resampling was applied for forecasts at 10 different lead 

times: 1, 3, 6, 9, 12, 18, 30, 36, 42, and 48 hr. To choose an input variable vector for kNN resampling, correlation analysis 

was done between residual error and contenders for input variable vector space, namely simulated water level (𝐻sim ), 

measured water level (𝐻𝑜𝑏𝑠) and residual error (E𝑜𝑏𝑠)  from various time steps t. The analysis was done to assist in a manual 20 

selection of input variable vectors. The correlation between residual error and water level reduces fast with time lag between 

the two time series. Therefore it is enough to choose relatively simple and small dimensional input variable vector spaces. 

For lead times, 𝑙, up to 6 hours we chose: 

𝒗 =  [𝐻t
sim, 𝐻t−l

obs, 𝑒t−l
obs]  (15) 

For higher lead times, uncertainty has only been conditioned on H𝑡
𝑠𝑖𝑚 as the residual error becomes less and less correlated 

with variable values at measured several hours behind the prediction time. 25 

𝒗 =  [𝐻t
sim]  (16) 

 Ninety nine values of residual errors were sampled from the nearest neighbourhood to generate an empirical distribution at 

each prediction step. This allowed us to get the ‘resolution’ of 1 percentile in the generated empirical distribution.  To 

develop confidence in the chosen value of k, we checked for a few prediction steps how sensitive the generated empirical 

distribution is to the value of k.   Four different instances of  𝐯𝐭 were chosen. Each instance represents a prediction step in the 

input variable vector space (the red circle in Figure 1), with different hydrologic conditions. The plots of the cumulative 30 

mean square difference between pdfs of varying k were generated. Cumulative mean square difference (Eq. (17))  serves as 
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an index to show how much the empirical pdfs change with changing k. We get a decreasing slope with increasing k. It 

shows that the pdfs become almost identical for values of k around 100.  If Pki
(e) is the probability density for a residual 

error e calculated through ki nearest neighbours using kNN resampling, for probability functions corresponding to discrete 

bin size  ∆e, the cumulative difference is defined as:  

Cumulative Difference =  ∑ ∑ [∆𝑒 ∙ 𝑃ki+1(𝑒) − ∆e ∙ 𝑃ki−1
(𝑒)]2

last e bin

first e bin

ki=k

ki=10

 

(17) 

The various values of ki that were tested are -10, 30, 50, 70, 90, 100, 110, 130 and 150.  Using the information from Figure 5 

3, a value of k = 99 does not seem to be heavily effected by sampling errors. Nevertheless, it is not a mathematically 

calibrated value of k and therefore is likely to be sub-optimal. However, it should still be able to provide reasonably 

representative samples from the error distribution, as is suggested by Figure 3.  

  

 10 

 

3.1.3 Results  

Figure 4 shows two hydrographs for the same event, where model predictions were made at different lead times. From the 

graph of lead time 48 hr it is evident that the error quantiles that kNN resampling produces are not forced to have zero mean. 

Therefore the model prediction can sometimes lie outside the predicted quantiles. This is because kNN resampling learns 15 

from past instances where the model has consistently under or overpredicted the flow, so it corrects for this bias. The 

hydrographs capture the low flows and the peaks well. It can also be seen that for high flows the errors are usually higher 

than for medium and low flows. The residual error distribution is thus heteroscedastic, i.e. the variance depends on the 

magnitude of the predicted flow. The autocorrelation can be checked by plotting errors versus time. Whereas performance of 

an error model with regard to heteroscedasticity can be estimated by plotting reliability diagrams for different magnitudes of 20 

flow, which would mean different water levels in this case.  

 

The plotting of error time series (Figure 5) for various lead times shows some recurring trends across all the three 

subcatchments. The errors are small for small lead time forecasts and the spread of error time series increases with increasing 

lead time. Moreover, the errors do not look autocorrelated for smaller lead times, whereas for the higher lead times 25 

autocorrelation becomes more prominent. This can be ascribed to the memory of the hydrologic system. If the system 

response is higher than what the model simulates for a particular lead time, then the system response is likely to be higher for 

the next time step as well. As the errors become larger, they tend to lose their independence property. This is captured by the 

error samples generated by kNN resampling as well. The rate at which autocorrelation deteriorates for observed residual 
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errors corresponds well to the kNN resampling error samples’ autocorrelation. It can be seen that kNN resampling preserves 

the autocorrelation in the error time series without using an autoregressive model.   

  

To check the performance of kNN resampling for various flow magnitudes, the simulation values were divided into low and 

high flows - the lowest and the highest 10 percent of water levels simulated in the validation phase respectively. The 5 

reliability diagrams (Figure 6) shows that the overall performance of error quantiles for all water levels is good for low and 

medium lead times. The reliability decreases with high lead times (24 hr and above). The reliability plots show that kNN 

resampling performs better for high flows compared to lows flows, even for higher lead times. For lows flows and high lead 

times, the forecast probability of non-exceedance is higher than the observed relative frequency. Nevertheless, from 0.90 

probability of non-exceedance and above, the reliability curve comes back to the desired 45
0
 line.  For flood forecasting it is 10 

important to model the high and medium flows well. kNN resampling delivers quite reliable quantiles for such flow regimes. 

The deteriorating model performance with higher lead times gets reflected in the performance of kNN resampling quintiles 

as well.  

 

To assess the performance of kNN resampling relative to other established post-processor uncertainty estimation techniques, 15 

comparisons with QR and UNEEC have been carried out. The results for QR have been taken from  López López et al. 

(2014) and the results for UNEEC  from Dogulu et al. (2015). QR results for uncertainty estimation were available for the all 

the lead times as done using kNN resampling and, from UNEEC, only for lead times of  1, 3, 6, 9, 12, and 24 hr. Values of 

PICP and MPI are shown in Figure 7, together with results from UNEEC and QR. The Alpha Index (α) is reported for 

several lead times in Table 2. As expected, the MPI of all the uncertainty estimation techniques increases with increasing 20 

lead time. Comparison between kNN resampling and QR has been made for 3 locations and 10 lead times in the validation 

period. Model simulations were run two times each day. Verification indices for uncertainty analysis were calculated 

separately for each lead time and each location.  Considering 90% and 50% quantile as two prediction intervals, this allowed 

for the evaluation of PICP and MPI 60 times (Figure 7). kNN resampling has higher PICP in 67% of the cases and a smaller 

MPI for 73% of the cases. A comparison between kNN resampling and UNEEC was made for 3 locations and 5 lead times 25 

for the validation. For each location and each lead time, the 90% and 50% quantiles were generated, which allowed for the 

evaluation of PICP and MPI 30 times (Figure 7). The PICP of kNN resampling is higher in 60% of the cases and the MPI is 

smaller in 36% cases. Based on these results we concluded that, for this case study, kNN resampling generally produces 

narrower confidence bands and provides a better coverage of the probability distribution than the other methods in the 

majority of forecasts, especially showing better performance for the larger lead times. 30 
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3.2 River Brue 

3.2.1 Catchment description 

River Brue, located in the south west of England, has a history of severe flooding. The test forecast location used in this 

study is Lovington, where the upstream catchment area is 135 km
2
 (Figure 8). The catchment is predominantly rural and the 

soil consists of clay and sand. This kind of soil and the modest relief give rise to a slowly responsive flow regime. The mean 5 

annual rainfall in the catchment is 867 mm, the mean river flow is 1.92 m
3
/s. and has a maximum flow of 39.58 m

3
/s. This 

catchment has been extensively used for research on weather radar, quantitative precipitation forecasting and hydrologic 

modelling.  

 

3.2.2 Experimental setup 10 

For Brue catchment the simplified version of the HBV rainfall-runoff model has been used (Bergström, 1976). HBV-96 

model is a lumped conceptual model (Lindström et al., 1997).  Like most other conceptual models, HBV consists of 

subroutines for snow accumulation and melt, soil moisture accounting and surface runoff, and employs a simple routing 

scheme. The input for the HBV model consists of precipitation (basin average), air temperature and potential 

evapotranspiration (estimated by modified Penmann method using automatic weather data available). Historical input data is 15 

available for a period of 1994-1996. Predictions are only made for 1 hr lead time. Uncertainty analysis is done for a chosen 

period from the 24th June of 1994 to 31st of May 1996. Hindcasts were made on a daily basis, using a warm state from a 

historical run. The hindcasts were split into calibration and validation set at 24
th

 June 1995 for the uncertainty estimation 

techniques. The calibration data set was used to calibrate (train) UNEEC and QR, and for the resampling of errors using 

kNN algorithm. The resampled errors were used to estimate prediction intervals for the predictions from the validation data 20 

set. Each of the two data sets represents almost a full year of observations. Three input variable vectors were chosen based 

on the results of correlation analysis, from simple to complex. This allows to study the dependence on the choice of search 

space. Input variable vector (ivv) 3 for kNN resampling and UNEEC is same for this comparison, whereas, QR only uses 

Qsim (Dogulu et al., 2015). The three input variable vectors used are: 

𝒗(ivv1) =  [ 𝑄t
𝑠𝑖𝑚  ] (18) 

 

𝒗(ivv2) =  [ 𝑄t
𝑠𝑖𝑚 , 𝑒t−1

obs ] (19) 

 

𝒗(ivv3) =  [𝑅t−8
obs, 𝑅t−9

obs, 𝑅t−10
obs  , 𝑄t−1

obs , 𝑄t−2
obs , 𝑄t−3

obs , 𝑒t−1
obs , 𝑒t−2

obs] (20) 

 

where R is the effective rainfall, 𝑄 is the discharge and e is the residual error. Considering t as the prediction time, then the 25 

subscript of the various input variables represents the time and the superscript sim and  obs means they are simulated and 
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observed values respectively.  The number of nearest neighbours was chosen to be 99 and 199, to analyse its influence on 

uncertainty quantification. Uncertainty analysis was done for a calibrated HBV model as well as a model with a unit 

systematic bias. The bias was introduced to the simulation results of the calibrated model by simple addition. The aim of a 

biased model for uncertainty quantification using kNN resampling is to assess the performance of kNN resampling when the 

residuals are not zero mean.  5 

 

3.2.3 Results  

kNN resampling was applied to a single historical simulation and compared to observations. The simulated hydrographs for 

highest discharge event with 50% and 90% prediction intervals are shown in Figure 9. The residual distribution of kNN 

resampling is generally non-zero mean. Therefore we see that the prediction intervals may sometimes deviate from the 10 

deterministic model prediction quite significantly. The ability of kNN resampling to search for similar hydrologic conditions, 

like rainfall, and discharge in the past, and learn from the residuals, allows it to make more representative error distributions. 

For example, in Figure 9, the falling limb of hydrograph shows that the prediction band generated by kNN resampling 

captures the observed flow for input variable vector 2 and 3, even though the model shows a noticeable mismatch with the 

measurements. This can be explained by considering the history of errors that the model made during such hydrologic 15 

conditions in the past. And as kNN resampling learns that the model consistently underestimates in such cases, the 

corresponding error distribution corrects for this bias.  The results of the PICP and MPI are shown in Table 3 together with 

results from UNEEC and QR (Dogulu et al., 2015). As can be seen from the table, kNN resampling’s performance is 

comparable to that of UNEEC and QR for this case study. The prediction intervals generated by kNN resampling are 

smaller, compared to the other two uncertainty estimation techniques, while the coverage probability is similar. It indicates 20 

that kNN resampling is able to learn well from past data and condition the probability of residual errors well. The Alpha 

Index for the validation phase is also high (0.96). It is also noticed that three different input variable vectors show different 

degrees of performance (Figure 9). The past errors, 𝑒t−1
obs , seem to be informative in this case, providing very narrow 

conditional error probabilities. 

 25 

Apart from evaluating the usability of kNN resampling for calibrated models, the performance of kNN resampling quantiles 

generated by kNN resampling for a model with systematic bias was also checked. Figure 10 shows that the performance of 

kNN resampling does not diminish under systematic bias. The reliability of the generated quantiles remains almost unfazed. 

As a systematic bias will not affect the autocorrelation structure of the residual errors, the autocorrelation of error samples 

generated through kNN resampling also remains unchanged. Nevertheless, we see a shift in the mean of the sample time 30 

series, which is roughly equal to unity.  The reliability of quantiles generated using kNN resampling for high flows (highest 

10% in the validation period) is poorer than for all flows. The invariance of kNN resampling performance to model bias 
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makes it a robust post-processor technique, however, unlike in the case of Upper Severn subcatchments, the technique’s 

performance  diminishes for high flows.   

  

4 Discussion and conclusions 

The application of kNN resampling to two cases studies shows that the forecast uncertainty intervals are relatively narrow 5 

and still capture the observations well. The expected increase of uncertainty for longer lead times is also reproduced well and 

the probability coverage of kNN resampling remains good as verified from historical observations. This is in accordance 

with previous research (Sikorska et al., 2015). The error samples generated by kNN resampling reproduce two important 

characteristics of residual errors in hydrologic models namely autocorrelation and heteroscedasticity.  Also, for applications 

to flood modelling, the high flows are most important and the uncertainty quantification by kNN resampling for Upper 10 

Severn shows reasonable reliability for this high flow regime. For Brue, the performance is poorer . This can be attributed to 

the inadequacy of  representative high flows in the calibration phase in combination with the choice of the input variable 

vector. The highest flow is calibration time series is 15.4 m
3
/s whereas in validation time series it is 29.9 m

3
/s. It is also 

shown that the technique is generally robust to the performance of the underlying deterministic model. If the model has 

systematic biases, kNN resampling learns from the past errors of the model and recreates the systematic bias in the empirical 15 

error distributions mean, thus maintaining the performance of prediction intervals. Our results on systematic error correction 

by kNN resampling substantiate the findings from previous research on forecast updating using kNN (Akbari and Afshar, 

2014). These findings from this study are confirmed by three quantitative indicators of forecast reliability. The comparison 

of kNN resampling uncertainty estimates to those generated by QR and UNEEC show that the mean prediction intervals 

(MPI) generated by kNN resampling are generally smaller. Significantly smaller MPI using kNN resampling, as in the case 20 

of Brue, is in part, due to the conditioning on input variable vector, as compared to UNEEC and QR. As the value of k in this 

study has been restricted to 99 and 199, the error distribution tend to be much narrower than the marginal error distribution. 

The conditional distribution will turn into marginal distribution when the number of k is equal to the time steps in the 

calibration time series. A more quantitative dependence on k value and MPI will need further research. Apart from a narrow 

MPI, we also find that kNN resampling is generally able to capture the expected ratio of observations within its intervals 25 

(PICP) most of the times, or at least be close to the expected value.   

 

As in the case of all other data-driven methods, the applicability of kNN resampling depends on the availability of 

sufficiently long and representative historical forecasts and observations. The historical series should include several 

occurrences of forecasting situations that are similar to the current situation. In extreme cases, the kind of kNN search 30 

proposed here will select the most similar historical situations which may or may not be representative of the current 

situation. In contrast to the methods like QR and UNEEC that build explicit predictive regression models which are able to 
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extrapolate for the data which is beyond the limits of the calibration (training set), kNN resampling does not extrapolate. 

This could be seen as a disadvantage. On the other hand, however, the extrapolation that is done by regression techniques 

could be also seen as doubtful. It is not a given that the most extreme historical situations are less representative for the 

uncertainty of an extremely high flow than an extrapolated result. The results in this paper show that kNN resampling has a 

good or poor reliability for the highest values in the validation set, depending on the case study and the choice of input 5 

variable vector. Due to the non-parametric nature of kNN resampling, the increasing variance of residual errors for higher 

values of predictand is generally adequately taken into account.  

 

As kNN resampling, like other post processors, learns about the residual error process from the past, the historical records 

should be representative of the current forecast conditions. In changing conditions, this may not be true. Changing conditions 10 

may be caused, for example due to climate change or more local changes in the catchment like deforestation, dam building 

etc.  This is a common problem for all data-driven statistical estimators and not unique to kNN resampling. Care needs to be 

taken to use data time series which do not outrightly violate the assumptions regarding the invariance of catchment and 

climate.  

 15 

One of the few calibration parameters of kNN resampling is the number of nearest neighbours k. In this study, k has been 

chosen by a simple heuristic technique. For optimal performance, it would be advisable to calibrate k for each application in 

a more systematic way. We do show for Brue that the sensitivity of the uncertainty intervals to the value of k is not 

significant, when changing it from 99 to 199.  However, we also expect that the optimal value of k will depend on the length 

of the historical data series and on the uncertainty quantiles of interest. In the context of search space, in this research, the 20 

input variable vector has been chosen by correlation analysis. It can be recommended to use more sophisticated procedures 

for real life applications, which can capture the non-linear dependence between the error process and input variable vector 

candidates. Improvements in performance can possibly be achieved by seeking a better set of input variables for each 

forecast location and lead time of interest. 

 25 

In conclusion, kNN resampling can be considered as a relatively simple machine learning technique to predict hydrologic 

residual uncertainty. The errors from the similar hydrologic conditions in the past are used as samples for the residual error 

probability distribution and the samples are collected by a k nearest neighbour search. The application of this technique to 

case studies Brue and Upper Severn subcatchments has shown promising results. In comparison to many other data driven 

techniques, kNN resampling has the advantage of avoiding assumptions about the nature of the residual error distribution: 30 

the instance-based learning approach is non-parametric and non-regressive and requires little calibration. The method was 

shown to be able to quantify hydrologic uncertainty to an accuracy that is comparable to other techniques like QR and 

UNEEC. Given the relatively small effort in setting up the method, the performance of kNN resampling in uncertainty 

quantification is more than acceptable when compared to other post-processor error models. 
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User interface 

A website has been developed as part of this research to help generate uncertainty intervals using kNN resampling for a 

given time series of  predictions. Address: www.modeluncertainty.com 
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Table 1: Basin information for Upper Severn subcatchments  

(EA, 2013 and Marsh, T. J. and Hannaford, J., 2008) 

Catchment Area  

(km
2
) 

Mean 

Annual Rain 

(mm) 

Mean 

Flow  

(m
3
/s) 

Max 

Water 

level (m) 

Llanerfyl 125 1077 >10 3.59 

Llanyblodwel  229 1267 6.58 2.68 

Yeaton 180.8 767 1.6 1.13 

 10 

 

Table 2: Index Alpha (𝛂) for  different lead times of Upper Severn subcatchments 

Lead Time (h) 1 12 24 48 

Llanerfyl 0.92 0.87 0.79 0.64 

Llanyblodwel  0.93 0.95 0.93 0.90 

Yeaton 0.97 0.94 0.94 0.75 
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Table 3:  Performance of various uncertainty estimation techniques for Brue catchment. For kNN resampling and 

UNEEC the same input variable vector is used (Eq. (20)). For QR only Qsim is used. 

 PICP (Expected 90%) MPI (m
3
/s) 

UNEEC QR kNN UNEEC QR kNN 

Calibration  91.19  90.00  86.3 1.58  1.69  0.51 

Validation  88.29  82.33  84.42 1.37  1.39  0.21 
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Figure 1.  Dependence of error samples on the value of k. For larger values of k, points are at a greater distance from 

𝒗t (the prediction step), thus compromising the conditioning of the residual error probability distribution on 𝒗t (Eq. 

(5)). 15 
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Figure 2. Upper Severn subcatchments with gauging stations (From López López et al., 2014) 
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Figure 3.  Dependence of residual error probability function on the value of k for three didactic values of vt (each row). The 

probability is computed for error bins of size 0.005 units each. The graphs show that for k from around 90 to 120, the 15 

corresponding empirical error distributions become almost identical. 
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Figure 4. Prediction intervals for Yeaton catchment using kNN resampling. The hydrographs are shown for the two different lead 10 

times. 50% prediction interval is the interval between 25% and 75% quantiles of residual error, and 90% quantile is the interval 

between 5% and 95% quantiles. The reporting time interval is 12 hours. 
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Figure 5.  Plots of error samples and their autocorrelation (ACF).  The error time series generated using kNN resampling are in 

red. Black circles represent the observed errors, i.e. obtained after measuring water level and comparing it to simulated water 

level. M stands for measured and S for simulated. The lead time for each row of plots is given in blue. 
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Figure 6.  Reliability diagram from Upper Severn subcatchments for high, low and all flows. (Llanerfyl – blue, Llanyblodwel – 

green, Yeaton - red). 
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Figure 7. PICP and MPI comparison for Upper Severn subcatchments.  
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Figure 8. Brue catchment (from Shrestha and Solomatine, 2008) 
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Figure 9.  50% and 90% prediction intervals for Brue catchment using kNN resampling. The hydrographs are shown for two 

different k values (99, 199) and three different input variable vectors (Eq. (18), Eq. (19) and Eq. (20) for Input Variable Vector 1, 2 

and 3 respectively). This is the largest event in the validation time series. (50% prediction interval is the interval between 25% and 

75% quantiles of residual error, and 90% quantile is the interval between 5% and 95% quantiles. MPI and PICP correspond to 

whole validation time series.) 5 
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Figure 10.  Effect on reliability of quantiles and autocorrelation of error samples on adding a systematic bias to the model 

artificially. kNN samples, generated using input variable vector 3, are plotted in red and observed errors in black circles. M stands 

for measured and S for simulated. 
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