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Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and 

socio-economic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to 

deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological 10 

drought to soil moisture drought, and from meteorological drought to hydrological drought. We did this by cross-correlating 

the Standardized Precipitation Index (SPI) against standardized indices of soil moisture, runoff, and streamflow from an 

ensemble of global hydrological models forced by a consistent meteorological dataset. Drought propagation is strongly 

related to climate types, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in 

continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, 15 

especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow 

cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model 

variability, as drought propagation to soil moisture drought is slower in land surface models than in global hydrological 

models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The 

propagation time from SPI to hydrological drought in the models was evaluated against observed data at 127 in-situ 20 

streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the 

model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement 

as substantial differences in drought propagation are found at 10 % of the study sites. A better understanding and 

representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought 

variability under future climate scenarios.  25 

1 Introduction 

Drought is a complex global phenomenon with severe environmental (Bond et al., 2005; Lewis and Sjöstrom, 2010; 

Reichstein et al., 2013; Turco et al., 2017; Vicente-Serrano et al., 2013) and socio-economic (Horridge et al., 2005; Stanke et 

al., 2013; Wegren, 2011) impacts. Data from global and regional models are commonly used to study droughts (e.g. 
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Andreadis and Lettenmaier, 2006; Sheffield et al., 2004; Sheffield and Wood, 2008a) and water scarcity (Kummu et al., 

2016; Veldkamp et al., 2015, 2016, 2017; Wada et al., 2011), and how these will change in the future (Dai, 2013; Huang et 

al., 2017; Sheffield and Wood, 2008b; Trenberth et al., 2014). However, the evolution of drought from meteorological 

anomalies to deficits in soil moisture and streamflow in these models is still poorly understood (Van Lanen et al., 2013; Van 

Loon, 2015), despite the fact that drought impacts are more closely related to these latter components of the hydrological 5 

cycle (Van Loon, 2015).  

Several types of drought can be distinguished (i.e. Van Loon, 2015; Mishra and Singh, 2010). The first stage or type of 

drought is called meteorological drought, and is caused by precipitation deficits that may or may not be combined with 

above-normal potential evaporation rates. If the precipitation deficits and/or increased evaporation rates are sustained for a 

sufficient period, they can result in lower than average soil moisture availability, which may result in a soil moisture drought. 10 

In the same way, meteorological drought can propagate into lower streamflow and groundwater levels, which are both forms 

of hydrological drought. Another type of drought, socio-economic drought, is not based on a hydrological variable alone, but 

occurs when water availability is lower than water demand. As drought propagates from meteorological drought to soil 

moisture or hydrological drought, the characteristics of droughts change. As drought moves through components of the 

hydrological cycle, the onset of droughts tends to be lagged, there tend to be fewer but longer drought events, and the 15 

droughts are attenuated (Van Lanen et al., 2013; Van Loon et al., 2012; Peters et al., 2003). The degree to which these 

drought propagation characteristics are observed depends on climate and catchment properties (Van Lanen et al., 2013; Van 

Loon and Laaha, 2015).  

Several drought propagation studies have been carried out based on observational data at catchment to national scales, 

mainly focusing on meteorological and streamflow drought (e.g. Barker et al., 2016; Haslinger et al., 2014; Van Loon and 20 

Laaha, 2015; Lorenzo-Lacruz et al., 2013). However, the geographical extent covered by these studies is limited, mainly due 

to the lack of observational data with sufficiently long timescales needed to identify drought in many regions. Therefore, 

data from regional or global models are generally used to study drought at larger spatial scales. In some cases, studies have 

used data from a single large-scale model (e.g. Van Lanen et al., 2013; Lehner et al., 2006; Lloyd-Hughes et al., 2013; 

Sheffield et al., 2004). However, there can be considerable differences between hydrological outputs of different large-scale 25 

models (Burke and Brown, 2008; Gudmundsson et al., 2012b, 2012a; Haddeland et al., 2011; Prudhomme et al., 2014; 

Veldkamp et al., 2018), suggesting that multi-model approaches (e.g. Gudmundsson et al., 2012a; Stahl et al., 2012; 

Tallaksen and Stahl, 2014; Wang et al., 2009) are more appropriate. This is supported by the fact that studies have found that 

a model ensemble performs better than individual models (Gudmundsson et al., 2012a; Stahl et al., 2012). However, most 

regional or global drought studies have focused on drought frequency and severity (van Huijgevoort et al., 2013; 30 

Prudhomme et al., 2011, 2014) rather than on drought propagation, and those that have studied drought propagation have 

been limited to a single model (Van Lanen et al., 2013) or to a small selection of contrasting catchments (Van Loon et al., 

2012). 
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The aim of this study is therefore to investigate drought propagation times in an ensemble of global hydrological models 

from meteorological drought to soil moisture drought, and from meteorological drought to hydrological drought. We focus 

on the effect of climate on drought propagation in particular, and distinguish between summer and winter droughts. In Sect. 

2, we describe the identification of drought, the method we use to quantify drought propagation timescales, and the 

validation analysis. The global models and the observational data are presented in Sect. 3. In Sect. 4, we first describe and 5 

discuss the timescales of drought propagation and their relationship with climate types in the multi-model ensemble mean. 

Second, we briefly describe the model variability. Third, we perform a validation exercise to gauge whether propagation 

from meteorological to streamflow drought in the models resembles observational drought propagation times. We wrap up 

with a brief summary and conclusion in Sect. 5. 

2 Methods 10 

The timescales of drought propagation were determined by relating standardized indices of meteorological drought to indices 

of soil moisture and hydrological drought. These indices were derived from an ensemble of seven global models that were 

forced with a consistent meteorological dataset in the eartH2Observe project (Schellekens et al., 2016). For more details on 

the model and forcing datasets, see Sect. 3. First, we calculated standardized indices of precipitation, soil moisture, runoff, 

and streamflow as a measure of drought. Second, we determined which timescales of meteorological drought were most 15 

strongly correlated to the other drought types. Finally, we evaluated the modeled drought propagation times against drought 

propagation times derived from observational data. 

2.1 Drought indices 

Meteorological drought was quantified by the widely used Standardized Precipitation Index (SPI; Mckee et al. 1993). The 

SPI fits a pre-defined probability distribution to the frequency distribution of precipitation. Generally, the precipitation series 20 

have a monthly resolution, in which case the fitting is done for each month separately. Examples of possible distribution 

functions are the gamma, Pearson Type III, or log-normal (Guttman, 1999; Lloyd-Hughes and Saunders, 2002; Mckee et al., 

1993) functions, though a non-parametric approach has also been developed (Hao and AghaKouchak, 2014). In this study, 

we use the gamma distribution as the pre-defined probability distribution, as this is commonly considered to be the most 

suitable (Lloyd-Hughes and Saunders, 2002; Mckee et al., 1993; Stagge et al., 2015). Regions in which months with zero 25 

precipitation are common are problematic for the SPI (Wu et al., 2007), so the cumulative distribution function is corrected 

with the probability of zero precipitation (Naresh Kumar et al., 2009). The fitted probability distribution is then transformed 

to the normal distribution, resulting in negative (positive) values for dry (wet) conditions. Note that the SPI relates the 

precipitation amount in a certain month to average conditions at that particular location. In drier climates or seasons, water-

limited conditions may be the norm, while in wetter climates or seasons, water stress may not be relevant until severe 30 

drought thresholds are reached. 
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Advantages and disadvantages of the SPI are described in Hayes et al. (1999). A first advantage is that the SPI is relatively 

simple, requiring only precipitation data as an input. Secondly, the index is flexible. It can be used to compare different 

timescales of drought by aggregating the input precipitation time series over a number of months, known as the 

accumulation period (typically 1, 3, 6, 12, or 24 months). Thirdly, the standardization facilitates comparisons of extreme 

conditions in different locations, but also over different timescales. A disadvantage is that the precipitation data used to 5 

calculate the SPI may not be representative of surface conditions. In addition, the calculation of the index requires long time 

series (>30 years) of data (Guttman, 1999; Mckee et al., 1993; Zargar et al., 2011). 

The standardization approach of the SPI is not only easily applied to different timescales, but can also be applied to other 

(hydrological) variables such as soil moisture or streamflow. In this way, we use the same methodology to identify soil 

moisture and hydrological drought by defining the Standardized Soil Moisture Index (SSMI) (Hao and AghaKouchak, 10 

2013), Standardized Runoff Index (SRI) (Shukla and Wood, 2008), and Standardized Streamflow Index (SSFI).  

Soil moisture and runoff are controlled by pixel-scale precipitation and hydrological processes. Streamflow, on the other 

hand, is affected by upstream pixels. Therefore, we computed a catchment-aggregated SPI to quantify drought propagation 

from meteorological to streamflow droughts. The input for the aggregated SPI is the total precipitation falling within each 

pixel and its upstream area, based on a 0.5° routing network (see Sect. 3). We did not include a travel time factor in this 15 

calculation, thus assuming that precipitation falling in the upper parts of each catchment will impact streamflow at the outlet 

within the same month. In the rest of the paper, meteorological drought is based on the pixel-based SPI when referring to soil 

moisture or runoff drought, and to the catchment-based SPI when referring to streamflow drought.  

In this study, we quantified drought propagation from meteorological drought to soil moisture and hydrological droughts. 

Therefore, we calculated the SPI using accumulation periods of 1, 2, 3, 6, 9, 12, 24 and 36 months. These accumulation 20 

periods span sub-seasonal, (multi-)seasonal, and (multi-)annual timescales. For the other standardized indices (SIs), we used 

the 1-month accumulation period to identify short-term drought conditions.  

2.2 Timescales of drought propagation 

Drought propagation from meteorological to soil moisture or hydrological drought was based on correlations between the 

SPI and target SI (SSMI, SRI or SSFI). The SI time series were prepared by applying two criteria to the target SI. First, we 25 

distinguished between drought conditions in summer and winter seasons. The summer (winter) season was defined as June, 

July, and August above (below) the equator, and December, January, and February below (above) the equator. Second, we 

focused on months corresponding to dry conditions, here defined as SI ≤ 0. This threshold includes near-normal and mildly 

dry conditions, but leaves a larger sample size than when we limit the analysis to moderate or severe drought events. 

Theoretically, moderate drought events (SI ≤ −1) have an occurrence probability of about 16 % per year, which would 30 

correspond to about 5 drought months in a 30-year study period, for a total of 15 drought months considering a three-month 

season. Severe drought events (SI ≤ −1.5) would result in six drought months during a 30-year period of three months based 

on the same reasoning, compared to 45 events using SI ≤ 0 as a threshold.  
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After preparing the SI time series, we cross-correlated each of the SPI time series with the SSMI, SRI, and SSFI, without 

considering lag between the time series. The drought propagation timescale was defined as the SPI accumulation period that 

is most closely related to the target drought index, which we call SPI-n. In this analysis we determine which SPI 

accumulation period best represents drought propagation timescales overall during the study period. However, drought 

propagation may occur at different time scales in the same location and season, and any specific meteorological drought 5 

event may propagate to other droughts more quickly, or more slowly, than suggested by SPI-n. Pixels where the final 

correlations between SPI-n and SSMI, SRI, or SSFI are not statistically significant (p = 0.05) were masked from the results. 

Autocorrelation is a potential issue when correlating time series, as it reduces the degrees of freedom compared to a standard 

significance test. In this study, the effective degrees of freedom are based on the modified Chelton method (Pyper and 

Peterman, 1998) as in Barker et al. (2016).   10 

The strength of the relationships between the Köppen-Geiger climate type classification (Kottek et al., 2006) shown in 

Fig. 1, as well as certain model characteristics on SPI-n, were quantified using a variety of tests. We used the rank of SPI-n 

rather than the duration of the accumulation period in months in the calculations. This means we assumed that the difference 

between accumulation periods of 12 and 24 months (both in the order of annual timescales, differing by one rank SPI-n) to 

be equivalent to the difference between 1 and 2 months (both in the order of sub-seasonal timescales, differing by one rank 15 

SPI-n), but very unlike the difference between 1 and 12 months (sub-seasonal versus annual timescales, differing by 5 rank 

SPI-n). The choice of statistical tests is not straightforward. Rank SPI-n are essentially ordinal variables, which are tested 

using metrics such as Chi-squared. However, Chi-squared and comparable tests treat ordinal variables as categorical 

variables. In our case this means that the relationships between the used accumulation periods are not taken into account. 

Since the chosen accumulation periods are nearly equidistant in log space, we chose to apply statistical tests developed for 20 

interval data in addition to Chi-squared. Statistical significance was based on ANOVA tests, with the Tukey’s honestly 

significant difference test as a post-hoc test to compare groups in a pairwise fashion. Tukey’s test corrects for family-wise 

errors, or the fact that the chance of type 1 errors increases when comparing multiple groups. When only two groups are 

possible we used paired t-tests.  

With large quantities of data, even very small differences between group means can be statistically significant. Measures of 25 

effect size are more useful to investigate the magnitude of the differences between groups, which may be more relevant for 

interpretation and policy. We use Cohen’s d to quantify the effect size between two groups (Cohen, 1988). This metric is 

defined as: 

   
     

       
            (1) 

where 30 

          
        

          
 

       
          (2) 
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and where μ represents the group mean, here mean rank SPI-n, σ the standard deviation of rank SPI-n,   the number of 

observations, and subscripts indicate the group, here climate types. The outcome of the metric is thus the difference in group 

means relative to the standard deviation of the groups. A result of 1 means that the group means differ by one standard 

deviation and thus that those groups overlap by about 62 %. Previous studies tend to use fixed thresholds to interpret small 

(0.2), medium (0.5) and large (0.8) effect sizes, though these thresholds are considered to be rather arbitrary (Cohen, 1988; 5 

Lenth, 2001).  

 

 

Figure 1: Map of the Köppen-Geiger climate classification and the GRDC stations used in this study. The number of GRDC 

stations within each climate type is included in the legend in brackets. TRO W = tropical wet, TRO S = tropical savanna, 10 
DRY = dry, TMP = temperate, CON = continental, POL = polar. 

 

2.3 Validation of drought propagation 

Timescales of drought propagation from meteorological to streamflow drought in global hydrological models are validated 

against observational data. Sites with observational streamflow data were matched to model pixels by selecting the model 15 

pixel containing the in-situ site. Since there may be discrepancies between the model and actual river routing schemes, we 

extracted the model streamflow data from the selected pixel as well as from the eight surrounding pixels. The in-situ site was 

then assigned to the model pixel with the lowest root mean square error (RMSE) between observed and modeled monthly 

streamflow. Once the in-situ sites were matched to model pixels, the SPI-n were calculated as described in Sect. 2.2. Since 

the observational time series may have gaps within the study period, model results were also recalculated at the in-situ sites 20 

using only months for which observational data were available.  

Model discharge time series from the models used in this study (see Sect. 3) have been evaluated in previous studies (Beck et 

al., 2017; Schellekens et al., 2016), so we limit the evaluation to drought propagation characteristics, or SPI-n. The 

evaluation of SPI-n was based on the rank SPI-n rather than the length of the accumulation period in months, for the same 

reason for which rank SPI-n were used in the statistical tests (Sect. 2.2). The performance metrics used in the evaluation 25 

were mean absolute error (MAE) and Spearman correlation coefficient.  
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3 Data 

We assessed drought propagation in seven global models from the eartH2Observe project (www.earth2observe.eu), as well 

as in the model ensemble mean. Three of the models are land surface models (LSMs): HTESSEL-CaMa (Balsamo et al., 

2009; Yamazaki et al., 2011), ORCHIDEE (D’Orgeval et al., 2008; Krinner et al., 2005; Ngo-Duc et al., 2007), and the 

SURFEX-TRIP modeling platform (Decharme et al., 2010, 2013). The other four models are Global Hydrological Models 5 

(GHMs): LISFLOOD (Van Der Knijff et al., 2010), PCR-GLOBWB (van Beek et al., 2011; Wada et al., 2014), W3RA (van 

Dijk, 2010; Van Dijk et al., 2014), and WaterGAP3 (Döll et al., 2009; Flörke et al., 2013). Other models in the 

eartH2Observe project were excluded because they did not provide all of the variables required for this study. The models 

are run with a consistent 0.5° meteorological forcing dataset, the WATCH Forcing Data methodology applied to ERA-

Interim reanalysis (WFDEI) data (Weedon et al., 2014). However, static fields such as land cover and soil physical 10 

properties were not prescribed, as these tend to be closely linked to the modeling system. Important characteristics of the 

models such as runoff mechanisms and representation of reservoirs or water use are presented in Table 1. For more 

information about the model datasets and project design, see Schellekens et al. (2016). Since we cannot disentangle the 

effects of the differences in model structures and parameterizations in the current experimental design, we focus on the 

results of the model ensemble mean rather than the individual models. The ensemble mean provides insight into the model 15 

consensus on drought propagation time scales and how these vary by climate. Nevertheless, we present the individual model 

results in the Supplementary Information. 

In this study, we used the monthly precipitation, root-zone soil moisture, runoff, and streamflow datasets to calculate the SIs. 

We do not study groundwater droughts because HTESSEL-CaMa does not simulate this store, and two of the other models 

have not made the data available. In addition, groundwater is defined differently between models, complicating comparisons 20 

of this store. The common forcing dataset means that the SPI time series are identical for all models, while the SSMI, SRI, 

and SSFI are model-specific. The model ensemble mean was calculated as the average of the SIs. This method deviates from 

the standard approach in which the ensemble mean is the average of the original model time series. We have chosen to 

average SI time series because root-zone soil moisture storage and its variability vary considerably between models in 

certain regions. In this way, models with high soil moisture (variability) have a much larger influence on the mean time 25 

series than models with low soil moisture (variability). In these situations averaging SI time series better captures the overall 

model response than averaging original model time series (see Fig. S1 for an example). Though averaging SI time series will 

result in a narrower range of values for the ensemble mean than for the individual models, the outcome of the SPI-n analysis 

is not greatly affected because it is based on correlations. A consistent model dataset for the eartH2Observe project is 

available from 1980–2012, though we use the years 1983–2012 to avoid data gaps in the first years of the SI time series 30 

caused by the 36-month accumulation period for the SPI. In addition to the datasets used to calculate the SIs, we used other 

model variables to relate these to the drought propagation results. These are the runoff coefficient, or the ratio of runoff to 

precipitation, and the ratio of surface runoff to total runoff. 

http://www.earth2observe.eu/
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Table 1: Overview of models and relevant characteristics 

Model Mode

l type 

Evaporation Snow Soil 

layers 

Runoff Reservoirs Water use 

HTESSEL- 

CaMa 

LSM Penman-

Monteith 

Energy 

balance 

4 Saturation excess No No 

LISFLOOD GHM Penman-

Monteith 

Degree-day 2 Saturation and 

infiltration excess 

Yes Yes 

ORCHIDEE LSM Bulk method 

(Barella-Ortiz 

et al., 2013) 

Energy 

balance 

11 Green-Ampt 

infiltration 

No Irrigation only 

PCR-

GLOBWB 

GHM Hamon Temperature 

based 

2 Saturation excess Yes (lakes only) No 

SURFEX-TRIP LSM Penman-

Monteith 

Energy and 

mass balance 

14 Saturation and 

infiltration excess 

No No 

W3RA GHM Penman-

Monteith 

Degree-day 3 Saturation and 

infiltration excess 

No No 

WaterGAP3 GHM Priestley-

Taylor 

Degree-day 1 Beta function Yes Yes 

 

The validation of modeled drought propagation was based on observed precipitation and streamflow time series. We used 

gauge-based precipitation data from the Global Precipitation Climatology Centre’s (GPCC) Full Data Reanalysis product 

version 7 (Schneider et al., 2015). The data are available as monthly precipitation totals at 0.5° resolution for the entire 5 

modeled period. Note that reanalysis precipitation data, such as used for the model forcing in this study, and the GPCC 

dataset are not truly independent. However, the dependence of reanalysis precipitation on both gauge and satellite 

observations inhibits the selection of a completely independent dataset with global coverage that also has a record long 

enough for drought studies. Monthly streamflow data were obtained from the Global Runoff Data Centre (GRDC; Koblenz, 

Germany; http://grdc.bafg.de) database. We used only sites with a catchment area larger than 9000 km
2
, where the model 10 

upstream catchment area is within 25 % of the GRDC upstream catchment area, and which have at least 15 years of data. In 

addition, we ensured that the sites were independent by searching for the most upstream stations that fit the previous 

requirements. All stations located downstream of these stations were excluded from the analysis. Finally, we only report on 

sites where the correlation between SPI-n and the SSFI was statistically significant (p < 0.05). These criteria resulted in 

127 sites (see Fig 1), with an average data availability of 29 years. 15 
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4 Results and discussion 

Here, we characterize and discuss the timescales of drought propagation from meteorological to soil moisture and 

hydrological drought at global scale. First, we describe drought propagation in the model ensemble mean and its relationship 

to climate. This gives us an idea of the model consensus. Second, we assess the variability between models and identify 

factors that may explain these differences. Finally, we compare the results of the model ensemble mean as well as the 5 

individual models to observational data. 

4.1 Model ensemble mean 

Drought propagation based on SPI-n for the model ensemble mean varies considerably in space, and all timescales from 1 to 

36 months are represented in the results (Fig. 2). Summer soil moisture droughts (based on SSMI) are best represented by 

SPI-n of one or two months in wet regions such as the Amazon, but by much longer SPI-n in dry climates and some boreal 10 

regions. Results are more mixed when focusing on runoff droughts (based on SRI). Runoff droughts are most linked to 

precipitation deficits in the same month in dry climates such as the Sahel, southern Africa, and central Australia. Runoff 

droughts in other dry regions such as the Middle East, northern Africa, and the western USA, however, are related to much 

longer precipitation deficits up to several years. The patterns of drought propagation timescales from meteorological to 

streamflow drought are similar to the patterns of SPI-n for runoff droughts, though SPI-n tends to be slightly longer. Longer 15 

SPI-n for streamflow compared to runoff can be expected as streamflow is simply routed runoff. In general, SPI-n are also 

longer, and drought propagation slower, for winter droughts than for summer droughts (Fig. 2). In this study, we focus on 

SPI-n rather than the strength of the relationship between SPI and other SIs. However, the correlations behind SPI-n are 

generally high, with median values ranging from 0.67 to 0.74, depending on climate and season (Fig. S2). The strength of the 

correlation is highest in tropical climates (medians around 0.8) and lowest in polar climates (medians around 0.6).  20 
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Figure 2: The SPI accumulation period (SPI-n) resulting in the highest correlations with model ensemble mean SSMI, SRI, and 

SSFI, for summer and winter droughts. Pixels where those correlations are not statistically significant (p < 0.05) are masked. 

 

The relationship between drought propagation timescales and climate types is further examined using the Köppen-Geiger 5 

classification (Kottek et al., 2006). We use six climate classes that reflect the five major climate types, with an additional 

distinction between tropical wet (i.e. tropical rainforest or monsoonal climates) and tropical savanna climates (Fig. 1). The 

results in Fig. 3 confirm that climate type plays an important role in the timescale of drought propagation. As in Fig. 2, 

droughts in tropical climates tend to respond to short periods of accumulated precipitation deficits, while continental and 

polar climates respond to longer periods of accumulated precipitation deficits. Overall, the variability within the tropical 10 

climate groups (both wet and savanna) is relatively low compared to dry climates, which are represented by the entire range 

of SPI accumulation periods studied. Despite the large variability in drought propagation timescales in dry climates, further 

distinctions between desert/savanna or hot/cold climates within the dry climate class did not have added value. 
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Figure 3: Histograms of the SPI-n in months by climate type, and for summer and winter droughts in SSMI, SRI, and SSFI. 

Circles represent the mean rank SPI-n per climate type and season and numbers in the upper right indicate the number of 

summer and winter data pairs per climate and drought type. Abbreviations of climate types are the same as in Fig. 1. 

 5 

Winter droughts are related to longer SPI-n than summer droughts in tropical savanna, continental and polar climates. Soil 

moisture droughts in tropical wet climates, and hydrological droughts in temperate climates, on the other hand, have similar 

propagation characteristics in summer and winter. The seasonality of SPI-n in tropical savanna climates may be related to the 

distinct wet (summer) and dry (winter) seasons in these regions: SPI-n are more similar to tropical wet climates in summer 

and to dry climates in winter. In continental climates, longer SPI-n may be due to snow cover in the winter. Precipitation in 10 

the form of snow during fall and winter will not replenish soil moisture or runoff until temperatures rise sufficiently to melt 

the snow. In this way, drought conditions in winter may be more related to precipitation deficits in the previous summer. 

Indeed, soil moisture droughts may be more related to the SPI accumulated over the three-month period before snowfall than 

to the longer period starting with those three months and extending until the defined winter season. Note that we used a 

rather simple definition of summer and winter seasons by using the equator as divider. However, since the climate along the 15 

equator is almost exclusively tropical wet, which does not show large seasonality, we expect that this does not significantly 

impact the results. 
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In terms of statistical significance, ANOVA and Chi-squared tests show that the differences in mean rank SPI-n between 

climate types are significant (p < 0.01) for both soil moisture and hydrological droughts. Further analysis based on Tukey’s 

honestly significant difference tests shows that pairwise differences in mean rank SPI-n of almost all climate types are 

statistically significant (p < 0.01) with just one exception. The mean rank SPI-n for winter hydrological droughts in 

continental and polar climates are not significantly different. Similarly, the differences in propagation time between summer 5 

and winter droughts for all drought types are significantly different based on Chi-squared and paired t-tests (p < 0.05), except 

for the paired t-test for soil moisture droughts in tropical wet climates. Despite the fact that most group means differ 

significantly, they are not always substantially different in magnitude. For example, the difference between mean summer 

and winter SPI-n for runoff droughts in temperate climates is very small.  

 10 

 

Figure 4: The difference in the rank of SPI-n for SRI and SSMI, SSFI and SSMI, SSFI and SRI. Pixels where the difference 

between accumulation periods are not statistically significant (p < 0.05) are masked. 

The difference between the timescales of drought propagation to soil moisture and hydrological droughts can provide 

additional insights into the mechanisms of drought propagation. The differences in the rank of SPI-n are shown in Fig. 4. As 15 

explained in Sect. 2.2, we use rank SPI-n rather than the duration in months because these are more useful in interpreting 

differences between (sub-)seasonal and annual timescales than the SPI-n in months. A difference of 1–2 rank SPI-n indicates 

that drought propagation occurs at similar timescales (i.e. sub-seasonal, seasonal or yearly time scales). Differences of more 

than four rank SPI-n represent large differences in drought propagation timescales, such as between sub-seasonal and yearly 

timescales. In summer, SPI-n for runoff are higher than for soil moisture in the Amazon, eastern North America, central 20 

Africa, and parts of Europe. This means that drought propagation to soil moisture is quicker than drought propagation to 

runoff, which suggests that subsurface runoff or baseflow is more important than surface runoff in these locations. The 

opposite is true for most parts of Australia, large parts of central and eastern Asia, and parts of western North America. In 
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these locations, drought propagation to soil moisture drought is slower than drought propagation to runoff, which implies 

that surface runoff is an important component of total runoff. The differences can be substantial, with rank differences of 

five and more, which roughly represent the difference between sub-seasonal and annual timescales. In winter, differences 

tend to be smaller, and longer drought propagation timescales for runoff than soil moisture (i.e. positive values in Fig. 4) are 

more common. Drought propagation timescales for streamflow droughts tend to be longer than for runoff drought, which is 5 

consistent with streamflow being routed runoff.  

Spearman correlation coefficients show that the difference in rank SPI-n of summer soil moisture and runoff droughts is 

negatively related to the amount of surface runoff relative to total runoff (ρ = −0.53). The relationships with average annual 

precipitation (ρ = 0.44) and the runoff coefficient (ρ = 0.36) are positive but slightly weaker. Each of the correlation 

coefficients noted here is highly significant (p < 0.01). The amount of surface runoff relative to total runoff, annual average 10 

precipitation, and the runoff coefficient are also related to the difference between soil moisture and streamflow drought, 

though the relationships are slightly weaker (correlations are up to 0.1 lower). The difference in SPI-n between drought types 

in winter, as well as between runoff and streamflow droughts in summer, cannot be explained by these variables.  

Results of propagation analyses from soil moisture to runoff and streamflow drought, and from runoff to streamflow drought 

are largely consistent with the results shown in Fig. 4. For example, regions where meteorological drought propagates into 15 

soil moisture drought at shorter time scales than it does to runoff or streamflow drought (i.e. red colors in Fig. 4) are 

represented by longer timescales of SSMI-n (Fig. S3). Regions showing negative values in Fig. 4, on the other hand, tend to 

be best represented by SSMI-n of one month, or the shortest accumulation period. As discussed previously, hydrological 

drought may not be preceded by soil moisture drought in these regions: the negative values suggest that surface flow may be 

more important than subsurface flow, thereby bypassing the soil moisture store. Therefore one-month SSMI-n appear to be 20 

the most appropriate, even though the mechanism of drought propagation through surface flow cannot be represented when 

analyzing the propagation from soil moisture to hydrological drought. Propagation from runoff to streamflow drought largely 

occurs at short time scales of one to two months, which is consistent with the similarity of the global patterns of SPI-n for 

these drought types in Figs. 3 and 4.  

In an additional analysis, we calculated SPI-n for the model ensemble mean focusing on mild droughts (SI ≤ −0.5) and 25 

moderate droughts (SI ≤ −1). When using mild droughts as a threshold value, the results are largely similar to those 

including near-normal conditions (SI ≤ 0), as shown in Fig. S4. Both the global patterns as well as the differences between 

the climate types are similar to the results shown in this section. However, the number of pixels masked due to insignificant 

correlations between SPI-n and the SSMI, SRI or SSFI increases. When moderate droughts are used as a threshold (Fig. S5), 

the proportion of pixels that are masked increases further, resulting in 40–50 % less data than when including near-normal 30 

conditions. In addition, the maps of SPI-n become noisier and the distributions of SPI-n by climate type (as shown in Fig. 3) 

flatten, especially in continental and polar climates. However, the relationships between the climate and seasonal group 

means remain similar.  
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Additional sensitivity tests were based on the number of SPI accumulation periods studied and the method used to calculate 

the ensemble mean. Global patterns of SPI-n (as shown in Figure 2) and the difference in rank SPI-n (as shown in Figure 4) 

are very similar when fewer SPI accumulation periods are used (1, 3, 6, 12 and 24 months). The outcomes of the Chi-

squared and ANOVA tests investigating the differences in SPI-n by climate type are also statistically significant and 

therefore unchanged. Similarly, calculating the ensemble mean based on the original model time series rather than SI time 5 

series has a limited effect on the global patterns of soil moisture and on the average rank SPI-n per climate type. A higher 

occurrence of longer SPI-n for soil moisture droughts was associated with a substantially higher average soil moisture 

content and soil moisture variability in one or two models. The model ensemble mean based on averaging soil moisture time 

series was therefore more sensitive to soil moisture conditions in those one or two models than in the other models (Fig. S1). 

The patterns of runoff drought propagation found in this study are similar to a previous study that calculated correlations 10 

between ensemble median runoff and precipitation percentiles (van Huijgevoort et al., 2013). Specifically, runoff is more 

closely related to shorter SPI (or precipitation percentile) accumulation periods in tropical regions, and to longer 

accumulation periods in continental and polar climates. However, more specific regional comparisons between these studies 

are hindered by differences in the approach of the two studies. In Van Huijgevoort et al. (2013), correlations are based on the 

full precipitation and runoff time series, while in our study they are limited to below-average runoff conditions in either 15 

summer or winter months only. The results shown here are also in line with results from an observational study comparing 

SPI and SSFI in the United Kingdom performed by Barker et al. (2016). Barker et al. (2016) reported that SPI-n of 1–4 

months were most closely related to SSFI, except in the southeast where some major aquifers are located and where longer 

SPI-n were found. That is just slightly shorter than the 2–6 months found in this study. Where drought propagation occurs at 

very short timescales, drought is mainly driven by precipitation deficits, possibly in combination with temperature anomalies 20 

(though these are not reflected in the SPI). Where drought propagation occurs at long timescales, attenuation by hydrological 

stores likely plays a more important role.  

4.2 Model variability 

The variability of SPI-n in the models underlying the model ensemble mean is shown in Fig. 5, while individual model 

results can be found in Fig. S6 (summer) and Fig. S7 (winter). Again, the standard deviation is not shown in months, but in 25 

the rank of SPI-n timescales studied. In summer, the standard deviation ranges from 1–4 rank SPI-n. Note that differences of 

1–2 rank SPI-n indicate that models tend to agree on whether drought propagation occurs at sub-seasonal, seasonal, or 

annual timescales. Model variability is low in temperate regions such as Europe and eastern North America, as well as in 

tropical regions such as the Amazon and Southeast Asia. The model variability is high in (semi-)arid regions such as the 

Sahel and central Australia. The patterns of model variability in hydrological drought propagation timescales are largely 30 

similar to those of soil moisture drought. However, the variability is patchier, and there are some regional differences. For 

example, model variability in SPI-n in tropical and temperate climates is slightly higher for runoff than for soil moisture. In 

addition, model variability is lower in central Asia for runoff droughts than for soil moisture droughts.  
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Figure 5: The standard deviation of the rank of SPI-n between the different hydrological models for summer and winter droughts 

in SSMI, SRI, and SSFI. 

Attributing observed differences between models to model characteristics is not straightforward, despite the common 

meteorological forcing, because there are considerable differences in model structures and parameterizations (Beck et al., 5 

2016, 2017; Döll et al., 2016). However, we examine the relationship between drought propagation and specific model 

characteristics to identify areas for further study. First, we examine the relationship between SPI-n and average soil moisture 

storage, as previous work has suggested that water storage plays an important role in drought propagation (Barker et al., 

2016; Van Loon and Laaha, 2015). In addition, we examine the effect of model structural choices on drought propagation in 

an exploratory analysis. 10 

Soil moisture storage in the models varies considerably between models, mainly due to differences in the definitions of root-

zone soil moisture used to calculate the SSMI. The reported depths of the root zone range from 0.2 to 8 m, which may be a 

fixed value for all pixels or vary by pixel and/or land use type. Although we use standardized indices (SSMI) and not 

absolute values of soil moisture, the response time to changes in precipitation and/or evaporation will differ between soils 

with large and small storage volumes. We examine the relationship between average root-zone soil moisture storage and 15 

average SPI-n for soil moisture droughts per climate type in Fig. 6. Soil moisture storage is averaged over space and time, 

and SPI-n in space, resulting in a single point for each model. The figure shows that drought propagation from 

meteorological to soil moisture drought is strongly related to average soil moisture storage, with correlation coefficients 

between 0.56 and 0.91, depending on the season and climate type. The impact of changes in storage on drought propagation 

is especially high in dry climates, where relatively small differences in average soil moisture correspond to large differences 20 

in SPI-n. In comparison, the impact of storage on SPI-n is low in tropical wet climates. In general, changes in SPI-n with 

storage are smaller in winter than in summer. For tropical wet, continental, and polar climates the impact of storage is less 
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than one rank SPI-n over the full range of storage volumes in winter, suggesting that storage is not an important driver of 

model variability in this season. 

  

 

Figure 6: SPI-n for the SSMI averaged over all pixels and each climate type separately plotted against mean annual root-zone soil 5 
moisture storage averaged over the same region. Each point represents a model. Lines of best fit have been added for reference. 

The relationship between soil moisture storage and drought propagation to runoff and streamflow is not included here 

because the link is not as clear-cut. Runoff consists of surface and subsurface components. The subsurface component of 

runoff is related to water stored in groundwater and/or in the lowest layer of the soil, and not to the upper soil layers included 

in the root zone. Furthermore, groundwater data are not available for three out of seven models. The surface component, on 10 

the other hand, is only affected by soil moisture in as much that saturated conditions near the surface will result in a larger 

surface flow component. Therefore, it is impacted by the relative saturation of the soil rather than the storage itself.  

In an exploratory analysis, we also examine the relationship between four qualitative factors related to model structure and 

the timescales of drought propagation. First, we compare SPI-n in LSMs and GHMs. Second, we study the effect of different 

evaporation schemes, specifically comparing Penman-Monteith evaporation schemes to more empirical temperature-based 15 

approaches. Third, we group models by runoff generation mechanisms, comparing models that include infiltration excess 

runoff generation to those that only represent saturation excess. In this last analysis, we exclude ORCHIDEE and 

WaterGAP3 because they use alternative methods of runoff generation; a Green-Ampt infiltration and a beta function, 

respectively. Note that the limited number of models and large number of different model parameterizations and structural 

choices means that we cannot definitively attribute observed differences between models to any of these characteristics. 20 

Instead, this analysis is meant to be an initial exploration of the results. 

The relative importance of these model characteristics based on Cohen’s d (see Sect. 2.2) varies considerably over the 

different climates and drought types (Fig. 7). Overall, the tested model characteristics are associated with larger effects on 

soil moisture droughts than on runoff and streamflow droughts. Grouping models by model type has the largest effect on 
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mean soil moisture drought SPI-n for most climates, where drought propagation is slower in LSMs than in GHMs. For 

runoff droughts, on the other hand, GHMs tend to have higher SPI-n for runoff droughts than LSMs. However, we cannot 

determine which underlying or associated model characteristics are the primary sources of the difference between the groups 

in this analysis.  

 5 

Figure 7: Effect sizes based on Cohen’s d for model structural choices by climate for summer and winter droughts in SSMI, SRI, 

and SSFI. Bars represent the standard deviation of model SPI-n for each group. Abbreviations of climate types are the same as in 

Fig. 1. 

Grouping models by runoff generation mechanisms has a smaller effect on average SPI-n for soil moisture droughts than the 

other studied factors. However, it can be more relevant for runoff and streamflow droughts, especially in tropical and 10 

continental climates. In these climates, including infiltration excess runoff leads to lower SPI-n and faster drought 

propagation. In tropical climates, this can be explained by the fact that high-intensity rainfall events exceeding the 

infiltration capacity of the soil are more common.  

Note that the model characteristics tested here are not fully independent. The number of models is small compared to the 

number of differences in model structures and parameterizations. Therefore, grouping models by different characteristics can 15 

result in identical groups, making it impossible to untangle the two in the current study setup. One example is the snow 

scheme. Previous studies have suggested that using energy-based or temperature-based snow schemes results in different 
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model behavior, both based on the same models used in this study (Beck et al., 2017) as well as in other models (Haddeland 

et al., 2011). In this study, however, it is impossible to distinguish between model type and snow scheme since all LSMs use 

an energy-based approach, while GHMs use temperature-based approaches. Another example is simulation of reservoirs. 

Previous studies have recognized that human adaptation should be taken into account in drought studies (Van Loon et al., 

2016; Veldkamp et al., 2015) and that the simulation of reservoirs has a substantial impact on drought propagation (Lorenzo-5 

Lacruz et al., 2013). However, grouping models by whether they simulate reservoirs results in nearly identical groups as 

dividing them by model type. In fact, only W3RA is classified as another group. 

Insight into which factors are truly responsible for model differences can only be gained through exhaustive experiments 

testing different model parameterizations and structures (i.e. Medlyn et al., 2015). This type of analysis was unfortunately 

not possible within the experimental setup of this study because model parameterizations were not consistent between 10 

models (see Sect. 3). Nevertheless, while the effect sizes cannot be used to confirm that a certain model characteristic is the 

true factor underlying observed differences, they can be used to identify directions for further study in more comprehensive 

analyses.  

4.3 Evaluation against observations 

The timescales of drought propagation from meteorological to streamflow drought in the models and model ensemble mean 15 

have been evaluated against data from 127 in-situ streamflow stations (Fig. 8). In this way, we can investigate whether the 

modeled drought propagation times presented in Sect. 4.1 and 4.2 resemble reality. Of the individual models, W3RA 

performs best for summer droughts and WaterGAP3 for winter droughts based on MAE and Spearman correlations between 

modeled and observed SPI-n. The performance of the model ensemble mean is similar to that of the best-performing model 

in both seasons, with the highest correlations and (nearly) the lowest mean absolute errors with observed SPI-n. WaterGAP3 20 

is the only model that was calibrated against streamflow observations, which could be a reason for the good performance in 

winter, even though it is outperformed by all other models in summer. While the mean absolute errors of the ensemble mean 

and individual models are within one or two rank SPI-n, correlations are low for all models.  

In addition to the overall performance metrics, we compare the number of models for which the difference with observed 

SPI-n is small (absolute error ≤ 1) and the number of models for which this difference is large (absolute error ≥ 4) at each 25 

site (Fig. 8). The thresholds are based on the models’ (in)ability to capture the overall timescales of drought in terms of sub-

seasonal, seasonal or yearly timescales. At least six out of seven models are within one step of the observed SPI-n at 16 and 

19 % of the study sites in summer and winter, respectively, and at least four models are within one step at  45 and 39 % of 

the study sites for summer and winter, respectively. This suggests that models are well able to capture observed drought 

propagation timescales at these sites. However, the majority of models differ by at least 4 steps of SPI-n at approximately 10 30 

% of sites. At these sites, the models show substantially different drought propagation timescales. These differences in SPI-n 

correspond to differences between sub-seasonal and annual timescales of drought propagation. Models tend to do well in 

western North America and Europe, but poorly in central North America and parts of South America and Australia.  
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Figure 8: Comparison of model and observed summer (top) and winter (bottom) streamflow drought propagation timescales. The 

Spearman correlation and mean absolute error based on rank are compared, where better performing models fall in the upper 

right corner. A map shows the number of models where the absolute error is ≤ 1 or ≥ 4 (right). The number of represented sites is 5 
indicated in the symbols of the legend. 

We use the mean error (ME) rather than the MAE to investigate the relationship between errors in rank SPI-n and climate 

type (Fig. 9). While MAE is a more suitable metric for evaluating the overall performance of the models since it is 

indifferent to the direction of the errors, ME allows us to assess whether models are more likely to over- or underestimate 

SPI-n and is thus reflects model bias. On average, most models and the model ensemble mean tend to overestimate 10 

summertime SPI-n in tropical wet climates, which is also the climate for which mean errors are largest. Models tend to 

underestimate SPI-n in tropical savanna climates, while results are more mixed in the other climate types (Fig. 9). The 

confidence intervals of the mean are smallest in continental and temperate climates, which is most likely because a relatively 

large number of sites are located in these climates compared to the tropical and dry climate types. However, the observed 

differences in mean rank SPI-n error between climate types are not always statistically significant based on Chi-squared and 15 

ANOVA tests (p < 0.05). Mean errors in summertime rank SPI-n are significantly different between climate types in only 

one model (PCR-GLOBWB) according to Chi-squared tests, and in two (HTESSEL-CaMa and PCR-GLOBWB) out of 

seven models, as well as the model ensemble mean, according to ANOVA tests. In winter, Chi-squared tests show that the 
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differences in mean error rank SPI-n are statistically significant for all but one model (LISFLOOD) as well as the ensemble 

mean. The results of ANOVA tests are significant for four models (HTESSEL-CaMa, ORCHIDEE, SURFEX-TRIP and 

WaterGAP3), but not for the model ensemble mean. Further analysis based on Spearman correlations showed no relationship 

between errors in rank SPI-n and catchment size. 

 5 

Figure 9: Mean error in rank SPI-n between model and observed summer (top) and winter (bottom) streamflow droughts. Error 

bars indicate the 95 % confidence intervals of the mean, and the number of sites within each climate type group is indicated in the 

bottom panel. Abbreviations of climate types are the same as in Fig. 1. 

It is important to note that some of the streamflow time series span as little as 18 years, which is shorter than the 30 years of 

data recommended for the calculation of SI. This means that the observational time series at some sites are too short to 10 

capture the climatology of their locations. However, the average time series length (29 years) is close to the required 30 

years. Furthermore, even where time series are relatively short we can evaluate whether the models capture the relationship 

between observed SPI and SSFI during the available time period. Another limitation of the evaluation is that the sites with 

observed data are not spread evenly across the globe, as most sites are located in the United States or Europe, with scarce 

data in Africa and Asia. Differences between the models and observations can be attributed to several types of errors (Van 15 

Loon, 2015). The first type of error concerns errors in the model meteorological forcing data, but also in the GPCC 

precipitation data used to create the validation dataset. Then there are the errors in model structure and parameterizations of 

hydrologic processes, including the representation of anthropogenic influence on streamflow. Finally, there are errors in the 

(discretization of) the routing schemes employed by the models. 
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Unfortunately, evaluation of soil moisture drought propagation timescales is inhibited by the lack of root-zone soil moisture 

data at global scale. While satellite soil moisture products are available, these are limited to the upper few centimeters of the 

soil (Owe et al., 2008), which is not representative of root-zone soil moisture. Terrestrial water storage data from the Gravity 

Recovery and Climate Change mission has also been used to investigate drought propagation (Zhao et al., 2017). However, 

the root-zone soil moisture signal cannot be untangled from the other terrestrial water stores and therefore cannot be used for 5 

validation in this study. Field-measured soil moisture is also available, for example through the International Soil Moisture 

Network (Dorigo et al., 2011). However, only a handful of sites remain after applying the same site selection procedure as 

for streamflow drought validation (i.e. sufficiently long time series and a statistically significant relationship between SPI 

and SSMI). 

5 Conclusion 10 

This study evaluates timescales of drought propagation from meteorological to soil moisture and hydrological drought in an 

ensemble of seven land surface and global hydrological models. Drought propagation was quantified by cross-correlating 

standardized indices of hydrological variables. Here, we focus on soil moisture, runoff and streamflow droughts in summer 

and winter. However, the simple and flexible approach used here can be applied to other drought types, such as groundwater 

droughts, and to other months or seasons. 15 

Drought propagation is closely related to climate type, with slower drought propagation in dry and continental climates and 

quicker drought propagation in tropical climates. Winter season drought propagation tends to be slower than in the summer, 

especially in tropical savanna and continental climates. This may be a result of the distinct wet and dry seasons in the former, 

and snow cover in the latter. Faster propagation of meteorological drought to runoff drought than to soil moisture drought 

has been linked to a higher proportion of surface runoff, thereby causing a larger portion of total runoff to bypass the soil 20 

moisture store. 

Model variability can be quite high, especially for summer droughts and in dry climates, where the socio-economic impacts 

of drought can be severe. Since the models were run with consistent forcing datasets, differences can be attributed to model 

parameterization and structure. For example, drought propagation from meteorological to soil moisture drought was 

generally slower in models with higher average soil moisture storage, and vice versa. Although the differences cannot be 25 

definitively attributed to specific model characteristics in the current experiment, we identified several directions for further 

study. Grouping models by model type and runoff generation mechanisms is especially promising, as these factors are  

associated with significantly different average drought propagation timescales. A true physical interpretation of the results 

would require comprehensive experiments in which model structural choices and parameterizations are consistently changed 

for all participating models. However, this was not possible in the experimental set-up. 30 

The relationship between meteorological and streamflow drought in the global models was evaluated against observational 

data. Overall, the models were able to capture the timescales of drought propagation, as errors were relatively low on 
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average. However, considerable model advancements can be made since there were large discrepancies between model and 

observed drought propagation at 10 % of the study sites. 

A better understanding and representation of drought propagation in global models may improve drought forecasting 

(Cancelliere et al., 2007), especially when combined with the availability of accurate seasonal forecasts (Luo et al., 2007; 

Luo and Wood, 2007). Drought forecasting potential is expected to be higher in regions with relatively slow drought 5 

propagation, such as the dry and continental climates in this study, as drought forecasting for longer SPI-n tends to be more 

accurate than for shorter SPI-n (Mishra and Desai, 2005). Additional research using lagged SPI-n could assess the potential 

for forecasting different types of drought based on meteorological data. Improved representation of drought propagation in 

models is also crucial to constrain the impact of climate change on drought frequency and severity, and thereby improve the 

reliability of projected changes.  10 

Data availability 
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https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html and GRDC monthly streamflow data are available at 

http://grdc.bafg.de. 15 
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