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Abstract: The increasing diversity and resolution of spatially distributed data on terrestrial systems 

greatly enhances the potential of hydrological modeling. Optimal and parsimonious use of these data 

sources requires, however, that we better understand a) which system characteristics exert primary 15 

controls on hydrological dynamics and b) to what level of detail do those characteristics need to be 

represented in a model. 

In this study we develop and test an approach to explore these questions that draws upon information 

theoretic and thermodynamic reasoning, using spatially distributed topographic information as a 

straightforward example. Specifically, we subdivide a meso-scale catchment into 105 hillslopes and 20 

represent each by a two dimensional numerical hillslope model. These hillslope models differ exclusively 

with respect to topography related parameters derived from a digital elevation model; the remaining setup 

and meteorological forcing for each are identical. We analyze the degree of similarity of simulated 

discharge and storage among the hillslopes as a function of time by examining the Shannon information 

entropy. We furthermore derive a ‘compressed’ catchment model by clustering the hillslope models into 25 

functional groups of similar runoff generation using normalized mutual information as a distance measure. 

Our results reveal that, within our given model environment, only a portion of the entire amount of 

topographic information stored within a digital elevation model is relevant for the simulation of 

distributed runoff and storage dynamics. This manifests through a possible compression of the model 

ensemble from the entire set of 105 hillslopes to only 6 hillslopes, each representing a different ‘functional 30 
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group’, which leads to no substantial loss in model performance. Importantly, we find that the concept of 

hydrological similarity is not necessarily time-invariant. On the contrary, the Shannon entropy as measure 

for diversity in the simulation ensemble shows a distinct annual pattern, with periods of highly redundant 

simulations, reflecting coherent and organized dynamics, and periods where hillslopes operate in distinctly 

different ways. 35 

We conclude that the proposed approach provides a powerful framework for understanding and 

diagnosing how and when process organization and functional similarity of hydrological systems emerges 

in time. Our approach is neither restricted to the model, nor to model targets or the data source we selected 

in this study. Overall, we propose that the concepts of hydrological systems acting similarly (and thus 

giving rise to redundancy) or displaying unique functionality (and thus being irreplaceable) are not 40 

mutually exclusive. They are in fact of complementary nature, and systems operate by gradually changing 

to different levels of organization in time. 
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1. Introduction 

1.1 Motivation 45 

[1] This paper addresses the question “How important is spatial variability of terrestrial system 

characteristics and meteorological forcing when viewed from the perspective of stream flow generation 

and distributed water storage?” While this question has motivated hydrologists since the early days of our 

science, it gained substantial attention with the development of distributed hydrological models, and it 

seems fair to say that attempts to address the question still lie at the heart of every distributed model 50 

application (Beven, 1989; Freeze and Harlan, 1969; Refsgaard, 1997; Hrachowitz and Clark, 2017). 

[2] Needless to say, this question has not found easy answers. Besides the lack of sufficient process 

understanding (in part due to the difficulty of gathering relevant data about hydrologic systems), there is 

also the uncertainty we unavoidably encounter when dealing with the steadily growing and changing pool 

of geo-information (Musa et al., 2015). For instance land surface digital elevation information is now 55 

available at a resolution of 25 m globally (Farr et al., 2007). Similarly, weather radar coverage is 

available for large parts of Europe, providing accumulated 15 min precipitation estimates at 4 km 

resolution (Huuskonen et al., 2014). Despite the huge potential for model improvement provided by these 

new and diverse pools of information, a danger associated with their use is that we can “miss the forest for 

the trees” unless we are able to determine which information contained in the data is of relevance to the 60 

questions we seek to answer.  

[3] We therefore now face the problem of how to discriminate important details about the hydrological 

landscapes from idiosyncratic ones, and hence must deal with the challenge of how to identify which 

characteristics explain hydrological similarity (Blöschl and Sivapalan, 1995). This study is largely 

motivated by the “power” view introduced by Wagener and Gupta (2005) which advocates “a need to 65 

develop better methods for characterizing and extracting relevant information from data” (see also Gupta 

and Nearing, 2014). Our specific objective is to propose an approach addressing this issue, by drawing 

upon an information theoretic perspective to extract and quantify the relevant information for spatially 

distributed hydrological modeling, and by using thermodynamic reasoning to explain why only a portion 

of the full information content available in the data is relevant. 70 

1.2 Background 

[4] From a thermodynamic perspective, streamflow generation is driven by differences in potential 

energy between the upslope catchment areas and the stream channel. The majority of this available energy 

is dissipated during runoff concentration and infiltration, while the remaining part is exported from the 

catchment as the kinetic energy of streamflow (Kleidon et al., 2013). These potential energy differences 75 
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depend largely on catchment topography, and on the space-time patterns of precipitation (Zehe et al., 

2013). Accordingly, we might be naturally drawn to expect that large spatial variations in both 

characteristics will result in large spatial variations in runoff generation. However, when exactly should 

spatial variation be considered “large” enough that we need to explicitly account for it?  

[5] In the context of spatially distributed rainfall, this latter question has received considerable attention 80 

(e.g. Obled et al., 1994; Arnaud et al., 2002; Tetzlaff et al., 2005; Zehe et al., 2005; Das et al., 2008). In 

general, the predominant view that seems to emerge from these studies is that the impact (on runoff 

simulations) of spatial distribution in rainfall increases with size of the area considered. This is often 

traced back to the growing importance of flood routing, in combination with the average spatial extent of 

typical rain storms (e.g. Smith et al., 2004; Lobligeois et al., 2014). Nevertheless, no consensus has yet 85 

emerged as to whether this statement is generally valid, and no guidelines exist regarding under which 

conditions the use of information regarding the spatially distributed nature of rainfall becomes inevitable 

(Emmanuel et al., 2015). 

Similarly, the question of how strongly the spatial resolution of a DEM affects the results of a distributed 

model application has been investigated in various studies (e.g. Schoorl et al., 2000; Thompson et al., 90 

2001; Sørensen and Seibert, 2007). For instance Zhang and Montgomery (1994) varied the resolution of 

their DEM and reported that spatial resolutions finer than 10 m did not result in significant improvements 

to the simulation results of their hydrological model. Chaubey et al. (2005) tested the influence of DEM 

spatial resolution on simulation results of the Soil Water and Assessment Tool (SWAT) and reported that 

grid size has a significant influence on different watershed responses, as well as on the sub-basin 95 

classification implemented in SWAT. However, as with the case of distributed rainfall, the results of these 

studies do not point to a generic approach, nor to any general conclusions regarding the importance of 

DEM-resolution for distributed hydrological modeling. 

[6] Overall, this lack of a coherent image certainly reflects the varying sensitivities of different model 

structures (Das et al., 2008), the dependence on scope and scale of the model exercise (Blöschl and 100 

Sivapalan, 1995) and on differences among hydrological landscapes (Beven, 2000). It seems, therefore, 

that an investigation of the role of distributed information in hydrological modeling may benefit from a 

more generic and systematic approach, one that may be generalized to different spatially distributed data 

sources and models, and that is able to cope with interactions among them in a straightforward manner. In 

contrast to much of the aforementioned work, which has relied primarily on statistical methods, the 105 

purpose of the work reported here is to investigate the extent to which information theory (Cover and 

Thomas, 2005) is able to provide instructive measures that are suitable for this purpose. 
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[7] More specifically the main objective of this study is to present and test an approach to quantify the 

relevance of spatially distributed data sources for hydrological simulations drawing from information 

theory. We exemplify this approach using catchment topography as distributed information source as well 110 

as stream flow and soil water storage as modeling targets, however, the general mindset of the approach is 

applicable to any distributed information source such as spatially distributed rainfall or geology as well as 

to a wide range of arbitrary model target and different distributed models. 

1.3 The role of surface topography in hydrological modeling 

[8] Despite the fact that DEM’s provide the basis for identifying watershed boundaries, river networks 115 

and potential energy differences in the landscape, several studies have concluded that topography alone is 

a weak descriptor for inferring similarity in hydrological behavior. For instance, Zehe et al. (2005) showed 

that the topographic wetness index (Beven and Kirkby, 1979), a popular topographic similarity measure, 

failed to explain soil moisture variability and similarity in runoff generation in a lower mesoscale 

catchment. Fenicia et al. (2016) and Jackisch (2015) showed that topography alone might be a poor guide 120 

for subdividing a 256 km
2
 catchment into different functional units, and questioned the explanatory power 

of the topography in this respect. Our own work, Loritz et al. (2017), has shown that an “effective” 

representation of two different catchments by a single representative hillslope was able to provide 

successful simulations of their inter-annual runoff responses and annual storage dynamics. Together, these 

findings suggest that an informationally “compressed” representation of the topographic map may be able 125 

to preserve the relevant information regarding geopotential differences that drive runoff generation. 

[9] In line with these findings, we therefore pose the hypothesis that “although a highly-resolved DEM 

contains a large amount of information about topography, not all of this spatially distributed information 

is relevant for the generation of hydrological predictions”. Following Weijs et al. (2013), it seems 

reasonable that information theory may provide a natural framework for dealing with such compression of 130 

information in hydrologic science. The term “compression” was originally coined by Claude Shannon to 

refer to the quantification, storage and communication of information (Shannon, 1948). In environmental 

science, information-theoretic concepts such as the “Shannon entropy” have found widespread use in 

various applications (e.g. Brunsell, 2010; Weijs et al., 2013a; Yakirevich et al., 2013), ranging from 

uncertainty assessment in 3-D geological models (Schweizer et al., 2017) to the delineation of water 135 

resource zones in Japan (Kawachi et al., 2001). For an introduction to, and detailed review of, information 

theoretic concepts we refer the reader to Cover and Thomas (2005), Singh (2013), and Weijs and van de 

Giesen (2013). 

[10] With respect to the above finding it is important to note that compressibility relates to order or 

organization (Davies, 1990). The identification of relevant information within distributed system 140 
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characteristics is therefore closely linked to the identification of spatial organization and thus with the 

identification of hydrological similar functioning areas (Sivapalan, 2005). As pointed out by Zehe et al. 

(2014), these “functional units” may be straightforwardly defined in thermodynamic terms as any flux is 

driven by a specific gradient while it performs work against a specific flow resistance. Similarity of both 

the relevant drivers and the resistance terms is a sufficient criterion to expect that two systems behave 145 

similarly with respect to the generation of a flow, and with regard to the associated entropy production. 

[11] If we transfer this concept to runoff generation, differences in the geopotential (topography) act as 

driver since runoff is driven by gravity. The resistance term, on the other hand depends either on surface 

roughness (and thus for instance on the vegetation in case of overland flow), on the pattern of subsurface 

conductance, apparent preferential pathways and in case of matrix flow on the capacity of the system to 150 

store water. Yet, the gradient flux-resistance relation is non-unique, because a twice as large driver in 

combination with a twice as large resistance results in exactly the same flux. It is this non-uniqueness, 

which explains why two hillslopes with distinctly different topographies may still produce the same runoff 

when these differences are compensated by their associate resistances. 

[12] However, while a physical explanation of the phenomena “landscape organization” is crucial to our 155 

understanding, for practical modeling applications we need to step beyond that and actually identify these 

functional units in the landscape. One avenue is surely to detect these gradients and resistance terms 

directly based on the available landscape characteristics (Seibert et al., 2017). However, it is often difficult 

to know a-priori which characteristics dominate the function of a landscape element (Oudin et al., 2010). 

Another approach is, hence, to identify functional units a-posteriori directly based on their function, and to 160 

subsequently identify which characteristics dominate the hydrological processes, and at which scale 

(Sivapalan et al., 2003). It is exactly here that an information theoretic perspective might be particularly 

valuable as, despite the more qualitative and descriptive nature of the concept of landscape organization, 

compressibility is actually quantifiable. For instance two hillslopes showing a similar function with 

respect to a given process can be compressed and hence combined into a larger landscape element without 165 

losing information about the spatial distribution of processes in a catchment. The identification of 

functional similar areas is hence directly connected to both statistical physics (organization) and 

information theory (compressibility). For this reason we believe that concepts such as maximum 

(Shannon)-entropy (Jaynes, 1957) and information theoretic variables like the “mutual information” and 

“Kullback-Leibler divergence” (Cover and Thomas, 2005; Weijs et al., 2013b; Weijs and van de Giesen, 170 

2013) provide an excellent framework for connecting the generic informational concepts of statistical 

inference and compression of data with the specific domain concepts of landscape organization and 

hydrological similarity. 
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1.4 Objectives and Scope 

[13] The main objective of this study is to propose and test a generic approach, based on information 175 

theory and to quantifying the relevance and value of spatially distributed data sources for hydrological 

simulations. Our approach is developed and tested using catchment topography as the source of spatially 

distributed information, and stream flow and soil water storage as the modeling targets. Specifically, we 

subdivide a 19.4 km
2
 catchment into 105 hillslopes and represent each of these contributing spatial units 

with a hydrological hillslope model. Following Loritz et al. (2017), the hillslope models are identically 180 

parametrized with respect to soils, bedrock topography and vegetation, and differ only with respect to the 

values of their topography dependent parameters such as aspect, slope and elevation above and distance to 

the river. Each of these hillslope models is driven by the same meteorological forcing for one hydrological 

year yielding 105 independent runoff and storage time series. In the first part of this manuscript we 

analyze the distributions of runoff and storage simulations at each time step by means of the Shannon 185 

information entropy. With this approach we are able to reveal different levels of redundancy in our 

simulated output in time and try to answer the question whether we can identify the necessary spatial 

complexity of our chosen model structure. In the second part of this manuscript we evaluate the 

similarities of the runoff time series simulated by the hillslope models in terms of their mutual 

information. We use this as a basis for compressing them into a smaller set of functional groups, such that 190 

in each group the members are to a certain extent predictable from each other in terms of runoff 

generation. Here we choose the average Shannon entropy of the simulation period to determine the 

number of different functional groups. Based on this we construct different time invariant realizations of a 

compressed catchment model and test those against observations and the simulation with the 

uncompressed model. Finally, we reiterate that the overall approach presented here is applicable to a 195 

variety of different spatially distributed information such as spatially distributed rainfall or land-use, as 

well as to most modeling target and to a wide range of spatially distributed hydrological models available. 

This paper is, however, restricted to development and testing of the approach using only catchment 

topography and one numerical hillslope model. 

 200 

2. Study area and model realizations 

In this section we introduce the study area, the database used, and the general model setup of the different 

hillslopes. 
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2.1 The Colpach catchment 

[14] The 19.4 km
2
 Colpach catchment is situated in the northern part of the Attert basin in the Devonian 205 

schists of the Ardennes massif, and has an elevation ranging from 265 to 512ma.s.l. (Figure 1a). 

Approximately 65% of the catchment is forested, mainly on the steep hillslopes. In contrast, the plateaus 

at the hilltops are predominantly used for agriculture and pasture. The dominant runoff process is rapid 

flow in a highly permeable saprolite layer above the bedrock, and the catchment is characterized as a fill-

and-spill system (Wrede et al., 2015). Besides the importance of lateral flow along the bedrock, several 210 

irrigation and dye staining experiments have highlighted the role of vertical structures for infiltration and 

subsequently for subsurface runoff formation (Jackisch et al., 2017). For a more detailed description 

please see Loritz et al. (2017), Wrede et al. (2015) and Jackisch (2015). 

2.2 The CATFLOW model  

[15] The spatially-distributed hillslope-scale model CATFLOW (Maurer, 1997; Zehe et al., 2001) is 215 

based on the subdivision of a catchment into several hillslopes connected by a drainage network. Each 

hillslope is discretized along a 2-dimensional cross section using curvilinear orthogonal coordinates. Each 

surface model element extends over the width of the hillslope, and these widths may vary along the 

hillslope. Evapotranspiration is represented using an advanced SVAT approach based on the Penman-

Monteith equation, which accounts for tabulated vegetation dynamics, albedo as a function of soil 220 

moisture, and the impact of local topography on wind speed and radiation. Soil water dynamics and solute 

transport are simulated based on the mixed form of the Darcy-Richards equation, solved using mass 

conservative Picard iteration and adaptive time stepping (Celia et al., 1990). The hillslope module is 

designed to simulate infiltration excess runoff, saturation excess runoff, re-infiltration of surface runoff, 

lateral water flow in the subsurface, return flow and solute transport.  225 

2.3 Hillslope setup, forcing and model evaluation 

[16] The topographic analysis was based on a 5 m Lidar digital elevation model, aggregated and 

smoothed to 10 m resolution. GRASS GIS (Neteler et al., 2012) was used to subdivide the catchment into 

105 hillslopes (Figure 1a) using a classical hydrological terrain analysis algorithm r.watershed. This 

approach generates a stream network after the user sets a threshold for the minimum size of an exterior 230 

watershed basin. We identified this value by varying this threshold across a range of values trying to 

reproduce the official stream network which was available from the Luxembourg Institute of Technology 

(LIST) by visual inspection. Following the standard procedure of r.watershed each stream segment has 

two corresponding hillslopes (left and right side of the stream). We use the landscape units mapping 

program (LUMP; Francke et al., 2008) and again GRASS GIS to derive the hillslope profiles, including 235 

properties such as the elevation and distance to the river, and the mean aspect and width function of each 



 

9 

 

hillslope (Figure 1b). On average the hillslopes lie 67 meters above the river, are 446 meters wide, and 

cover an area of 0.16 km
2
. The maximum area of a hillslope is 0.86 km

2
 while the smallest hillslope 

covers an area of 0.12 km
2
. 

[17] With respect to soils, bedrock topography and vegetation, the 105 hillslope models were identically 240 

parameterized using a parameter set, macropore distribution and subsurface stratification tested and 

derived by Loritz et al. (2017) when representing the entire Colpach catchment by a single effective 

hillslope model. Accordingly the hillslopes differ only in the values of parameters that are extracted from 

the digital elevation model (hillslope profile and length, width and aspect). All hillslope models are 2 m 

deep, where the upper 1 m is classified as soil followed by a 0.2 m lateral saprolite layer and an 0.8 m 245 

deep almost impermeable bedrock (see soil parameter and structure in Tab. 1 in Loritz et al. 2017). The 

porosity of the upper 1 m of soil is assumed to reduce linearly with depth, with the lowest value being 0.3 

at a depth of one meter from the surface. In order to account for reported preferential flow in this area 

(Jackisch et al., 2017) we added additionally, every 4 m, a 0.1 m wide rapid flow path (vertical flow 

structure) with an depth of 1 m. The entire soil setup follows the findings of Loritz et al. (2017) in which it 250 

was shown that a representative hillslope was able to provide successful simulations of various 

hydrological fluxes. The discretization of the hillslope in the downslope direction varies between a 

maximum of 1 m and minimum of 0.1 m, where the latter occurs close to rapid flow paths. The vertical 

grid size was set to 0.1 m, with a reduced vertical grid size of the top node of 0.05 m (Figure 1c). 

[18] Boundary conditions were set to an atmospheric boundary at the top, no flow boundary conditions at 255 

the upslope, and a gravitational flow boundary condition at the lower boundary. At the hill foot of the 

hillslope we selected a seepage interface for the upper 0.4 m, where outflow only occurs under saturated 

and no flow under unsaturated conditions. For the lower 1.6 m of the downslope boundary we selected a 

no flow boundary to mimic a saturated zone close to the river. All of the hillslopes are covered entirely by 

forest and the evapotranspiration routine is parameterized similarly to the one described in detail in Loritz 260 

et al. (2017). Figure 1c shows an example of a typical CATFLOW hillslope grid and soil setup divided 

into soil, rapid flow paths and bedrock. 
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Figure 1 a) Digital elevation model of the Colpach catchment and its delineation into 105 hillslopes b) all hillslope profiles 265 

extracted using the LUMP approach c) example of a CATFLOW hillslope grid. 

 

2.3.1 Model forcing and application 

[19] Meteorological input data are recorded at an official meteorological station (Roodt), and were 

provided by the “Administration des Services Techniques de l’Agriculture Luxembourg”. All hillslope 270 

models were forced with identical meteorological inputs. This implies, for instance, that we neglect 

observed variations of rainfall and wind speed within the catchment. We compared simulated and 

observed specific runoff by dividing the respective values by the relevant contributing areas; i.e., either by 

the area of the hillslope or of the Colpach catchment. Similarly, we calculated the area specific water 

storage (average water content per m
2
) for each hillslope. The simulation period is the hydrological year 275 

2014 from October 2013 to October 2014. This is preceded by a model spin-up of one year with initial 

states of 70% saturation. 

2.3.2 Model evaluation 

[20] The intention of the model evaluation performed here was not to infer whether we have identified 

the best performing model structure, but to evaluate and quantify differences in modelled runoff and 280 

storage arising from underlying differences in hillslope topography. Therefore, while this exercise does 
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not require a comparison to observations, we nevertheless do so to demonstrate that the different models 

(and in particular the entire ensemble) produces meaningful simulations that are consistent with observed 

hydrological storage and streamflow dynamics. We inspected the runoff simulations both visually and by 

comparison to the observed specific discharge using the normalized mutual information (NMI, specified 285 

below; see also Michaels et al., 1998). In addition, we use the Kling–Gupta efficiency (KGE, Gupta et al., 

2009) to highlight that the NMI provides a consistent picture and is able to identify differences between 

hydrographs. Furthermore, we use the NMI in our functional classification because it is symmetric and 

satisfies the mathematical requirements of a distance metric (see section 2.6; for a further comparison of 

the NMI as well as the Appendix C). Additionally, we calculated the KGE and NMI between the area 290 

weighted median of the runoff simulations and the observed specific discharge of the catchment. By 

simply using the area weighted median instead of a river network routing scheme we assume, in line with 

Robinson et al. (1995) and our own findings (Loritz et al, 2017), that the Colpach catchment is hillslope 

dominated and that the timing of the routing is small enough to be neglected. 

[21] With respect to the storage dynamics, we estimated the average amount of water within the hillslope 295 

(in mm for each hillslope) and compared these values against the median of storage estimates calculated 

from available soil moisture measurements in 10, 30 and 50 cm, which have been collected at different 

locations throughout the catchment (for detailed information of the soil moisture sensors and observations 

please see (Loritz et al. (2017)). As the model and the observations estimates are based at largely different 

scales, we believe that any comparison more detailed than the comparison of their temporal dynamics is 300 

in-appropriate. 

 

3 Theoretical background, approach and methods 

In the following section we provide a detailed review of the important concepts from information theory, 

and discuss how we used these concepts to address the study objectives. 305 

3.1 Information theory and Shannon information entropy 

[22] The field of Information theory originally developed within the context of communication 

engineering, deals with the quantification of information with respect to a concept called “surprise” 

(Applebaum, 1996). For a discrete random variable � that can take on several values 

� ∈ {��; 	��; 	�	…�� 	}	with associated prior probabilities 	
(��); 		
(��); 	
(�	)… 	
(��)	the surprise or 310 

information content of receiving/observing a specific value � = �� is defined as: 

 

	� = 	− log��	
(��)�																																																																															(1) 
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where � is the information content, � is the base of the logarithm and 
(��)	the prior probability that � can 

exist in the state �. The logarithm in this definition assures that information is an additive quantity. When 315 

the base � of the logarithm is chosen to be 2, information is measured in ‘bits’ (abbreviated from binary 

digit). While different k values can be used to calculate the information content of a random discrete 

variable, here we stick with the logarithm to the base 2. 

[23] To calculate the average information content associated with the random variable � we can estimate 

the Shannon entropy �(�) defined (by taking its expectation) as: 320 

 

�(�) = − � 	
(��) ���� 	
(��)																																																																		(2)	
	

!	∈	"
 

 

where 
(��) is again the probability that � can be in the state �. In this study we computed the Shannon 

entropy of the probability distribution of the 105 runoff and storage simulations for each hourly time step. 

In addition to computing the Shannon entropy for a single random variable (also called self-information), 325 

we compute the joint entropy �(�, $) of a set of variables � and $ as follows: 

 

�(�, $) = − � � 
(�� , %�) ���� 
(�� , %�)
	

&	∈	'

	

!	∈	"
																																																				(3) 

 

where 
(�� , %�) is the joint probability. The joint entropy is used to estimate the mutual information 

(described below) between two random variables. For more detailed discussion of information theoretic 330 

concepts and variables please see Applebaum (1996) and Cover and Thomas (2005). 

3.1.1 The appropriate binning for estimating discrete probability density functions  

[24] A crucial step in the computation of Shannon entropy and/or mutual information of discrete 

distribution (see section 3.1 and 3.2) is a careful choice of the bin widths used to construct the probability 

density functions (pdf; Gong et al., 2014; Pechlivanidis et al., 2016). Various guidelines are available 335 

regarding how to properly estimate the bin width from the viewpoint of statistical rigor (e.g. Scott, 1979). 

However, Weijs and van de Giesen, (2013) also point out that the bin width for a pdf should always be 

chosen based on considerations related to the question one wishes to answer. For instance, hydrologists 
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often evaluate their models against measured soil moisture or discharge data. As such observations always 

imply the existence of measurement errors, observational differences smaller than the typical size of such 340 

errors should not be afforded physically meaningful importance. (To infer on the sensitivity of the 

Shannon entropy to different bin width please see the appendix B). 

[25] Accordingly, for calculation of the entropy of the runoff and the storage simulations we propose that 

the smallest meaningful bin width should be greater than or equal to the measurement error. Consequently, 

we choose the mean relative error of the rating curve (8.5 %, see appendix A) to estimate the Shannon 345 

entropy of the runoff simulations and the measurement error of the installed capacitive soil moisture probe 

soil moisture probes of 1 Vol. % for the storage simulations (Decagon 5TE; ± 1 - 2% volumetric water 

content for calibrated soils; manufacture information). For the runoff simulations, we started with a bin 

width of 0.01 mm and then progressively increased the bin width by a factor of 8.5 %. This results in a 

non-uniform bin width distribution with constantly increasing bin sizes for larger discharge values as the 350 

uncertainty in the measurements increases with higher flows. In contrast, for the storage simulations, we 

used a constant bin width of 10 mm because the measurement errors of our soil moisture probes do not 

depend on the magnitude of the measured value. We transferred the error of the soil moisture probes to 

our storage simulations as follows. The 1 m thick soil domain has a porosity of 0.57 (m3m-3), having a 

total storage volume of 570 mm. We hence use a constant bin width of 10mm, corresponding to 1% vol, 355 

with bins ranging from 10 mm (1% vol) to 570mm (57% vol)  

3.1.2 Upper and lower boundary of the Shannon entropy – perfect versus no organization  

[26] Isolated systems evolve, according to the second law of thermodynamics, to a state of maximum 

entropy in which all gradients are depleted and each microstate of the system is equally likely (Kondepudi 

and Prigogine, 1998). This implies maximum uncertainty about the microstate and the absence of any 360 

organization/order in the system. Jaynes (1957) transferred this fundamental insight into a method of 

statistical inference, stating “when making inferences based on incomplete information, the best estimate 

for the probabilities is the distribution that is consistent with all information, but maximizes uncertainty”. 

This condition is reflected by a uniform distribution where all outcomes are equally likely (Weijs et al., 

2010). With respect to our model ensemble, a state of maximum entropy implies that each of the 105 365 

hillslopes models produces a unique output that cannot be guessed given knowledge regarding the output 

of any other hillslope. Accordingly, we can calculate the theoretic maximum entropy for our model as: 

 

	�)*! = ����	(+)																																																																							(4) 
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where N = 105 is the number of hillslope models. This maximum reflects a theoretical state of zero spatial 370 

organization in the catchment, where each hillslope provides a unique contribution to stream flow and 

storage dynamics due to its specific. A further compression of the catchment subdivision, for instance by 

leaving out or merging certain hillslopes, is not possible without losing precision. At the other end of the 

spectrum, one may have a state of perfect spatial organization in which all 105 hillslope models are within 

the error margin of observations perfectly predictable from each other. This would correspond to zero 375 

entropy and implies that the compression of the spatially distributed model is trivial as any arbitrarily 

selected hillslope will represent it equally well. 

It is important to note that 	�)*! is (in our virtual experiment) a theoretical upper limit as the hillslope 

models would, given our bin width, need to simulate discharge values as high as 48.3 mm hr-1 to reach this 

theoretical limit. We thus distinguish between the maximum entropy of our model ensemble given the 380 

spatial discretization of the model and the maximum entropy of our experiment given the uncertainties and 

physical limits of our discharge and storage simulations and observations. The difference becomes clear if 

one imagines a simple thought experiment in which one would like to study a dice with six possible 

outcomes. The maximum entropy of this dice is linked to the number of possible states of the “system” 

and hence is ����(6) = 2.58. Now depending on our investigation, we might change our question and 385 

only ask for values larger or smaller than 3. In this case the maximum entropy of our “experiment” would, 

with two possible outcomes, be ����(2) = 1. 

3.2 Mutual information as similarity measure 

[27] To compare simulated runoff time series generated by different hillslopes, we calculate their pair-

wise mutual information of each simulated runoff time series as a similarity measure. Mutual information 390 

�(�, $) between two discrete random variables � and $ is a measure of the strength of their informational 

correspondence, defined by Cover and Thomas (2005) as: 

 

�(�, $) = 	 � � 
(�, %) ����

(�, %)


(�)	
(%)	 																																															(5)
	

&	∈	'

	

!	∈	"
 

 

where 
(�, %) is the joint probability of � and $ and 
(�) and 
(%) are their marginal probabilities. 395 

Equivalently, mutual information can also be calculated directly as a difference between the sum of the 

entropies of � and $ minus the joint entropy of � and $ (Figure 2). 
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�(�, $) = 	�(�) 1 �($) − 	�(�, $)																																																							(6) 
 

 400 

Figure 2 Sketch of the relation between information entropy, joint entropy and mutual information displayed as bar 

diagram. 

 

[28] While Shannon entropy is used to determine the information redundancy or compressibility between 

the 105 simulated discharge time series at a certain time steps, we now show how mutual information can 405 

be used to see how similar or dissimilar two discharge simulations are. 

[29] Mutual information quantifies the amount of information that one variable reveals about another and 

thus the strength of their co-dependence. If the mutual information is zero, the two variables are 

independent while larger values correspond to stronger relationships. When using the binary logarithm 

mutual information, Shannon entropy and joint entropy share the same unit ‘bits’. Here, we seek to use the 410 

mutual information between different hillslope runoff simulations as a measure of similarity or distance 

between the hillslope models. However, since the value of mutual information depends on the absolute 

magnitude of joint entropy between the two chosen variables, it is not appropriate to use mutual 

information directly as a distance function for relative comparisons (if the joint entropy of two variables is 

low the value of mutual information will also be low even if the two variables are perfectly related). 415 

Hence, following Michaels et al. (1998), we normalize �(�, $) using the larger of the entropies of the two 

random variables X and Y. It is important to note that this normalization can also be done using the smaller 

of the entropies of the two random variables X and Y or the joint entropy of X and Y. Depending on the 

objective this can be an important choice (see appendix C). In this study we follow the avenue 

recommended by Michaels et al. (1998) and use the maximum. 420 

 

+2�(X, Y) = I(X, Y)
max9H(X),H(Y);																																																																								(7) 
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[30] Accordingly, the normalized mutual information (NMI) ranges from 0 to 1, with higher values 

corresponding to stronger relationships (higher mutual information content). Further, to make the NMI 

easier interpretable we subtract the NMI from 1 as typical distance functions are normally closer to zero in 425 

case of a stronger similarity (see Appendix C for a comparison of the NMI with the Pearson correlation 

coefficient and the Euclidean distance). 

3.3 Functional classification of hillslopes with similar runoff behavior 

[31] Using NMI as distance metric, we classified the 105 hillslope models into functional groups of 

similar runoff behavior based on the 105 runoff time series, using a hierarchical cluster analysis based on 430 

Ward's minimum variance method (Hastie et al., 2009; Murtagh and Legendre, 2014). As a first guess of 

a physically meaningful number of functional groups we used the mean annual entropy of all 105 

discharge simulations (further discussed in section 4.2). 

 

+�. �=	=>?@AB�?C�	�D�>
E = 2()F*G	*GGH*I	FGJKLM&)																																																								(8) 
 435 

[32] This choice is inspired by the fact that the Shannon entropy of a random variable � is closely related 

to the maximum compressibility of the information about this variable. This is because, when the Shannon 

entropy is calculated using the binary logarithm, it relates to the minimum number of binary “yes or no 

questions” necessary to determine the actual value of �� from �. In the special case where the distribution 

of the random variable is dyadic, the value of the Shannon entropy �(�) and the expected minimum 440 

number of questions are equivalent, while if this is not the case the expected number of questions lies 

between the computed value of the entropy H and its increment H+1 (for further details see Cover and 

Thomas, 2005). 

 

�(�) ≤ 	O�
P@APQ	R>PEAB�?E	 < 	�(�) 1 1																																																(9) 
 445 

[33] So, in general, if the entropy of a discrete random variable � is	�(�) = 2, we know that the expected 

number of binary (Yes/No) questions needed to quantify x lies between 2 and 3. This implies that the 

number of possible outcomes lies somewhere between 2
2 
= 4

 
and 2

3 
= 8, as every binary question can have 

two possible answers. 
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3.4 Compression of the catchment model based on functional groups 450 

[34] Having grouped the hillslope models into time-invariant functionally similar groups, we test whether 

this grouping provides a solid basis to compress the model structure of 105 hillslopes into a less redundant 

one that yet produces results of similar quality as the full set of hillslopes but at much smaller 

computational cost. There are at least three avenues to do so. The first one is to simply calculate the area 

weighted median or average of all runoff simulations within a functional group. This, however, means that 455 

all 105 runoff simulations are necessary to build this compressed model and we cannot run the 

compressed model in a forward mode. The second avenue is to take functionally united hillslopes and 

derive for each functional unit an effective, spatially aggregated hillslope in a similar fashion as done in 

Loritz et al. 2017. Though this is most likely the most promising way to come up with a compressed 

catchment model, it is beyond the scope of this manuscript. Instead, to simplify this attempt in this study 460 

we use a third option and develop a compressed model structure using a bootstrap-like approach. For this 

we randomly select a single hillslope from each functional group, and calculate the area weighted median 

of the simulated discharge time series of the six randomly selected hillslope models (Compressed 

catchment model; Figure 3). The weight assigned to each of the selected discharge time series corresponds 

to the areal fraction of all hillslopes in the respective functional group. This assures mass conservation 465 

because runoff of each hillslope is equal to its area times the simulated specific discharge. We use random 

selection because each group member is regarded as equivalent to represent the runoff generation of the 

corresponding functional group. To account for sampling variability, as simulated runoff differs slightly 

among the hillslopes within a functional group, we repeat this random selection 1000 times. In a final step, 

we compare those values individually as well as the median of all realizations against the observed runoff 470 

of the Colpach using the KGE. This reveals the performance spread of the randomly generated 

compressed models compare to the area-weighted median of the entire 105 hillslopes. 
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Figure 3 Sketch of the approach for compression and performance evaluation for the compressed catchment models. 475 

 

4. Results 

4.1 Runoff and storage simulations 

[35] The overall model performance of the area weighted median of all hillslopes is decent, with a KGE 

of 0.76. The ability of different hillslope models to reproduce the observed runoff dynamics of the 480 
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Colpach catchment varies substantially (see Figure 4a), with KGE values ranging between 0.44 and 0.92. 

This apparent spread in model performance among the hillslopes corroborates the sensitivity of simulated 

discharge to those parameters derived from the DEM. A similar pattern is revealed when model 

“goodness” is expressed by means of the normalized mutual information (NMI) between each hillslope 

model and the observed runoff. NMI values range from 0.51 to 0.71 and show a strong linear correlation 485 

to the corresponding KGE values (with a Pearson correlation coefficient of 0.89). This good 

correspondence of NMI with the KGE performance measure reinforces the notion that NMI is a suitable 

measure of similarity, or difference, between time series of hydrological variables. 

[36] The temporal patterns of total area specific storage for each hillslope model are shown in Figure 4b. 

The skill of different hillslopes to reproduce the temporal dynamics of observed median storage is rather 490 

stable, with a Spearman rank correlation coefficient ranging from 0.77 to 0.86, with the ensemble median 

having a value of 0.82. Visual comparison of the simulated storage time series reveals that differences in 

hillslope topography result mainly in a parallel shift of the respective time series. This parallel spreading is 

stronger during the wet season and less pronounced during dry conditions. The latter might be due to the 

identical vegetation parameterization of each hillslope and hence a result of highly similar root water 495 

uptake which dominates storage dynamics during dry conditions in summer. 
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Figure 4 (a) Observed and simulated runoff of the Colpach catchment. The red lines correspond to individual hillslope 

models and the yellow line to area weighted median of all hillslopes. (b) Simulated total area specific storage of each 500 

hillslope in red and the median of all models in yellow. The median of the 141 observed soil moisture time series is 

smoothed with a 12 hour rolling mean (for more detail to the soil moisture observation we refer to (Loritz et al., 2017)) (c) 

Shannon entropy in turquoise for the runoff simulations as well as the corresponding mean and (d) a similar plot for the 

storage simulations (red). 

 505 

4.2 Entropy of the discharge and storage simulations 

[37] If all 105 of the hillslope models were to produce unique simulations of equal importance, their 

entropy would be the theoretical maximum value of ����(105) = 6.7. However, in our study the 

maximum entropy of our discharge simulations given the chosen binning size and the maximum simulated 

discharge value of 0.75 mm hr-1 is ����(54) = 5.7 and for the storage simulation given a minimum 510 

simulated soil moisture close to 200 mm and a maximum around 400 mm ����(21) = 4.4. On the other 

side of the spectrum the minimum of the Shannon entropy associated with a perfectly redundant set of 

hillslopes, is 0. 



 

21 

 

[38] As seen in Figure 4c & d, the entropy of the ensemble of runoff simulations starts at a rather low 

value at the beginning of our simulation period, increases with the first rainfall events in autumn, stays at a 515 

high level (ranging between 3 and 4) during the winter period, and starts to decrease towards 0 in May. 

During the summer, the entropy reacts much more strongly to the different rainfall events than in winter, 

and peaks at a value of 4.9 in August (35 from 54 bins allocated) when stream flow production grows 

again after a long dry period of low flow. It is interesting to note that the entropy in simulated stream flow 

is highly dynamic in time, implying that the required structural resolution of the model changes with time, 520 

with the 105-hillslope model structure being less redundant during periods of high entropy and more 

strongly redundant when entropy approaches 0 (see also Appendix D). 

[39] For the ensemble of storage simulations, the entropy varies between 1.5 and 2.9, which indicates less 

temporal variability compared to runoff. This is consistent with the visual impression that differences in 

topography result mainly in a parallel shift of the time series to a different annual mean. Nonetheless, the 525 

entropy time series exhibits weak annual dynamics, with a peak in mid-November when the wet season 

starts. This peak coincides with the entropy peak of the runoff simulations. In spring and summer, the 

entropy decreases slowly until it reaches the overall minimum of 1.71 in October. Note that this could be 

very different in case of (for instance) land-use differences or distributed rainfall among the hillslopes 

causing a likely increase of entropy during summer and autumn. 530 

4.3 Functional group and their typical runoff and storage dynamics 

[40] The mean annual entropy of the runoff simulations is 2.5 (Figure 4c), which implies that (on 

average) the number of functional groups or bins that can be distinguished lies between 2
2.5
≈6 and 2

3.5
≈10. 

In line with one of our goals to use information theoretic measures to define similar acting landscape 

elements and to compress the full catchment model into functional groups without substantial loss of 535 

information we took the lower value and used a hierarchical cluster analysis to classify the hillslopes into 

six functional groups using normalized mutual information (1-NMI) as distance metric. The median 

discharge for each functional group is shown in Figure 5a, while the corresponding set of hillslope profiles 

is displayed in Figure 5b. In general it seems that the functional groups 1, 2 and 6 exhibit the strongest 

differences with respect to their median runoff time series as well as with respect to the geopotential 540 

profiles whereas the classes 3, 4 and 5 appear much more similar in both aspects. The median of the 

storage simulation of each functional group is displayed in Figure 5c. Consistently with simulated runoff, 

the storage time series of functional groups 1, 2 and 6 show the greatest differences. However, in contrast 

to the runoff simulations also the functional groups 3, 4 and 5 are better separable at least during the wet 

period. Consistent with the decline of the Shannon entropy in Figure 4d these differences diminish in 545 

summer. Especially in June, July and August all of the functional groups simulate essentially identical 

storages as their differences are getting closer to the error margins of the soil moisture measurements. 
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Again, we stress that this convergence could be explained by the dominant role of evapotranspiration and 

the identical land-use parameterization of all hillslopes. Note that functional group 6, showing the 

strongest and fastest overall runoff reaction and has the lowest overall storage simulation. Consistent with 550 

that, functional group 1 and 2, showing the slowest runoff reaction are characterized by the highest overall 

storage. 

 

 

Figure 5 a) Median runoff of the six functional groups; b1 –b6) corresponding hillslope profiles with the elevation to river 555 

on the y axis and distance to river on the x axis for each functional group. c) Median storage of the six functional groups. 

 

4.4 Performance of the compressed catchment models 

[41] Figure 6 shows the cumulative frequency distribution of KGE values for the 1000 randomly selected 

model compressions using the aforementioned functional groups of similar runoff generation (Table 1). 560 

The median of all 1000 KGE values of all trials is 0.78 and corroborates that the compressed model 
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structures perform on average slightly better than the area weighted median of the 105 hillslope models, 

which has a KGE of 0.76. However, the range of 0.66 to 0.88 in the KGE values indicates that the 

performance of a particular single realization of the compression depends on the actual combination of 

hillslopes selected for each group. As each realization of the compressed catchment model would in 565 

principle only use six hillslope models and if we assume that all hillslopes have the same run time this 

could, in theory, reduce the computational costs of our model application by a factor of 17.5. 

 

Table 1 Number of member as well as the mean and max values of the runoff simulation of each functional group. 

Functional group Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

member  

[n] 

mean annual runoff 

[mm*h
-1

] 

max runoff 

[mm*h
-1

] 

mean storage 

[mm * h
-1

] 

max storage 

[mm*h
-1

] 

9 

 

0.051 

 

0.22 

 

289.6 

 

338.6 

 

8 

 

0.052 

 

0.34 

 

295.7 

 

349.1 

27 

 

0.053 

 

0.42 

 

281.7 

 

323.7 

20 

 

0.054 

 

0.43 

 

277.1 

 

316.2 

20 

 

0.056 

 

0.64 

 

273.7 

 

312.8 

21 

 

0.065 

 

0.75 

 

267.7 

 

307.2 

 570 

 

Figure 6 Distribution of model performances of the different realizations of the compressed catchment model (blue). The 

two dashed lines correspond to the median of the KGE values of all realization of the compressed catchment model (blue) 

as well as to the area weighted median of all 105 hillslope models (red). 

 575 
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5. Discussion 

[42] The results presented above provide strong evidence that information theoretic concepts are 

powerful tools to quantify and explain the relevance of different system characteristics for distributed 

modelling. Following this overall result, we will start to discuss our main finding that the amount of 

topographic information relevant for distributed modelling is not constant but time variant. Furthermore in 580 

a second step, we address the closely related issue that we are able to compress the ensemble of hillslope 

models into functionally similar groups, and that a stronger compressibility implies a higher degree of 

functional organization in a heterogeneous environment. This discussion leads naturally to a short 

reflection on the advantages that concepts from information theory offer for exploring and explaining how 

spatial complexity and functional similarity of hydrological systems are connected. Finally, we conclude 585 

by revisiting the seeming antagonism between landscape organization (Dooge, 1986) and functional 

similarity (Wagener et al. 2007) against the recurring finding of heterogeneity and randomness and hence 

uniqueness of hydrological places (Beven, 2000) and provide an outlook on how to generalize the 

approach presented here. 

5.1 Temporarily varying importance of topography for distributed modeling 590 

[43] The relevance of spatially variable but yet time-invariant topographic information on hydrological 

simulations was found to be strongly time dependent. The different topographic information used within 

the models led to complex temporal dynamics of the information content of the probability distribution of 

the discharge and storage simulations at a given time step. These temporal dynamics were furthermore 

distinctly different for the two target variables. The Shannon entropy of the discharge simulations revealed 595 

that there are alternating periods of high redundancy and of high diversity among the hillslope responses. 

This resulted in several local maxima and minima of the Shannon entropy in time. These maxima and 

minima are not easily explained by simply attributing them to high and low flow conditions (see Appendix 

D). For example the global maximum of 4.9 (close to the theoretical maximum of our experiment 5.8) was 

observed in August, when the system rapidly switched from low to high streamflow conditions in 600 

response to a strong convective rainfall event. In contrast, the Shannon entropy of storage simulation 

exhibited a distinctly different pattern compared to the discharge simulations with a much stronger 

autocorrelation, two clear identifiable maxima in winter, and overall lower values of the Shannon entropy 

in summer.  

[44] The overall differences between the two target variables, the dynamics of the information content 605 

within the discharge and storage simulations, and hence the changing maximal compressibility of the 

model ensemble, highlights that the relevant topographic information for distributed modeling depends 

firstly on the modeling target and secondly on the time, and thus on the prevailing forcing as well as on 
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the state of the system. In other words, spatially distributed information about topography has a time 

varying impact on the model ensemble. Hence, the necessary complexity (Schoups et al., 2008) of a 610 

distributed model to capture this information is time dependent as well. 

[45] If we try to generalize and transfer this finding from the model world to a real hydrological system 

keeping in mind all the issues that go along such an approach, these results imply that different landscape 

entities may either function similarly or dissimilarly depending on the time. Hydrological similarity can 

therefore, rather than being static, be a dynamic attribute that depends on the “hydrological context”. 615 

Interestingly, this context dependence can be straightforwardly explained by the generally dissipative 

nature of hydrological processes (Kleidon, 2010). Rainfall and radiation push and pull the hillslopes away 

from their local thermodynamic equilibrium, thereby generating internal system gradients in either 

potential energy or capillary binding energy. These gradients get depleted during system relaxation 

towards the equilibrium either through release of water from hillslopes to the stream or through recharge 620 

and capillary rise (Zehe et al., 2014). However, the generation and depletion of these gradients is 

controlled by a large variety of meteorological and hydrological processes interacting across a hierarchy 

of spatial and temporal scales (Blöschl and Sivapalan, 1995). Exactly the varying dominance of these 

processes, and hence the changing importance of the corresponding landscape control, is the key to 

understanding the time varying relevance of different system characteristics for distributed hydrological 625 

modeling, and explains the varying relevance of (in our case) topography for hydrological modeling even 

though topography is quasi static at classical hydrological time scale. 

5.2 Compressibility of time series and functional similarity of hillslopes 

[46] As indicated in the section above, both of the target variables, storage and discharge, never reached 

the theoretical maximum value of the Shannon entropy implying that the model ensemble was producing 630 

redundancy and thus was compressible during the entire year. Based on this general finding we came up 

with the idea of a compressed catchment model which was built upon a straightforward clustering of all 

hillslope models into functional groups of similar annual runoff behavior. This compressed model 

consisted in a single realization of 6 instead of 105 hillslopes, which were then randomly drawn from each 

functional group. It is of interest that by reducing the model ensemble to a smaller set of hillslope models 635 

we were still able to match on average the observed annual streamflow in the catchment. This result 

agrees with the findings of Fenicia et al. (2016) who stated that spatial variations of the geopotential are 

too small in this landscape to have a dominant influence on the annual runoff generation, and with the 

findings of a foregoing study where we show that the annual runoff dynamics of the Colpach catchment 

can be simulated using a single effectively compressed hillslope model (Loritz et al. 2017). 640 
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[47] Neglecting all the issues that occur when we compare distributed model applications with spatially 

aggregated models (e.g. Obled et al., 1994; Beven and Freer, 2001; Pokhrel et al., 2012) our comparison 

of the differently strong compressed catchment models matches with the conclusion of Pokhrel and Gupta 

(2010) that as long as we are not interested in the representation of the spatial distribution of hydrological 

fluxes or state variables, a spatially aggregated model which compresses the spatial variability of the 645 

landscape properties might be sufficient for predicting macroscopic variables (Hrachowitz and Clark, 

2017b). However, as soon as our focus shifts to the representation of the spatial distribution of a 

hydrological process, information entropy bears the key to defining and diagnosing the minimum adequate 

complexity of a distributed model (Schoups et al., 2008), particularly as it could help guide an approach to 

reducing computational costs without losing information (in our case by a factor of almost 17.5). 650 

[48] However, the assessment of a meaningful compression that leads to a less redundant and yet well 

performing distributed model structure is not at all a straightforward exercise. This is corroborated by the 

strongly variable performance of the 1000 randomly generated compressions, which highlights that the 

individual performance depends strongly on the model realization. From this we conclude that, contrary to 

our assumption, not each hillslope model represents stream flow generation of a functional unit equally 655 

well, as our classification is based on mutual information between the annual discharge time series. The 

fact that two hillslope models may yet act differently at certain time steps explains why every random 

realization of the model compression performs slightly different. The second and maybe more general 

shortcoming is that our proposed compression is based on a fixed number of groups, inferred from the 

average annual entropy. As the average annual entropy of simulated streamflow reflects the annual 660 

average maximal compressibility of the discharge simulation, our choice for the number of functional 

groups seems legitimate as a first attempt on an annual scale. However, as shown in Figure 4c the 

Shannon entropy of the discharge simulations deviates substantially from this value. This implies that our 

model structure is either too simple in periods where the entropy is larger than the average or redundant in 

periods where the entropy is smaller. A best possible compression of a distributed catchment model, 665 

defined as the one that avoids any loss of information and also avoids any redundancy (also referred as 

lossless compression e.g. Weijs et al. (2013b)) will therefore require a time variant number of functional 

groups. Such an effort to do simulations with a higher spatial model resolution in times of high spatial 

complexity and with a coarser spatial model resolution in times of low spatial complexity, as is for 

example done with different adaptive time stepping schemes in numerical model implementations (e.g. 670 

Clark and Kavetski, 2010) or in adaptive model grid refinements (Faigle et al., 2014), points to new 

challenges that are not only beyond the scope of this study but likely also beyond the capabilities of most 

currently available model systems. 
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5.3 Information theoretic measures to quantify similarity 

[49] The venture to link complexity of spatially distributed catchment characteristics to functional 675 

similarity led us naturally to the concepts of information and (physical) entropy (Davies, 1990; Ben-Naim, 

2008). Similarity of runoff, or storage of hillslopes, implies that their contribution to streamflow is 

redundant and hence does not change the information entropy within the simulations beyond its areal 

share (at least as long as the timing of the routing is not dominant). Removing this redundancy means to 

compress (Weijs et al., 2013a), and in our specific case to aggregate hillslopes to larger similar 680 

functioning landscape elements which we called functional groups in relation to the definition of 

functional units by Zehe et al., (2014). Although it is evident that this partitioning of similar acting units 

into larger groups does not require the use of information theory (e.g. Wood et al., 1988, Sawicz et al. 

2011, Berghuijs et al., 2014), we believe that, besides the maybe more general assets of an information 

theoretic perspective on different hydrological issues (e.g. Weijs and van de Giesen, 2013, Gupta and 685 

Nearing, 2014; Ehret et al., 2014; Nearing et al., 2016), it has also major technical advantages for a 

variety of different tasks as shortly discussed in the following. 

[50] First, information theoretic measures like Shannon entropy and mutual information, when calculated 

with the same logarithmic base, share the same units, in our case “bits”. This facilitates the inter-

comparison of the different variables, in our case storage and runoff, with respect to their diversity in the 690 

model ensemble. Furthermore, if calculated in the discrete form, a careful choice of the bin width 

according to the measurement error can also be interpreted as physical meaningful definition of the 

minimum separable difference between observations or simulations of the same state variable or flux. For 

instance, in this study, we used the inherent measurement errors of the soil moisture probes as well as the 

uncertainty in our rating curves to define the minimum separable differences of storage and runoff. 695 

[51] Another key advantage of the information theoretic perspective is that not only the minimum but 

also maximum information content and hence the maximal complexity or functional disorganization that a 

distributed model can produce in its responses is well defined. The latter corresponds to the state of 

maximum Shannon entropy which implies that each time series, either modelled or observed, contributes 

in a unique (non-redundant) fashion to the ensemble. We are therefore able to derive a theoretical upper 700 

and lower bound which reflects naturally the minimum and maximum reachable complexity of 

state/output response that our model can produce. The lower boundary represented by a zero entropy, 

corresponds to a situation where all model elements produce with respect to the corresponding observation 

error the same output and hence act identically. The upper boundary or maximum entropy, in our case 6.7, 

corresponds to a situation where all model units produce a unique output and to a situation of no 705 

redundancy at all. Given these two margins we can judge whether different model elements, in our case 

hillslopes, of a chosen model provide largely independent stream flow contributions. 
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6. Conclusion and Outlook 

[52] Based on the evidence presented here, we conclude that the proposed information theoretic measures 

and concepts provide a powerful framework for understanding and diagnosing how landscape 710 

organization and functional similarity of hydrological systems are connected. We are aware that the 

specific findings of the present work are necessarily constrained by the a-priori settings of the model 

ensemble, which exclusively focused on a spatially variable topography, while land-use, precipitation and 

the soil parameters were identical among the 105 hillslopes. The application of these concepts and the 

general mindset is, however, by no means restricted to this specific model neither to topography. On the 715 

contrary, it may be generalized either by additional data sources such as land-use, bedrock topography and 

distributed rainfall data as well as to any ensemble of time series, modeled or observed. This opens new 

opportunities to systematically explore how spatial variations of different landscape characteristics and 

meteorological forcing affect hydrological processes. Furthermore, as we only tested first order changes of 

topography and the influence on distributed modeling here, it also opens the possibility to test whether 720 

second order effects arise from combinations of several distributed characteristics. 

[53] Finally, in line with Clark et al.(2016) we argue that a comprehensive answer to the simple question 

stated in the introduction “when is the spatial variation of a system characteristic large enough that we 

need to account for it” is not at all straightforward, but requires a solid theoretical framework. Following 

thermodynamic reasoning and information theory, the key to explain why hydrological systems often act 725 

so comprehensibly is that they are dissipative and highly organized (Zehe et al., 2014). This implies that 

organized simplicity might emerge when we move up to larger scales in space (Dooge, 1986; Savenije and 

Hrachowitz, 2017). Our results reveal, however, that simplicity manifests not only in space when moving 

to larger scales, but also manifests when “the system moves through time” as functional similarity 

emerges in time. We therefore propose that the concepts of landscape areas that act either similarly and 730 

are thus redundant (Wagener et al., 2007) or show unique functioning and are thus irreplaceable (Beven, 

2000) are consequently not mutually exclusive. They are in fact of complementary nature, and systems 

operate by gradually changing to different levels of organization in which their behaviors are partly unique 

and partly similar. 

  735 
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Data availability. The hydrological model ‘CATFLOW’ as well as all simulation results are available from the 

leading author on request. For the soil moisture observations please contact Markus Weiler (University of Freiburg) 

or Therea Blume (GFZ Potsdam) and for the discharge observations please contact Laurent Pfister or Jean-Francois 

Iffly from the Luxembourg Institute of Science and Technology. 
 740 

Appendix 

Appendix A: Uncertainty of the rating curve 

[54] For the gauge "Colpach" the rating curve was given with: 

 

(11)																																																																			R = 10.59 ∗ (W − 0.11)�.�X	
 745 

where Q is discharge (m
3
*s

-1
) and h is gauge level (m). It was derived by ordinary least square fitting to 15 

direct discharge measurements (Figure. 7 green dots). Using the rating curve for flood frequency analyses 

would require a validation against an independent set of direct discharge measurements (grey dots). In 

order to we use it as proxy for the binning width to estimate the pdfs, we calculated its overall uncertainty 

relative to the total set of direct discharge measurements (green and grey dots) as RMSE with a value of 750 

8.5% (dashed red line). 

 

Figure 7 Rating curve of the Colpach gauge. Green dots which were used to estimate the rating curve, gray dots 

independent discharge measurements. 
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Appendix B: Influence of different bin widths on the Shannon entropy 755 

In Figure 8 we illustrate the influence of different bin widths when calculating the Shannon entropy of our 

discharge simulations as function of time. We start as already described in Section 3.1 with a discharge 

value of 0.01 mm and then progressively increase the bin width by factors ranging from 5 % to 15 % in 

0.05 % steps. This graph highlights that the absolute value of the Shannon entropy depends strongly on the 

chosen binning size. However, more important for this study is that the overall pattern of the Shannon 760 

entropy in time does not change depending on the chosen bin size. 

 

 

Figure 8 Influence of the bin width 

Appendix C: Comparison of the NMI 765 

[55] To illustrate the performance of this metric, Figure 9 shows a comparison of normalized mutual 

information (NMI) to the Pearson correlation and the Euclidean distance for four different synthetic cases: 

(a) linear relationship between � and $ 

$ = � 

(b) difference between two sinusoidal functions with different amplitudes  

$ = sin�2 ∗ (� − \)� 

� = 1
4 ∗ sin�2 ∗ (� − \)� 

(c) quadratic relationship between � and $ 770 

$ = �� 

(d) two independent random variables � and $ 

[56] We used equally distant bin widths of 0.05 to estimate the pdf for the calculation of the mutual 

information in all four cases. If we had normalized the NMI in synthetic case b with the minimum entropy 

of � or $ the NMI would have been 1. 
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 775 

Figure 9 Difference between the Pearson correlation coefficient, Euclidean distance and the normalized mutual 

information. Four cases are shown (a) linear relationship, (b) the difference between two sinus functions with different 

amplitude, (c) a quadratic relationship and (d) two independent variables. The pdf was estimated using an equidistant bin 

width of 0.05 in all four cases. 

 780 

Appendix D: Shannon entropy of the runoff simulations against the median discharge of the runoff 

simulations 

Figure 10 shows the relation between the area-weighted median of the discharge simulation against the 

Shannon entropy of all discharge simulations for each time step. The graph highlights that there is no 

simple linear relation between discharge height, time of the year and the Shannon entropy. 785 
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Figure 10 Shannon entropy of the 105 discharge simulations against the area-weighted median of the discharge 

simulations. The color key range from blue (winter) over green (autumn / spring) to yellow (summer) and illustrates the 

time of the year. 
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