

1	Comparing hydrological modelling, linear and multilevel
2	regression approaches for predicting baseflow index for 596
3	catchments across Australia
4	Junlong Zhang ^{1,2} , Yongqiang Zhang ^{1*} , Jinxi Song ^{2,3} , Lei Cheng ¹ , Rong Gan ¹ ,
5	Xiaogang Shi ⁴ , Zhongkui Luo ⁵ , Panpan Zhao ⁶
6	¹ CSIRO Land and Water, GPO Box 1700, ACTON 2601, Canberra, Australia
7	² Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity,
8	College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
9	³ State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute
10	of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100, China
11	⁴ Lancaster Environment Centre, Lancaster University, Lancaster, UK, LA1 4YQ
12	⁵ CSIRO Agriculture Flagship, GPO Box 1666, ACTON 2601, Canberra, Australia
13	⁶ State Key Laboratory of Hydrology-Water Resource and Hydraulic Engineering, College of
14	Hydrology and Water Resources, Hohai University, Nanjing 210098, China
15	Submission to: Hydrology and Earth System Sciences
16	*Corresponding author: Yongqiang Zhang
17	CSIRO Land and Water, Clunies Ross Street, Canberra 2601, Australia
18	E-mail: <u>yongqiang.zhang@csiro.au;</u> Tel.: +61 2 6246 5761; Fax: +61 2 6246 5800

Abstract. Estimating baseflow at a large spatial scale is critical for water balance budget, water 19 20 resources management, and environmental evaluation. To predict baseflow index (BFI, the ratio of baseflow to total streamflow), this study introduces a multilevel regression approach, 21 22 which is compared to two traditional approaches: hydrological modelling (SIMHYD, a simplified version of the HYDROLOG model, and Xinanjiang models) and classic linear 23 24 regression. All of the three approaches were evaluated against ensemble average estimates from 25 four well-parameterised baseflow separation methods (Lyne-Hollick, UKIH (United Kingdom Institute of Hydrology), Chapman-Maxwell and Eckhardt) at 596 widely spread Australian 26 27 catchments in 1975-2012. The two hydrological models obtain BFI from three modes: calibration and two regionalisation schemes (spatial proximity and integrated similarity). The 28 classic linear regression estimates BFI using linear regressions established between catchment 29 30 attributes and the ensemble average estimates in four climate zones (arid, tropics, equiseasonal 31 and winter rainfall). The multilevel regression approach not only groups the catchments into 32 the four climate zones, but also considers variances both within all catchments and catchments 33 in each climate zone. The two calibrated and regionalised hydrological models perform similarly poorly in predicting BFI with a Nash-Sutcliffe Efficiency (NSE) of -8.44~-2.58 and 34 an absolute percentrate bias (Bias) of 81~146; the classic linear regression is intermediate with 35 36 the NSE of 0.57 and bias of 25; the multilevel regression approach is best with the NSE of 0.75 37 and bias of 19. Our study indicates the multilevel regression approach should be used for predicting large-scale baseflow index such as Australian continent where sufficient catchment 38 predictors are available. 39

40 Keywords: baseflow separation, baseflow index, hydrological models, linear regression,

41 multilevel regression, Australia

42 Highlights

- 43 1. The multilevel regression approach is introduced for predicting baseflow index
- 44 2. The hydrological modelling approach overestimates baseflow in Australia
- 45 3. The multilevel regression approach is best in arid, tropics, and equiseasonal regions
- 46 4. The linear regression approach performs similarly to the multilevel regression
- 47 approach in winter rainfall region

48 1 Introduction

- 49 Baseflow, the outflow from the upstream aquifers when the recharge is ceased (e.g.,
- 50 precipitation or other artificial water supplies) (Brutsaert and Lopez, 1998; Brutsaert, 2005),
- 51 is an important indicator of catchment hydrogeological characteristic (Knisel, 1963).
- 52 Baseflow index (BFI) is the average rate of baseflow to streamflow over a long period of time
- 53 (Piggott et al., 2005;Partington et al., 2012). Accurate estimation of baseflow and BFI has
- 54 profound influence on sustaining water for basins during drought periods (Brutsaert,

55 2005; Miller et al., 2016), and therefore is critical for water budgets (Abdulla et al., 1999),

56 water management strategies (Lacey and Grayson, 1998), engineering design (Meynink,

57 2011), and environmental issues (Spongberg, 2000; Miller et al., 2014).

58 Various methods have been developed to separate baseflow from streamflow (Lyne and

59 Hollick, 1979;Rice and Hornberger, 1998;Spongberg, 2000;Furey and Gupta, 2001;Eckhardt,

60 2005;Tularam and Ilahee, 2008;Lott and Stewart, 2016), which can be categorized to tracer

based and non-tracer methods (Gonzales et al., 2009). However, tracer based method is only

62 applied to experimental catchments due to expensive the high consumption of both

63 experimental time and materials (Koskelo et al., 2012). The alternative is non-tracer methods

64 (e.g., digital filter methods) (Zhang et al., 2017), which are widely used because of their high

efficiency and repeatability in estimating BFI (Arnold et al., 1995). More importantly, they

66 perform well when the digital-filtering parameters (e.g., recession constant and maximum

67 baseflow index) are appropriately estimated (Zhang et al., 2017). The non-tracer methods can

- only be used for catchments with streamflow observations. For ungauged catchments,
- 69 hydrological models and regression approaches can be used to separate baseflow form total

ro streamflow. Their accuracy can be evaluated against ensemble estimates from the non-tracer

71 methods at gauged catchments.

- 72 Most hydrological models include a baseflow generation component (Luo et al.,
- 73 2012;Stoelzle et al., 2015;Gusyev et al., 2016). These models can be divided into two groups.
- 74 One group considers baseflow as a linear recession process for groundewater reservoir,
- 75 including SIMHYD (simplified version of the HYDROLOG model) (Chiew and McMahon,
- 76 1994;Zhang et al., 2016), 1LBY (Abdulla et al., 1999;Stoelzle et al., 2015), HBV (Ferket et
- al., 2010) models; the another group takes baseflow as a non-linear recession process
- 78 including Xinanajing (Zhang and Chiew, 2009), PDM (Ferket et al., 2010) and ARNO
- 79 (Abdulla et al., 1999) models. It is expected that BFI obtained from the hydrological models
- 80 is largely uncertain as a result of different model structures, model calibration and
- parameterisation schemes (Beven and Freer, 2001). There are few studies in the literatures to
- 82 evaluate the accuracy of baseflow estimation from the hydrological models at a regional
- scale. This study evaluates two hydrological models (SIMHYD and Xinanjiang models) for
- 84 predicting BFI against the ensemble BFI estimates from the non-tracer methods.
- 85 Linear regression approach is another commonly used method to predict hydrological
- signature indices, including baseflow index (Gallart et al., 2007;Longobardi and Villani,
- 87 2008;Bloomfield et al., 2009;van Dijk et al., 2013). This method uses catchment physical
- 88 characteristics (i.e. descriptors) and BFI obtained from the gauged catchments to establish
- 89 linear regressions that are then used to predict BFI in ungauged catchments (Bloomfield et
- 90 al., 2009;Beck et al., 2013). Several studies show some catchment characteristics have
- 91 important control on BFI. For instance, geological characteristics such as soil properties were
- 92 found to be key for accurate BFI estimates (Brandes et al., 2005;van Dijk, 2010). Other
- 93 studies also used climate-related indices, such as mean annual precipitation and mean annual
- potential evaporation, to simulate BFI (van Dijk, 2010;Beck et al., 2013). In similar studies,
- 95 mean annual precipitation, slope and proportion of grassland are used for building the
- 96 regressions for predicting BFI (Haberlandt et al., 2001;Brandes et al., 2005;Mazvimavi et al.,

97	2005;Gebert et al., 2007;Bloomfield et al., 2009;van Dijk, 2010). Beside BFI, linear
98	regression is also an useful approach in estimating other hydrological signatures (e.g., runoff
99	coefficient, runoff seasonality, zero flow ratio and concavity index (Zhang et al., 2014)) and
100	understanding the catchment hydrology behaviour (Zhang et al., 2014;Su et al., 2016). One
101	limitation of the linear regression approach is that it uses constant parameters to predict BFI,
102	and cannot handle cross-interactions at different spatial scales (Qian et al., 2010), which
103	could result in large errors for catchments located in a wide range of climate regimes.
104	This limitation can be overcome by the multilevel regression approach that provides a robust
105	tool to establish the relationships between BFI and catchment attributes. The basic idea of
106	this approach is that higher level variables vary within a lower level (Berk and De Leeuw,
107	2006). This approach can handle the variables with various solutions using random effects
108	(i.e., hierarchical structure) (Dudaniec et al., 2013). This approach has been extensively used
109	to understand interplay of ecosystem dynamics (i.e., carbon cycle across different ecosystem
110	(McMahon and Diez, 2007;Luo et al., 2015) and N2O emissions from agricultural soils
111	(Carey, 2007)). However, no literatures have been reported to use this approach for
112	hydrological signature (such as BFI) predictions. This study, for the first time, explores the
113	possibility of using multilevel regression (Qian et al., 2010;Luo et al., 2015) to predict BFI
114	across widely distributed Australian catchments. Catchment characteristics are used here as
115	lower level (i.e., individual-level) predictors, and the effect of these predictors is assumed to
116	vary across higher level predictors (i.e., climate zones) (Gelman and Hill, 2006). Details of
117	the multilevel regression approach are elaborated in section 3.3.
118	The main aim of this study is to improve the large-scale BFI prediction. To achieve this, we
119	compare the three BFI prediction methods (hydrological modelling, classic and multilevel

- 120 regression approaches) against ensemble average estimates from four non-tracer baseflow
- 121 separation methods. The objectives of this study are to

122	i.	Obtain "benchmark" BFI using the four non-tracer baseflow methods (Lyne-Hollick,
123		UKIH (United Kingdom Institute of Hydrology), Chapman-Maxwell and Eckhardt)
124		for 596 Australian catchments (Figure 1);
125	ii.	Introduce the multilevel regression approach for FBI predictions across large regions;
126	iii.	Assess relative merits of the three approaches for BFI predictions; and
127	iv.	Investigate good BFI predictors for the multilevel regression approach.
128		Figure 1 is about here
129	2 D	ata sources
130	2.1 St	reamflow
131	There	are 596 catchments selected across Australia for assessing the three methods
132	(hydro	ological modelling, linear regression and multilevel regression) used in this study to
133	predic	t BFI. Streamflow measurements and related catchment attributes were collated by
134	Zhang	g et al. (2013). Following criteria are used to filter the streamflow data for each
135	catchr	nent:
136	i.	It is a small catchment with catchment area 50 to 5000 km ² ;
137	ii.	Streamflow was not subject to dam or reservoir regulations;
138	iii.	The catchment is non-nested;
139	iv.	The catchment was not subject to major impacts of irrigation and intensive land use;
140		and
141	v.	The observed streamflow record covers the period of 1975-2012, containing at least
142		ten-year (>3652 days) daily observations, with acceptable data quality according to a
143		consistent Australian standard.

- 144 2.2 Climate zones and catchment attributes
- 145 The Australian continent is classified into five climate zones (arid, equiseasoal-hot,
- 146 equiseasonal-warm, tropics and winter rainfall) based on Köppen-Geiger classification
- 147 schemes (Kottek et al., 2006). It is noted that this study combined equiseasonal-hot and
- 148 equiseasonal-warm as one climate zone. The number of selected catchments within arid,
- equiseasonal, tropics, and winter rainfall climate zones is 37, 385, 82, and 90, respectively.
- 150 The catchment attributes including climate (Mean annual precipitation, Mean annual
- 151 potential evaporation), topographical (Mean elevation and Mean slope), soil (Available soil
- 152 water holding capacity) and land cover (Forest cover ratio) characteristics were implemented
- to build the linear regression and multilevel regression approaches. The abbreviation for each
- 154 catchment attributes and summary are shown in Table 1 and Table 2 respectively.
- 155 2.3 Forcing data for hydrological modelling
- 156 The Xinanjaing and SIMHYD models were driven by 0.05° resolution (~ 5 km) daily
- 157 meteorological data (including maximum temperature, minimum temperature, incoming solar
- radiation, actual vapour pressure and precipitation) from 1975 to 2012, obtained from the
- 159 SILO Data Drill of the Queensland Department of Natural Resources and Water

160 (www.nrw.gov.au/silo). There are about 4600-point observations across Australia used for

161 interpolating to obtain the SILO data. Details are described in Jeffrey et al. (2001). The daily

- 162 and monthly gridded precipitation data were obtained from ordinary kriging method, whereas
- 163 other gridded climate variables were obtained using the thin plate smoothing spline. Cross
- 164 validation results indicate the mean absolute error of the Jeffrey interpolation for maximum
- daily air temperature, minimum daily air temperature, vapour pressure, and precipitation
- being 1.0 °C, 1.4 °C, 0.15 kPa and 12.2 mm/month, which indicates good data quality
- 167 (Jeffrey et al., 2001).

168	Except for the climate forcing data, the two models also require remote sensing leaf area
169	index, land cover and albedo data that were used to calculate actual evapotranspiration (\mbox{ET}_{a})
170	using the Penman–Monteith–Leuning model (Leuning et al., 2009;Zhang et al., 2010). The
171	leaf area index data from 1981 to 2011, derived from the Advanced Very High Resolution
172	Radiometer (AVHRR), were obtained from Boston University (Zhu et al., 2013). The
173	temporal resolution is half-monthly and its spatial resolution is ~8 km. The land cover data
174	required to estimate aerodynamic conductance came from the 2000-2001 MODIS land cover
175	product, obtained from the Oak Ridge National Laboratory Distributed Active Archive
176	Center (Friedl et al., 2010). The dataset has 17 vegetation classes, which are defined
177	according to the International Geosphere-Biosphere Programme. The albedo data required to
178	calculate net radiation were obtained from the 8-day MODIS MCD43B bidirectional
179	reflectance distribution function product at 1 km resolution. All of the forcing data were re-
180	projected and resampled using nearest neighbour approach to obtain 0.05° gridded data.

181 **3 Models**

182 3.1 Baseflow separation algorithm

The benchmark BFI data were estimated using four baseflow separation methods. They are 183 Lyne-Hollick (Lyne and Hollick, 1979), UKIH (Gustard et al., 1992), Chapman-Maxwell 184 (Chapman and Maxwell, 1996) and Eckhardt (Eckhardt, 2005) respectively. It is found that 185 186 estimates of the recession constant and maximum baseflow index are the key to improve the performance of the digital-filtering methods (Zhang et al., 2017). This study used the 187 Automatic Baseflow Identification Technique (ABIT) for the recession analysis, which was 188 developed by Cheng et al. (2016) based on the recession theory provided by Brutsaert and 189 Nieber (1977). Figure 2 demonstrates how the recession constant is estimated using the ABIT 190 191 method.

192	In order to eliminate uncertainties raised from different algorithms, the ensemble mean from
193	the four methods was taken as the benchmark (denoted as 'the observed BFI'). The observed
194	BFI was used either to evaluate the two hydrological models for BFI prediction, or to build
195	the linear and multilevel regression approaches together with the catchment attributes.
196	Figure 2 is about here
197	3.2 Hydrological models
198	The SIMHYD and Xinanjiang model are two conceptual rainfall-runoff hydrological models.
199	Since developed by Chiew and McMahon (2002), SIMHYD has been widely applied in
200	runoff simulation and regionalization studies (Chiew et al., 2009;Vaze and Teng, 2011;Li and
201	Zhang, 2016; Zhang et al., 2016). Four water stores are used in this model to describe
202	hydrological processes, namely the interception store, soil moisture store, groundwater store
203	and channel store (Chiew and McMahon, 2002). Detailed model structure can be found in
204	Chiew and McMahon (1994). The modified SIMHYD model by Zhang and Chiew (2009),
205	which uses remote sensing data and contains nine model parameters, is used in this study.
206	The Xinanjiang model was developed by Zhao (1992) and has been widely used in humid
207	and semi-humid regions (Li et al., 2009;Lü et al., 2013;Yao et al., 2014). This model
208	reproduces runoff by describing three hydrological processes including ET _a , runoff
209	generation, and runoff routing. Details of Xinanjiang model are available from studies
210	conducted by Zhao (1992) and Zhang and Chiew (2009). Here we use the modified
211	Xinanjiang model proposed by Zhang and Chiew (2009), in which ET _a was estimated using
212	remote sensed LAI and the model parameters were reduced from 14 to 12.
213	The revised version of those two models is denoted as original models. The details of two
214	hydrological models and regionalization approaches are described by Zhang and Chiew
215	(2009). We used three types of BFI estimates from hydrological modelling: calibration,

- 216 regionalisation from spatial proximity, and regionalisation from integrated similarity. Herein,
- a short description of these three kinds of estimates is given below.
- 218 For model calibration, a global optimisation method, the genetic algorithm from the global
- optimisation toolbox in MATLAB (MathWorks, 2006), was used to calibrate the model
- 220 parameters for each catchment. This optimiser used 400 populations and the maximum
- generation of 100 for searching the optimum point, which converges at approximately 50
- 222 generations of searching. The model calibration was to maximise the Nash-Sutcliffe
- 223 Efficiency of the daily square-root-transformed runoff data and minimise the model bias (Li
- and Zhang, 2017).
- 225 For the spatial cross-validations, two regionalisation approaches, spatial proximity and
- integrated similarity approaches (Zhang and Chiew, 2009) were used. The spatial proximity
- 227 approach is where the geographically closest catchment is used as the donor basin to predict
- the ungauged catchments; integrated similarity approach is derived from combination of the
- spatial proximity and physical similarity approaches.
- 230 3.3 Linear regression and multilevel regression approaches
- 231 Traditionally, BFI was predicted using one set parameters for all catchments. The details are:

232
$$BFI_i = N(\alpha + \beta \cdot X_i, \varepsilon), i = 1, 2, 3, ..., 596,$$
 (1)

where BFI_i is the baseflow index for each catchment i=1,..., 596, *N* is normal distribution function, α is the intercept, β is slop, *X* is the variables (i.e., catchment attributes), and ε is variance. This model ignores the potentially different effects of the same variable on BFI across different climatic zones. That is, α and β are constant irrespective of the climatic zone to which the BFI belongs. To be specific, many studies have conducted the baseflow prediction at large area, yet constant α and β are used in the model (Abebe and Foerch,

- 239 2006;Longobardi and Villani, 2008;Bloomfield et al., 2009). However, catchment attributes
- 240 vary with hydrometerological conditions, therefore the constant parameters are not adequate
- to reflect the catchment characteristics. This approach ignored variability of catchment
- 242 characteristics in various backgrounds. In order to reduce the uncertainties of prediction using
- 243 one set of parameters, one level reflects hydrological background should be introduced.
- In this study, we assumed that BFI associates with the climate variables (annual precipitation,
- potential evapotranspiration) and terrain attributes (area, elevation, slope, land cover and

available soil water holding capacity in top soil) in each catchment (i.e., i = 1, 2, 3, ..., 596).

247 We further assumed that the effects of those predictors on BFI vary with climate zones

including arid, tropics, equiseasonal and winter rainfall (i.e., j = 1, 2, 3, 4). In this process, the

249 catchments were divided into multiple datasets based on climate zones, then individual linear

250 regression model were built for each subset.

251
$$BFI_{j_i} = N(\alpha + \beta \cdot X_{j_i}, \varepsilon), i \in (1, 2, 3, ..., n)$$
(2)

where *j* is catchment in each climate zone, BFI_{ji} is the baseflow index for catchment in each subset *j* = 1,2,3,4. *N* is normal distribution function, α is the intercept, β is slop, *X* is the variables (i.e., catchment attributes), and ε is variance in each subset. However, hydrological processes in a catchment have close connections with other catchments, interactions crossing various group levels are primary drivers to influence baseflow processes. Therefore, an approach should be developed to consider cross level effects for predicting hydrological signatures.

Thus, we introduced the multilevel regression approach (Gelman and Hill, 2006;Qian et al.,
2010;Luo et al., 2015) to improve the prediction of BFI and quantify the relative importance
of predictors under different climate zones. Comparing the traditional linear regression
approach, the hierarchical structure of the multilevel regression approach allows the

- assessment of the variation in model coefficients across groups (e.g., climatic zones) and
- accounting for group-level variation in the uncertainty for individual level coefficients. The
- 265 multilevel regression approach could be written as a data-level model (the predicted BFI_i
- belonging to climate zone *j*), allowing the model coefficients (α and β) to vary by climate
- zone (j = 1, 2, 3, 4). In this model, the intercept and slope vary with the group level (i.g.,
- climate zone). The details of the approach is elaborated as follows:

269
$$BFI_i \sim N(\alpha_{j[i]} + \beta_{j[i]} \cdot X_i, \sigma_{BFI}^2), i = 1, 2, 3, ..., 596,$$
(3)

where X_i is the catchment attributes for each basin, and its intercepts and slopes can be

271 decomposed into terms for climate zone,

272
$$\begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix}, \begin{pmatrix} \sigma_{\alpha}^{2} & \rho \sigma_{\alpha} \sigma_{\beta} \\ \rho \sigma_{\alpha} \sigma_{\beta} & \sigma_{\beta}^{2} \end{pmatrix} \right), j = 1, 2, 3, 4,$$
(4)

where μ_{α} and σ_{α} are the mean and standard deviation of variable intercept α , μ_{β} and σ_{β} are the mean and standard deviation of variable slope β , ρ is the correlation coefficients between the two variables α_i and β_i . The Eq. (3) can be rearranged as block matrix of

$$A \sim N(\mu, \sigma) \tag{5}$$

277 the details of Eq. (5) $A \sim N(\mu, \sigma)$ can be described as:

278
$$A = \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix}, \mu = \begin{pmatrix} \mu_\alpha \\ \mu_\beta \end{pmatrix}, \sigma = \begin{pmatrix} \sigma_\alpha^2 & \rho \sigma_\alpha \sigma_\beta \\ \rho \sigma_\alpha \sigma_\beta & \sigma_\beta^2 \end{pmatrix}$$
(6)

the Eq. (4) can be calculated individually by:

$$\alpha_j \sim N(\mu_\alpha, \sigma_\alpha^{2}) \tag{7}$$

281
$$\beta_j \sim N(\mu_\beta, \sigma_\beta^2)$$
(8)

283

282 The density function of the normal distribution N is (for example, α variable):

$$f(\alpha_j) = \frac{1}{\sqrt{2\pi}\sigma_\alpha} e^{\frac{(\alpha_j - \mu_\alpha)^2}{2\sigma_\alpha^2}}$$
(9)

This model considers variation in the α_j 's and the β_j 's and also a between-group correlation parameter ρ (Gelman and Hill, 2006;Qian et al., 2010). In essence, there is a separate regression model for each climate zone with the coefficients estimated by the weighted average of pooled (which do not consider groups) and unpooled (which consider each group separately) estimates, i.e. partial pooling. When fitting the model, all predictors are standardized using *z*-scores.

290
$$x' = \frac{x - mean(x)}{2SD(x)}$$
(10)

291 Where x' is the new catchment attributes using function *z*-scores.

292 3.4 Leave-one-out cross-validations

293 We apply leave-one-out cross-validation to assess the ability of the two regression

approaches to predict BFI in 'ungauged' catchments where no streamflow data are available.

For each of the 596 catchments, the data from other 595 catchments are used to predict its

296 BFI. This procedure is repeated over all 596 catchments. This cross-validation procedure

explores the transferability of the two regression approaches from known catchments to the

- ungauged and particularly evaluates the value of the between-catchments information.
- 299 4 Model evaluation

300 4.1 Bias

301 The absolute percentage bias was used to evaluate model performance, which is calculated302 as:

303

 $Bias = \frac{\sum_{i=1}^{n} (BFI_s - BFI_o)}{\sum_{i=1}^{n} BFI_o} \times 100$ (11)

where BFI_o is the observed BFI derived using the ensemble average from the four non-tracer baseflow separation approaches (i.e., Lyne-Hollick, UKIH, Chapman-Maxwell and Eckhardt), BFI_s is the simulated BFI from the two hydrological models or the two regression approaches. And *n* is the total number of catchment. The unit of bias is a percentage (%), the larger of the absolute bias, the worse of the simulation. The bias is 0 indicates that simulated value is the same as the observed value.

310 4.2 Nash-Sutcliffe efficiency (NSE)

311
$$NSE = 1 - \frac{\sum_{i=1}^{n} (BFI_o - BFI_s)^2}{\sum_{i=1}^{n} (BFI_o - \overline{BFI_s})^2}$$
(12)

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that measures the relative
magnitude of the residual variance ("noise") compared to the measured data variance
("information") (Nash and Sutcliffe, 1970). It is a classic statistical metrics used for
evaluating the model performance. The closer NSE is to 1.0, the better the simulation is.

316 5 Results

317 5.1 Spatiality of observed BFI

318 It can be seen from Figure 3 that BFI varies dramatically across Australia (location, i.e.

coordination and distance away from ocean). Within the latitude ranges from 20°S to 30°S,

320 which is smaller than that of the regions beyond this latitude range. Catchments located in

321 latitudes higher than 30°S tend to have larger BFIs in general. Yet this is not the case for

322	Tasmania, where catchments with latitude higher than 40°S have smaller BFI values in the
323	southeastern region within this island. This indicates that the BFI spatiality is distinct from
324	the main continent to island. It is also interesting to notice that beyond the range of 20-30°S,
325	observed BFI increases from inner land to coastal catchments, especially in southeast region
326	within the main Australian continent.
327	Figure 3 is about here
328	5.2 Performance of two hydrological models
329	Figure 4 summarises the BFI duration curves generated from the two hydrological models
330	with three modes (calibration and two regionalisation schemes). Both models in the three
331	parameterisation schemes perform poorly for estimating BFI. SIMHYD model largely
332	overestimates BFI, while Xinanjiang model is overestimated at 60 % catchments, and its
333	estimated BFI is closer to the observed that that obtained from SIMHYD model. Differences
334	among the calibration and two regionalisation schemes are marginal for both models.
335	Figure 4 is about here
336	We further compared the observed and simulated in scatterplots (Figure 5). Figure 5(a) and
337	5(d) compares the observed and simulated BFIs from calibrated SIMHYD and Xinanjiang
338	models, respectively. Figure 5(b)-(c) and 5(e)-(f) show the regionalisation results (i.e., spatial
339	proximity and integrated similarity) of these two hydrological models. Notably, BFI
340	estimated using SIMHYD model is much larger than the observed values (Figure 5(a), (b),
341	and (c)), with the majority catchment BFIs dotted above the 1:1 line. SIMHYD model under
342	calibration, spatial proximity, and integrated similarity gives NSE being -8.30, -8.42 and -
343	8.44 respectively, and gives percentage bias being 146, 152 and 152 respectively, indicating
344	similar poor model performance. In comparison, BFI estimated from Xinanjiang model tends
345	to scatter a larger range around 1:1 line regardless of the parameterisation method (Figure

346	5(d), (e), and (f)), and is closer to the observed BFI. Xinanjiang model under calibration,
347	spatial proximity, and integrated similarity give NSE being -2.75, -2.70 and -2.58
348	respectively, and gives bias being 84, 81 and 83 respectively, indicating still similar poor
349	model performance in prediction of BFI. The results obtained from Figures 4 and 5 indicate
350	that parameterisation has much smaller impact on BFI estimates, compared to model
351	structure.
352	Figure 5 is about here
353	5.3 Comparison of traditional regression and multilevel regression approaches
354	Figure 6 compares the observed BFIs and simulated BFIs using traditional linear multivariate
355	regression and multilevel regression approaches across four different climate zones. The
356	result shows that the multilevel regression approach generally outperforms the traditional
357	linear regression approach, evidenced by the NSE from multilevel regression approach being
358	0.31, 0.30, and 0.18 higher than that from linear regression in arid, tropics, and equiseasonal
359	regimes respecitively, and the percentage bias from multilevel regression approach being 8,
360	7, and 8 lower than that from the linear regression. The two approaches show no significant
361	difference in winter rainfall climate zone, indicated by same bias or NSE.
362	Figure 6 is about here
363	We further check the leave-one-out cross-validation results obtained from the two approaches
364	(Figure 7). It is clear that there exists noticeable degradation from calibration to cross
365	validations for the traditional regression in the three climate zones: arid, tropics, and
366	equiseasonal regimes. Compared to that, there is no noticeable degradation for the multilevel
367	regression approach for the three climate zones. In the winter rainfall zone, the both
368	approaches do not have degradation, and perform similarly. The leave-one-out cross-

369	validation results further demonstrate the multilevel regression approach outperforms the
370	traditional linear regression.
371	Figure 7 is about here
372	Figure 8 summarises parameters of the multilevel regression approach. It can be seen that
373	precipitation has the most positive impact on BFI, which does not greatly vary across climate
374	zones. E_{TP} has the most negative effect among all climate zones, and has significant large
375	effect in equiseasonal zone. The H and Kst also have the noticeable positive effect on all the
376	climate zones. Other three characteristics A, S and F have slope close to zero, suggesting
377	small impacts on BFI.
378	Figure 8 is about here

379 6 Discussion

380	Our results suggest there are large biases to use hydrological models to simulate and predict
381	BFI. It is understandable since hydrological models are not designed to simulate baseflow
382	directly, but the baseflow component, in order to better simulate streamflow. It seems that
383	model structure is more important than parameterisation since the three parameterisation
384	schemes (calibration, spatial proximity and integrated similarity) obtain similar BFI, and
385	SIMHYD has larger bias than Xinanjiang model as summarised in Figures 4 and 5. However,
386	both hydrological models are calibrated against total streamflow, rather than its components,
387	such as baseflow. This suggests that better estimate streamflow. This issue has been well
388	recognised in other hydrological models as well (Fenicia et al., 2007;Lo et al., 2008). In fact,
389	baseflow is designed as an integrated store combined with the river recharge (Chiew and
390	McMahon, 2002). This structure feature of hydrological models tends to overestimate
391	baseflow and therefore leads to unsatisfactory BFI prediction.

392	Interactions of catchments crossing group level would influence the baseflow processes. BFI
393	is affected by catchment attributes, and in relevance with terrain and climate factors (Gustard
394	and Irving, 1994;Longobardi and Villani, 2008;van Dijk, 2010;Price, 2011). However, how
395	to predict the effect of BFI response to such various environmental conditions remains
396	challenging. In order to improve our understanding of BFI, interaction of catchment attributes
397	within different climate zones should be considered (Berk and De Leeuw, 2006).
398	Climate influences the hydrological process and thus leads to changes in baseflow generation.
399	Implementation of multilevel regression approach in this study, P and E_{TP} have the most
400	significant effects on BFI, are the two essential elements controlling baseflow processes. The
401	effect of these two factors varies across climate zones. As studies by Santhi et al. (2008) and
402	Peña-Arancibia et al. (2010), they have shown that climate attributes can be used to best
403	predictors for recession constant. The increase of the precipitation can cause the more
404	saturation of the soil, and lead to the baseflow increase (Mwakalila et al., 2002;Abebe and
405	Foerch, 2006). In addition, the E_{TP} is related to the baseflow discharge over the extended
406	period (Wittenberg and Sivapalan, 1999). E_{TP} has the adverse effect on BFI for all climate
407	zones. This result agrees well with the conclusion drawn by Mwakalila et al. (2002). The
408	influence is relative smaller in arid zone than other climate zones. In general, E_{TP} is related to
409	the baseflow discharge over the extended period (Wittenberg and Sivapalan, 1999),
410	catchment with low evapotranspiration will have higher BFIs (Mwakalila et al., 2002).
411	Comparing to climate attributes, F tends to have smaller effects and with various effects with
412	climate zones (i.e., positive effect in arid and winter rainfall zones). F associates with quick
413	flow generation and thus leads to the changes in the baseflow. The influence comes from
414	vegetation regulation of water flux through moist conditions and E_{TP} (Krakauer and Temimi,
415	2011). The plant on the ground can cover the land surface and influence the $E_{\mbox{\scriptsize TP}}$ and then
416	increase the baseflow. Studies have shown that vegetation cover has a strong control on ET in

417	catchments, and thus influences baseflow generation (Schilling and Libra, 2003). Wittenberg
418	(2003) found that water consumption of deep-rooted vegetation has significant influence on
419	baseflow generation where faster recession is usually found. Furthermore, baseflow is more
420	closely related to the water storage of the saturated zone in plant root zone drainages (Milly,
421	1994). Studies have also shown that higher watershed forest cover usually corresponds well
422	with lower BFI (Price, 2011). This is particularly significant during dry seasons, where the
423	reduction of vegetation cover can lead to increase baseflow in dry seasons (Singh,
424	1968;Price, 2011). In the tropic zone, the proportion of the forest cover within a catchment
425	has negative effect on BFI. This is because of the high water loss through ET in forests, and
426	the vegetation draws heavily on the artesian leakage and contacts the spring flow (Meyboom,
427	1961;Knisel, 1963). Although a relatively close correlation between forest cover and BFI is
428	found for most catchments, there are exceptions in some catchments. For instant, BFI was
429	found to have a weak correlation with forest area in the Mediterranean region (Longobardi
430	and Villani, 2008) and a case study in the Elbe River Basin (Haberlandt et al., 2001).
431	Our study demonstrates that those two topographic features are insignificant impact on the
432	BFI cross Australia, and have different effects on various climate zones (i.e., slope has
433	positive impact on arid but negative on other climate zones). However, some studies found
434	that S and H have positive correlation with the recession timescales (Peña-Arancibia et al.,
435	2010;Krakauer and Temimi, 2011). When interactions crossing level have been implemented,
436	adding those two factors can greatly improve performance of multilevel regression approach.
437	Other studies show that the watershed area and slope are highly associated with the baseflow
438	statistics (Vogel and Kroll, 1992). This can be a result of the catchments in their study are
439	under the 150 km^2 . The effect of the slope will be induced when the catchment area are larger
440	(Peña-Arancibia et al., 2010). However, the study conducted in southeaster Australia found
441	that the topographic parameters have no significant relationship with the BFI (Lacey and

442	Grayson, 1998), this may be groundwater is relatively deep reducing connections between
443	groundwater and streams (Mazvimavi et al., 2005). Besides, Kst is positively related with
444	BFI for all catchment across climate zones. This may be explained by the strong interactions
445	between soil water content and P as well as E_{TP} (Milly, 1994).
446	Our result shows that multilevel regression approach, this approach can better understand the
447	hydrological dynamics within different systems. To be specific, this method considers
448	climate controls on catchment BFIs cross continental scale (Figure 8). Figure 9 shows the
449	different coefficients in each climate zone. The hydrological processes are controlled by
450	various climate conditions at large scale as has been proved by a number of studies (Lacey
451	and Grayson, 1998; Abebe and Foerch, 2006; Merz and Blöschl, 2009; Ahiablame et al., 2013).
452	The baseflow processes will have the interactions at different climate zones (within and
453	between group). The multilevel regression approach considers the cross-level interactions,
454	and the prediction not only influenced by predictors at one scale (i.e., continental scale) but
455	also different spatial scale (i.e., climate zones) (Qian et al., 2010), incorporates the group
456	level information, and this approach takes the fixed and random effects into account one
457	single model, the coefficients of the model for the whole data and the group has the
458	variances. Prediction of BFI using group level information (i.e., climate zones) will help
459	capturing the climate spatial variability at different regional scales.
460	According to the good performance as illustrated above, it is promising that this method can
461	be used as a robust tool to estimate BFI across changing backgrounds (i.e., climate zones),
462	and can promote improved understanding of hydrological processes.

463 7 Conclusion

This study estimated ensemble baseflow index from four well-parameterised baseflowseparation methods (Lyne-Hollick, UKIH (United Kingdom Institute of Hydrology),

466	Chapman-Maxwell and Eckhardt), and found that the baseflow index varies significantly in
467	corresponding to climate zones across Australian continent. Multilevel regression approach is
468	introduced to improve BFI estimate for 596 catchments across Australia. BFI obtained from
469	this new method is compared to that of traditional linear regression method and two
470	hydrological models. When compared to observed BFIs, the multilevel regression approach
471	outperforms both linear regression approach and hydrological models. Traditional linear
472	regression approach fails to considerate the interactions across group levels. The two
473	hydrological models have good performance for simulating runoff yet fail to separate
474	baseflow. In contrast, the multilevel regression approach indicates that annual precipitation,
475	potential evapotranspiration, elevation, land cover and available soil water holding capacity
476	in top part of the soil all have strong control on catchment baseflow, where climate factor
477	including precipitation and potential evapotranspiration are proven to be most significant.
478	The multilevel regression approach can provide insights into the control factors of baseflow
479	generation. This approach has the potential of being used to estimate baseflow index. We
480	proposed the framework of using this approach to estimate hydrological signatures of under
481	various backgrounds.

482 Author contribution

YQZ conceived this study and conducted rainfall-runoff modelling. JLZ carried out baseflow
separation modelling, data analysis and wrote the first version of manuscript. LC, ZKL, PPZ
helped modelling. YQZ, JXS, LC, RG, XGS contributed to late versions of paper writing.

486 Acknowledgments

487 This study was supported by the National Natural Science Foundation of China (Grant Nos.

488 51379175 and 51679200), Specialized Research Fund for the Doctoral Program of Higher

489 Education (Grant No.20136101110001), Program for Key Science and Technology

- 490 Innovation Team in Shaanxi Province (Grant No. 2014KCT-27). The first author
- 491 acknowledges the Chinese Scholarship Council for supporting his Ph.D. Study at CSIRO
- 492 Land and Water. We thank Nick Potter for his comments and suggestions for an early version
- 493 of this paper. Data generated from modelling are freely available upon request from the
- 494 corresponding author (Yongqiang Zhang, email: Yongqiang.zhang@csiro.au). The authors
- 495 declare no conflict of interest.
- 496 Competing interests
- 497 The authors declare that they have no conflict of interest.

498 References

- Abdulla, F. A., Lettenmaier, D. P., and Liang, X.: Estimation of the ARNO model baseflow parameters
 using daily streamflow data, J. Hydrol., 222, 37-54, doi:10.1016/S0022-1694(99)00096-7, 1999.
- Abebe, A., and Foerch, G.: Catchment characteristics as predictors of base flow index (BFI) in
 Wabishebele river basin, east Africa, Conference on International Agricultural Research for
 Development, Siegen, Germany, 2006.
- Ahiablame, L., Chaubey, I., Engel, B., Cherkauer, K., and Merwade, V.: Estimation of annual baseflow at ungauged sites in Indiana USA, J. Hydrol., 476, 13-27, doi:10.1016/j.jhydrol.2012.10.002, 2013.
- Arnold, J., Allen, P., Muttiah, R., and Bernhardt, G.: Automated base flow separation and recession analysis techniques, Groundwater, 33, 1010-1018, doi:10.1111/j.1745-6584.1995.tb00046.x, 1995.
- Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M., Sampurno Bruijnzeel, L. A.,
 McVicar, T. R., and Schellekens, J.: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843-7863, doi:10.1002/2013wr013918, 2013.
- Berk, R. A., and De Leeuw, J.: Multilevel statistical models and ecological scaling, in: Scaling and uncertainty analysis in ecology, Springer, 67-88, 2006.
- Beven, K., and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic
 modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11-29,
 doi:10.1016/S0022-1694(01)00421-8, 2001.
- Bloomfield, J. P., Allen, D. J., and Griffiths, K. J.: Examining geological controls on baseflow index
 (BFI) using regression analysis: An illustration from the Thames Basin, UK, J. Hydrol., 373, 164176, doi:10.1016/j.jhydrol.2009.04.025, 2009.
- Brandes, D., Hoffmann, J. G., and Mangarillo, J. T.: Base flow rate, low flows, and hydrologic features
 of small watersheds in Pennsylvania, USA, Journal of the American Water Resources Association,
 41, 1177-1186, doi:10.1111/j.1752-1688.2005.tb03792.x, 2005.
- 523 Brutsaert, W., and Nieber, J. L.: Regionalized drought flow hydrographs from a mature glaciated 524 plateau, Water Resour. Res., 13, 637-643, doi:10.1029/WR013i003p00637, 1977.
- Brutsaert, W., and Lopez, J. P.: Basin-scale geohydrologic drought flow features of riparian aquifers in
 the Southern Great Plains, Water Resour. Res., 34, 233-240, doi:10.1029/97WR03068, 1998.
- 527 Brutsaert, W.: Hydrology: an introduction, Cambridge University Press, 618 pp., 2005.
- 528 Carey, K.: Modeling N2O emissions from agricultural soils using a multi-level linear regression,
 529 Citeseer, 2007.

Hydrology and Earth System Sciences

- Chapman, T., and Maxwell, A.: Baseflow separation-comparison of numerical methods with tracer
 experiments, Hydrology and Water Resources Symposium 1996: Water and the Environment;
 Preprints of Papers, 1996.
- 533 Cheng, L., Zhang, L., and Brutsaert, W.: Automated selection of pure base flows from regular daily
 534 streamflow data: Objective algorithm, Journal of Hydrologic Engineering, 21, 06016008,
 535 doi:10.1061/(asce)he.1943-5584.0001427, 2016.
- Chiew, F., and McMahon, T.: Application of the daily rainfall-runoff model MODHYDROLOG to 28
 Australian catchments, J. Hydrol., 153, 383-416, doi:10.1016/0022-1694(94)90200-3, 1994.
- Chiew, F. H. S., and McMahon, T. A.: Modelling the impacts of climate change on Australian streamflow, Hydrol. Processes, 16, 1235-1245, doi:10.1002/hyp.1059, 2002.
- 540 Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., Kirono, D. G. C., and Viney, N. R.:
 541 Estimating climate change impact on runoff across southeast Australia: Method, results, and
 542 implications of the modeling method, Water Resour. Res., 45, W10414, doi:10.1029/2008wr007338,
 543 2009.
- Dudaniec, R. Y., Rhodes, J. R., Worthington Wilmer, J., Lyons, M., Lee, K. E., McAlpine, C. A., and
 Carrick, F. N.: Using multilevel models to identify drivers of landscape-genetic structure among
 management areas, Mol. Ecol., 22, 3752-3765, doi:10.1111/mec.12359, 2013.
- Eckhardt, K.: How to construct recursive digital filters for baseflow separation, Hydrol. Processes, 19, 507-515, doi:10.1002/hyp.5675, 2005.
- Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: A comparison of alternative multiobjective
 calibration strategies for hydrological modeling, Water Resour. Res., 43, n/a-n/a,
 doi:10.1029/2006WR005098, 2007.
- Ferket, B. V. A., Samain, B., and Pauwels, V. R. N.: Internal validation of conceptual rainfall-runoff
 models using baseflow separation, J. Hydrol., 381, 158-173, doi:10.1016/j.jhydrol.2009.11.038,
 2010.
- Friedl, M., Strahler, A., and Hodges, J.: ISLSCP II MODIS (Collection 4) IGBP Land Cover, 2000–
 2001, ISLSCP Initiative II Collection. Data set. Available on-line [http://daac. ornl. gov/] from Oak
 Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, 10,
 doi:10.3334/ORNLDAAC/968, 2010.
- Furey, P. R., and Gupta, V. K.: A physically based filter for separating base flow from streamflow time
 series, Water Resour. Res., 37, 2709-2722, doi:10.1029/2001wr000243, 2001.
- Gallart, F., Latron, J., Llorens, P., and Beven, K.: Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions, Adv. Water Res., 30, 808-823, doi:10.1016/j.advwatres.2006.06.005, 2007.
- Gebert, W. A., Radloff, M. J., Considine, E. J., and Kennedy, J. L.: Use of Streamflow Data to Estimate
 Base Flow/Ground-Water Recharge For Wisconsin1, JAWRA Journal of the American Water
 Resources Association, 43, 220-236, doi:10.1111/j.1752-1688.2007.00018.x, 2007.
- Gelman, A., and Hill, J.: Data analysis using regression and multilevel/hierarchical models, Cambridge
 University Press, 2006.
- Gonzales, A., Nonner, J., Heijkers, J., and Uhlenbrook, S.: Comparison of different base flow separation
 methods in a lowland catchment, Hydrol. Earth Syst. Sci., 13, 2055-2068, doi:10.5194/hess-13 2055-2009, 2009.
- 572 Gustard, A., Bullock, A., and Dixon, J.: Low flow estimation in the United Kingdom, Institute of573 Hydrology, 1992.
- 574 Gustard, A., and Irving, K.: Classification of the low flow response of European soils, IAHS
 575 Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 221, 113-118,
 576 1994.
- 577 Gusyev, M. A., Morgenstern, U., Stewart, M. K., Yamazaki, Y., Kashiwaya, K., Nishihara, T.,
 578 Kuribayashi, D., Sawano, H., and Iwami, Y.: Application of tritium in precipitation and baseflow in
 579 Japan: a case study of groundwater transit times and storage in Hokkaido watersheds, Hydrol. Earth
 580 Syst. Sci., 20, 3043-3058, doi:10.5194/hess-20-3043-2016, 2016.
- Haberlandt, U., Klöcking, B., Krysanova, V., and Becker, A.: Regionalisation of the base flow index
 from dynamically simulated flow components a case study in the Elbe River Basin, J. Hydrol.,
 248, 35-53, doi:10.1016/S0022-1694(01)00391-2, 2001.

Hydrology and Earth System Sciences

- 584 Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using spatial interpolation to construct 585 a comprehensive archive of Australian climate data, Environmental Modelling & Software, 16, 309-586 330, doi:10.1016/S1364-8152(01)00008-1, 2001. Knisel, W. G.: Baseflow recession analysis for comparison of drainage basins and geology, J. Geophys. 587 588 Res., 68, 3649-3653, doi:10.1029/JZ068i012p03649, 1963. 589 Koskelo, A. I., Fisher, T. R., Utz, R. M., and Jordan, T. E.: A new precipitation-based method of 590 baseflow separation and event identification for small watersheds (<50km2), J. Hydrol., 450-451, 591 267-278, doi:10.1016/j.jhydrol.2012.04.055, 2012. 592 Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate 593 classification updated, Meteorol. Z., 15, 259-263, doi:10.1127/0941-2948/2006/0130, 2006. 594 Krakauer, N. Y., and Temimi, M.: Stream recession curves and storage variability in small watersheds, 595 Hydrol. Earth Syst. Sci., 15, 2377-2389, doi:10.5194/hess-15-2377-2011, 2011. 596 Lacey, G. C., and Grayson, R. B.: Relating baseflow to catchment properties in south-eastern Australia, 597 J. Hydrol., 204, 231-250, doi:10.1016/S0022-1694(97)00124-8, 1998. 598 Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., and Tu, K.: Correction to "A simple surface 599 conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-600 Monteith equation", Water Resour. Res., 45, n/a-n/a, doi:10.1029/2008wr007631, 2009. 601 Li, H., Zhang, Y., Chiew, F. H. S., and Xu, S.: Predicting runoff in ungauged catchments by using 602 Xinanjiang model with MODIS leaf area index, J. Hydrol., 370, 155-162, 603 doi:10.1016/j.jhydrol.2009.03.003, 2009. Li, H., and Zhang, Y.: Regionalising rainfall-runoff modelling for predicting daily runoff in continental 604 Australia, Hydrol. Earth Syst. Sci. Discuss., 1-24, doi:10.5194/hess-2016-464, 2016. 605 606 Li, H., and Zhang, Y.: Regionalising rainfall-runoff modelling for predicting daily runoff: Comparing 607 gridded spatial proximity and gridded integrated similarity approaches against their lumped counterparts, J. Hydrol., 550, 279-293, doi:10.1016/j.jhydrol.2017.05.015, 2017. 608 609 Lo, M.-H., Yeh, P. J. F., and Famiglietti, J. S.: Constraining water table depth simulations in a land 610 surface model using estimated baseflow, Adv. Water Res., 31, 1552-1564, 611 doi:10.1016/j.advwatres.2008.06.007, 2008. 612 Longobardi, A., and Villani, P.: Baseflow index regionalization analysis in a mediterranean area and 613 data scarcity context: Role of the catchment permeability index, J. Hydrol., 355, 63-75, 614 doi:10.1016/j.jhydrol.2008.03.011, 2008. Lott, D. A., and Stewart, M. T.: Base flow separation: A comparison of analytical and mass balance 615 methods, J. Hydrol., 535, 525-533, doi:10.1016/j.jhydrol.2016.01.063, 2016. 616 617 Lü, H., Hou, T., Horton, R., Zhu, Y., Chen, X., Jia, Y., Wang, W., and Fu, X.: The streamflow 618 estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method, 619 J. Hydrol., 480, 102-114, doi:10.1016/j.jhydrol.2012.12.011, 2013. 620 Luo, Y., Arnold, J., Allen, P., and Chen, X.: Baseflow simulation using SWAT model in an inland river 621 basin in Tianshan Mountains, Northwest China, Hydrol. Earth Syst. Sci., 16, 1259-1267, 622 doi:10.5194/hess-16-1259-2012, 2012. Luo, Z., Wang, E., and Smith, C.: Fresh carbon input differentially impacts soil carbon decomposition 623 624 across natural and managed systems, Ecology, 96, 2806-2813, doi:10.1890/14-2228.1, 2015. 625 Lyne, V., and Hollick, M.: Stochastic time-variable rainfall-runoff modelling, Institute of Engineers 626 Australia National Conference, 1979. MathWorks, T.: Genetic algorithm and direct search toolbox 2 user's guide, pp. 5.2–5.13, Natick, Mass., 627 628 2006.629 Mazvimavi, D., Meijerink, A. M. J., Savenije, H. H. G., and Stein, A.: Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe, Physics and Chemistry 630 631 of the Earth, Parts A/B/C, 30, 639-647, doi:10.1016/j.pce.2005.08.003, 2005. 632 McMahon, S. M., and Diez, J. M.: Scales of association: hierarchical linear models and the measurement of ecological systems, Ecol. Lett., 10, 437-452, doi:10.1111/j.1461-633 0248.2007.01036.x, 2007. 634 Merz, R., and Blöschl, G.: A regional analysis of event runoff coefficients with respect to climate and 635 636 catchment characteristics in Austria, Water Resour. Res., 45, W01405, doi:10.1029/2008wr007163,
- 637 2009.

Hydrology and Earth System Sciences

Meyboom, P.: Estimating ground-water recharge from stream hydrographs, J. Geophys. Res., 66, 1203-1214, doi:10.1029/JZ066i004p01203, 1961.

- Meynink, W.: Modelling equatorial baseflow, Proceedings of the 34th World Congress of the
 International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and
 Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, 2011.
- Miller, M. P., Susong, D. D., Shope, C. L., Heilweil, V. M., and Stolp, B. J.: Continuous estimation of
 baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical
 hydrograph separation approach, Water Resour. Res., 50, 6986-6999, doi:10.1002/2013WR014939,
 2014.
- Miller, M. P., Buto, S. G., Susong, D. D., and Rumsey, C. A.: The importance of base flow in sustaining
 surface water flow in the Upper Colorado River Basin, Water Resour. Res., 3547–3562,
 doi:10.1002/2015WR017963, 2016.
- Milly, P. C. D.: Climate, soil water storage, and the average annual water balance, Water Resour. Res.,
 30, 2143-2156, doi:10.1029/94WR00586, 1994.
- Mwakalila, S., Feyen, J., and Wyseure, G.: The influence of physical catchment properties on baseflow
 in semi-arid environments, J. Arid Environ., 52, 245-258, doi:10.1006/jare.2001.0947, 2002.
- Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I A discussion of principles, J. Hydrol., 10, 282-290, doi:10.1016/0022-1694(70)90255-6 1970.
- Partington, D., Brunner, P., Simmons, C. T., Werner, A. D., Therrien, R., Maier, H. R., and Dandy, G.
 C.: Evaluation of outputs from automated baseflow separation methods against simulated baseflow
 from a physically based, surface water-groundwater flow model, J. Hydrol., 458-459, 28-39,
 doi:10.1016/j.jhydrol.2012.06.029, 2012.
- Peña-Arancibia, J. L., van Dijk, A. I. J. M., Mulligan, M., and Bruijnzeel, L. A.: The role of climatic
 and terrain attributes in estimating baseflow recession in tropical catchments, Hydrol. Earth Syst.
 Sci., 14, 2193-2205, doi:10.5194/hess-14-2193-2010, 2010.
- Piggott, A. R., Moin, S., and Southam, C.: A revised approach to the UKIH method for the calculation
 of baseflow, Hydrol. Sci. J., 50, doi:10.1623/hysj.2005.50.5.911, 2005.
- Price, K.: Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid
 regions: A review, Progress in Physical Geography, 35, 465-492, doi:10.1177/0309133311402714,
 2011.
- Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G., and Reckhow, K. H.: On the application of
 multilevel modeling in environmental and ecological studies, Ecology, 91, 355-361, doi:10.1890/09 1043.1, 2010.
- Rice, K. C., and Hornberger, G. M.: Comparison of hydrochemical tracers to estimate source
 contributions to peak flow in a small, forested, headwater catchment, Water Resour. Res., 34, 17551766, doi:10.1029/98WR00917, 1998.
- Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., and Tuppad, P.: Regional estimation of base flow
 for the conterminous United States by hydrologic landscape regions, J. Hydrol., 351, 139-153,
 doi:10.1016/j.jhydrol.2007.12.018, 2008.
- Schilling, K. E., and Libra, R. D.: INCREASED BASEFLOW IN IOWA OVER THE SECOND HALF
 OF THE 20TH CENTURY1, JAWRA Journal of the American Water Resources Association, 39,
 851-860, doi:10.1111/j.1752-1688.2003.tb04410.x, 2003.
- 680 Singh, K. P.: Some Factors Affecting Baseflow, Water Resour. Res., 4, 985-999,
 681 doi:10.1029/WR004i005p00985, 1968.
- Spongberg, M.: Spectral analysis of base flow separation with digital filters, Water Resour. Res., 36,
 745-752, doi:10.1029/1999WR900303, 2000.
- Stoelzle, M., Weiler, M., Stahl, K., Morhard, A., and Schuetz, T.: Is there a superior conceptual
 groundwater model structure for baseflow simulation?, Hydrol. Processes, 29, 1301-1313,
 doi:10.1002/hyp.10251, 2015.
- Su, C.-H., Peterson, T. J., Costelloe, J. F., and Western, A. W.: A synthetic study to evaluate the utility
 of hydrological signatures for calibrating a base flow separation filter, Water Resour. Res., 6526 6540, doi:10.1002/2015WR018177, 2016.
- Tularam, G. A., and Ilahee, M.: Exponential smoothing method of base flow separation and its impact
 on continuous loss estimates, American Journal of Environmental Sciences, 4, 373-381,
 doi:10.3844/ajessp.2008.136.144, 2008.

Hydrology and Earth System Sciences Discussions

693	van Dijk, A. I. J. M.: Climate and terrain factors explaining streamflow response and recession in
694	Australian catchments, Hydrol. Earth Syst. Sci., 14, 159-169, doi:10.5194/hess-14-159-2010, 2010.
695	van Dijk, A. I. J. M., Peña-Arancibia, J. L., Wood, E. F., Sheffield, J., and Beck, H. E.: Global analysis
696	of seasonal streamflow predictability using an ensemble prediction system and observations from
697	6192 small catchments worldwide, Water Resour. Res., 49, 2729-2746, doi:10.1002/wrcr.20251,
698	2013.
699	Vaze, J., and Teng, J.: Future climate and runoff projections across New South Wales, Australia: results
700	and practical applications, Hydrol. Processes, 25, 18-35, doi:10.1002/hyp.7812, 2011.
701 702	Vogel, R. M., and Kroll, C. N.: Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics, Water Resour. Res., 28, 2451-2458, doi:10.1029/92WR01007, 1992.
703	Wittenberg, H., and Sivapalan, M.: Watershed groundwater balance estimation using streamflow
704	recession analysis and baseflow separation, J. Hydrol., 219, 20-33, doi:10.1016/S0022-
705	1694(99)00040-2, 1999.
706	Wittenberg, H.: Effects of season and man-made changes on baseflow and flow recession: case studies,
707	Hydrol. Processes, 17, 2113-2123, doi:10.1002/hyp.1324, 2003.
708	Yao, C., Zhang, K., Yu, Z., Li, Z., and Li, Q.: Improving the flood prediction capability of the
709	Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic
710	instantaneous unit nydrograph, J. Hydrol., 517, 1035-1048, doi:10.1016/j.jnydrol.2014.06.037, 2014.
712	methods in Eastern Australia I. Hudrol. 540, 252, 262, doi:10.1016/j.jbudrol.2017.04.004, 2017
712	Theng V and Chiew E H S : Polative marits of different methods for runoff predictions in ungauged
717	catchments Water Resour Res. 45 W07412 doi:10.1029/2008wr007504.2009
715	Zhang Y Leuning R Hutley I B Beringer I McHugh I and Walker I P: Using long-term
716	water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial
717	resolution. Water Resour. Res., 46, W05512, doi:10.1029/2009wr008716, 2010.
718	Zhang, Y., Viney, N., Frost, A., Oke, A., Brooks, M., Chen, Y., and Campbell, N.: Collation of
719	Australian modeller's streamflow dataset for 780 unregulated Australian catchments, Water for a
720	Healthy Country National Research Flagship, 115pp. Catchment Management,
721	doi:10.4225/08/58b5baad4fcc2, 2013.
722	Zhang, Y., Zheng, H., Chiew, F. H. S., Arancibia, J. P., and Zhou, X.: Evaluating regional and global
723	hydrological models against streamflow and evapotranspiration measurements, Journal of
724	Hydrometeorology, 17, 995-1010, doi:10.1175/jhm-d-15-0107.1, 2016.
725	Zhang, Y. Q., Vaze, J., Chiew, F. H., Teng, J., and Li, M.: Predicting hydrological signatures in
726	ungauged catchments using spatial interpolation, index model, and rainfall-runoff modelling, J.
727	Hydrol., 517, 936-948, doi:10.1016/j.jhydrol.2014.06.032, 2014.
728	Zhao, R. J.: The Xinanjiang model applied in China, J. Hydrol., 135, 371-381, doi:10.1016/0022-
729	1694(92)90096-E, 1992.
730	Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R., and Myneni,
/31	K.: Global Data Sets of Vegetation Leaf Area index (LAI)5g and Fraction of Photosynthetically Active Dediction (EDAD)2g Derived from Clobal Inventory Modeling and Magning Studies
/32 722	(CIMMS) Normalized Difference Vegetation Index (NDVI2g) for the Davied 1021 to 2011. Dometer
733	(01010103) 100111a112cu Difference vegetation index (100 v 15g) foi the reflot 1561 to 2011, Kelliole Sensing 5 007.048 doi:10.3300/rs5020027 2013
/34	Sensing, 5, 927-948, doi:10.3390/rs5020927, 2013.

735 Figure captions

- Figure 1. The location of 596 selected unregulated small catchments in this study and climate
- 737 classification based on Köppen-Geiger (2006) classification schemes in Australia.
- Figure 2. Estimation of the recession constant (Log (-dQ/dt) versus log (Q)) using automated
- baseflow identification technique (ABIT) for Endeavour catchment (station ID 107001). The
- black line is 5 % lower envelope line has a slope 0.983 and the estimate of the characteristic
- 741 drainage time scale K = 57.1 days.
- Figure 3. Spatial distribution of the observed baseflow index across Australia.
- 743 Figure 4. Baseflow index duration curves obtained from the observed, SIMHYD model and
- 744 Xinanjiang model. Calibration and two regionalisation results are shown for each
- hydrological model, where R1 and R2 represent spatial proximity and integrated similarity
- approaches, respectively. SIMHYD is simplified version of the HYDROLOG model.
- 747 Figure 5. Scatterplots of observed baseflow index versus simulated baseflow index using
- 748 SIMHYD and Xinanjiang models, where calibrated and regionalised model results are
- 749 presented in (a) and (d) (calibration), (b) and (e) (spatial proximity regionalisation) and (c)
- and (f) (integrated similarity regionalisation), respectively. The blue ellipses represent the
- confidence level at 0.95. The full naming of SIMHYD is introduced in Figure 4.
- 752 Figure 6. Scatterplots of observed and simulated baseflow index using traditional linear
- regression ((a)-(d)) and multilevel regression ((e)-(f)) approaches that are built using the full
- catchment samples in four climate zones, with (a) and (e) for arid, (b) and (f) for tropics, (c)
- and (g) for equiseasonal and (d) and (h) for winter rainfall, respectively. The blue ellipse is
- drawn at 0.95 confidence level. The black line represents 1:1 line.
- Figure 7. As same as Figure 6, but using the leave-one-out cross validation approach.

- 758 Figure 8. Parameter values using multilevel regression approach, fixed and random variables
- are represented. Error bar represents standard error of each parameter. The abbreviations of
- catchment attributes are introduced in Table 1.

Figure 1. The location of 596 selected unregulated small catchments in this study and climateclassification based on Köppen-Geiger (2006) classification schemes in Australia.

Figure 2. Estimation of the recession constant (Log (-dQ/dt) versus log (Q)) using automated baseflow identification technique (ABIT) for Endeavour catchment (station ID 107001). The black line is 5 % lower envelope line has a slope 0.983 and the estimate of the characteristic drainage time scale K = 57.1 days.

Figure 3. Spatial distribution of the observed baseflow index across Australia.

- 773 Xinanjiang model. Calibration and two regionalisation results are shown for each
- hydrological model, where R1 and R2 represent spatial proximity and integrated similarity
- approaches, respectively. SIMHYD is simplified version of the HYDROLOG model.

Figure 5. Scatterplots of observed baseflow index versus simulated baseflow index using SIMHYD and Xinanjiang models, where calibrated and regionalised model results are presented in (a) and (d) (calibration), (b) and (e) (spatial proximity regionalisation) and (c) and (f) (integrated similarity regionalisation), respectively. The blue ellipses represent the 780 confidence level at 0.95. The full naming of SIMHYD is introduced in Figure 4. 781

Figure 6. Scatterplots of observed and simulated baseflow index using traditional linear regression ((a)-(d)) and multilevel regression ((e)-(f)) approaches that are built using the full catchment samples in four climate zones, with (a) and (e) for arid, (b) and (f) for tropics, (c) and (g) for equiseasonal and (d) and (h) for winter rainfall, respectively. The blue ellipse is drawn at 0.95 confidence level. The black line represents 1:1 line.

789 Figure 7. As same as Figure 6, but using the leave-one-out cross validation approach.

Figure 8. Parameter values using multilevel regression approach, fixed and random variables
are represented. Error bar represents standard error of each parameter. The abbreviations of
catchment attributes are introduced in Table 1.

794 Table 1. Catchment attributes and indicators used in present study

Catchment attributes	Notation	Unit
Area	Α	km ²
Mean elevation	Н	m
Mean slope	S	%
Mean annual precipitation	Р	mm a ⁻¹
Mean annual potential evaporation	E_{TP}	mm a ⁻¹
Forest cover ratio	F	%
Available soil water holding capacity in top soil	Kst	mm/hr

- 796 Table 2. Summary statistics of the catchments information including topographic, climate,
- 797 geological elements and forest cover ratio in 596 catchments across Australia. The
- abbreviations of catchment attributes are introduced in Table 1.

-	А	Н	S	Р	E _{TP}	F	Kst
Max	4805.93	1350.97	16.02	3683.76	2237.88	0.91	507.28
Min	50.34	37.61	0.15	241.77	905.88	0.01	5.54
Mean	646.06	433.21	4.48	981.12	1384.12	0.49	158.83
25th	153.31	223.18	1.90	727.42	1155.48	0.34	105.42
50th	346.15	347.00	3.60	885.32	1294.93	0.52	161.17
75th	710.13	604.29	6.71	1162.30	1536.10	0.67	201.90

- 800 Table 3. Using various benchmarks to evaluate prediction of baseflow index from traditional
- 801 linear and multilevel regression approaches. Ensemble is mean of four revised methods(LH,
- 802 UKIH, CM and ECK are the revised methods of Lyne-Hollick, United Kingdom Institute of
- 803 Hydrology, Chapman-Maxwell and Eckhardt methods respectively). Details of each method
- south can be found in [*Zhang et al.*, 2017].

Method		Ensemble	LH	UKIH	СМ	ECK	
Lincor	Bias	25	23	114	18	113	
Lineai	NSE	0.57	0.25	0.49	0.33	0.37	
Multilaval	Bias	19	21	111	17	102	
Multilevel	NSE	0.75	0.41	0.65	0.38	0.55	