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Abstract. Estimating baseflow at a large spatial scale is critical for water balance budget, water 19 

resources management, and environmental evaluation. To predict baseflow index (BFI, the 20 

ratio of baseflow to total streamflow), this study introduces a multilevel regression approach, 21 

which is compared to two traditional approaches: hydrological modelling (SIMHYD, a 22 

simplified version of the HYDROLOG model, and Xinanjiang models) and classic linear 23 

regression. All of the three approaches were evaluated against ensemble average estimates from 24 

four well-parameterised baseflow separation methods (Lyne-Hollick, UKIH (United Kingdom 25 

Institute of Hydrology), Chapman-Maxwell and Eckhardt) at 596 widely spread Australian 26 

catchments in 1975-2012. The two hydrological models obtain BFI from three modes:  27 

calibration and two regionalisation schemes (spatial proximity and integrated similarity). The 28 

classic linear regression estimates BFI using linear regressions established between catchment 29 

attributes and the ensemble average estimates in four climate zones (arid, tropics, equiseasonal 30 

and winter rainfall). The multilevel regression approach not only groups the catchments into 31 

the four climate zones, but also considers variances both within all catchments and catchments 32 

in each climate zone. The two calibrated and regionalised hydrological models perform 33 

similarly poorly in predicting BFI with a Nash-Sutcliffe Efficiency (NSE) of -8.44~-2.58 and 34 

an absolute percenrate bias (Bias) of 81~146; the classic linear regression is intermediate with 35 

the NSE of 0.57 and bias of 25; the multilevel regression approach is best with the NSE of 0.75 36 

and bias of 19. Our study indicates the multilevel regression approach should be used for 37 

predicting large-scale baseflow index such as Australian continent where sufficient catchment 38 

predictors are available. 39 

Keywords: baseflow separation, baseflow index, hydrological models, linear regression, 40 

multilevel regression, Australia  41 
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Highlights 42 

1. The multilevel regression approach is introduced for predicting baseflow index  43 

2. The hydrological modelling approach overestimates baseflow in Australia  44 

3. The multilevel regression approach is best in arid, tropics, and equiseasonal regions  45 

4. The linear regression approach performs similarly to the multilevel regression 46 

approach in winter rainfall region  47 
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1 Introduction 48 

Baseflow, the outflow from the upstream aquifers when the recharge is ceased (e.g., 49 

precipitation or other artificial water supplies) (Brutsaert and Lopez, 1998; Brutsaert, 2005), 50 

is an important indicator of catchment hydrogeological characteristic (Knisel, 1963). 51 

Baseflow index (BFI) is the average rate of baseflow to streamflow over a long period of time 52 

(Piggott et al., 2005;Partington et al., 2012). Accurate estimation of baseflow and BFI has 53 

profound influence on sustaining water for basins during drought periods  (Brutsaert, 54 

2005;Miller et al., 2016), and therefore is critical for water budgets (Abdulla et al., 1999), 55 

water management strategies (Lacey and Grayson, 1998), engineering design (Meynink, 56 

2011), and environmental issues (Spongberg, 2000;Miller et al., 2014).  57 

Various methods have been developed to separate baseflow from streamflow (Lyne and 58 

Hollick, 1979;Rice and Hornberger, 1998;Spongberg, 2000;Furey and Gupta, 2001;Eckhardt, 59 

2005;Tularam and Ilahee, 2008;Lott and Stewart, 2016), which can be categorized to tracer 60 

based and non-tracer methods (Gonzales et al., 2009). However, tracer based method is only 61 

applied to experimental catchments due to expensive the high consumption of both 62 

experimental time and materials (Koskelo et al., 2012). The alternative is non-tracer methods 63 

(e.g., digital filter methods) (Zhang et al., 2017), which are widely used because of their high 64 

efficiency and repeatability in estimating BFI (Arnold et al., 1995). More importantly, they 65 

perform well when the digital-filtering parameters (e.g., recession constant and maximum 66 

baseflow index) are appropriately estimated (Zhang et al., 2017). The non-tracer methods can 67 

only be used for catchments with streamflow observations. For ungauged catchments, 68 

hydrological models and regression approaches can be used to separate baseflow form total 69 

streamflow. Their accuracy can be evaluated against ensemble estimates from the non-tracer 70 

methods at gauged catchments.  71 
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Most hydrological models include a baseflow generation component (Luo et al., 72 

2012;Stoelzle et al., 2015;Gusyev et al., 2016). These models can be divided into two groups. 73 

One group considers baseflow as a linear recession process for groundewater reservoir, 74 

including SIMHYD (simplified version of the HYDROLOG model) (Chiew and McMahon, 75 

1994;Zhang et al., 2016), 1LBY (Abdulla et al., 1999;Stoelzle et al., 2015), HBV (Ferket et 76 

al., 2010) models; the another group takes baseflow as a non-linear recession process 77 

including Xinanajing (Zhang and Chiew, 2009), PDM (Ferket et al., 2010) and ARNO 78 

(Abdulla et al., 1999) models. It is expected that BFI obtained from the hydrological models 79 

is largely uncertain as a result of different model structures, model calibration and 80 

parameterisation schemes (Beven and Freer, 2001). There are few studies in the literatures to 81 

evaluate the accuracy of baseflow estimation from the hydrological models at a regional 82 

scale. This study evaluates two hydrological models (SIMHYD and Xinanjiang models) for 83 

predicting BFI against the ensemble BFI estimates from the non-tracer methods.  84 

Linear regression approach is another commonly used method to predict hydrological 85 

signature indices, including baseflow index (Gallart et al., 2007;Longobardi and Villani, 86 

2008;Bloomfield et al., 2009;van Dijk et al., 2013). This method uses catchment physical 87 

characteristics (i.e. descriptors) and BFI obtained from the gauged catchments to establish 88 

linear regressions that are then used to predict BFI in ungauged catchments (Bloomfield et 89 

al., 2009;Beck et al., 2013). Several studies show some catchment characteristics have 90 

important control on BFI. For instance, geological characteristics such as soil properties were 91 

found to be key for accurate BFI estimates (Brandes et al., 2005;van Dijk, 2010). Other 92 

studies also used climate-related indices, such as mean annual precipitation and mean annual 93 

potential evaporation, to simulate BFI (van Dijk, 2010;Beck et al., 2013). In similar studies, 94 

mean annual precipitation, slope and proportion of grassland are used for building the 95 

regressions for predicting BFI (Haberlandt et al., 2001;Brandes et al., 2005;Mazvimavi et al., 96 
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2005;Gebert et al., 2007;Bloomfield et al., 2009;van Dijk, 2010). Beside BFI, linear 97 

regression is also an useful approach in estimating other hydrological signatures (e.g., runoff 98 

coefficient, runoff seasonality, zero flow ratio and concavity index (Zhang et al., 2014)) and 99 

understanding the catchment hydrology behaviour (Zhang et al., 2014;Su et al., 2016). One 100 

limitation of the linear regression approach is that it uses constant parameters to predict BFI, 101 

and cannot handle cross-interactions at different spatial scales (Qian et al., 2010), which 102 

could result in large errors for catchments located in a wide range of climate regimes.  103 

This limitation can be overcome by the multilevel regression approach that provides a robust 104 

tool to establish the relationships between BFI and catchment attributes. The basic idea of 105 

this approach is that higher level variables vary within a lower level (Berk and De Leeuw, 106 

2006). This approach can handle the variables with various solutions using random effects 107 

(i.e., hierarchical structure) (Dudaniec et al., 2013). This approach has been extensively used 108 

to understand interplay of ecosystem dynamics (i.e., carbon cycle across different ecosystem 109 

(McMahon and Diez, 2007;Luo et al., 2015) and N2O emissions from agricultural soils 110 

(Carey, 2007)). However, no literatures have been reported to use this approach for 111 

hydrological signature (such as BFI) predictions. This study, for the first time, explores the 112 

possibility of using multilevel regression (Qian et al., 2010;Luo et al., 2015) to predict BFI 113 

across widely distributed Australian catchments. Catchment characteristics are used here as 114 

lower level (i.e., individual-level) predictors, and the effect of these predictors is assumed to 115 

vary across higher level predictors (i.e., climate zones) (Gelman and Hill, 2006). Details of 116 

the multilevel regression approach are elaborated in section 3.3.  117 

The main aim of this study is to improve the large-scale BFI prediction. To achieve this, we 118 

compare the three BFI prediction methods (hydrological modelling, classic and multilevel 119 

regression approaches) against ensemble average estimates from four non-tracer baseflow 120 

separation methods. The objectives of this study are to  121 
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i. Obtain “benchmark” BFI using the four non-tracer baseflow methods (Lyne-Hollick, 122 

UKIH (United Kingdom Institute of Hydrology), Chapman-Maxwell and Eckhardt) 123 

for 596 Australian catchments (Figure 1);  124 

ii. Introduce the multilevel regression approach for FBI predictions across large regions; 125 

iii. Assess relative merits of the three approaches for BFI predictions; and 126 

iv. Investigate good BFI predictors for the multilevel regression approach. 127 

Figure 1 is about here 128 

2  Data sources 129 

2.1 Streamflow 130 

There are 596 catchments selected across Australia for assessing the three methods 131 

(hydrological modelling, linear regression and multilevel regression) used in this study to 132 

predict BFI. Streamflow measurements and related catchment attributes were collated by 133 

Zhang et al. (2013). Following criteria are used to filter the streamflow data for each 134 

catchment:  135 

i. It is a small catchment with catchment area 50 to 5000 km2; 136 

ii. Streamflow was not subject to dam or reservoir regulations; 137 

iii. The catchment is non-nested; 138 

iv. The catchment was not subject to major impacts of irrigation and intensive land use; 139 

and 140 

v. The observed streamflow record covers the period of 1975-2012, containing at least 141 

ten-year (>3652 days) daily observations, with acceptable data quality according to a 142 

consistent Australian standard. 143 
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2.2 Climate zones and catchment attributes 144 

The Australian continent is classified into five climate zones (arid, equiseasoal-hot, 145 

equiseasonal-warm, tropics and winter rainfall) based on Köppen-Geiger classification 146 

schemes (Kottek et al., 2006). It is noted that this study combined equiseasonal-hot and 147 

equiseasonal-warm as one climate zone. The number of selected catchments within arid, 148 

equiseasonal, tropics, and winter rainfall climate zones is 37, 385, 82, and 90, respectively. 149 

The catchment attributes including climate (Mean annual precipitation, Mean annual 150 

potential evaporation), topographical (Mean elevation and Mean slope), soil (Available soil 151 

water holding capacity) and land cover (Forest cover ratio) characteristics were implemented 152 

to build the linear regression and multilevel regression approaches. The abbreviation for each 153 

catchment attributes and summary are shown in Table 1 and Table 2 respectively. 154 

2.3 Forcing data for hydrological modelling 155 

The Xinanjaing and SIMHYD models were driven by 0.05° resolution (~ 5 km) daily 156 

meteorological data (including maximum temperature, minimum temperature, incoming solar 157 

radiation, actual vapour pressure and precipitation) from 1975 to 2012, obtained from the 158 

SILO Data Drill of the Queensland Department of Natural Resources and Water 159 

(www.nrw.gov.au/silo). There are about 4600-point observations across Australia used for 160 

interpolating to obtain the SILO data. Details are described in Jeffrey et al. (2001). The daily 161 

and monthly gridded precipitation data were obtained from ordinary kriging method, whereas 162 

other gridded climate variables were obtained using the thin plate smoothing spline. Cross 163 

validation results indicate the mean absolute error of the Jeffrey interpolation for maximum 164 

daily air temperature, minimum daily air temperature, vapour pressure, and precipitation 165 

being 1.0 °C, 1.4 °C, 0.15 kPa and 12.2 mm/month, which indicates good data quality 166 

(Jeffrey et al., 2001).  167 
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Except for the climate forcing data, the two models also require remote sensing leaf area 168 

index, land cover and albedo data that were used to calculate actual evapotranspiration (ETa) 169 

using the Penman–Monteith–Leuning model (Leuning et al., 2009;Zhang et al., 2010). The 170 

leaf area index data from 1981 to 2011, derived from the Advanced Very High Resolution 171 

Radiometer (AVHRR), were obtained from Boston University (Zhu et al., 2013). The 172 

temporal resolution is half–monthly and its spatial resolution is ~8 km. The land cover data 173 

required to estimate aerodynamic conductance came from the 2000-2001 MODIS land cover 174 

product, obtained from the Oak Ridge National Laboratory Distributed Active Archive 175 

Center (Friedl et al., 2010). The dataset has 17 vegetation classes, which are defined 176 

according to the International Geosphere-Biosphere Programme. The albedo data required to 177 

calculate net radiation were obtained from the 8-day MODIS MCD43B bidirectional 178 

reflectance distribution function product at 1 km resolution. All of the forcing data were re-179 

projected and resampled using nearest neighbour approach to obtain 0.05o gridded data.  180 

3 Models 181 

3.1 Baseflow separation algorithm 182 

The benchmark BFI data were estimated using four baseflow separation methods. They are 183 

Lyne-Hollick (Lyne and Hollick, 1979), UKIH (Gustard et al., 1992), Chapman-Maxwell 184 

(Chapman and Maxwell, 1996) and Eckhardt (Eckhardt, 2005) respectively. It is found that 185 

estimates of the recession constant and maximum baseflow index are the key to improve the 186 

performance of the digital-filtering methods (Zhang et al., 2017). This study used the 187 

Automatic Baseflow Identification Technique (ABIT) for the recession analysis, which was 188 

developed by Cheng et al. (2016) based on the recession theory provided by Brutsaert and 189 

Nieber (1977). Figure 2 demonstrates how the recession constant is estimated using the ABIT 190 

method.  191 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-737
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 December 2017
c© Author(s) 2017. CC BY 4.0 License.



10 
 

In order to eliminate uncertainties raised from different algorithms, the ensemble mean from 192 

the four methods was taken as the benchmark (denoted as ‘the observed BFI’). The observed 193 

BFI was used either to evaluate the two hydrological models for BFI prediction, or to build 194 

the linear and multilevel regression approaches together with the catchment attributes.  195 

Figure 2 is about here 196 

3.2 Hydrological models 197 

The SIMHYD and Xinanjiang model are two conceptual rainfall-runoff hydrological models. 198 

Since developed by Chiew and McMahon (2002), SIMHYD has been widely applied in 199 

runoff simulation and regionalization studies (Chiew et al., 2009;Vaze and Teng, 2011;Li and 200 

Zhang, 2016;Zhang et al., 2016). Four water stores are used in this model to describe 201 

hydrological processes, namely the interception store, soil moisture store, groundwater store 202 

and channel store (Chiew and McMahon, 2002). Detailed model structure can be found in 203 

Chiew and McMahon (1994). The modified SIMHYD model by Zhang and Chiew (2009), 204 

which uses remote sensing data and contains nine model parameters, is used in this study. 205 

The Xinanjiang model was developed by Zhao (1992) and has been widely used in humid 206 

and semi-humid regions (Li et al., 2009;Lü et al., 2013;Yao et al., 2014). This model 207 

reproduces runoff by describing three hydrological processes including ETa, runoff 208 

generation, and runoff routing. Details of Xinanjiang model are available from studies 209 

conducted by Zhao (1992) and Zhang and Chiew (2009). Here we use the modified 210 

Xinanjiang model proposed by Zhang and Chiew (2009), in which ETa was estimated using 211 

remote sensed LAI and the model parameters were reduced from 14 to 12.  212 

The revised version of those two models is denoted as original models. The details of two 213 

hydrological models and regionalization approaches are described by Zhang and Chiew 214 

(2009). We used three types of BFI estimates from hydrological modelling: calibration, 215 
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regionalisation from spatial proximity, and regionalisation from integrated similarity. Herein, 216 

a short description of these three kinds of estimates is given below. 217 

For model calibration, a global optimisation method, the genetic algorithm from the  global 218 

optimisation toolbox in MATLAB (MathWorks, 2006), was used to calibrate the model 219 

parameters for each catchment. This optimiser used 400 populations and the maximum 220 

generation of 100 for searching the optimum point, which converges at approximately 50 221 

generations of searching. The model calibration was to maximise the Nash-Sutcliffe 222 

Efficiency of the daily square-root-transformed runoff data and minimise the model bias (Li 223 

and Zhang, 2017). 224 

For the spatial cross-validations, two regionalisation approaches, spatial proximity and 225 

integrated similarity approaches (Zhang and Chiew, 2009) were used. The spatial proximity 226 

approach is where the geographically closest catchment is used as the donor basin to predict 227 

the ungauged catchments; integrated similarity approach is derived from combination of the 228 

spatial proximity and physical similarity approaches.  229 

3.3 Linear regression and multilevel regression approaches 230 

Traditionally, BFI was predicted using one set parameters for all catchments. The details are:  231 

,596,...,3,2,1),,(  iXNBFI ii        (1)  232 

where BFIi is the baseflow index for each catchment i=1,..., 596, N is normal distribution 233 

function, α is the intercept, β is slop, X is the variables (i.e., catchment attributes), and ε is 234 

variance. This model ignores the potentially different effects of the same variable on BFI 235 

across different climatic zones. That is, α and β are constant irrespective of the climatic zone 236 

to which the BFI belongs. To be specific, many studies have conducted the baseflow 237 

prediction at large area, yet constant α and β are used in the model (Abebe and Foerch, 238 
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2006;Longobardi and Villani, 2008;Bloomfield et al., 2009). However, catchment attributes 239 

vary with hydrometerological conditions, therefore the constant parameters are not adequate 240 

to reflect the catchment characteristics. This approach ignored variability of catchment 241 

characteristics in various backgrounds. In order to reduce the uncertainties of prediction using 242 

one set of parameters, one level reflects hydrological background should be introduced.  243 

In this study, we assumed that BFI associates with the climate variables (annual precipitation, 244 

potential evapotranspiration) and terrain attributes (area, elevation, slope, land cover and 245 

available soil water holding capacity in top soil) in each catchment (i.e., i = 1, 2, 3, …, 596). 246 

We further assumed that the effects of those predictors on BFI vary with climate zones 247 

including arid, tropics, equiseasonal and winter rainfall (i.e., j = 1, 2, 3, 4). In this process, the 248 

catchments were divided into multiple datasets based on climate zones, then individual linear 249 

regression model were built for each subset.  250 

),...,3,2,1(),,( niXNBFI jiij         (2) 251 

where j is catchment in each climate zone, BFIji is the baseflow index for catchment in each 252 

subset j = 1,2,3,4. N is normal distribution function, α is the intercept, β is slop, X is the 253 

variables (i.e., catchment attributes), and ε is variance in each subset. However, hydrological 254 

processes in a catchment have close connections with other catchments, interactions crossing 255 

various group levels are primary drivers to influence baseflow processes. Therefore, an 256 

approach should be developed to consider cross level effects for predicting hydrological 257 

signatures.  258 

Thus, we introduced the multilevel regression approach (Gelman and Hill, 2006;Qian et al., 259 

2010;Luo et al., 2015) to improve the prediction of BFI and quantify the relative importance 260 

of predictors under different climate zones. Comparing the traditional linear regression 261 

approach, the hierarchical structure of the multilevel regression approach allows the 262 
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assessment of the variation in model coefficients across groups (e.g., climatic zones) and 263 

accounting for group-level variation in the uncertainty for individual level coefficients. The 264 

multilevel regression approach could be written as a data-level model (the predicted BFIi 265 

belonging to climate zone j), allowing the model coefficients (α and β) to vary by climate 266 

zone (j = 1, 2, 3, 4). In this model, the intercept and slope vary with the group level (i.g., 267 

climate zone). The details of the approach is elaborated as follows:  268 

,596,...,3,2,1),,(~ 2

][][  iXNBFI BFIiijiji      (3) 269 

where Xi is the catchment attributes for each basin, and its intercepts and slopes can be 270 

decomposed into terms for climate zone,  271 

,4,3,2,1,,~ 2
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where µα and σα are the mean and standard deviation of variable intercept α, µβ and σβ are the 273 

mean and standard deviation of variable slope β, ρ is the correlation coefficients between the 274 

two variables αj and βj. The Eq. (3) can be rearranged as block matrix of 275 

),(~ NA           (5) 276 

the details of Eq. (5) ),(~ NA  can be described as:  277 
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the Eq. (4) can be calculated individually by: 279 
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  Nj         (7) 280 
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  Nj         (8) 281 
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The density function of the normal distribution N is (for example, α variable): 282 

 
2

2

2

2

1
)( 






aj

ef j




        (9) 283 

This model considers variation in the αj’s and the βj’s and also a between-group correlation 284 

parameter ρ (Gelman and Hill, 2006;Qian et al., 2010). In essence, there is a separate 285 

regression model for each climate zone with the coefficients estimated by the weighted 286 

average of pooled (which do not consider groups) and unpooled (which consider each group 287 

separately) estimates, i.e. partial pooling. When fitting the model, all predictors are 288 

standardized using z-scores.  289 

)(

)(

x2SD

xmean-x
x'         (10) 290 

Where x’ is the new catchment attributes using function z-scores. 291 

3.4 Leave-one-out cross-validations 292 

We apply leave-one-out cross-validation to assess the ability of the two regression 293 

approaches to predict BFI in ‘ungauged’ catchments where no streamflow data are available. 294 

For each of the 596 catchments, the data from other 595 catchments are used to predict its 295 

BFI. This procedure is repeated over all 596 catchments. This cross-validation procedure 296 

explores the transferability of the two regression approaches from known catchments to the 297 

ungauged and particularly evaluates the value of the between-catchments information. 298 

4 Model evaluation 299 

4.1 Bias 300 

The absolute percentage bias was used to evaluate model performance, which is calculated 301 

as: 302 
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where BFIo is the observed BFI derived using the ensemble average from the four non-tracer 304 

baseflow separation approaches (i.e., Lyne-Hollick, UKIH, Chapman-Maxwell and 305 

Eckhardt), BFIs is the simulated BFI from the two hydrological models or the two regression 306 

approaches. And n is the total number of catchment. The unit of bias is a percentage (%), the 307 

larger of the absolute bias, the worse of the simulation. The bias is 0 indicates that simulated 308 

value is the same as the observed value.  309 

4.2 Nash-Sutcliffe efficiency (NSE) 310 
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1         (12) 311 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that measures the relative 312 

magnitude of the residual variance ("noise") compared to the measured data variance 313 

("information") (Nash and Sutcliffe, 1970). It is a classic statistical metrics used for 314 

evaluating the model performance. The closer NSE is to 1.0, the better the simulation is.  315 

5 Results 316 

5.1 Spatiality of observed BFI 317 

It can be seen from Figure 3 that BFI varies dramatically across Australia (location, i.e. 318 

coordination and distance away from ocean). Within the latitude ranges from 20ºS to 30ºS, 319 

which is smaller than that of the regions beyond this latitude range. Catchments located in 320 

latitudes higher than 30ºS tend to have larger BFIs in general. Yet this is not the case for 321 
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Tasmania, where catchments with latitude higher than 40ºS have smaller BFI values in the 322 

southeastern region within this island. This indicates that the BFI spatiality is distinct from 323 

the main continent to island. It is also interesting to notice that beyond the range of 20-30ºS, 324 

observed BFI increases from inner land to coastal catchments, especially in southeast region 325 

within the main Australian continent.  326 

Figure 3 is about here 327 

5.2 Performance of two hydrological models  328 

Figure 4 summarises the BFI duration curves generated from the two hydrological models 329 

with three modes (calibration and two regionalisation schemes). Both models in the three 330 

parameterisation schemes perform poorly for estimating BFI. SIMHYD model largely 331 

overestimates BFI, while Xinanjiang model is overestimated at 60 % catchments, and its 332 

estimated BFI is closer to the observed that that obtained from SIMHYD model. Differences 333 

among the calibration and two regionalisation schemes are marginal for both models.  334 

Figure 4 is about here 335 

We further compared the observed and simulated in scatterplots (Figure 5). Figure 5(a) and 336 

5(d) compares the observed and simulated BFIs from calibrated SIMHYD and Xinanjiang 337 

models, respectively. Figure 5(b)-(c) and 5(e)-(f) show the regionalisation results (i.e., spatial 338 

proximity and integrated similarity) of these two hydrological models. Notably, BFI 339 

estimated using SIMHYD model is much larger than the observed values (Figure 5(a), (b), 340 

and (c)), with the majority catchment BFIs dotted above the 1:1 line. SIMHYD model under 341 

calibration, spatial proximity, and integrated similarity gives NSE being -8.30, -8.42 and -342 

8.44 respectively, and gives percentage bias being 146, 152 and 152 respectively, indicating 343 

similar poor model performance. In comparison, BFI estimated from Xinanjiang model tends 344 

to scatter a larger range around 1:1 line regardless of the parameterisation method (Figure 345 
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5(d), (e), and (f)), and is closer to the observed BFI. Xinanjiang model under calibration, 346 

spatial proximity, and integrated similarity give NSE being -2.75, -2.70 and -2.58 347 

respectively, and gives bias being 84, 81 and 83 respectively, indicating still similar poor 348 

model performance in prediction of BFI. The results obtained from Figures 4 and 5 indicate 349 

that parameterisation has much smaller impact on BFI estimates, compared to model 350 

structure. 351 

Figure 5 is about here 352 

5.3 Comparison of traditional regression and multilevel regression approaches  353 

Figure 6 compares the observed BFIs and simulated BFIs using traditional linear multivariate 354 

regression and multilevel regression approaches across four different climate zones. The 355 

result shows that the multilevel regression approach generally outperforms the traditional 356 

linear regression approach, evidenced by the NSE from multilevel regression approach being 357 

0.31, 0.30, and 0.18 higher than that from linear regression in arid, tropics, and equiseasonal 358 

regimes respecitively, and the percentage bias from multilevel regression approach being 8, 359 

7, and 8 lower than that from the linear regression. The two approaches show no significant 360 

difference in winter rainfall climate zone, indicated by same bias or NSE.  361 

Figure 6 is about here 362 

We further check the leave-one-out cross-validation results obtained from the two approaches 363 

(Figure 7). It is clear that there exists noticeable degradation from calibration to cross 364 

validations for the traditional regression in the three climate zones: arid, tropics, and 365 

equiseasonal regimes. Compared to that, there is no noticeable degradation for the multilevel 366 

regression approach for the three climate zones. In the winter rainfall zone, the both 367 

approaches do not have degradation, and perform similarly. The leave-one-out cross-368 
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validation results further demonstrate the multilevel regression approach outperforms the 369 

traditional linear regression.  370 

Figure 7 is about here 371 

Figure 8 summarises parameters of the multilevel regression approach. It can be seen that 372 

precipitation has the most positive impact on BFI, which does not greatly vary across climate 373 

zones. ETP has the most negative effect among all climate zones, and has significant large 374 

effect in equiseasonal zone. The H and Kst also have the noticeable positive effect on all the 375 

climate zones. Other three characteristics A, S and F have slope close to zero, suggesting 376 

small impacts on BFI.  377 

Figure 8 is about here 378 

6 Discussion 379 

Our results suggest there are large biases to use hydrological models to simulate and predict 380 

BFI. It is understandable since hydrological models are not designed to simulate baseflow 381 

directly, but the baseflow component, in order to better simulate streamflow. It seems that 382 

model structure is more important than parameterisation since the three parameterisation 383 

schemes (calibration, spatial proximity and integrated similarity) obtain similar BFI, and 384 

SIMHYD has larger bias than Xinanjiang model as summarised in Figures 4 and 5. However, 385 

both hydrological models are calibrated against total streamflow, rather than its components, 386 

such as baseflow. This suggests that better estimate streamflow. This issue has been well 387 

recognised in other hydrological models as well (Fenicia et al., 2007;Lo et al., 2008). In fact, 388 

baseflow is designed as an integrated store combined with the river recharge (Chiew and 389 

McMahon, 2002). This structure feature of hydrological models tends to overestimate 390 

baseflow and therefore leads to unsatisfactory BFI prediction.  391 
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Interactions of catchments crossing group level would influence the baseflow processes. BFI 392 

is affected by catchment attributes, and in relevance with terrain and climate factors (Gustard 393 

and Irving, 1994;Longobardi and Villani, 2008;van Dijk, 2010;Price, 2011). However, how 394 

to predict the effect of BFI response to such various environmental conditions remains 395 

challenging. In order to improve our understanding of BFI, interaction of catchment attributes 396 

within different climate zones should be considered (Berk and De Leeuw, 2006). 397 

Climate influences the hydrological process and thus leads to changes in baseflow generation. 398 

Implementation of multilevel regression approach in this study, P and ETP have the most 399 

significant effects on BFI, are the two essential elements controlling baseflow processes. The 400 

effect of these two factors varies across climate zones. As studies by Santhi et al. (2008) and 401 

Peña-Arancibia et al. (2010), they have shown that climate attributes can be used to best 402 

predictors for recession constant. The increase of the precipitation can cause the more 403 

saturation of the soil, and lead to the baseflow increase (Mwakalila et al., 2002;Abebe and 404 

Foerch, 2006). In addition, the ETP is related to the baseflow discharge over the extended 405 

period (Wittenberg and Sivapalan, 1999). ETP has the adverse effect on BFI for all climate 406 

zones. This result agrees well with the conclusion drawn by Mwakalila et al. (2002). The 407 

influence is relative smaller in arid zone than other climate zones. In general, ETP is related to 408 

the baseflow discharge over the extended period (Wittenberg and Sivapalan, 1999), 409 

catchment with low evapotranspiration will have higher BFIs (Mwakalila et al., 2002).  410 

Comparing to climate attributes, F tends to have smaller effects and with various effects with 411 

climate zones (i.e., positive effect in arid and winter rainfall zones). F associates with quick 412 

flow generation and thus leads to the changes in the baseflow. The influence comes from 413 

vegetation regulation of water flux through moist conditions and ETP (Krakauer and Temimi, 414 

2011). The plant on the ground can cover the land surface and influence the ETP and then 415 

increase the baseflow. Studies have shown that vegetation cover has a strong control on ET in 416 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-737
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 December 2017
c© Author(s) 2017. CC BY 4.0 License.



20 
 

catchments, and thus influences baseflow generation (Schilling and Libra, 2003). Wittenberg 417 

(2003) found that water consumption of deep-rooted vegetation has significant influence on 418 

baseflow generation where faster recession is usually found. Furthermore, baseflow is more 419 

closely related to the water storage of the saturated zone in plant root zone drainages (Milly, 420 

1994). Studies have also shown that higher watershed forest cover usually corresponds well 421 

with lower BFI (Price, 2011). This is particularly significant during dry seasons, where the 422 

reduction of vegetation cover can lead to increase baseflow in dry seasons (Singh, 423 

1968;Price, 2011). In the tropic zone, the proportion of the forest cover within a catchment 424 

has negative effect on BFI. This is because of the high water loss through ET in forests, and 425 

the vegetation draws heavily on the artesian leakage and contacts the spring flow (Meyboom, 426 

1961;Knisel, 1963). Although a relatively close correlation between forest cover and BFI is 427 

found for most catchments, there are exceptions in some catchments. For instant, BFI was 428 

found to have a weak correlation with forest area in the Mediterranean region (Longobardi 429 

and Villani, 2008) and a case study in the Elbe River Basin (Haberlandt et al., 2001). 430 

Our study demonstrates that those two topographic features are insignificant impact on the 431 

BFI cross Australia, and have different effects on various climate zones (i.e., slope has 432 

positive impact on arid but negative on other climate zones). However, some studies found 433 

that S and H have positive correlation with the recession timescales (Peña-Arancibia et al., 434 

2010;Krakauer and Temimi, 2011). When interactions crossing level have been implemented, 435 

adding those two factors can greatly improve performance of multilevel regression approach. 436 

Other studies show that the watershed area and slope are highly associated with the baseflow 437 

statistics (Vogel and Kroll, 1992). This can be a result of the catchments in their study are 438 

under the 150 km2. The effect of the slope will be induced when the catchment area are larger 439 

(Peña-Arancibia et al., 2010). However, the study conducted in southeaster Australia found 440 

that the topographic parameters have no significant relationship with the BFI (Lacey and 441 
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Grayson, 1998), this may be groundwater is relatively deep reducing connections between 442 

groundwater and streams (Mazvimavi et al., 2005).  Besides, Kst is positively related with 443 

BFI for all catchment across climate zones. This may be explained by the strong interactions 444 

between soil water content and P as well as ETP (Milly, 1994). 445 

Our result shows that multilevel regression approach, this approach can better understand the 446 

hydrological dynamics within different systems. To be specific, this method considers 447 

climate controls on catchment BFIs cross continental scale (Figure 8). Figure 9 shows the 448 

different coefficients in each climate zone. The hydrological processes are controlled by 449 

various climate conditions at large scale as has been proved by a number of studies (Lacey 450 

and Grayson, 1998;Abebe and Foerch, 2006;Merz and Blöschl, 2009;Ahiablame et al., 2013). 451 

The baseflow processes will have the interactions at different climate zones (within and 452 

between group). The multilevel regression approach considers the cross-level interactions, 453 

and the prediction not only influenced by predictors at one scale (i.e., continental scale) but 454 

also different spatial scale (i.e., climate zones) (Qian et al., 2010), incorporates the group 455 

level information, and this approach takes the fixed and random effects into account one 456 

single model, the coefficients of the model for the whole data and the group has the 457 

variances. Prediction of BFI using group level information (i.e., climate zones) will help 458 

capturing the climate spatial variability at different regional scales.  459 

According to the good performance as illustrated above, it is promising that this method can 460 

be used as a robust tool to estimate BFI across changing backgrounds (i.e., climate zones), 461 

and can promote improved understanding of hydrological processes.  462 

7 Conclusion 463 

This study estimated ensemble baseflow index from four well-parameterised baseflow 464 

separation methods (Lyne-Hollick, UKIH (United Kingdom Institute of Hydrology), 465 
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Chapman-Maxwell and Eckhardt), and found that the baseflow index varies significantly in 466 

corresponding to climate zones across Australian continent. Multilevel regression approach is 467 

introduced to improve BFI estimate for 596 catchments across Australia. BFI obtained from 468 

this new method is compared to that of traditional linear regression method and two 469 

hydrological models. When compared to observed BFIs, the multilevel regression approach 470 

outperforms both linear regression approach and hydrological models. Traditional linear 471 

regression approach fails to considerate the interactions across group levels. The two 472 

hydrological models have good performance for simulating runoff yet fail to separate 473 

baseflow. In contrast, the multilevel regression approach indicates that annual precipitation, 474 

potential evapotranspiration, elevation, land cover and available soil water holding capacity 475 

in top part of the soil all have strong control on catchment baseflow, where climate factor 476 

including precipitation and potential evapotranspiration are proven to be most significant. 477 

The multilevel regression approach can provide insights into the control factors of baseflow 478 

generation. This approach has the potential of being used to estimate baseflow index. We 479 

proposed the framework of using this approach to estimate hydrological signatures of under 480 

various backgrounds.  481 
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Figure captions 735 

Figure 1. The location of 596 selected unregulated small catchments in this study and climate 736 

classification based on Köppen-Geiger (2006) classification schemes in Australia. 737 

Figure 2. Estimation of the recession constant (Log (-dQ/dt) versus log (Q)) using automated 738 

baseflow identification technique (ABIT) for Endeavour catchment (station ID 107001). The 739 

black line is 5 % lower envelope line has a slope 0.983 and the estimate of the characteristic 740 

drainage time scale K = 57.1 days. 741 

Figure 3. Spatial distribution of the observed baseflow index across Australia.  742 

Figure 4. Baseflow index duration curves obtained from the observed, SIMHYD model and 743 

Xinanjiang model. Calibration and two regionalisation results are shown for each 744 

hydrological model, where R1 and R2 represent spatial proximity and integrated similarity 745 

approaches, respectively. SIMHYD is simplified version of the HYDROLOG model. 746 

Figure 5. Scatterplots of observed baseflow index versus simulated baseflow index using 747 

SIMHYD and Xinanjiang models, where calibrated and regionalised model results are 748 

presented in (a) and (d) (calibration), (b) and (e) (spatial proximity regionalisation) and (c) 749 

and (f) (integrated similarity regionalisation), respectively. The blue ellipses represent the 750 

confidence level at 0.95. The full naming of SIMHYD is introduced in Figure 4. 751 

Figure 6. Scatterplots of observed and simulated baseflow index using traditional linear 752 

regression ((a)-(d)) and multilevel regression ((e)-(f)) approaches that are built using the full 753 

catchment samples in four climate zones, with (a) and (e) for arid, (b) and (f) for tropics, (c) 754 

and (g) for equiseasonal and (d) and (h) for winter rainfall, respectively. The blue ellipse is 755 

drawn at 0.95 confidence level. The black line represents 1:1 line. 756 

Figure 7. As same as Figure 6, but using the leave-one-out cross validation approach. 757 
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Figure 8. Parameter values using multilevel regression approach, fixed and random variables 758 

are represented. Error bar represents standard error of each parameter. The abbreviations of 759 

catchment attributes are introduced in Table 1.   760 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-737
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 December 2017
c© Author(s) 2017. CC BY 4.0 License.



30 
 

 761 

Figure 1. The location of 596 selected unregulated small catchments in this study and climate 762 

classification based on Köppen-Geiger (2006) classification schemes in Australia.  763 
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 764 

Figure 2. Estimation of the recession constant (Log (-dQ/dt) versus log (Q)) using automated 765 

baseflow identification technique (ABIT) for Endeavour catchment (station ID 107001). The 766 

black line is 5 % lower envelope line has a slope 0.983 and the estimate of the characteristic 767 

drainage time scale K = 57.1 days.  768 
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 769 

Figure 3. Spatial distribution of the observed baseflow index across Australia.   770 
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 771 

Figure 4. Baseflow index duration curves obtained from the observed, SIMHYD model and 772 

Xinanjiang model. Calibration and two regionalisation results are shown for each 773 

hydrological model, where R1 and R2 represent spatial proximity and integrated similarity 774 

approaches, respectively. SIMHYD is simplified version of the HYDROLOG model.   775 
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 776 

Figure 5. Scatterplots of observed baseflow index versus simulated baseflow index using 777 

SIMHYD and Xinanjiang models, where calibrated and regionalised model results are 778 

presented in (a) and (d) (calibration), (b) and (e) (spatial proximity regionalisation) and (c) 779 

and (f) (integrated similarity regionalisation), respectively. The blue ellipses represent the 780 

confidence level at 0.95. The full naming of SIMHYD is introduced in Figure 4.   781 
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 782 

Figure 6. Scatterplots of observed and simulated baseflow index using traditional linear 783 

regression ((a)-(d)) and multilevel regression ((e)-(f)) approaches that are built using the full 784 

catchment samples in four climate zones, with (a) and (e) for arid, (b) and (f) for tropics, (c) 785 

and (g) for equiseasonal and (d) and (h) for winter rainfall, respectively. The blue ellipse is 786 

drawn at 0.95 confidence level. The black line represents 1:1 line.  787 
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 788 

Figure 7. As same as Figure 6, but using the leave-one-out cross validation approach.  789 
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 790 

Figure 8. Parameter values using multilevel regression approach, fixed and random variables 791 

are represented. Error bar represents standard error of each parameter. The abbreviations of 792 

catchment attributes are introduced in Table 1.   793 
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Table 1. Catchment attributes and indicators used in present study 794 

Catchment attributes Notation Unit 

Area A km2 

Mean elevation  H m 

Mean slope S % 

Mean annual precipitation P mm a-1 

Mean annual potential evaporation ETP mm a-1 

Forest cover ratio F % 

Available soil water holding capacity in top soil  Kst mm/hr 

  795 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-737
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 December 2017
c© Author(s) 2017. CC BY 4.0 License.



39 
 

Table 2. Summary statistics of the catchments information including topographic, climate, 796 

geological elements and forest cover ratio in 596 catchments across Australia. The 797 

abbreviations of catchment attributes are introduced in Table 1. 798 

  A H S P ETP F Kst 

Max 4805.93 1350.97 16.02 3683.76 2237.88 0.91 507.28 

Min 50.34 37.61 0.15 241.77 905.88 0.01 5.54 

Mean 646.06 433.21 4.48 981.12 1384.12 0.49 158.83 

25th 153.31 223.18 1.90 727.42 1155.48 0.34 105.42 

50th 346.15 347.00 3.60 885.32 1294.93 0.52 161.17 

75th 710.13 604.29 6.71 1162.30 1536.10 0.67 201.90 

  799 
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Table 3. Using various benchmarks to evaluate prediction of baseflow index from traditional 800 

linear and multilevel regression approaches. Ensemble is mean of four revised methods(LH, 801 

UKIH, CM and ECK are the revised methods of Lyne-Hollick, United Kingdom Institute of 802 

Hydrology, Chapman-Maxwell and Eckhardt methods respectively). Details of each method 803 

can be found in [Zhang et al., 2017]. 804 

Method Ensemble LH UKIH CM ECK 

Linear 
Bias 25 23 114 18 113 

NSE 0.57 0.25 0.49 0.33 0.37 

Multilevel 
Bias 19 21 111 17 102 

NSE 0.75 0.41 0.65 0.38 0.55 
 805 
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