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Abstract.

Forecasting the flow of groundwater requires a hydrostratigraphic model, which describes the architecture of the subsurface.
State-of-the-art Multiple-Point Statistical (MPS) tools are readily available for creating models depicting subsurface geology.
We present a study of the impact of key parameters related to stochastic MPS simulation of a real-world hydrogeophysical
dataset from Kasted Denmark using the snesim algorithm. The goal is to study how changes to the underlying datasets
propagate into the hydrostratigraphic realizations when using MPS for stochastic modeling. This study focuses on the
sensitivity of the MPS realizations to the geophysical soft data, borehole lithology logs, and the Training Image (TI). The
modeling approach used in this paper utilizes a cognitive geological model as a T1 to simulate ensemble hydrostratigraphic
models. The target model contains three overall hydrostratigraphic categories, and the MPS realizations are compared visually,
as well as quantitatively using mathematical measures of similarity. The quantitative similarity analysis is carried out

exhaustively, and realizations are compared with each other as well as with the cognitive geological model.

The results underline the importance of geophysical data for constraining MPS simulations. Relying only on borehole data and
the conceptual geology, or TI, results in a significant increase in realization uncertainty. The airborne transient electromagnetic
SkyTEM data used in this study cover a large portion of the Kasted model area, and are essential to the hydrostratigraphic
architecture. On the other hand, the borehole lithology logs are sparser, and only 410 boreholes were present in this study. The
borehole lithology logs infer local changes in the immediate vicinity of the boreholes, thus providing limited large-scale
structural information. Lithological information is, however, important for the interpretation of the geophysical responses.
Finally, the importance of the Tl was studied. An example was presented where an alternative geological model from a
neighboring area was used to simulate hydrostratigraphic models. It was shown that as long as the geological settings are
similar in nature, the realizations, although different, still reflect the hydrostratigraphic architecture. If a Tl containing a biased
geological conceptualization is used, the resulting realizations will resemble the T1 and contain less structure in particular

areas, where the soft data show almost even probability to two or all three of the hydrostratigraphic units.

1 Introduction

Geological models are important from both a societal and economic perspective, since they are used to locate essential natural
resources, such as freshwater, oil, metals, rare earth minerals etc. Additionally, they are used in risk assessment related to
natural hazards, such as earthquakes, sinkholes, volcanic eruptions, and landslides. Building 3D models depicting real-world
subsurface geology is no trivial task. Information from multiple sources is required, i.e. conceptual geological understanding,
geological information, lithology logs and geophysical data. Such data are sparse, uncertain and redundant. Dataset gaps force
geoscientists to make uncertain predictions or estimates, which carries over into the resulting geological model. During the
modeling procedure, such problems are dealt with as best as possible. Gaps in knowledge will render the resulting model

uncertain, and quantifying such uncertainty is essential to making better use of the models, and to making better predictions.

A common approach for building geological models is cognitive modeling (e.g. Jargensen et al., 2013; Royse, 2010). Here,
the dataset containing borehole lithology logs and geophysical models are co-interpreted by a professional with experience in
the fields of geoscience, geophysics, and geological modeling, with a relevant regional conceptual model in mind. This
modeling approach is deterministic, and results in a single model realization. These specialists are trained in assessing the
uncertainty of the underlying structures, and qualitative uncertainty estimates are often made on the structural model. E.g.
indicating different levels of uncertainty in different subparts of the model domain. However, qualitative uncertainty estimates
are difficult to carry over into the subsequent analysis, and the effect of the uncertainty of the geological model can therefore
not be quantified in the resulting forecasts. If the forecasts are based on a single geologic model, the prediction does not encase

the full complexity of the problem. Alternatively, if the model uncertainty can be quantified, it enables the option to include it
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in the forecast. However, quantifying the uncertainty in a cognitive modeling approach is difficult and tedious (Seifert et al.,
2012). Another approach is stochastic modeling using Multiple-Point Statistics (MPS) methodologies, e.g. Comunian et al.
(2012), Ferré (2017), He et al. (2016), Okabe and Blunt (2005), Pirot (2017). MPS provides a framework which can integrate
geophysical and borehole information, as well as conceptual geological information via a so-called Training Image (TI).
Multiple model realizations are created from the dataset. The resulting model ensemble reflects the uncertainty related to the

underlying datasets and overall modeling procedure.

We present a study of the uncertainty related to stochastic hydrostratigraphic MPS modeling of a hydrogeophysical dataset
from Kasted, Denmark (Figure 1). The goal is to understand the consequences of modifying the underlying MPS setup to
reflect some of the biases related to a real-world hydrogeophysical dataset and study the propagation of the uncertainty into
the hydrostratigraphic models. We show how uncertainty related to resistivity data, measured with the airborne transient
electromagnetic SKyTEM system (Sgrensen and Auken, 2004), and borehole lithology logs influences the hydrostratigraphic
modeling realizations. Two readily available MPS tools are showcased. The first tool is the Direct Sampling (DS) method for
reconstruction of incomplete datasets (Mariethoz and Renard, 2010). The other MPS tool is the “Single Normal Equation
Simulation” (snesim), which is used for stochastic hydrostratigraphic modeling (Strebelle, 2002). The stochastic models will
be divided into 6 overall cases, or 8 sub-cases. The first case is the basic modeling setup, which uses SKyTEM resistivity
models as soft data, boreholes as hard data and a cognitive 3D hydrostratigraphic model as a Tl. The remaining cases are then
modified versions of the basic modeling setup, which are designed to reflect different types of modeling uncertainty. In other
words, one of the overall goals of this study is to improve the Kasted model by using stochastic ensemble modeling to quantify

the uncertainty of the model, such as suggested by Ferré (2017) and Pirot (2017).

In this study we will use two overall types of data, i.e. geophysical data and borehole data. Associated with these data types
are the definitions of hard and soft data. Typically, hard data is considered certain information without an associated
uncertainty, while soft data is uncertain information, which can be associated with an uncertainty. Geophysical data are
typically considered soft data (Strebelle, 2002). Geophysical data are spatially dense and provides a smeared image of the
overall subsurface geology. Resolution decreases with depth, and diminishes at a specific depth, which is dependent on the
geophysical method. Geophysical instruments portray bulk physical properties of the subsurface. Although geophysical data
provides spatially dense information, it is not possible to exhaustively sample the subsurface. The density of the geophysical
data will affect the final uncertainty. The raw geophysical data goes through a processing and modeling step, where the raw
data are translated into geophysical models. During this step incorrect measurements, due to instrument error or interference,
are identified and removed, further decreasing the geophysical information density. Such incomplete data can either be
reconstructed or used as is during modeling. We present both cases and show the advantages/disadvantages of both in relation
to MPS modeling. Another consideration in regards to modeling of geophysical data is the choice of inversion scheme and
thereby the choice of a priori information (e.g., Ellis and Oldenburg, 1994; Tarantola and Valette, 1982). Here, several
approaches can be taken which vyield different geophysical models. A common inversion schemes for Airborne
Electromagnetic (AEM) data, such as SKkyTEM data, is the “Spatially Constrained Inversion” (SCI) (Viezzoli et al., 2008).
However, this inversion approach does not represent the subsurface properly, e.g. layer boundaries are smeared and extreme
values are not represented properly. A so-called sharp inversion scheme, suggested by Vignoli et al. (2015), tackles such
issues. Therefore, the choice of inversion scheme influences the hydrostratigraphic model and should be considered as an

integral step in the hydrostratigraphic modeling process.

The other source of data in this study is borehole lithology logs, which are commonly considered to be “ground truth” or hard

data (e.g. Gunnink and Siemon, 2015; Tahmasebi et al., 2012). However, lithology logs are also uncertain. In this study the

boreholes are divided into 5 quality groups, of which only boreholes above a chosen threshold are used. Generally the

uncertainty of borehole lithology logs relates to a number of parameters, such as: drilling methods, the frequency with which
4
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sediment samples are collected, precision with which the location is measured, the purpose of the borehole, the choice of
drilling contractor etc. — see Barfod et al. (2016) and He et al. (2014) for more detail. The resolution of borehole lithology logs
is especially dependent on the sampling method. If a core is extracted for the entirety of the borehole, the resolution is, in
principal, unlimited. However, this is expensive. It is more common to use either an auger drill, rotary drill or a cable tool,

which yields a relatively limited resolution, compared to core drilling, depending on how samples are collected and handled.

In this study data is modeled using snesim MPS framework. The snesim method is used to create geologic models and study
the uncertainty related to the geophysical data, lithology logs, and conceptual geological model (TI). It is carried out on a
hydrogeophysical dataset from Kasted, Denmark. Since subsurface hydraulic flow is largely controlled by geological
heterogeneity (e.g. Feyen and Caers, 2006; Fleckenstein et al., 2006; Fogg et al., 1998; Gelhar, 1984; LaBolle and Fogg, 2001;
Zhao and Illman, 2017), accurate geological models are crucial to accurate predictions of hydraulic flow. Geological units,
however, contain additional complexities not related to hydrologic units; therefore, from here on, the concept of
hydrostratigraphic units will be used. A detailed definition of hydrostratigraphic classification is given by Maxey (1964).

The snesim modeling scheme resulted in a total of 400 hydrostratigraphic models. Visual comparison of such a large number
of realization ensembles is tedious and subjective, but offers an overall understanding of the geological realism of the models
(Barfod et al., 2018). Barfod et al. (2018) present a comparison of 3D hydrostratigraphic models using the Modified Hausdorff
Distance (dwn). However, the dun was proved to be computationally expensive. Therefore, an alternative computationally
feasible distance measure is presented in this paper. The distance measure used in this paper is based on Euclidean Distance
Transforms (EDT) (Maurer et al., 2003). Generally, numerous mathematical method for comparing images exist in the
computer vision literature, e.g. Image Eclidean Distance (IMED) (Liwei Wang et al., 2005; Xiaofeng and Wei, 2008) and
Scale Invariant Feature Transform (SIFT) (Lowe, 2004). However, these alternative distance measures are, to our knowledge,

an unexplored research avenue within comparison and uncertainty analysis of ensembles of 3D hydrostratigraphic models.

2 The Kasted study area

The Kasted area is located northwest of Aarhus, Denmark (Figure 1A), and has also been presented by Barfod et al. (2018),
Marker et al. (2017), and Hayer et al. (2015). The regional geology of the Kasted area is dominated by a Quaternary buried
valley complex with complex abutting relationships between the individual valleys. The buried valleys are infilled with a
combination of till and glacial meltwater deposits. The valleys are incised into the substratum, which consists of hemipelagic
clay. The regional geology has been described in detail by Hayer et al. (2015), who created a detailed cognitive geological
model of the area.

An important geological feature of the Danish subsurface are buried tunnel valleys (e.g. Jargensen and Sandersen, 2006;
Sandersen et al., 2009). The geological heterogeneity varies considerably across Denmark, and can in some places be quite
complicated, such as in the Egebjerg area (Jargensen et al., 2010). In the Kasted area, the main tunnel valleys are clearly
outlined in the geophysical dataset thanks to the significant resistivity contrasts between the infill of the buried valleys and the
underlying Paleogene clay (Hayer et al., 2015). Therefore, the Kasted survey is ideal for studying the uncertainty related to

stochastic hydrostratigraphic modeling using MPS methods.

The survey covers an area of 45 km?, and is composed of a spatially dense SkyTEM survey with a total of 333 line km
(Sgrensen and Auken, 2004), with a line spacing of 100 m. The resulting SKyTEM soundings have been processed according
to the description by Auken et al. (2009). Finally two sets of geophysical models were produced using either the smooth
Spatially Constrained Inversion (SCI) models (Constable et al., 1987; Viezzoli et al., 2008), or the sharp SCI (sSCI) models
(Vignoli et al., 2015). Furthermore, there are 948 boreholes scattered throughout the Kasted survey area, each with a

corresponding lithology log of a varying quality. The quality assessment presented by He et al. (2014) and Barfod et al. (2016)
5
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is used to divide the boreholes into quality groups, ranking between 1-5. Only 410 of the boreholes are above the selected
quality threshold, i.e. within quality groups 1-3, and contain lithological information relevant to this study. An overview of the
dataset is found in Figure 1C and described in further details in Barfod et al. (2018) and Hayer et al. (2015).
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Figure 1: The Kasted survey area and resistivity-hydrostratigraphic relationship histograms. A shows the geographical location of the
Kasted survey area and the Egebjerg model used as a secondary TI. B shows the reconstructed resistivity-hydrostratigraphic relationship
histograms for the three main hydrostratigraphic unit categories based on SKyTEM resistivity models and borehole lithology logs. C shows
the Kasted survey with the SkyTEM sounding and borehole locations.

3 Methods
3.1 Multiple-Point Statistics (MPS) and single normal equation simulation (snesim)

The Multiple-Point Statistics (MPS) framework stems from the general geostatistics framework. Here, Multiple-Point (MP)
information from a Training Image (TI) is used to condition simulations to probable geological patterns (Journel and Zhang,
2007). The TI thus provides a conceptual geological understanding of a given area, and can be viewed as a database containing
probable geological patterns, which are used to condition the MPS simulation. The choice of Tl is an important step in any
MPS setup, and influences the realization results, as will be illustrated. The Tl does not need to carry locally accurate
information, i.e. the T1 does not need to spatially or geographically overlap with real-world geological units, and can be purely
conceptual in nature. Together with the TI, it is also possible to use geophysical datasets for constraining MPS simulations,
resulting in realizations that reflect real-world regional geology. Today, MPS is a widely used tool, which is used in a variety
of geoscience fields, including, but not limited to: reservoir modeling (e.g. Okabe and Blunt, 2004; Strebelle and Journel,
2001), hydrology (e.g. Le Coz et al., 2011; Hermans et al., 2015; Hayer et al., 2017), geological modeling (e.g. de laco and
Maggio, 2011).

The MPS method used in this paper is known as the single normal equation simulation (snesim) framework (Strebelle, 2002),
and is implemented in the Stanford Geostatistical Modeling Software, or SGeMS. The snesim framework allows for simulating
real-world categorical geological model using a T1, constrained using soft geophysical data, and hard borehole data. The snesim
algorithm scans the entire TI, ahead of simulation, and stores the MP information contained in the T1 in a search-tree database.
The MP information can then be retrieved from the database during simulation. The integration of soft geophysical data for
constraining the simulations is achieved by utilizing the tau model, which will be described in detail in section 3.1.1 (Journel,

2002; Krishnan, 2004). Here, the continuous soft data variable needs to be translated into a probability grid, describing the
6
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probability of finding given geological unit based on the geophysical data; see Barfod et al. (2018). In order to guarantee the

reproduction of geological patterns at all scales, snesim uses the multiple grid formulation, presented by Tran (1994).

3.1.1 The Tau model: combining conditional probabilities

Combining information from different sources is a frequent challenge in subsurface modeling. A fundamental challenge of the
research conducted in this paper was to combine conditional probabilities from different sources. In this paper we used the
common Tau model approach (Journel, 2002). The Tau model generally combines the probability values from different sources
using Bayes’ theorem and a set of t-values, or T-weights, for determining how to weight the probabilities. The choice of t-
weights is subjective, and assigning these is not a trivial task. It is recommended to run a series of exhaustive tests when
assigning the t-weights.

We will now briefly introduce the Tau model; for more detail see Journel (2002). Suppose we have a set of data events, D;, i =

1, ...,n, and the goal is to estimate the probability that a hydrostratigraphic unit (A) is present provided all data events:

P(A|Dy, ..., Dy) @

The first step is then to define the prior probability distribution, P(A4). Generally the Tau model can be applied to as many
different probability grids as desired, but for the purpose of simplification two probability distributions are defined: P(A|D,)
and P(A|D,). In this study we will consider D, and D, as 2D or 3D probability grids from different sources. As an example
D, could be a probability grid from geophysical data and D, a probability grid from borehole lithology logs. The probability

grids are translated into distance grids by applying the “probability-into-distance” transform:

__1-P(4) _ 1-P(4|Dy)

_ 1-P4IDy)
Yo = Tpa ' M1 T Tpamy

,and x, = PAID,) (2)

Then the following distance ratio is computed using the tau model expression:

A\ Ti
=2 (2) " vel—oo; +oo] @3)

Xo

where the tau values are assigned as follows: [t1,72]. The final conditional probability is computed as follows:

P(AIDy,D,) = — @)

1+x
where the value of x is computed from eg. (2), as follows:

r=n () () ©)
3.2 Reconstructing incomplete datasets using Direct Sampling

In the field of geoscience, we are always dealing with incomplete datasets, since we cannot sample the subsurface exhaustively.
Several approaches exist for dealing with incomplete datasets, of which two general approaches can be defined. A common
approach is to reconstruct incomplete datasets using geostatistical tools (e.g. Goovaerts, 1997; Mariethoz and Renard, 2010),
which means that during the hydrostratigraphic modeling process no information is present in the dataset gaps. However, it is
important to emphasize that the reconstructed information is not as valuable as the actual measured geophysical information.
The other common approach is to just use the incomplete dataset as is. This means that no information is present in the dataset
gaps during the hydrostratigraphic modeling process, which, depending on the modeling method, might result in large

uncertainties.

In this study the MPS method called Direct Sampling (DS) is used for stochastic reconstruction of incomplete datasets
(Mariethoz and Renard, 2010). The DS method uses the dataset we wish to reconstruct both as a simulation grid and a T1. This
means that the patterns that are present in the incomplete dataset are inserted into the simulation grid before reconstruction. It

is, according to Mariethoz and Renard (2010), important that the patterns we wish to reconstruct are actually present in the
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incomplete dataset, since we are borrowing the patterns from the TI, or incomplete dataset, to stochastically reconstruct the
dataset. If the patterns are not present in the incomplete dataset they will, simply put, not be inferred in the reconstructed
dataset. Provided enough information on the overall patterns is available in the incomplete dataset, the DS method is a

straightforward approach for reconstructing incomplete datasets.

3.3 Comparing Simulation results

Comparing a large set of extensive 3D models is a common problem encountered in stochastic MPS modeling. A common
approach is visual comparison, which is not an objective or quantitative comparison method. Each equiprobable
hydrostratigraphic model in this study contains 1,187,823 cells. Furthermore, a total of 400 MPS realizations were computed,
Table 1, which makes it difficult to visually compare modeling results. This, along with advances in stochastic modeling tools
such as MPS, motivated Tan et al. (2014) to develop a framework in which multiple 2D or 3D realizations can be compared
quantitatively. The idea is to use a distance measure, which measures the distance between two realizations. Realizations which
are geometrically similar have small distance values, while dissimilar realizations have a large distance value. The comparison
techniques in this study are based on the principles presented by Tan et al. (2014). In this study the distances between individual
realizations are based on the Euclidean Distance Transforms (EDT) (Maurer et al., 2003). The usage of EDT as a measure for
similarity will be described in more detail below. A full distance matrix is computed containing distances between each

individual realization for all the different cases. The resulting 400 by 400 distance matrix is then interpreted by itself.

3.3.1 Ensemble mode ratio maps (EMR-maps)

The visual comparison can be helped by creating so-called Ensemble mode ratio maps, or EMR-maps. The idea is to create a
summary map portraying the mode ratio of a given ensemble of models, ranging between 1/K and 1, where K is the number
of hydrostratigraphic categories. The EMR-maps describe the certainty of the simulation based on the resulting realization
ensemble. 1f the EMR-map shows a value of one, then every single realization in the present ensemble has simulated the same
category or, in this case, hydrostratigraphic unit. On the other hand if the EMR-map shows a ratio of 1/K the ensemble of
realizations shows equal probability for each of the K categories. Each realization is equiprobable, and the EMR values of the
categorical variables are computed from the probability distribution of a given cell with location, u. The probability that the

attribute S is equal to sk, Px(u), is computed as follows:

Pe(w) = 3 T, (5 0) = 1) (6)

Where N is the number of realizations, sk is the state of attribute S for which we are currently computing the probability and
ski(u) is the state of the attribute at location u and for the i’th realization. The EMR values for a given cell, u, can then be

computed as follows:
remr(W) = k:gl,(zl,?f,l(}(Pk(u)) (7)

where K is the number of categories for which the EMR value is computed, and Py(u) denotes the probability for category k at

location u computed using eq. (6).

The EMR values are then computed for each grid cell using eq. (6) and (7), which, simply put, is the occurrence ratio of the
mode category of a given ensemble containing a given number of realizations, Nrais. In other words, at a given location, u, if
45 out of 50 realizations yield the same category, then the EMR-value is 0.9, and the ensemble certainty for the given cell is
high. On the other hand, with three possible lithological categories i.e. K=3, the lowest possible certainty is 1/K=1/3, which
means there is an equal probability of occurrence for each lithological category. This means that P(s1)=P(s2)=P(s3)=1/3, and

therefore at the given location, u, the remgr=1/3 and the simulation is uncertain.
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3.3.2 Euclidean Distance Transforms (EDT) — measuring similarity between 3D hydrostratigraphic realizations

The hydrostratigraphic realizations are categorical and contain three hydrostratigraphic units. Comparing two realization grids,
they first need to be transformed from a categorical grid into continuous Euclidean distance grids by using EDT (Maurer et
al., 2003). The two 3D EDT grids are then compared by calculating the average difference in the respective grids. Similar
images have a small average EDT distance, and dissimilar images have a large average EDT distance. The EDT computes the
Euclidean Distances for all locations of a binary grid, i.e. a grid containing only two states (codes 0 and 1). The EDT map is

simply the Euclidean distance of the medium depicted by the state code 1, i.e. for grid cell at location u:

dppr(W) = min(|lu —vl|,) (8)
vev

Where V is a set of grid cells with a state code equal to 1.

The depr implementation presented by Maurer et al. (2003), uses a computationally favorable method for computing the

exhaustive EDT at all locations in a binary grid.

To illustrate the depr approach for comparing realizations a 2D example case is presented. The basic modeling setup contains
50 realizations, i.e.N,cq1izations = 50, Which are going to be compared to the cognitive model, which in this case also happens
to be the TI. The 2D example is created by selecting the horizontal cross-section at 20 mbsl, for each of the 50 basic modeling
setup realizations and the single cognitive geological model (Figure 2A-D). Each of the 2D layers are transformed into 2D
binary layers, portraying sand and gravel as the main variable, and glacial clay and hemipelagic clay as a background variable
(Figure 2E-H). The 2D binary layers are then translated into 2D dept-layers by using eq. (8) to exhaustively compute the depr
at each grid cell for all of the 50 realizations. The resulting dept layers, of which three are seen in Figure 2I-L, are used to

compute an average Euclidean Distance between each realization, m,.;, and the cognitive geological model, m,,:

Adgpr(meog mri) = % Mildipr () = dgpr ()] ©)

where i € {1, ..., N}, N being the number of realizations, which in this case is N=50, and M bessing the number of cells in the
simulation grid, or in this case, the 2D layer. The Adgpr, €g. (9), then describes the average difference of the distance to the
nearest active cell in the binary grid. The 50 realizations are then ranked by the average Euclidean Distance differences, Adgpr,
as seen in Figure 2, where the realization which is closest to the cognitive geological model (Figure 2B, F and J) has a Adgpr-
value of 240 m, while the realization, which was ranked 25" closest (Figure 2C, G and K) has an Adgpr-value of 280 m, and
lastly the realization, which was farthest (Figure 2D, H and L) has a Adgpr-value of 310 m. It should be noted that the Adgp,
computation, described by eq. (9), is not limited to comparing a realization to a cognitive model, and can in fact be used to

compare any pair of 3D categorical model. In fact, a generalized version of eq. (9) can be defined as follows:

Adgpr(my,mp) = %Zﬁl[d?&(uj) - d?ﬁ?(uj)] (10)

Where the number of cells in model-A, ma, must be equal to the number of cells in model-B, mg, i.e. My, = My, = M.
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Figure 2: A 2D example of the Euclidean Distance Transforms (EDT) as a measure for the similarity between categorical MPS realizations.
In this example a set of 50 realizations, from the basic modeling setup, are compared based on the differences in EDT for sand & gravel
units. A-D shows the hydrostratigraphic models for the TI, closest realization, 25th closest realizations, and farthest realization, respectively.
E-H shows, in the same order as above, the binary images of the sand & gravel units of the 2D hydrostratigraphic model layers. I-L shows,
in the same order as above, the Euclidean Distances layers computed from the 2D sand & gravel binary layers.

From this point forward we leave the 2D example behind, and will from here on only consider Adg,; computations on 3D
hydrostratigraphic grids. Furthermore, the Adgp; computations are carried out on a set of three binary grids, one for each of
the three hydrostratigraphic categories. The distance value between two hydrostratigraphic grids is the summed distance for
each of the three hydrostratigraphic categories, ensuring that the distance values reflect the complexities related to each of the

hydrostratigraphic categories.

3.3.3 Evaluating the distance matrix

The average Euclidean Distance difference, Adgpr, from here on referred to as the “distance” between two realizations, is
exhaustively computed between all realizations and compiled into an exhaustive 400 by 400 distance matrix. The distance
matrix, D, contains all distance values between all hydrostratigraphic realizations computed using eq. (9) and is defined as

follows:

D;j = dgpr(my;,m, ;) (11)

where i,j = {1, ..., N}, where N is the number of realizations. The distance matrix, D, can be evaluated directly by comparing
the distances between individual realizations to each other. Another option is to summarize the distance matrix in a table
representing the distances between the different cases. This is achieved by organizing the distance matrix according to which
case they belong to. In this study the distance matrix is sorted according to the order of the individual cases, as in Table 1. The
distance matrix can then be summarized, by computing the average distance for each group of realizations pertaining to a
specific case. The concepts of distance variability and distance to cognitive model were presented by Barfod et al. (2018), and
are also used here. The concept is that the variability pertaining to a specific case can be computed by computing the average
of the distances of the 50 realizations for a given case ensemble. Another measure is the distance to the cognitive model. The
distances between all realizations and the cognitive model are computed, and provides a reference point to which the

realizations are compared.
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4 MPS modeling setup

The Kasted dataset, used in this study, is comprised of a dense geophysical dataset acquired using the SKyTEM system
(Sgrensen and Auken, 2004), borehole lithology logs and a cognitive geological model (Hayer et al., 2015). The MPS modeling
setup is similar to the one presented by Barfod et al. (2018). However, the goal of this study is different. It is divided into a
total of 6 cases, or 8 sub-cases, which are designed to study how perturbations of the underlying MPS setup affects the
hydrostratigraphic realizations using snesim and study the propagation of uncertainties into the hydrostratigraphic models.
First the basic case (case 0), from which the other cases are perturbed, uses a hydrostatigraphic simplification of the 3D
cognitive model of the Kasted area as a T|, the gap-filled SkyTEM data present as smooth inversion models as soft data, and
the borehole lithological logs as hard data. Then, in case 1, the T is substituted by two other TIs. The cases 2 and 3 are related
to the SkyTEM data, where the incomplete SkyTEM data and sSCI inversion models are used, respectively. The influence of
the boreholes are studied in case 4 either leaving out boreholes as hard data or changing them into soft data. Finally, in case 5
the SkyTEM data are not used. Further details on each case follow in the coming sections and Table 1 summarizes each case.

First of all, the model discretization and parameterization as well as construction of hard and soft data grids are described.

The Kasted model covers an area of 12 km by 7 km, discretized on a modeling grid with 229 by 133 by 39 cells, containing a

total of 1,187,823 cells. Each cell has a size of 50 m by 50 m by 5 m. It is parameterized into three hydrostratigraphic units:

1) sand and gravel: a combination of coarse lithological units, including sand till, meltwater sand, gravel and pebbles of
glacial origin, late glacial freshwater sand and postglacial freshwater sand

2) glacial clay: this category contains silty and sandy clays, including clay till and meltwater clay of glacial origin

3) hemipelagic clay: a combination of fine grained conductive clays, containing the extensive and homogeneous
hemipelagic Paleogene and Oligocene clays found in Denmark.

These three categories serve the purpose of simplifying the geology of the Kasted area. The Kasted survey lithology logs
reveal a combination of 59 geological categories, which are translated into a set of hydrostratigraphic logs (“step 17, Figure
3) using these hydrostratigraphic categories. Similarly, the 42 geological units in the cognitive geological model are divided
into the three abovementioned categories (Figure 4A). The vertical proportions of the three category hydrostratigraphic
Kasted model can be viewed in Figure 5A.

11
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Figure 3: A schematic diagram presenting the conversion of the lithological logs into probability logs for the three hydrostratigraphic units:
sand & gravel, glacial clay and hemipelagic clay. Step 1: the lithology log is translated into a hydrostratigraphic log. Step 2: The
hydrostratigraphic logs are resampled according to the vertical modeling grid intervals and an interval probability is calculated for each
of the hydrostratigraphic units.

The borehole lithology logs need to be assigned to a 3D grid, which is carried out in three overall steps. The first step is to
translate the borehole lithology logs into hydrostratigraphic logs using the above mentioned three categories; “Step 17 Figure
3. The second step is then to divide the hydrostratigraphic logs into intervals identical to the vertical intervals of the model
grid. At each resampled interval a probability value is directly calculated for each hydrostratigraphic unit; “Step 2 in Figure
3. The probability is simply the percentage of the given unit, which is present within the interval. Finally, the last step is to
assign the hydrostratigraphic probabilities to a grid. The probability values are assigned to the grid cell in which the given
hydrostratigraphic log is present. On the rare occasion that multiple logs are present within a given cell, the probabilities are
combined accordingly to one representative probability value. The end result is a grid containing the borehole probability
values of each hydrostratigraphic unit: sand & gravel, glacial clay and hemipelagic clay. It is common to view borehole
lithology logs as hard information, or “ground truth”. The borehole probability grid can therefore be translated into a hard data
grid, by assigning the most probable hydrostratigraphic unit in each grid cell.

The 1D SkyTEM resistivity models are assigned to a 3D grid, identical to the modeling grid. The first step is to fill all grid
cells containing a resistivity model. This is carried out using block Kriging and results is an incomplete resistivity grid of block
average resistivities (Figure 6A). The second and final step is to stochastically reconstruct the incomplete resistivity grid using
DS stochastic reconstruction (Mariethoz and Renard, 2010) (Figure 7). The reconstruction procedure was originally presented
by Barfod et al. (2018), however, we have made some improvements for this study. Originally, a simple Kriging estimation
approach was used to assign the resistivity models to a 3D modeling grid. This resulted in an incomplete resistivity grid, which
contained resistivity information not only pertaining to grid cells containing a SkyTEM sounding, i.e. the resistivity grid had
already been partly reconstructed in the proximity of the geophysical soundings. To avoid this, block Kriging estimation was
used instead. The block Kriging method is also a variogram based estimation method, which estimates the average value of a
rectangular block (Goovaerts, 1997). For more details on reconstructing incomplete resistivity grids see Barfod et al. (2018).
12
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The SGeMS snesim framework utilizes the tau model for soft data conditioning (Journel, 2002), which requires the translation
of resistivity grids into probability grids. This requires information on the regional resistivity-hydrostratigraphic relationship.
Such knowledge is not always available, but if enough boreholes and electromagnetic geophysical data are available, the
framework for studying the resistivity-hydrostratigraphic relationship, presented by Barfod et al. (2016), can be used to create
a set of histograms. The resistivity-hydrostratigraphic histograms, Figure 1B, are compiled from available hydrostratigraphic
logs and SkyTEM resistivity models, and are presented in more detail in Barfod et al. (2016) and (2018). The estimated
histograms (Figure 1B) are then used to directly translate each resistivity value, in a given resistivity grid, into three

probabilities, one for each hydrostratigraphic unit.
The general MPS workflow can be summarized in 7 overall steps as follows:

1) Using block Kriging, the SkyTEM resistivity models are assigned to a 3D grid identical to the Kasted model grid.

2) The incomplete resistivity grids (Figure 6A) are stochastically reconstructed using Direct Sampling (DS) (Figure 7A).
The result is an ensemble of 50 equiprobable reconstructed resistivity grids.

3) The reconstructed resistivity grids are translated into probability grids using the resistivity-hydrostratigraphic
relationship histograms (Figure 1B).

4) The borehole lithology logs are translated into hydrostratigraphic logs; “Step 1 Figure 3.

5) The hydrostratigraphic logs are resampled and three probability values, one for each hydrostratigraphic unit, is
directly computed at each resampled interval; “Step 2” Figure 3.

6) The borehole probabilities are assigned to a grid identical to the cognitive Kasted model grid.

7) The borehole probability grid is translated into a hard data grid, by assigning the most likely hydrostratigraphic unit to

each grid cell.

A total of 400 realizations are created, with 50 realizations per sub-case (Table 1). In snesim a random number seed needs to
be manually selected for each realization to initialize the random number generator and in particular define a random path
through the modeling grid. The random seed convention chosen in this paper was to apply the same random seed vector to
each sub-case. The vector contains 50 linearly increasing random seed numbers, ensuring consistency when comparing

realizations from the individual sub-cases.

Table 1. An overview table showing information on the MPS cases along with information on number of realizations for each case / sub-
case, and a brief description of each case.

Case name Sub-case names Num. realizations | Total num. realizations | Case description

The basic setup uses boreholes as hard data,
Basic setup Basic modeling setup 50 50 smooth resistivity models as soft data, and the
cognitive Kasted model as a Tl

Case la a) Egebjerg Tl 50 Two different Tls are used to study the uncertainty
100 related to the choice of TI, which reflects the
Caselb b) Conceptual Tl 50 conceptual geological understanding

The uncertainty related to the reconstruction of
Case 2 Incomplete soft data grid 50 50 the resistivity grid is studied by running
simulations with an incomplete resistivity grid

The sharp resistivity models are used for

Case 3 Sharp resistivity models 50 50 simulations instead of the smooth models, to study
how the choice of resistivity model influences the
hydrostratigraphic models

50 Simulations are run without hard data, to see how
Case 4a a) No borehole data much the hard data influences the results

100
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405

410

415

The borehole data are used as soft information
instead of hard by combining the borehole

Case 4b b) Soft borehole data 50 probability grid with the SkyTEM probability grid
using the Tau model

Case 5 No soft resistivity data 50 50 Simulations are run using only the hard data and
the cognitive Kasted Tl

Total 400

4.1 Basic modeling setup

The basic modeling setup is designed to act as the base from which all other cases are built. The different sub-cases are simply
modified versions of the basic modeling setup, each designed to study how modification to the base setup relates to
hydrostratigraphic MPS modeling. The basic modeling setup uses the borehole data as hard information, SCI models with
smooth inversion constraints as soft data, and the cognitive hydrostratigraphic Kasted model as a T1 (Figure 4A), for which

the global proportions are listed in Table 2 and vertical proportions are displayed in Figure 5A.

4.2 Case 1 — Conceptual geological understanding

The basic modeling setup uses the actual cognitive geological model of the Kasted survey area as a Tl (Hayer et al., 2015). In
Denmark, it is common practice to build 3D cognitive geological models of the near-subsurface. Many cognitive models exist
and are publicly available. Such models can easily be adapted and used as 3D Tls to simulate new survey areas, provided the
geological settings are similar. Case 1 is divided into two sub-cases. The first sub-case, Casela, uses the basic setup, but in
place of the cognitive Kasted model, the cognitive geological model of the Egebjerg area (Figure 1A) is used as a TI (Figure
4C). The geologic setting in Egebjerg is relevant since it is partly dominated by a buried valley complex (Jgrgensen et al.,
2010).
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Figure 4: An overview of the training images (TIs) which are used during MPS simulation. A horizontal slice and vertical cross-section is
presented for each TI, portraying the hydrostratigraphic architecture; A shows the Kasted TI, B shows the conceptual T1, and C shows the
Egebjerg T1 which is generally larger than the Kasted model.

The Egebjerg model consists of a total of 72 geological units which are categorized accordingly to reflect the three
hydrostratigraphic units of the Kasted hydrostratigraphic model. Egebjerg additionally contains undesired features, such as
local Miocene complexes. Two such local geological environments, which do not reflect the geological setting of the Kasted
area, are present. One is found south of the buried valley complex, and the other to the west. By cropping the model and
rotating it 90 degrees counter-clockwise, a relevant T1 without undesired geological architecture is produced (Figure 4C); this
is referred to as Case 1la. It is clearly seen, by comparing Figure 4A and C that the Kasted and Egebjerg Tls are different. The
Kasted T1 is smaller, and contains smooth geological features, while the Egebjerg model is larger and contains coarse, block-
like geological features. The important features, in relation to hydrostratigraphic modeling, are the buried valley complexes,
which are present in the Egebjerg model (Figure 4C). The global proportions of the Egebjerg T1 (Table 2) are similar to the
ones found in the Kasted T1. However, the vertical proportions of the Egebjerg T1 (Figure 5C) are different, especially in the

upper part of the T1 where glacial clay units dominate.
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Table 2: The global proportions related to each of the three Tls presented in Figure 4.

sand and gravel glacial clay hemipelagic clay
Kasted TI 0.17 0.21 0.62
Conceptual TI 0.17 0.22 0.61
Egebjerg TI 0.10 0.22 0.68

The second sub-case, Caselb, utilizes a purely conceptual T1. The conceptual T is created by using a set of hyperbolic secant
functions to populate a 3D matrix and is purely mathematical in nature. The conceptual TI can be seen in Figure 4B and is
designed to have three overall buried valleys eroded into a hemipelagic clay substratum. There are two narrow and shallow
glacial clay valleys, and a broad and deep sand and gravel valley. One of the glacial clay valleys is a younger valley, which is
eroded into the older sand and gravel valley, and run roughly parallel to each other. The last glacial clay valley is almost
orthogonal to the other valleys, and also erodes into the sand and gravel valley. The upper part of the T1 contains a cover layer
of glacial clay (Figure 5B). The simple conceptual Tl is designed to contain the main geological architecture of the Kasted
area, namely the buried valley complexes. The sand and gravel valley, trending west-northwest — east-southeast, was chosen
on purpose to study what happens when over-simplified and smooth MP information is added to a TI. The global proportions
of the conceptual TI are consistent with the other Tls, while the vertical proportions for sand and gravel and glacial clay units
show a significantly different pattern (Figure 5B).

Kasted T1 Conceptual TI Egebjerg T1

B | 150/C

4 sof

A

50F

Elevations [m]

-100

msand and gravel

| mglacial clay

mhemipelagic clay

0 25 50 7510 25 50 75 100 25 50 75 10
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Figure 5. The vertical proportions of the three training images for each of the hydrostratigraphic categories, where A portrays the Kasted
TI, B the conceptual T, and C the Egebjerg TI.

4.3 Case 2 — Incomplete soft data

During reconstruction of the resistivity grid, it is assumed that the patterns in the incomplete data set contain information
regarding the content of the data set gaps. This is true only when the incomplete grid contains a sufficient amount of data.
Sufficient, in this case, means that the parameter space is sampled densely enough to reflect the patterns we wish to reconstruct
(Mariethoz and Renard, 2010). If the grid is too sparse, then limited or no information is present which can help reconstruct
missing patterns. Signs of mediocre data density are seen in the incomplete grids (Figure 6A). Artifacts from the DS
reconstruction are present in the completed resistivity grids. The resistive valley to the west in the horizontal slices and vertical
cross-sections in Figure 7A and B reveals a striated pattern. An alternative to reconstructing the resistivity grid beforehand is
to use the incomplete resistivity grids for simulation, meaning no information is present in the resistivity dataset gaps. Grid
cells containing a resistivity model are translated into three probability values using the resistivity-hydrostratigraphic

relationship histograms (Figure 1B) (Figure 6B-D). Areas without soft resistivity data rely on the TI during simulation,
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emphasizing the fact that no actual information is present between soundings. The overall setup is identical to the basic setup;

the only difference is the reconstructed soft data grids are interchanged for the incomplete soft data grid (Figure 6B-D).
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Figure 6: A presentation of the incomplete resistivity grid. Each grid is portrayed as a horizontal slice at 20 mbsl, and a vertical cross-
section intersecting at UTMY 6230100 m. A shows the resistivity grid which is translated into three probability grids using the resistivity-
hydrostratigraphic relationship histograms (Figure 1B). Grid cells without SkyTEM soundings are not assigned a probability value. B-D
show the sand and gravel, glacial clay, and hemipelagic clay probability values, respectively.

4.4 Case 3 — Choice of resistivity model

The choice of inversion algorithm results in different SkyTEM resistivity models. The purpose of this case is to study how
using sSCI (Vignoli et al., 2015) models influences the modeling results. A common inversion approach is SCI where a smooth
regularization is used (Constable et al., 1987). Such resistivity models have a smooth transition from resistive to conductive
features, and vice versa. Geological layer boundaries are rarely smooth in nature, meaning such soft transitions in resistivities
seldom reflect reality. Furthermore, extreme resistivity values are not presented correctly in the smooth model inversions.
Vignoli et al. (2015) propose an alternative SCI approach, employing a “Minimum Gradient Support” regularization term
instead. Such sSCI models produces resistivity models with sharp layer boundaries and a better representation of extreme
values. The setup in Case 3 is identical to the basic setup, except that the SCI models are interchanged for sSCI models. The
DS grid reconstruction is then conducted on the sSCI models, which are then translated into probability grids. Finally, these

grids are used as soft data for simulation using the snesim method.

The sharp resistivity models are different from the smooth models, but no particularly sharp layer boundaries are reflected in

the reconstructed resistivity grid (Figure 7B).
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Figure 7: An overview of the key differences between reconstructing the resistivity grid using smooth and sharp inversion resistivity models.
Each grid is portrayed as a horizontal slice at 20 mbsl, and a vertical cross-section intersecting at UTMY 6230100 m. A shows the smooth
reconstructed resistivity grid. B portrays the sharp reconstructed resistivity grid. C shows the standard deviation calculated from 50
stochastic reconstructions of the smooth resistivity grid. D shows the standard deviation calculated from 50 stochastic reconstructions of
the sharp resistivity grid.

One of the obvious differences is found in the resistivity patterns of the sand & gravel valley to the far west of the survey area.
The valley itself is not significantly different, however, the small resistive patch, west of the large valley, is more pronounced
in the sharp model and has an overall more pronounced fingerprint (Figure 7B). The sharp resistivity models better estimate
the “true” bulk resistivity values of specific geological units, such as the resistive patch accentuated here. The ensemble
standard deviation grid, Figure 7C and D, show a general reduction in the ambiguity of the reconstructed sharp resistivity

models. This is clear from the reduction areas with large standard deviation, red colors, which are overall reduced in size.

4.5 Case 4 — Borehole lithology logs

This case is dedicated towards how the borehole data is handled, and how it influences the hydrostratigraphic modeling results.
The hard borehole data is normally sparse, relative to geophysical data. Boreholes are commonly considered “ground truth”
since they directly sample the subsurface sediments or petrological units. This case is divided into two sub-cases. The first
sub-case, Case 4a, portrays what happens when hard data is not included in the snesim simulation. The model setup is therefore
identical to the basic MPS setup, but without including the borehole data.

The second sub-case, Case 4b, incorporates the borehole lithology logs as soft data. The certainty of a lithological log varies
depending on a range of factors, e.g. drilling method, the purpose of the borehole, and sampling frequency (e.g. Barfod et al.,
2016; He et al., 2014). The hydrostratigraphic probability logs, introduced in the basic modeling setup (“Step 2 Figure 3), are
utilized in place of the hard borehole grid. The boreholes are assigned a lateral footprint, so the information is not only found
at the borehole locations. The borehole footprint is assigned by creating a grid where the borehole probability values have been
estimated in a radius of 200 m around each borehole using simple Kriging with a search radius of 200 m and a mean of 1/K=1/3,
where K is the number of unique hydrostratigraphic units (Figure 8D-F) (For additional information see section Al in the
Appendix). The tau model is then used to combine the SkyTEM (Figure 8A-C) and borehole (Figure 8D-F) probability grids
(e.g. Journel, 2002; Krishnan, 2004; Remy et al., 2014). The first step is then to define the prior probability distribution, P(4),
which in this case are the vertical proportions taken from each layer of the cognitive Kasted Tl (Figure 5A). Then the
probability distributions are defined: P(A|D,.) and P(A|D,), where D, is the resistivity probability grid and D,, the borehole
probability grid. The 3D probability grids are translated into distance grids by applying the “probability-into-distance” and
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computing the distance ratio using equations (2) and (3), where the tau values were assigned based on a series of exhaustive
tests. The final tau values were selected based on the criteria that the transitions in areas where both borehole and resistivity
information is available should be as smooth as possible in the resulting combined probability grid, as seen in Figure 8. Based
on the tests, the resulting tau values were: [t,,7,] = [2.0,1.0]. The final conditional probability was computed using eq. (4)
and resulted in the three hydrostratigraphic probability grids is seen in Figure 8G-I. The combined probability grids replace
the smooth probability grids used in the basic setup.
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Figure 8: A visual representation of the Tau model procedure for combining the soft resistivity and borehole grids. Each grid is portrayed
as a horizontal slice at 20 mbsl, and a vertical cross-section intersecting at UTMY 6230100 m; A-C shows the sand and gravel, glacial clay,
and hemipelagic clay probability maps, respectively, for one DS reconstructed resistivity grid, D-F shows the 200 m radius Kriged borehole
probability, and G-l shows the combined resistivity grid, which has been combined using a tau model with the values:[tr, 0 ]=[2,1].

4.6 Case 5 — Excluding the soft resistivity data

The final case, Case 5, illustrates the consequences of not including the soft SKyTEM resistivity information in the MPS
simulation routine. The basic setup is simply run without the inclusion of soft data, i.e. the setup only uses the cognitive Kasted
TI and hard borehole information.

5 Results
5.1 Visual comparison of hydrostratigraphic realizations and “Ensemble Mode Ratio”-maps (EMR-maps)

For each of the presented cases two hydrostratigraphic realizations are presented (Figure 9), along with an EMR-map (Figure

10). The EMR-maps show the occurrence ratio of the most likely simulated category for each grid cell based on 50 realizations.

The two realizations and EMR-map of the basic modeling setup, Figure 9A and Figure 10A, reveal the same overall trends as

the cognitive geological model, Figure 4A. Namely the western sand and gravel valley striking ~N40°E, the glacial clay valley

striking ~E30°S, the large mixed sand and gravel and glacial clay valley striking ~N20°E to the south, and the small subsidiary
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glacial clay valley striking ~N50°E to the south. However, even though the main hydrostratigraphic architecture of the
cognitive geological model is similar, there are still differences between the snesim realizations and the cognitive geological
model. The cognitive model shows clear-cut, smooth, and ordered hydrostratigraphic units. The basic modeling setup
realizations reveal sporadic and random patterns. The sand and gravel units are placed in small lumps throughout the glacial
clay units, but are not present within the homogenous hemipelagic clay. Patches of uncertain glacial clay units are, however,
found in the homogeneous hemipelagic clay, especially in the southeast corner of the Kasted survey area (Figure 9A) (Figure
10A). The same sporadic picture is seen in the vertical slices of the realizations (Figure 9A), although, here an additional trend
is revealed. The sand and gravel valley to the far west and at XUTM 570900 m, are not consistently filled with sand and
gravel (Figure 9A) as in the cognitive geological model (Figure 4A). Furthermore, the EMR-map reveals that the valley
margins are subject to a larger degree of ambiguity (Figure 10A), in fact at some locations the remr-value is close to 1/3, which

means that for the model ensemble the occurrence of either hydrostratigraphic unit is possible.

The Case 1a realizations (Figure 9B) (Figure 10B), which use the Egebjerg TI (Figure 4C), show the same overall trends as in
the basic modeling setup. The subset of buried valleys mentioned above are present, however, an obvious difference is the
coarse and block-like appearance of Case 1a realization ensemble. This appearance is similar to the block-like appearance of
the Egebjerg TI (Figure 4C). Furthermore, the horizontal slice of the realizations and EMR-map reveals that the glacial clay
dominated area to the east has a generally larger occurrence ratio, and is thus more certain. The realizations are clearly
influenced by the choice of TI, especially when Caselb is also considered (Figure 9C). The hydrostratigraphic realizations of
Caselb (Figure 9C) (Figure 10C), clearly depict the same overall buried valley trends, but the valleys in the central part of the
model are largely filled with the opposite of the valley filling hydrostratigraphic units. Furthermore, the occurrence ratio seems
quite low in certain areas, such as to the south of the model, which means the ambiguity has increased. Finally, the realizations
also reveal an absence of small-scale patterns, which corresponds to the conceptual TI, which only contains homogenous

hydrostratigraphic units.

The importance of reconstructing the incomplete resistivity grid is seen in the Case 2 (Figure 9D) (Figure 10D). The two
realizations in Figure 9D show the main buried valley features, e.g. the western sand and gravel valley. However, the
hydrostratigraphic units are sporadic, especially in areas with no data. Patches of sand and gravel and glacial clay are randomly
spread throughout the presented horizontal slice and vertical cross-section (Figure 9D). The EMR-map also reveals an increase

in low occurrence ratios in areas without soft data (Figure 10D).

The uncertainty related to the choice of geophysical modeling procedure is portrayed by Case 3. Here, snesim realizations are
constrained to sharp resistivity models. Generally, the realizations (Figure 9E) are quite similar to the basic modeling setup
realizations (Figure 9A). However, a key difference is the significant reduction or absence of patches of glacial clay in the
homogeneous hemipelagic clay. In fact only one patch is found in the first realization (Figure 9E) in the southwest corner,
while it is not present in the second realization, and the EMR-map further reveals a reduction of the occurrence ratios generally,

especially along the southern margin of the realizations (Figure 10E).

Case 4 shows the influence that the hard data has on the hydrostratigraphic realizations in two sub-cases: Case 4a, where
snesim simulations are run without hard data, and Case 4b, where the borehole data is treated as soft information. Figure 9F
and G shows two hydrostratigraphic realizations without hard data and with soft borehole data, respectively. These
realizations do not differ significantly from the basic modeling setup realizations and in fact are quite similar. One key
difference is the central glacial clay valley striking ~E30°S, which does not contain any sand and gravel to the west (Figure
9F and G). The EMR-maps reveal that without boreholes (Figure 10F) the occurrence ratios generally decrease, making the

realizations more ambiguous. The usage of the borehole data as soft information also seems to reduce the occurrence ratios
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compared to the basic modeling setup. Generally, leaving out the borehole data, or treating it as soft data, results in local

570 changes in areas with a high density of boreholes.

The final case, Case 5, illustrates the importance of the SkyTEM soft data. The snesim simulations are run using only hard

data and the cognitive geological model as a TI. The output realizations (Figure 9H) portray smooth and large-scale

hydrostratigraphic units. The hydrostratigraphic architecture of the buried valleys is not reflected. However, the sand and

gravel valley, to the west, does seem to protrude slightly in the realizations (Figure 9H) and EMR-map reveals a significant
575 decrease in the occurrence ratio, and thus an increase in the ambiguity of the model ensemble (Figure 10H).
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Figure 9: Each case is displayed by two realizations, realization #1 of 50, and realization #30 of 50. Each realization is portrayed as a
horizontal slice at 20 mbsl, and a vertical cross-section intersecting at UTMY 6230100 m. A shows the realization results for the Basic
modeling setup, B shows the realization results for Case 1a, C shows the realization results for Case 1b, , D shows the results for Case 2, ,

580 E shows the results for Case 3, F shows the results for Case 4a, G shows the results for Case 4b, and H shows the results for Case 5. For
more details on individual cases the reader is referred to Table 1.
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Figure 10: A4 presentation of the “ensemble mode ratio” (EMR) maps, computed for the different case ensembles of hydrostratigraphic
models. Each EMR map is presented as a horizontal slice centered on 20 mbsl, and a vertical cross-section intersecting at UTMY 6230150m;
A-H presents the EMR-type uncertainty map for each of the different cases, which are summarized in Table 1. The EMR values portray how
certain the ensemble of MPS realizations are, i.e. if remr=1/3 then the realization is uncertain, and we have equal probability of finding
either hydrostratigraphic unit since P(s1)=P(s2)=P(s3)=33%. On the other hand if remr=1, then each realization of the given ensemble
contains the same hydrostratigraphic unit at the given grid cell.

5.2. Quantitative comparison using differences in object based Euclidean Distances as a measure for similarity

The distances between each of the 400 realizations have been computed using eg. (8) and (10). The full distance matrix is
presented in Figure 11A. The distances between each realization and the cognitive geological models have also been computed
and plotted in Figure 11B. To aid the interpretation of the distance matrix and distances to the cognitive model a summary

table, Table 3, has been compiled.

The basic modeling setup constitutes a common snesim setup, with the geophysical data as soft data, boreholes as hard data,
and a 3D geological conceptualization encased in a Tl. The ensemble average variability is computed according to the
equations presented by Barfod et al. (2018), and the resulting ensemble average variability is 10.1 m, with an average distance
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to the cognitive model of 24.3 m. This means that the Euclidean distance mismatch between the individual realizations related
to basic modeling setup is 10.1 m, and the average difference in Euclidean distance to the nearest active cell between the

realizations and the cognitive model was 24.3 m.

The 3D geological conceptualization contained in the TI influences the final hydrostratigraphic realizations as illustrated in
Case 1, which is divided into two sub-cases: Case 1a and Case 1b. In Case 1a, using a 3D cognitive geological model from the
Egebjerg area as a T1 for hydrostratigraphic simulation increases the average distance to the cognitive model to 24.9 m (Figure
11A) (Table 3). Furthermore, the average variability has increased to 13.6 m (Figure 11B) (Table 3). The other sub-case revolve
around using an entirely conceptual geological model as a TI. The conceptual TI was designed to reflect the overall geology,
yet still contains some bias. The results reflect the bias, with increased distances to the cognitive geological model, which are
now centered on 25.6 m (Figure 11A) (Table 3). The ensemble variability has increased to 14.8 m (Figure 11B) (Table 3).

The importance of proper reconstruction of the incomplete resistivity grid is illustrated in Case 2, where the incomplete
resistivity grid was used for simulation. The resulting realization ensemble have a large ensemble variability centered on 24.1
m (Figure 11A) (Table 3). The distance to the cognitive geological model is also large, with an average value of 33.1 m (Figure
11B) (Table 3).

In Case 3 the sharp SCI models were used for simulation in place of the smooth SCI models. The realizations related to Case
3 were the closest to the cognitive model with an average value of 21 m (Figure 11B) (Table 3). The variability of Case 3
realization ensemble, i.e. the distances between the realizations pertaining to Case 3, is small with an average value of 9.4 m
—see Table 3. Recalling the raw hydrostratigraphic realizations (Figure 9E) and the EMR-map (Figure 10E), the large reduction
in distances could partly be related to the removal of hon-hemipelagic clay units along the southern border of the model and

an overall increase in confidence along the southern and southeastern border of the model.

The influence of the boreholes lithology logs on the hydrostratigraphic realizations is reflected in Case 4, which is divided into
two sub-cases. In the first sub-case, Case 4a, the borehole information is not used as hard data, and the realizations are created
only using soft geophysical data and the Kasted TI. However, the borehole data is still used for creating the resistivity-
hydrostratigraphic histograms (Figure 1B), which are used for creating the probability grids. The ensemble average variability
is 10.7 m (Figure 11A) (Table 3) and the average distance to the cognitive model is 24.3 m (Figure 11B) (Table 3). In the
second sub-case, Case 4b, the boreholes are used as soft information to reflect the uncertainty of the borehole information. The
ensemble average variability is 10.9 m, and the average distance to the cognitive model is 24.3 m. This illustrates how the

snesim realizations are not particularly sensitive towards the sparse borehole hard data.

Not including the geophysical soft data in the snesim simulations, Case 5, resulted in the largest ensemble average variability
of 40.0 m (Figure 11A) (Table 3). The average distances between Case 5 realizations and the cognitive model was 59.3 m.
This means that the realizations of Case 5 are the most different from the rest of the realizations. The snesim realizations are
sensitive towards not including the geophysical data, or using the incomplete resistivity grid. This underlines the importance

of the geophysical soft data in relation to hydrostratigraphic modeling using the snesim methodology.
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Table 3: A summary table showing the average distance value for each 50 by 50 square representing a given case in the distance matrix
(Figure 11A). The final column, labelled “Distancecog”, summarizes the distances to the cognitive geological model, presented as the
average of each colored point cloud in Figure 11B. The distances in parenthesis represent ensemble variabilities, and the remaining values
represent average distances between different ensembles. The unit of the average distances is meters.

Distance [m] Basic setup Casela Caselb Case2 Case3 Caseda Case4db Case5 | Distancecog

Basic setup (10.1) 129 16.9 24.0 12.7 111 11.2 49.6 24.3
Casela 12.9 (13.6) 18.3 26.0 15.1 14.0 13.9 51.7 24.9

Caselb 16.9 18.3 (14.8) 279 17.8 18.1 18.1 52.5 25.6

Case2 24.0 26.0 27.9 (24.1) 235 25.0 24.9 45.2 33.1

Case3 12.7 15.1 17.8 235 (9.4) 13.6 13.6 49.6 216

Caseda 111 14.0 18.1 25.0 13.6 (10.7) 111 50.7 24.3

Casedb 11.2 13.9 18.1 24.9 13.6 11.1 (10.9) 50.6 243

Case5 49.6 51.7 52.5 45.2 49.6 50.7 50.6 (40.0) 59.3

6 Discussion

The cognitive geological model was created based on smooth SKyTEM resistivity models and lithological logs (Hayer et al.,
2015) as well as the conceptual geological understanding of the area. The model was simplified from a full 3D geological
model containing a total of 42 unique geological units, to a hydrostratigraphic model containing only 3 hydrostratigraphic
units. The cognitive geological model, although detailed and extensive, is not the “true” geological model. The ensemble
realizations should not directly reflect the cognitive model, yet the cognitive model can be thought of as a reference point in
modeling space, which we would prefer our models to resemble.

The results revealed the importance of the SkyTEM dataset. Not including the resistivity models in the MPS simulations, Case
5, yielded realizations which were both the least similar to the cognitive geological model, and with the largest variability
between the individual realizations. Including the incomplete resistivity grid, Case 2, improved the realization results compared
to not including them at all. Yet, the ensemble variability was large and resulting realizations were ranked second least similar
to the cognitive geological model. The realization ensemble which was closest to the cognitive geological model belongs to
Case 3. Here, the resistivity grid was reconstructed from the sharp SCI models, which, in this case, increased the fingerprint
of resistive extreme values, which in turn results in less ambiguous reconstructed resistivity grids; compare Figure 7C and D.
It should be noted that the usage of block Kriging for assigning the sharp resistivity models to the modeling grid, resulted in
smoothing of sharp vertical boundaries otherwise found in sSCI models. These three cases together reveal the importance of

the geophysical soft data when using the snesim setup presented in this study.

In relation to Case 5, it can be argued that even though the SkyTEM resistivity models are not used as soft data, they are still
included indirectly since the TI, or cognitive geological model, was created using smooth SKyTEM resistivity models.
However, the realizations related to Case 5, revealed an ensemble of realizations, which did not replicate the overall geological

architecture, implying the importance of using the SkyTEM models as soft data.

On the other hand the cases related to studying the sensitivity towards borehole information, Case 4a and Case 4b, revealed
that the large-scale hydrostratigraphic architecture was not changed significantly. The distance measure used in this study
observes similarities or dissimilarities of large-scale hydrostratigraphic architecture, and is not sensitive towards local changes
in small-scale patterns. The amount of geophysical information is relatively large, meaning the relative influence of (few)

borehole data becomes less significant. This does not mean that the borehole data are not important; they both contain locally
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accurate information and are used to estimate the regional resistivity-hydrostratigraphic relationship (Figure 1B). In other
surveys, where the contrast between geophysical and lithological information is smaller, the importance of the borehole data
will likely increase. In relation to this study, such small-scale changes are insignificant. Yet if the realizations are to be used
for flow simulations or predictions on a smaller scale, such smaller scales might suddenly have an important impact on
prediction accuracy. Additionally, if such small-scale patterns are important, the size of the model grid-cells should be smaller
to accommaodate simulations of these variations. Discretizing hydrostratigraphic and groundwater models with relatively small

grid-cells can be CPU demanding, depending on the total number of grid cells.

In case 4b, the borehole data was used as soft information as in the study by Hayer et al. (2017). This was done since boreholes
are associated with uncertainty related to a number of factors, as described above. Therefore, the soft borehole probability
values derived during the assigning of the boreholes to the modeling grid are combined with the SkyTEM-based probability
grids using the Tau model. This approach enables the borehole probability to alter the final probability-grid, while still
conditioning the SkyTEM data. Combining the information rather than letting the borehole data count as “ground truth”, i.e.
hard data, allows the borehole data to influence the realizations, especially if the soft borehole information disagrees with the

soft geophysical data (Figure 8).

The conceptual geological understanding has always been considered an integral part of geological modeling. In this case the
conceptual geological understanding is implemented via the TI, which makes it easy to change the underlying conceptual
geological understanding of a given model. A total of 3 different TIs were used for simulation in this study, the Kasted,
Egebjerg, and conceptual Tls. The results showed that models simulated using the Egebjerg T, Casela, portrayed the same
overall hydrostratigraphic architecture. This opens for the possibility of using 3D cognitive geological models as Tls for new
survey areas, as long as the geological settings are similar. One key difference between the models, however, was the more
block-like and coarse nature of the realizations using the Egebjerg TI, due to the coarseness of the Egebjerg T1. An important
observation is that when a spatially dense and extensive geophysical dataset, such as SKyTEM, is present, the snesim
realizations are not as sensitive towards the choice of T1, when the TI is relatively similar to the expected scenario. However,
as illustrated in Case 1b picking a T1 which has significantly different vertical proportions (Figure 5), which do not match the
soft data, the TI dominates the realizations in places where the soft data do not display a high probability for a specific
hydrostratigraphic unit. In Figure 9C and Figure 10C, it can be seen that the glacial clay valley, both present in the soft data
variable (Figure 8B) and the cognitive Kasted geological model (Figure 4A), is represented as sand and gravel. This leads to
the conclusion that one needs to pay attention to the construction of the TI, as also witnessed in the study by Hayer et al.
(2017). Furthermore, the large-scale and homogenous nature of the hydrostratigraphic architecture in the conceptual TI, results
in realizations, which reflects the homogeneity. In comparison with the realizations based on the Tls derived from cognitive

models, the realizations do not contain small-scale patterns.

The Kasted model and T1 is influenced by non-stationarity, which has not been dealt with in the MPS setup. Even though the
models are influenced by non-stationarity the simulations result in models, which overall resemble the cognitive model, e.g.
Cases 1-4. However, once the geophysical data is removed in Case 5, the resulting MPS models are increasingly random and
are heavily influenced by non-stationarity. It is important to note that the increasing amounts of soft geophysical data generally

decrease the effects of non-stationarity, due to the increased conditioning of the soft data.

The reconstruction of the resistivity grid is an important step of the MPS setup presented in this study. This was illustrated in
Case 2, where the incomplete resistivity grid was used instead of the reconstructed resistivity grid, resulting in larger realization
variability and distance to the cognitive geological model. These realizations could have been improved by increasing the prior
knowledge provided to snesim before simulation. One such option is to provide so-called vertical proportions, in place of

solely the target global proportions. The global proportions simply give a percentage fraction of the different hydrostratigraphic
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units in the outcome realizations. The vertical proportions are defined for each simulation grid layer, and determine the
proportions as a function of depth. This makes sense if the different units in the realizations are clearly linked to geological
units, which in turn have clear stratigraphic layering. In our case, this would have impacted the realizations by not allowing
the presence of hemipelagic clay at the top of the model. Furthermore, sand and gravel and glacial clay would not be allowed
at the bottom of the model. However, vertical proportions were not used in any other cases, and were therefore not used in

Case 2. The usage of vertical proportions for conditioning could also improve the results of Case 5.

Part of the considerations of this study was to utilize the DeeSse code for Direct Sampling (DS) simulation. Whereas
Chugunova and Hu (2008) present a MPS method for constraining a categorical simulation by a continuous auxiliary data, DS
is much more flexible and allows multivariate simulations reproducing spatial statistics within and between variables, which
can be categorical or continuous. DS requires the construction of a multivariate TI, and it is important that every variable
reflects the spatial relationship to be modeled. In our context, one could envision creating a bivariate Tl consisting of a
hydrostratigraphic model and a continuous auxiliary variable reflecting an AEM data set. It is no trivial task, and, to our
knowledge, no studies have been presented where an auxiliary variable is created for a 3D AEM data set. However, Lochbihler
et al. (2014) presented a generalized example on creating an auxiliary variables for tomographic images, i.e. 2D images.
Generally, the requirements for the geophysical modeling procedure are twofold. Firstly, the categorical TI needs to be
populated with resistivity values, e.g. as in Christensen et al. (2017) where a Bayesian McMC algorithm is used to create 1D
resistivity models drawn from a posterior probability distribution. This is no straightforward task. Secondly, the populated
resistivity model then ideally needs to be forward modelled using full 3D forward modeling code, which is computationally
expensive. Alternatively, approximate 1D forward modeling is also an option. The correct system parameters of the AEM
instrument and data processing paramenters have to be taken into account. Thirdly, the synthetic data obtained by forward
modeling must be inverted using the same procedure as the field data set. To our knowledge, such usage of an auxiliary variable
for constraining soft geophysical models is not widespread within the domain of AEM geophysical methods. In this study, DS
was only used to reconstruct the incomplete AEM dataset (a univariate case with the data set as a T1, and hard data; see section
3.2) and the snesim method was used for hydrostratigraphic modeling, due to its usage of the T-model (Journel, 2002). The t-
model proved a more straightforward approach when combined with the method for creating resistivity-hydrostratigraphic
histograms presented by Barfod et al. (2016).

The study presented by Barfod et al. (2018) used the alternative modified Hausdorff distance (MHD) measure for comparing
realizations. Due to the computational burden of the method, it was difficult to create exhaustive distance computations, i.e.
where all information from individual realizations is used. The usage of differences in EDT of binary translations of the
categorical realizations for comparing the individual realizations proved to be a more computationally feasible approach. In
this paper an efficient algorithm for computing the EDT was used (Maurer et al., 2003). This computationally advantageous
approach for computing the distance between two realizations allows for a full analysis of the realizations. Each realization is
then compared based on each of the hydrostratigraphic categories and on the entire 3D objects, resulting in a detailed
comparison. The resulting distance matrix (Figure 11A) was able to differentiate between the realizations pertaining to the
different cases. The random number seed between cases was chosen so the first realization of each case has the same random
seed; the second realization has the same seed, etc. This can be seen in the distance matrix (Figure 11A), where off diagonal
cases have a smaller distance values along the diagonal within the given 50 by 50 sub-matrix. An example is the 50 by 50 sub-
matrix between the basic setup and Case 1a, where the diagonal is clearly marked by lower distances relative to the remaining

sub-matrix.
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7 Conclusion

A hydrogeophysical data set from Kasted in Denmark was used for stochastic hydrostratigraphic simulation using the snesim
algorithm. The main goal of this study was to improve our understanding of ensemble hydrostratigraphic modeling variability
related to stochastic MPS modeling. The study was divided into 8 sub-cases designed to reflect the impact related to key
components of the hydrostratigraphic modeling setup, i.e. the T1, borehole lithology logs, and SkyTEM resistivity models. The
results revealed that the hydrostratigraphic realizations were sensitive first and foremost to the geophysical dataset due to its
extensive nature. Not including the geophysical data in the realizations resulted in an average Euclidean distance variability of
40 m and a distance to the cognitive model of 59 m, which was, by far, the largest distance of all realizations. Furthermore,
the geophysical modeling procedure influences the resulting realizations. It was shown that choosing so-called sharp inversion
models (sSCI), in place of smooth inversion models (SCI), resulted in a realization ensemble which had similar distance based
variabilities, 9.4 m and 10.1 m, respectively. However, using sSCI models decreased the distance to the cognitive geological
model from 24.3 m, to 21.6 m. The choice of a Tl containing a relevant geological conceptualization is important. The cognitive
Egebjerg model was used as a Tl to simulate the hydrostratigraphic Kasted model, which yielded similar realizations to the
case where the cognitive Kasted model was used as a TI. The Egebjerg TI contained relevant geological architecture, but if a
conceptual Tl is introduced containing significantly different vertical proportions, the resulting realizations will reflect these
differing vertical proportions. Finally, it was seen that the borehole lithology logs did not significantly influence the
realizations. The lithology logs only carry information in the immediate vicinity of the borehole, and are sparse in comparison
to the resistivity data. The boreholes therefore only have a minor influence on the realizations. The comparison measures used
here mainly compare the overall large-scale architecture components of the realizations, and do not reflect small-scale changes.
In relation to this study the usage of the lithology logs as hard data does not show a significant impact on the MPS realizations.
However, if the hydrostratigraphic models are used for predicting groundwater flow the boreholes might be important.
However, it should be mentioned that the resistivity-hydrostratigraphic histograms, which are used extensively in this research,

are created from the borehole information.
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Appendix

Al. Simple Kriging parameters for creating borehole probability grids (Case 4)

Variogram model type:
Exponential

meangg = 1/3

Search ellipsoid:

Max Med Min
Ranges 200 200 10
Angles 0 0 0
Variogram:
Contribution =1
| Max Med Min
Ranges 1000 1000 50
Angles 0 0 0

A2. General SGeMS parameters used for the snesim realizations:

Property name:

value/count:

algorithm name

use_pre_simulated_gridded_data

Use_ProbField
ProbField_properties
TauModelObject
use_vertical_proportion
Cmin

snesim_std

0

1

count=3, value="sg_0;ctl;pc2”
[11]

0

5

Constraint_Marginal ADVANCED | 0

resimulation_criterion
resimulation_iteration_nb
Nb_Multigrids. ADVANCED
Debug_Level
Subgrid_choice
expand_isotropic
expand_anisotropic
aniso_factor
Use_Affinity
Use_Rotation

Nb_Facies

Marginal_Cdf

Max_Cond
Search_Ellipsoid

Marginal cdf:
sand and gravel

glacial clay

'
[y

wWoozorRroOoOU R
>

0.19 0.24 0.57
100
[750 750 00 0 0]

hemipelagic clay

value 0.19

0.24 0.57
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