Response to Comments from Anonymous Reviewer #2

We thank reviewer #2 for the comments. The reviewer’s comments are in ifalic below. The
added/modified parts are highlighted in blue, both below and in revised manuscript. The revised

marked-up manuscript (text and figures) is attached after the responses to reviewer #2’s comments.

Reviewer #2: Interactive comment on “Assimilation of river discharge in a land surface model to

improve estimates of the continental water cycles” by Fuxing Wang et al.

The manuscript presents a calibration methodology to optimize a multiplicative factor on modeled
surface runoff and deep drainage using river discharge observations. The study focus over Iberia using
the ORCHIDEE land surface model, incorporating a river routing scheme and benefiting from the
ORCHIDEE data assimilation system. This study is of general interest for the land surface and large-
scale hydrological communities presenting a novel optimization/calibration methodology. The
manuscript is well presented and organized, but there are a few points that require further attention

before publication.

Comments:

1. “Data assimilation”: Data assimilation is normally associated with an “update” of the model state,
e.g., via improved initial condition. In this study, merging modelled river discharge with observations
is used to “obtain optimized discharge over the entire basin” (as mentioned in the abstract). Therefore
I fell that the term “data assimilation” could be a bit misleading for the audience, since this manuscript
shows a model optimization or calibration. I suggest that the authors make this point very clear to
avoid confusion.

Answer: The data assimilation could be applied for different cases: (1) to correct initial condition
(correcting state variable) which is mostly used for numerical weather prediction; (2) to correct the
state variable during the data assimilation period (i.e., in this case both the trajectory of the model and
the initial conditions are corrected); (3) to correct the parameter of a model. These different usages can
be mixed. In the current study, the data assimilation refers to the 3™ case which is mainly used in
ORCHIDEE data assimilation and in other land surface models.

We find similar descriptions of data assimilation in several papers. For example, Reichle (2008)
mentioned that ‘All data assimilation methods share the basic tenet of merging models and
observations, yet the sophistication of the merging algorithm varies widely. Important differences also
remain between the specific methods that are most suitable for a given application. Since atmospheric

and oceanic dynamics are chaotic (that is, small errors in the initial condition can lead to large
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differences at later times in the model integration), data assimilation in these areas is very much
concerned with the estimation of initial conditions. By contrast, land surface dynamics are damped,
and land surface assimilation is all about estimating errors in uncertain meteorological forcing
(boundary) conditions and model parameterizations. Clearly, “one size does not fit all” in data
assimilation’. Smith et al. (2013) explained that ‘It is most commonly used to produce initial conditions
for state estimation: estimating model variables whilst keeping the model parameters fixed. However,
it is also possible to use data assimilation to provide estimates of uncertain model parameters.’ Raoult
et al. (2016) also wrote that ‘Optimisation techniques come under the umbrella of model-data fusion
and range from simple ad hoc parameter tuning to rigorous data assimilation frameworks. These
approaches have been used in a number of studies, covering various LSMs, to derive vectors of
parameters that improve model—data fit significantly.’

For this reason, the expression of ‘data assimilation’ is kept in the paper, but a clarification is given
at Lines 91-97: The data assimilation, a specific type of inverse problem, is generally applied for
different cases: (1) to correct initial condition (correcting state variable) which is mostly used for
numerical weather prediction; (2) to correct the state variable during the data assimilation period (i.e.,
in this case both the trajectory of the model and the initial conditions are corrected); and (3) to correct
the parameter of a model. In the current study, the data assimilation refers to the 3™ case.

References:

Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using
data assimilation techniques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833-2852,
https://doi.org/10.5194/gmd-9-2833-2016, 2016.

Reichle, R. H.: Data assimilation methods in the Earth sciences, Adv. Water Resour., 31, 1411-1418,
doi:10.1016/j.advwatres.2008.01.001, 2008.

Smith PJ, Thornhill GD, Dance SL, Lawless AS, Mason DC, Nichols NK. 2013. Data assimilation for
state and parameter estimation: application to morphodynamic modelling. Q. J. R. Meteorol. Soc.
139: 314-327. doi:10.1002/qj.1944

2. River routing model: Since both references of the routing model are not published yet (Nguyen-
Quang et al., 2017; Zhou et al., 2017) and this is a key component of this study it is important to have
a bit more details on how the three linear reservoir are represented and which model parameters are
used and were defined (e.g., water residence time). For example the aquifer level is referred later in
the text due to spin-up, but it is not clear from the model description how the aquifers are represented
in the model.

Answer: More descriptions for the three linear reservoir and the water residence time are added at

Lines 212-219: ‘In each HTU, the water is routed through a cascade of three linear reservoirs



characterized by their residence times: the groundwater, overland and stream reservoirs. The runoff
and drainage are the inputs into the overland reservoir and groundwater reservoir, then they flowed
into the stream reservoir of the downstream sub-grid basin. The residence times are determined by
multiplying a constant reservoir factor (g) with a slope index (k). The g for stream, overland and
groundwater reservoirs are 0.24, 3, and 25 day/km, respectively (Ngo-Duc et al., 2007). The slope
index is a function of distance (d) and slope (S) between a pixel and its downstream pixel (A=d/S"?

defined by Ducharne et al., 2003).

At Lines 221-224: ‘The river discharge is linear with R and D at annual scale over a small basin.
In case of more than one observation stations are assimilated in a river basin (e.g., x; and x> in Fig. 1a),
the river discharge at downstream is affected by the discharge of upstream thus it is not a linear system
anymore. Therefore, the optimization is needed to deal with the x over the non-linear sub-basins’

At Lines 135-136: ‘The W and A terms refer to water storage and water stored in the aquifers,
respectively.’

The description of aquifers are added at Lines 196-198: ‘In other words, the ORCHIDEE LSM
assumes that the aquifer level is below the model bottom, and it neglects the upward water flow through
capillary forces from its underlying aquifer.’

The two papers are available on line now at: https://www.geosci-model-dev-discuss.net/gmd-
2018-57/ and https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-88/ . The citation of the two
papers has been updated at Line 204 (Nguyen-Quang et al., 2018; Zhou et al., 2018). The reference
lists are adjusted at Lines 765-768 and Lines 853-856.

Nguyen-Quang, T., Polcher, J., Ducharne, A., Arsouze, T., Zhou, X., Schneider, A., and Fita, L.:
ORCHIDEE-ROUTING: A new river routing scheme using a high resolution hydrological
database, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-57, in review, 2018.

Zhou, X., Polcher, J., Yang, T., Hirabayashi, Y., and Nguyen-Quang, T.: Understanding the water cycle
over the upper Tarim basin: retrospect the estimated discharge bias to atmospheric variables and
model structure, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-88, in review,
2018.

3. How does the simple estimate of the correction factor used as prior (“xprior””) compares with
optimized values in figure 6? Are the changes significant for example in terms of improved correlation?
Answer: For easier understanding, the methods of “xprior = 1” and “xprior = pre-estimated-prior’ are
named as Xprior 1 and Xprior_ref, r€Spectively (Section 2.4 and Fig. 3).

The xprior_rer is compared with optimized correction factor in Fig. R1 below. The Xprior ref captures
the general distribution pattern of optimal x, but the correlation coefficient of using xprior rer is lower

than that of using optimal x. In other words, the assimilated river discharge is improved through both



choosing xprior_rer and optimization. The role of optimization is to find an appropriate correction factor
when there are several basins (with observations) overlaps at upstream.

Correction Factor Correlation Coefficient
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Figure R1. The xprior rer (left) and the correlation coefficient (right) of river discharge between
observations and simulations from 1980 to 1989 for WFDEI GPCC (1st row), WFDEI CRU (2nd
row) and CRU_NCEP (3rd row) forcing.



Explanations were added in Lines 397-401: ‘It should be mentioned that the Xprior ref is able to
capture the general distribution pattern of optimal x, but the performance of river discharge estimation
is significantly improved through optimization. The role of optimization is to find an appropriate

correction factor when there are several basins (with observations) overlaps at upstream’.

4. Role of forcing: To discard the role of precipitation forcing, the three datasets could be compared

with a high resolution precipitation dataset (IB02, Belo-Pereira et al. 2011) also in terms of mean ratios:

GPCC/IB02 CRU/IB02 NCEP/IB02 and compared with the “x” correction factor. I don’t see this as

mandatory for the paper’s publication, but would make the results more robust.

Belo-Pereira M, Dutra E, Viterbo P. Evaluation of global precipitation data sets over the Iberian
Peninsula. Journal of Geophysical Research-Earth Surface. 2011. 116: D20101.
doi:10.1029/2010jd015481.

Answer: The precipitation of WFDEI GPCC, WFDEI CRU, and CRU_NCEP is compared with the

IB02 precipitation data. The precipitation of the three forcing are higher than IB02 over most regions

(Figs. R2a-R2c) but their spatial distributions are different with the proposed evaporation correction

(Figs. 9e-9g). The ratios of WFDEI GPCC/IB02, WFDEI CRU/IB02 CRU NCEP/IB02 are generally

higher than 1 with few grid cells of ratios lower than 1 being distributed randomly (Figs. R2d-R2f).

The pattern of the three ratios is not consistent with the optimized correction factor (Figs. 8a-8c), which

indicates that the precipitation forcing error is not likely the dominant factor of the correction factor

distribution.

These analysis are added in the revised manuscript (Lines 452-459): ‘This is also demonstrated
by comparing the precipitations between the three forcing and IB02 dataset. Compared to IB02, all the
three forcing overestimate rainfall in the Iberian Peninsula (Figs. Sla-Slc), but none of these error
patterns resembles that of the proposed E correction (Figs. 9e-9g). Unlike the pattern of the correction
factor (Figs. 8a-8c), the ratios of annual mean precipitation between the three forcing and IB02 are
higher than 1 over most regions (Figs. S1d-S1f). Therefore, the precipitation forcing error is not likely

the dominant factor in determining the correction factor distribution.’

The IB02 dataset is described at Lines 254-257: ‘The precipitation of the three forcing is compared
with IB02 dataset which is a gridded daily rainfall dataset for Iberia Peninsula with 0.2° resolution
covers 1950 to 2003 (Belo-Pereira et al., 2011). It is generated by using ordinary kriging from more
than 2400 quality-controlled stations.’

The reference was added at Lines 650-652. The Figs. R2d-R2f below were added in the
‘Supplementary’ of the manuscript (Fig. S1).



(a) dP,WFDEIGPCC-IB02 (b) dP,WFDEICRU-1B02 (c) dP,CRUNNCEP-IB02

44°N

41°N

38°N

35°N

(d) Ratio of P,WFDEIGPCC/IB02 (e) Ratio of P,WFDEICRU/IB02

44°N

41°N

38°N

35°N

8°w 4°W 0° 4°E 8°wW 4°W 0° 4°E 8°wW 4°W 0° 4°E
Figure R2. Comparison of precipitation (P, in mm/d) between IB02 and that used in the assimilation
(a and d: WFDEI-GPCC; b and e: WFDEI-CRU; ¢ and f: CRUNCEP) averaged from 1980 to 1989:

15t row for difference; 2" row for ratio.

5. Impact on evaporation: Section 3.4 compares the first guess evaporation by the land-surface model
with the changes in evaporation resulting for the correction as a post-processing. Would it be possible
to re-run the LSM applying just a constant correction factor to evaporation ? I understand that this
might be difficult to do while conserving energy, but even if energy is not conserved, it could show
the impact of “improving” evaporation, that would then be reflected directly in R & D and should, in
principle improve the discharge simulations.

Answer: We tested the possibility of improving river discharge by using a constant correction factor
to evaporation. Theoretically, the modification of evaporation leads to a change in soil moisture thus
surface runoff and deep drainage are changed. From Eq. (6), the correction factor for £ (Xzcorr) can be
derived from x by Eq. (R1). The Xzcor is then applied to correct £ (Eq. R2). Like the correction factor
x, the Xecorr changes with year.

E+(1—-x)-(R+D)
XEcorr ~ E ’ (Rl)

Ecorr = Xgcorr - E (R2)

The Egs. R1 and R2 were implemented in ORCHIDEE LSM and the LSM was running over
1980-1984. The Fig. R3 shows the BIAS of river discharge after correcting evaporation in ORCHIDEE

6



LSM. The absolute BIAS is reduced comparing with the reference run (forced by WFDEI GPCC

without correcting evaporation).

The BIAS becomes negative after correcting evaporation, which is probably because the
evaporation correction factor Xzcor is greater than 1 over most cases, and it leads to a decrease in R+D
with time evolution. Unlike the correction of runoff and drainage by using a constant factor (change
with year) in current study, the correction of evaporation leads to a feedback on soil moisture which in
turn affects the evaporation simulation. Therefore, both energy and water balance are not conserved in
this case. Another solution of improving river discharge simulation by correcting evaporation could be
to run the full ORCHIDEE LSM in the assimilation system with the same cost function as Eq. (7) in
the manuscript. In this way, the intermediate variables are adjusted towards optimal river discharge
with the modification of evaporation. Because the optimization by running the full ORCHIDEE model

is very time consuming, this is not done in this paper but could be one of the future work.

The explanations were added in the revised manuscript (Line 487-496): ‘We also tested the
possibility of improving the river discharge estimation by using a constant correction factor to
evaporation (Xgcorr). The Xecorr (different for each year) can be derived from Eq. (6).

E+(1—-x)-(R+D)
Xecorr = E ’ (11)

Ecorr = Xgcorr ' E (12)

Although the Eqs. 11-12 are able to improve river discharge estimation by modifying soil
moisture, the energy and water balance are not conserved. One solution could be to run the full
ORCHIDEE LSM in the assimilation system with the same cost function as Eq. (7). In this way, the
intermediate variables are adjusted towards optimal river discharge with the modification of
evaporation. This approach executes the full ORCHIDEE model thus is very time consuming and is

beyond the scope of the current study.’
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Figure R3. The BIAS of simulated river discharge before (left) and after (right) correcting evaporation
in LSM by correction factor from 1980 to 1984.

6. Comparison with GLEAM: It would be beneficial to also present the comparison between the
original Evaporation and GLEAM in addition to the results in Fig. 12 (could be an extra panel).
Considering the results shown, I find it difficult to understand the sentence ““ In 473: “This result further
confirms that ..... And some processes are probably missing in GREAM v3.1”. Please expand on this
discussion to clarify the basis for this assumption.

Answer: The comparison between the original Evaporation and GLEAM is shown in Fig. S4 below
(and Figs. 12a-12d in the revised manuscript).

The explanations have been added at Lines 551-554: ‘We find large difference between GLEAM
and FG, which indicates that the evaporation is quite uncertain for different estimations. The
geographical distribution and magnitude of difference in £ between GLEAM and FG is highly
consistent with that between GLEAM and bias corrected values by using different forcing (Figs. 12a-
12¢, and 12e-12g).’

The sentences have been revised at Lines 558-561 to avoid confusion: ‘Because the bias corrected
P-E are corrected by GRDC observed river discharge, the P-E (=river discharge) of GLEAM is very
likely to be higher than GRDC observations over the Iberia. This result indicates that some processes

are probably also missing in GLEAM v3.1.”
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Figure R4. Comparison of evaporation (£, in mm/d) between GLEAM (v3.1) and FG values using
different forcing (a: WFDEI-GPCC; b: WFDEI-CRU; ¢: CRUNCEP; d: uncertainty of using different
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forcing) averaged from 1980 to 1989.

Details:
1. Ln 21: “earth’s water cycle”
Answer: Revised (Line 21).

2. Ln 324: The relative bias shown in figure 5 highlight the biases in the South since the absolute
values are low. The absolute biases might be higher in the northern areas.

Answer: Fig. R5 below plots the absolute bias over 1980-1989 by three different forcing. The high
values of absolute bias are distributed in both northern and southern areas, and its spatial distribution
is different for different forcing. To avoid confusion, the BIAS is named normalized bias (Norm_BIAS)
in the revised manuscript.

The explanations have been added at Lines 369-371: ‘The spatial pattern of the absolute bias in
river discharge varies with the atmospheric forcing (not shown). The normalized bias is then applied
to measure the river discharge simulation.

The expression was also revised at Line 374: ‘The Norm_BIAS is small (within +/- 0.3) over north,
west and southeast of the region (Figs. 5b, 5d and 5f)’.
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Figure RS5. The absolute bias (m’/s) of river discharge simulations from 1980 to 1989 using

WFDEI GPCC (a), WFDEI CRU (b) and CRU_NCEP (c) forcing.

3. Ln 351: Should be: “Fig. 7 shows the annual mean” and not “annual cycle”

Answer: Revised to ‘annual mean’ (Line 407).

4. Ln 357: Looking that the stations distribution in Figure 2, the station Alcala Del Rio looks very
close to Cantillana. If this is the case, the good results in Alcala Del Rio might be just a direct effect
of the use of Cantillana observations, and it does not “validate the hypothesis that x is distributed
homogeneously over the upstream basin”. Please provide the distance between the stations and
difference in upstream area and mean Qoss to show that Alcala Del Rio has other tributaries than just
Cantillana to justify this sentence.

Answer: Based on GRDC observations, the distance and the difference in upstream area between
Alcala Del Rio and Cantillana stations are 15.3 km and 2124 km? (46995 km? and 44871 km?,
respectively). Between the two stations, there are several tributaries flow to Alcala Del Rio station,

which leads to different annual mean river discharges at Cantillana (49.7 m?/y) and Alcala Del Rio
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stations (94.8 m3/y). This result illustrates that this approach is able to correct the river discharge over
the entire basin. The above numbers and expressions were provided in the revised manuscript at Lines
409-416: ‘The observation of this station is not assimilated due to its large upstream area difference
(15.53%>10%) between model (55635 km?) and GRDC (46995 km?). The overestimated discharge
simulated by the model at this station is also corrected because it benefits from the correction factor
estimated at the Cantillana station (-5.83°W, 37.59°N; 44871 km?) which locates at the 15.3 km
upstream of Alcala Del Rio station of the Guadalquivir River (southwest of the Iberian Peninsula).
Between the two stations, there are several tributaries flow to Alcala Del Rio station, which leads to
different annual mean river discharges at Cantillana (49.7 m3/y) and Alcala Del Rio stations (94.8
m?/y). This result illustrates that this approach is able to correct the river discharge over the entire

basin.’

5. Ln 429: It is not clear that the simulations “underestimate the inter-annual variability”. Could you
provide the standard-deviation of the annual means of the observations and simulations?

Answer: The standard-deviations of the annual means for the FG(WFDEIG) and FG(WFDEIC) are
28.8 m’/s and 25.2 m?/s, respectively. They are lower than observation (33.8 m3/s). The values are
provided at Line 506-509: “... while the FG(WFDEIG) and FG(WFDEIC) underestimate the inter-
annual variability comparing with observations (Fig. 10a-10b). The standard-deviation of the annual
means for observation, FG(WFDEIG), FG(WFDEIC) and FG(CRUN) are 33.8 m’/s, 28.8 m3/s, 25.2

m?/s and 34.3 m’/s, respectively.”

6. Ln 436 (results in Fig. 10): If we assume that the increase in discharge is due to an increase of
groundwater abstraction should we expect decrease of the correction factor since this is a process
which is not represented in the model? The opposite sign with an increase of the correction factor, with
higher corrections in 1980 (around 0.2) and lower in 1989 (around 0.6) suggests that the correction
factor is correcting for other processes and not human intervention? I think this is worth some
discussion.
Answer: The following sentences and references were removed to avoid confusion: “The groundwater
usage occupies about 90%, 16% and 44% in upper, middle and lower Guadiana river basin (Aldaya
and Llamas, 2008). The groundwater abstraction increases (irrigation intensifies) during this period
(Llamas and Garrido, 2007), which causes a reduction in soil water storage capacity and an increase
in river discharge (Valverde et al., 2015)”.
Llamas, M. R. and Garrido, A.: Lessons from intensive groundwater use in Spain: Economic and
social benefits and conflicts, In: Giordano M, Villholth KG (eds) The agricultural groundwater

revolution: Opportunities and threats to development, Chapter 13. CABI International,
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Oxfordshire, 266-295, 2007.

Valverde, P., Serralheiro, R., de Carvalho, M., Maia, R., Oliveira, B., and Ramos, V.: Climate change
impacts on irrigated agriculture in the Guadiana river basin (Portugal), Agric Water Manag,
152:17-30, doi:10.1016/j.agwat.2014.12.012, 2015.

New discussions (including a reference) and a new reference were added at Lines 511-515 and
Lines 835-837: ‘Besides, there are many interconnected wetlands and structurally complex
hydrogeological boundaries between the two upper-Guadiana aquifer in the upper Guadiana River
basin (Van Loon and Van Lanen, 2013). These complex features are difficult to represent in model
thus large bias exist in river discharge of ORCHIDEE. The correction factor corrects these model
defects (Fig. 10c) and it demonstrates good skill in correcting the inter-annual variability of
discharge and runoff coefficient (Fig. 10a-10b).’

Van Loon, A. F. and Van Lanen H. A. J.: Making the distinction between water scarcity and drought

using an observation-modeling framework, Water Resour Res, 49, doi:10.1002/wrer.20147, 2013.

12



10

11

12

13

14

15

16

17

18

19

Assimilation of river discharge in a land surface model to

improve estimates of the continental water cycles

Fuxing WANG!, Jan POLCHER!, Philippe PEYLIN?, and Vladislav BASTRIKOV?>

Laboratoire de Météorologie Dynamique, IPSL, CNRS, Ecole Polytechnique, 91128, Palaiseau,

France

?Laboratoire des sciences du climat et de I'environnement, IPSL, CEA, Orme des Merisiers,

91191, Gif sur Yvette, France

Manuscript revised on May 20, 2018

To be submitted to Hydrology and Earth System Sciences (HESS)

*Correspondence to:
Fuxing Wang

Email: fuxing.wang@Ilmd.jussieu.fr

Tel: 0033 (0)1 69 33 51 80



20

21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44

45

Abstract:

The river discharge plays an important role in earth’s water cycle, but it is difficult to
estimate due to un-gauged rivers, human activities, and measurement errors. One approach is based
on the observed flux and a simple annual water balance model (ignoring human processes) for
ungauged rivers, but it only provides annual mean values which is insufficient for oceanic
modellings. Another way is by forcing a land surface model (LSM) with atmospheric conditions.

It provides daily values but with uncertainties associated to models.

We use data assimilation techniques by merging the modelled river discharges by
ORCHIDEE (without human processes currently) LSM and the observations from Global Runoff
Data Center (GRDC) to obtain optimized discharges over the entire basin. The ‘model systematic
errors’ and ‘human impacts’ (e.g., dam operation, irrigation, etc.) are taken into account by an
optimization parameter x (with annual variation), which is applied to correct model intermediate
variables runoff and drainage over each sub-watershed. The method is illustrated over the Iberian
Peninsula with 27 GRDC stations over the period 1979-1989. ORCHIDEE represents a realistic
discharge over north of the Iberian Peninsula with small model systematic errors, while the model
overestimates discharges by 30%-150% over south and northeast region where the blue water
footprint is large. The normalized bias has been significantly reduced to less than 30% after
assimilation, and the assimilation result is not sensitive to assimilation strategies. This method also
corrects the discharge bias for the basins without observations assimilated by extrapolating the
correction from adjacent basins. The ‘correction’ increases the inter-annual variability of river
discharge because of the fluctuation of water usage. The E (P-E) of GLEAM (Global Land
Evaporation Amsterdam Model, v3.1a) is lower (higher) than the bias corrected value, which could

be due to the different P forcing and probably the missing processes in the GLEAM model.

Key words: river discharge; data assimilation; human processes; water cycle; land surface model;

the Mediterranean
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1. Introduction

The river discharge is an essential component of the earth’s water cycles, which can be
used as an indicator of the hydrological cycle intensification (Munier et al., 2012). It is important
not only for water resources management, climate studies, ecosystem health over land (Syed et al.,
2010; Sichangi et al, 2016), but also for providing freshwater inflow to ocean (Dai and Trenberth,
2002). The freshwater flux at the sea surface has significant influence on the climate system (e.g.,
ENSO, ocean dynamics) and on ocean salinity (Kang et al., 2017). The fresh water inputs for ocean
model usually requires high frequency data (e.g., daily or 10-daily, Scherbakov and Malakhova
2011). Besides, as the ocean model with high spatial resolution (e.g., < 10 km) demonstrates better
skills than coarse resolution model (Bricheno et al., 2014; Wang et al., 2017), there is also a
requirement of high resolution fresh water fluxes. Although great efforts have been made for
gridded river discharge data at global scale (e.g., RivDIS v1.1, Vorosmarty et al., 1998; Dai and
Trenberth, 2002; Fekete et al., 2002), these data are usually at monthly or annual scales and have
not been updated with time. Therefore, it is of great interest to estimate large scale river discharge

over the long-term at high temporal and spatial resolution and low uncertainty.

Estimating the river discharge input to ocean is a difficult endeavor for several reasons.
First, there are many un-gauged rivers that are difficult to evaluate. Second, most large rivers are
gauged by national agencies, and these data are difficult to access for public users. Besides, the
number of operational gauging stations is decreasing worldwide (Syed et al., 2010; Sichangi et al,
2016). Third, even though the observations are available, the observed river flow at the outlet is
not well known because it is difficult to get gauging stations close to the river mouth and many

observations are affected by human activities especially in semi-arid regions (Jorda et al., 2017).

One approach to estimate the freshwater inflow into ocean is based on the observed water
fluxes over data-rich regions and a simple annual water balance model, precipitation inputs minus
the evaporation, which ignoring human usage and other processes over ungauged basins (e.g.,
Szczypta et al. 2012; Peucker-Ehrenbrink, 2009; Mariotti et al., 2002; Struglia et al. 2004; Boukthir
and Barnier, 2000; Ludwig et al., 2009). This method is the basis of most water balance studies
and oceanic modelling activities but it has several limitations. First, there are uncertainties in

observations related to measurement method and post-processing method. These uncertainties are
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difficult to quantify due to the incomplete information (Jorda et al., 2017). Second, only annual
mean values are available over un-gauged basins (about 40% for the Mediterranean; 42% over
globe excluding Greenland and Antarctica, Clark et al., 2015) by simple runoff models, which are

not sufficient for oceanic modellings.

Riverine input can also be obtained through forcing a state of the art land surface model
(LSM) or global hydrological model (GHM) with bias corrected atmospheric conditions (e.g., aus
der Beek et al., 2012; Bouraoui et al. 2010; Jin et al., 2010; Sevault et al., 2014). These numerical
models can estimate river discharge at higher frequency and over more un-gauged basins (Jorda et
al., 2017), but they are associated with modelling uncertainties. First, models are designed and
have proved the ability to capture the natural water cycles, but relatively less progress has been
made in parameterizing human processes (Pokhrel et al., 2017). The water flow of many
catchments has been strongly regulated by human through irrigation use, dam operation, etc. (e.g.,
the southern shores of the Mediterranean). Second, there are large discrepancies among models
resulting from the differences in model inputs, parameterizations, and atmospheric forcing data

(Ngo-Duc et al., 2007; Wang et al., 2016; Liu et al. 2017).

The objective of the present study is to illustrate a novel approach based on assimilation
techniques applied to LSM to estimate continental water cycles (riverine fresh water). The data
assimilation, a specific type of inverse problem, is generally applied for different cases: (1) to
correct initial condition (correcting state variable) which is mostly used for numerical weather
prediction; (2) to correct the state variable during the data assimilation period (i.e., in this case
both the trajectory of the model and the initial conditions are corrected); and (3) to correct the
parameter of a model. In the current study, the data assimilation refers to the 3™ case. This
assimilation approach merges the data from the model (ORCHIDEE LSM) and the observed river
discharge from the Global Runoff Data Centre (GRDC, 56068 Koblenz, Germany). This will allow
to compensate for model systematic errors or missing processes and provide estimates of the
riverine input into the sea at high temporal and spatial resolution. Although previous works exist
on assimilation of river discharge (e.g., Li et al., 2015; Bauer-Gottwein et al., 2015; Pauwels et al.,
2009), these studies mainly focus on the stream flow prediction over individual catchments. They
are difficult to extend to long-term scale and large catchment due to the observations and

computing time limitations.
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This paper focuses on the methodology and its illustration in a Mediterranean region (the
Iberian Peninsula) which is considered one of the most vulnerable regions to climate change due
to its geographic and socio-economic characteristics (Vargas-Amelin and Pindado, 2014).
Although the amount of river discharge is relatively small (about one third to half of precipitation
amount; Tixeront, 1970; Shaltout and Omstedt 2015), it is an important source of fresh water
entering the Mediterranean Sea and it plays an important role in sustaining the marine productivity
(Bouraoui et al., 2010) and overturning circulation (Verri et al., 2017). The river discharges to the
Mediterranean Sea underwent important changes during recent decades. This variation is
particularly important for this region because of its scarce water resource with increasing water
demand for domestic, industrial, irrigation and tourism activities, as well as its drier and warmer
conditions under climate change (Romanou et al., 2010). Considering the high stress on the water

resources in the Mediterranean region, accurate estimation of the actual resources is important.

The methods (including the model, datasets and numerical experiment) are described in

Sect. 2. The results and discussions are given in Sect. 3. Conclusions are drawn in Sect. 4.
2. Methods
2.1. The theoretical background

The theoretical basis of the LSM assimilation for the study is the vertical and lateral water
balance. The precipitation (P) input of a basin is transferred into either evaporation, surface runoff
(R), deep drainage (D) (eventually the R and D reaching the channel and leaving in the form of

river discharge), or stored in the ground.

dW—P R+D)—-E 1
—==P—(R+D)-F, ™

Over long period, the change of water storage (iz_‘i/ is small (2—": ~ (), thus
P—E =R+D (2)

The lateral water balance over a basin (e.g., the sub-catchment 2 in blue in Fig. 1a) is given
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d_;zlLZ(R2+D2)dS -0y + s, 3

where S: is the area of sub-catchment 2; 4> is the water stored in the aquifers of area S2; 02 and QO
are the river discharge at outlet of each sub-catchment, and they are calculated by the integral of

runoff and drainage over the sub-catchment area S; and S>. We assume the A2 variation at annual
. dA : - .
scale 1s small (d—t2 =~ 0) due to its slow variability, although it can be nonzero due to the human

intervention (e.g., over Indo-Gangetic Basin, MacDonald et al., 2016). The # and 4 terms refer to
water storage and water stored in the aquifers, respectively. The Eqgs. (1)-(3) describe the basic

water cycle processes in the LSMs.

Despite that the LSMs have developed rapidly during the last few decades, few models
take into account the human water usage processes. Due to this limitation, LSMs are usually
accompanied with errors in reproducing discharge and evaporation in areas where these processes
are dominant. Assuming the P forcing is known in LSM, the modelled water continuity imposes a
balance of errors between E, R and D. However, the R and D are conceptual variables, and their
errors are impossible to evaluate by observations directly. The field measurements of £ over large
area are also scarce due to land surface heterogeneity (Kalma et al., 2008). Fortunately, the
observations of river discharge (Qoss) are available. By fitting modelled discharge with Qoss, we
can correct model intermediate variables in Egs. (1)-(3) (e.g., correct R and D by a correction factor

x, Fig. 1a) in order to get bias corrected river discharge (Qcorr).

o= @-R+x-DYs, @)
catchment
Recalling the i—‘f is small and P is known, we then transfer the x into vertical water balance
and close the horizontal water balance by the corrected evaporation (Ecorr):
Ecorrzp_x'(R‘l'D)’ (5)
The impacts of assimilation on E (AE) can be derived from the optimal x, R, and D:

AE =E.ppy —E~=(1—x)-(R+D), (6)

6
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The key problem remains to determine the optimal x (described in Sect. 2.2.2). Each
discharge observation station corresponds to an optimal correction factor x since the discharge is
the only representative of the integral over the basin. The total number of x depends on the number
of available stations. The optimal x over each observation station is applied to its entire upstream
area. Over each upstream area (dashed box in Fig. 1a), the optimal x of these model grid cells are

the same. The ‘R + D’ and E are corrected at the same grid cell level by x and Eq. (5), respectively.

2.2. The models

2.2.1. Assimilation strategy and ORCHIDAS

The optimal x is obtained from the ORCHIDEE Data Assimilation System (ORCHIDAS,

https://orchidas.lsce.ipsl.fr/). It was designed to optimize the variables related to water, energy and

carbon cycles in ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems;
Krinner et al. 2005; De Rosnay et al., 2002) LSM by using various observations (e.g. in situ,
satellite, etc.). The ORCHIDAS has been applied over different regions for various variables and
demonstrated good performance (Santaren et al., 2007; Kuppel et al., 2012; MacBean et al., 2015).
More details of ORCHIDAS are presented by Peylin et al. (2016).

In this work, the ORCHIDAS drives the ORCHIDEE routing scheme which is
computationally less expensive than the full ORCHIDEE model (Fig. 1b). The data assimilation
approach relies on the minimization of a misfit function J(x) (aka cost function) by successive calls
to “gradient-descent” minimization algorithm L-BFGS-B (Limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm with simple Box constraints, Byrd et al., 1995).

A new vector of parameter values x is estimated at each iteration. The J(x) measures the
mismatch between the vector of observed river discharges Qs and corresponding simulated

values Qsim (x), as well as between the optimized correction factors x and its prior information Xprior:

](X) :[Qobs - Qsim(x)]tR_l[Qobs - Qsim(x)] + (X - Xprior)tB_l(X - Xprior)' (7)

where R and B represent the prior error covariance matrices for observations and parameters,

respectively. Diagonal elements of R matrix represent the data uncertainties, which include both
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the measurement errors (systematic and random) and model errors, we have defined it as the root
mean squared error (RMSE) between the prior model simulations and the observed river
discharges. Non-diagonal elements describe correlations between the data, which however are
difficult to presume correctly, and are usually neglected. The prior parameter uncertainties (matrix
B) have been set to 40% of the range of variation of correction factors obtained from the ratio Qobs
and first guess value of river discharge simulation (QOr) obtained from xprior. The matrix B was
determined based on the expert knowledge of ORCHIDEE model (Kuppel et al., 2012; Santaren
et al., 2014). Correlations between prior parameter values have not been considered. The gradient
of the J(x) is calculated for all the parameters by finite difference approach at each iteration

(Kuppel et al., 2012).

2.2.2. ORCHIDEE LSM with high-resolution river routing model

The ORCHIDEE LSM is the land component of Institut Pierre Simon Laplace Climate
Model (IPSL-CM), which simulates energy, water and carbon cycles between the soil and
atmosphere. The unsaturated water flow is described at each land point by the one-dimensional
Richards equation with 2 m soil discretized to 11 levels. The surface runoff and deep drainage at
bottom layer are computed by Horton overland flow and free drainage (equals to hydraulic
conductivity), respectively. In other words, the ORCHIDEE LSM assumes that the aquifer level
is below the model bottom, and it neglects the upward water flow through capillary forces from its
underlying aquifer. The evaporation is partitioned into transpiration, bare soil evaporation,

interception loss and snow sublimation.

The ORCHIDEE is coupled with the ocean model through the river routing scheme
(Polcher, 2003; Ducharne et al. 2003; Guimberteau et al., 2012) which computes river discharge
by integrating the surface runoff and deep drainage over the basin. A high-resolution river routing
scheme was developed recently, which allows to better describe of catchments boundaries, flow
direction, and water residence time (Nguyen-Quang et al., 2018; Zhou et al., 2018). It is based on
the HydroSHED (Hydrological data and maps based on SHuttle Elevation Derivatives at
multiple Scales; http://www.hydrosheds.org/; Lehner et al., 2008) map with 1 km spatial resolution.

There are several hydrological transfer units (HTUs) in one ORCHIDEE grid-cell (e.g., 100 in the
current study). The HTU is constructed based on the Pfafstetter topological coding system and
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user defined size. Each HTU represents the section of the river basin within the grid box, and many
HTUs forms a river basin (Nguyen-Quang et al., 2018). Therefore, the relative locations of HTUs

in each grid cell are not fixed.

In each HTU, the water is routed through a cascade of three linear reservoirs characterized
by their residence times: the groundwater, overland and stream reservoirs. The runoff and drainage
are the inputs into the overland reservoir and groundwater reservoir, then they flowed into the
stream reservoir of the downstream sub-grid basin. The residence times are determined by
multiplying a constant reservoir factor (g) with a slope index (k). The g for stream, overland and
groundwater reservoirs are 0.24, 3, and 25 day/km, respectively (Ngo-Duc et al., 2007). The slope
index is a function of distance (d) and slope (S) between a pixel and its downstream pixel (k=d/S'"?
defined by Ducharne et al., 2003). The water can flow either to the next HTU within the same grid
cell or to the neighboring cell. The river discharge is diagnosed at the HTU level in the assimilation.
The river discharge is linear with R and D at annual scale over a small basin. In case of more than
one observation stations are assimilated in a river basin (e.g., x; and x> in Fig. la), the river

discharge at downstream is affected by the discharge of upstream thus it is not a linear system

anymore. Therefore, the optimization is needed to deal with the x over the non-linear sub-basins.

The time steps for the ORCHIDEE model and routing scheme are 30 minutes and 3 hours,
respectively. The spatial resolution of the model depends on the resolution of the atmospheric
forcing, and it is 0.5° for the current study (given in Sect. 2.3.2). The soil texture map is from
United States Department of Agriculture (USDA) with 12 soil textures (Reynolds et al. 2000). The
vegetation map is from the European Space Agency Climate Change Initiative (ESA CCI,

https://www.esa-landcover-cci.org/) reduced to the 13 plant functional types represented by the

model.

2.3. The study domain and the datasets

2.3.1. Study domain

The assimilation system is applied over the Iberian Peninsula. This region is dominated by
two climate types: the oceanic climate in the Atlantic coastal region and the Mediterranean

climate over most of Portugal and Spain. The annual precipitation is extremely unevenly

9
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distributed with more than 1500 mm over northeastern Portugal, much of coastal Galicia and along
the southern borders of the Pyrenees but less than 300 mm over southeast Spain (Estrela et al.,
2012). Over Spain, agriculture occupies approximately 50% of the land area (e.g., year 2014,
https://data.worldbank.org/indicator/AG.LND.AGRI.ZS), and with around 1200 large dams
(European Working Group on Dams and Floods, 2010).

2.3.2. The meteorology forcing

In order to study the sensitivity of the optimization results to different forcing data, three
meteorology forcing are used: WFDEI GPCC, WFDEI CRU and CRU NCEP. The
WFDEI GPCC and WFDEI CRU (3-hourly, 0.5°) are based on the WFDEI meteorological
forcing data which was produced using WATCH (WATer and global CHange) Forcing Data
(WFD) methodology applied to ERA-Interim data at 0.5° (Weedon et al., 2014; http://www.eu-
watch.org/data availability). The WFDEI is from 1979 and updates until now with eight
meteorological variables at 3-hourly time steps. The precipitation of WFDEI GPCC and
WFDEI CRU is corrected by GPCC (Global Precipitation Climatology Centre) and CRU
(Climatic Research Unit), respectively. The CRU NCEP (6-hourly, 0.5°) combines the CRU
TS.3.1 (0.5°, monthly) climatology covering 1901-2012 and the NCEP (National Centers for
Environmental  Prediction)  reanalysis  (2.5°, 6-hour)  beginning in 1948
(https://vesg.ipsl.upme.fr/thredds/fileServer/store/p529viov/cruncep/readme.html). The
precipitation of the three forcing is compared with the IB02 which is a gridded daily rainfall dataset
for the Iberia Peninsula with 0.2° resolution covers 1950 to 2003 (Belo-Pereira et al., 2011). It is

generated by using ordinary kriging from more than 2400 quality-controlled stations.

2.3.3. The GRDC dataset

The Global Runoff Database collects the monthly river discharge from most basin agencies
around the world (more than 9,300 stations) with an average record length of 43 years. Although
the quality of the observations is unknown (e.g., monitoring the river transect, velocity
measurements, etc.), the GRDC datasets are the most complete river discharge dataset available

today. Itis hosted by the German  Federal |Institute of  Hydrology

10
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(Bundesanstalt fiir Gewésserkunde or BfG;

www.bafe.de/GRDC/EN/Home/homepage node.html).

2.3.4. Integration of GRDC in ORCHIDEE

The location of some stations in the GRDC dataset might be incorrect for either the
longitude or latitude coordinate due to simple typos, logical errors in the original coordinates, or a
swapped order of the coordinate digits (Lehner, 2012). Due to this uncertainty, a quality control is
applied for GRDC when matching it with the corresponding HTUs in the river routing model. For
each GRDC station, the corresponding catchment surface in the model is estimated. The matching
process is stringent, and the GRDC qualification is restricted by two matching criteria: (1) the
difference in upstream area between GRDC and the model is less than a pre-defined percentage;
(2) the distance between GRDC and the model is less than a pre-defined distance. The higher the
two thresholds are, the more the matched GRDC stations can be positioned on the model’s basin
representation. Meanwhile, the high threshold increases the uncertainties of the GRDC data due to
the errors in location and upstream area. By compromising between the two contradictory
requirements (the number of GRDC stations and the precise of the data), we choose the threshold
for upstream area difference and distance to be 10% and 25 km, respectively. Under this constraint,
27 GRDC stations are qualified among all 65 stations over the Iberian Peninsula domain (10°W-
5.5°E, 34°N-45.5°N; Fig. 2). It should be noted one GRDC station can match with several model
HTUs that locate in different model grids. In this case, the HTU with the lowest upstream area
difference is chosen. Therefore, the GRDC station is not necessarily in the same model grid as the

model HTU.

2.3.5. The evaporation products

The bias corrected evaporation deduced from the assimilation is compared with the
GLEAM (Global Land Evaporation Amsterdam Model, Martens et al., 2017;
https://www.gleam.eu/) product. GLEAM provides daily evaporation from 1984 to 2011 at 0.25°.
The evaporation is estimated by a minimalistic Priestley-Taylor potential evaporation model with
the majority of inputs estimated from remote sensing. It uses the microwave-derived soil moisture,

land surface temperature and vegetation density, and the detailed estimation of rainfall interception
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loss. The rainfall interception loss is estimated separately using the Gash analytical model which
considers the canopy storage capacity, coverage, and the ratio of mean evaporation rate from wet
canopy. There are several versions of GLEAM data available, and we choose the latest version
v3.1a. The precipitation forcing of GLEAM v3.1a is from the Multi-Source Weighted-Ensemble
Precipitation (v1.2).

2.4. Experiments design

An ORCHIDEE simulation is performed to obtain the O and the corresponding R and D.
The ORCHIDAS with L-BFGS-B algorithm explores the full space of x by perturbing a separate
x (xi) over the i th upstream catchment (i=1, 2, ..., Nopr; Nopt 1s the total number of optimized x
depending on the number of observation stations) in each iteration. To save computing time, the
river routing parameterization (forced by corrected R and D) rather than the full ORCHIDEE is
executed. The total execution time depends on the number of parameters to be optimized, the
length of simulation years, and the number of iterations. Multi-level parallelisms of the
assimilation are implemented to achieve the high computational efficiency. In each iteration, the
assimilation can run with Nop: ‘river routing’ simulations, with each ‘river routing’ model
parallelized with Nrouing CPUS (Nopt =27, Nrouring=16 over the study domain). Over the Iberian

Peninsula, the range of x is defined between 0 and 20 which is determined by QO and Qoes.

In order to check the impacts of prior information xprior on the optimization convergence
time, the xprior 1S set to a constant value “1° (xprior 1) Or @ “pre-estimated-prior’ (Xprior ref, defined as
the ratio of Qors/Orz), separately. The optimal x values are assigned over the whole study domain.
The x of the sub-catchment without GRDC station available is set to 1 (no correction). The
climatology values (e.g., over 1979-2014) are applied to fill the observation missing values over
certain period. In case of more than one GRDC stations locate in the same model grid, the averaged

correction factor is used.

The optimization results are not sensitive to the choice of xprior, but the convergence time
indeed depends on xprior. Fig. 3a shows that the xprior rer method requires less iteration to converge
than xprior 1 (7 and 15-20 iterations, respectively). The value of the cost function of xprior rer method

is lower than that of xrior 1 for all iteration steps. The normalized bias (Norm_BIAS) of discharge
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after 7 iterations is less than 0.3 for the xprior rer method, while it is larger than 0.6 over most south
regions for xprior 1 (Figs. 3b and 3c). The oscillation of J at the steps 3 and 5 could be due to the
fact that the calculation of the gradient of J by finite difference is not optimal. It is also possible
because the L-BFGS-B explores partly the physical range during the first few iteration to estimate
the Hessian of the cost function for convergence.

Norm_BIAS = M, (8)

Qobs
We choose xprior set by Xprior ref for n years (n=10, 1980-1989) experiment with iteration
number & being 15 and number of correction factor m (i.e., the number of GRDC station) being 27.
The x values vary with different years. Due to the slow variation in aquifer levels, a spin-up is
necessary before optimization to get equilibrium of aquifer levels in LSM. The spin-up creates the
aquifer initial states (4%orr, A’ corr, A%corr, ... , A'%or) at the start of the assimilation cycles over each

ORCHIDEE model grid (Fig. 4), making it adapt to the bias corrected aquifer states.

dAL
dcz)rr - [.[ x(RZ + Dz)l - Qcorr,z + Qcorr,lr 0<i=<10 (9)
S

To test different assumptions of errors in initial conditions, we implemented different
optimization methods with each method results in a group (mxn) of optimal x (Fig. 4). In method
1, the optimization is carried out year by year with one-year spin-up for each iteration (‘Y1SP1’
here after). The x of the optimization year is applied during simulation. The method 2 is similar
with Y1SP1 except that it uses optimized aquifer levels from the previous year (“Y1SPO’ here
after). This method assumes the finial state variables (aquifer levels) of the optimal solution at the
current optimization year is the best initial condition for the following assimilation year. In method
3, the optimization is done over 10 years continuously with 1-year spin-up at the beginning of each
10-year simulation (‘Y10C’ here after). The Y10C optimizes 270 x over 10 years together, while
the YISP1 and Y1SPO optimize the 10 years separately with 27 x each year. The ‘river routing’
model running years required by the three methods are 8100 (=mx2xnxk), 4050 (=m*nxk) and
44550 [=mxnx(nt+1)xk], respectively. Take the Y1SPO for example, in each iteration, the
correction factor x is perturbed by m times. For each perturbation, the ORCHIDEE river routing

model runs once with one x (e.g., x; at the ith sub-catchment) being perturbed while the x of other
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sub-catchments are kept the same. Therefore, the total number of years required for m stations, n
iterations and & years assimilation is mxnxk. For all experiments, the optimization is carried out at
daily scale, and the diagnostics are performed for annual averages where we assume the water

storage variation is neglectable.

In order to further identify the impacts of atmospheric forcing on optimizations (e.g.,
optimal correction factor x), we measure the ‘Uncertainty’ of the variable (‘var’ in equation; ‘var’
refers to x, corrected evaporation, etc.) by Eq. (10). The higher the ‘Uncertainty’ is, the larger the

uncertainty is. The 0 value means that all the three ‘var’ values are equal.

|var, — vary| + |var, — vars| + |var; — vars
3

(10)

Uncertainty(var) =

3. Results and discussions

3.1. Evaluation of river discharge without assimilation

Fig. 5 displays the first guess simulation forced with different atmospheric forcing:
WFDEI GPCC (Figs. 5a-5b), WFDEI CRU (Figs. 5c-5d), and CRU_NCEP (Figs. 5e-5f). The
Norm_BIAS and correlation coefficient (computed by the annual mean values) are used to measure
the qualities of the simulated discharge. The diagnostics at each GRDC station are spread to the
entire upstream basin which contributes to the errors in discharge at downstream. The correlation
coefficient between FG (forced by WFDEI GPCC and WFDEI CRU) and observation is greater
than 0.6 over most regions, but it is less than 0.2 over certain regions (e.g., middle and southeast
of the Iberian Peninsula Figs. 5a and 5c). The correlation coefficient obtained by using
CRU_NCEP forcing is less than 0.2 for most regions (middle and west of the Iberian Peninsula),
which is worse than the simulation from WFDEI GPCC and WFDEI CRU. Wang et al. (2016)
also show the relatively poor performance of CRU NCEP in simulating global land surface
hydrology and heat fluxes by using the Community Land Model (CLM4.5). The spatial pattern of
the absolute bias in river discharge varies with the atmospheric forcing (not shown). The
normalized bias is then applied to measure the river discharge simulation. The Norm_ BIAS in
discharge shows consistent spatial distribution for simulations of three forcing. The Norm_BIAS

(positive) is higher than a factor of 1.5 over south and northeast of the Iberian Peninsula, which
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means the overestimation of river discharge. The Norm BIAS is small (within +/- 0.3) over north,

west and southeast of the region (Figs. 5b, 5d and 5f).

3.2. Comparison of the three optimization strategies forced by WFDEI _GPCC

We apply the three assimilate approaches (Y1SPI1, YISPO, Y10C) to ORCHIDEE
simulations to correct the bias in discharge simulation by WFDEI GPCC forcing. Fig. 6 (left)
displays the geographical distribution of the average correction factor x obtained after the
assimilation. The x values range between 0 and 1.5 over the study domain. The perfect discharge
simulation corresponds to x equal 1. The x value lower than 1 means the discharge in FG
(WFDEI_GPCC) is overestimated and thus a decrease of R and D is required, and vice versa for x
being higher than 1. The further the x away from 1, the larger the corrections of runoff and drainage
are. The three methods display similar spatial distribution pattern with x being less than 0.5 over
south and east of the Iberian Peninsula and x being higher than 1 over north of the Iberian Peninsula.
This spatial distribution of x is highly consistent with the pattern of Norm_ BIAS in FG (discharge

overestimated in south and northeast, underestimated in north).

Fig. 6 (central column) shows the correlation coefficient between corrected discharge and
GRDC observations. After assimilation, the correlation of the optimized discharge and
observations is larger than 0.8 over most regions. The correlation coefficient for assimilated
discharge and observation is less than 0.6 (but higher than 0.4) over some regions and seems very
dependent on the forcing. This is probably because there is a contradiction of x between the
upstream and downstream stations and thus the method has difficulties finding a compromise (e.g.,
over the Ebro basin). In general, the regions with low correlation coefficient are forcing dependent,
while the regions with high correlation coefficient are very consistent among different forcing. Fig.
6 (right) gives the Norm BIAS in discharge between assimilations and observations. After
assimilation, this positive bias in river discharge has been significantly reduced (within £0.3). It
should be mentioned that the xprior rer is able to capture the general distribution pattern of optimal
x, but the performance of river discharge estimation is significantly improved through optimization.
The role of optimization is to find an appropriate correction factor when there are several basins

(with observations) overlaps at upstream
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A common validation approach is to compare the assimilated river discharge with other
independent data sources. However, the river discharge observations are limited, and the GRDC
is the only comprehensive river discharge datasets at global scale so far. To overcome this
limitation, the assimilated river discharges are also validated over the catchments where the GRDC
stations are discarded during assimilation. Fig. 7 shows the annual mean of river discharge over
the Alcala Del Rio station (-5.98°W, 37.52°N) on the Guadalquivir river (locates at southwest of
Spain) before and after correction. The observation of this station is not assimilated due to its large
upstream area difference (15.53%>10%) between model (55635 km?) and GRDC (46995 km?).
The overestimated discharge simulated by the model at this station is also corrected because it
benefits from the correction factor estimated at the Cantillana station (-5.83°W, 37.59°N; 44871
km?) which locates at the 15.3 km upstream of Alcala Del Rio station of the Guadalquivir River
(southwest of the Iberian Peninsula). Between the two stations, there are several tributaries flow
to Alcala Del Rio station, which leads to different annual mean river discharges at Cantillana (49.7
m?/y) and Alcala Del Rio stations (94.8 m?/y). This result illustrates that this approach is able to
correct the river discharge over the entire basin. The discharges for certain sub-basins without
assimilated observations (e.g., observation unavailable or GRDC stations discarded) are corrected
by x as well. Although the validation datasets are from the same GRDC source, they are from other
independent observation stations thus can be seen as an independent validation (‘first order

validation’).

In summary, all the three methods (Y1SP1, Y1SPO, and Y10C) are able to improve the
river discharge simulation by ORCHIDEE LSM. The correlation coefficient and Norm_ BIAS in
discharge obtained from the three methods are generally consistent. The correlation coefficient of
Y 10C method in northeast is lower than that of YISPO and Y1SPO, which is probably resulted
from its poor quality of atmospheric forcing. The Y1SPO consumes less computing time than
Y1SP1 and Y10C, and it does not worsen the optimization results. By compromising between the

accuracy of results and the computing time, we choose Y 1SP0 method for the further assimilation.

The above assimilations are performed with the same forcing (WFDEI-GPCC) by
assuming the errors in discharge are caused by model defect (e.g., model parameterization, model
structure, etc.). The uncertainties of simulated discharge also result from the atmospheric forcing.

The role of atmospheric forcing in assimilation is discussed in following section.
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3.3. The sensitivity of the optimizations to atmospheric forcing

In order to understand the response of the optimizations to different atmospheric forcing
with different precipitation sources, the ORCHIDAS was also run with WFDEI CRU and
CRU_NCEP forcing using Y 1SP0 optimization strategy. Using two other different forcing for the
assimilation can allows us to understand how important the forcing uncertainty affects the
correction factor. The multi-year mean correction factor x obtained from WFDEI CRU (Fig. 8a)
CRU_GPCC (Fig. 8b), and WFDEI GPCC (Fig. 8c) displays quite consistent spatial patterns. The
coverage of low correction factor (blue in Figs. 8a-8b, corresponds to large correction) obtained
from CRU-NCEP is larger than that obtained from WFDEI CRU and WFDEI GPCC. This is
because the positive bias in discharge of FG simulation forced by CRU-NCEP is larger than that
by WFDEI CRU and WFDEI GPCC. Besides the atmospheric forcing, the uncertainties could
also origin from boundary condition (e.g., topographic or other land surface features), model
parameter, model structure or missing processes. For all forcing, the x is less than 0.3 (but greater
than 0) over south, which implies that the error in discharge is probably resulted from the missing
model processes (human activity). Over north, the x are close to 1 (discharge well simulated) for
all the three forcing, which indicates the correction comes from model ‘random’ error (nature

discharge) rather than the system error (e.g., missing processes).

The uncertainty of x by three forcing is small for most regions (Fig. 8d). The high
uncertainty of x over the Adoure (southwestern France) and the Chelif (in Algeria) river basins
corresponds to the large uncertainty in the different atmospheric forcing. This result demonstrates
the obtained correction factor x is robust in spite of using different atmospheric forcing. This is
also demonstrated by comparing the precipitations between the three forcing and the IB02 dataset.
Compared to the IB02, all the three forcing overestimate rainfall in the Iberian Peninsula (Figs.
Sla-Sic), but none of these error patterns resembles that of the proposed E correction (Figs. 9e-
9g). Unlike the pattern of the correction factor (Figs. 8a-8c), the ratios of annual mean precipitation
between the three forcing and the IB02 are higher than 1 over most regions (Figs. S1d-SIf).
Therefore, the precipitation forcing error is not likely the dominant factor in determining the

correction factor distribution.
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In summary, the assimilation approach is able to correct errors in lateral water balance
despite using different forcing. Recalling that the corrected R+D (through x) and the precipitation
are known, we then transfer the optimal correction factor x to the vertical water balance equation
(Eq. 5) to derive the bias corrected evaporation. This will enable us to understand the impacts of

assimilation on evaporation.

3.4. Evaporation estimations through the optimal correction factor

The evaporation of FG simulation by different forcing show quite consistent spatial
distribution (Figs. 9a-9¢) and small uncertainty (<0.2 mm/d, Fig. 9d) with the value being higher
over north than south. The change of evaporation (dF) induced by the correction is consistent for
three forcing (Figs. 9e-9g) with low uncertainties (Fig. 9h). It should be mentioned that the
evaporation for the regions without GRDC stations are not corrected (i.e., correction factor x equals
1) such as southern France, western Portugal, and northwest, south and southeast of Spain (blank
regions in Fig. 8). The dE is positive (around 0.2 to 0.4 mm/d) over south and northeast where the
evaporation is underestimated in FG. Cazcarro et al. (2015) show large blue water footprint
(volume of surface and groundwater consumed for production an item) of human activity over
south (Jaén, Sevilla, and Malaga provinces), northeast (Palencia, Burgos, La Rioja, Navarra and
Valladolid provinces), north (Tarragona province) and middle (Toledo province) of Spain (Map.
1 of that paper). The large dE over south and northeast obtained in current study is consistent with
the blue water footprint of Cazcarro et al. (2015). Figs 9i-9k plot the change of the ratio of water
demand (dE) and water supply (R+D). This ratio measures the degree of water shortage. The
greater the ratio, the higher level of water shortage. The ratio is larger over south and northeast of
Spain, which is consistent with the results from other studies that measures the water deficits
(Rodriguez-Diaz et al., 2007) and water exploitation index (Pedro-Monzonis et al., 2015) in Spain.
Since we assume that the missing human processes is the main error in ORCHIDEE, the dE and
dE/(R+D) indicate the changes induced by human processes. The spatial patterns of dE and
dE/(R+D) are quite consistent with human water exploitation, thus the model missing processes

(e.g., human water usage) is considered as the dominant contribution to x.

We also tested the possibility of improving the river discharge estimation by using a annual

constant correction factor to evaporation (Xzcor), which can be derived from Eq. (6).
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E+(1-x) - (R+D)
XEcorr ~ E ) (11)

Ecorr = Xgcorr - E (12)

Although the Eqgs. 11-12 are able to improve river discharge estimation by modifying soil
moisture, the energy and water balance are not conserved. One solution could be to run the full
ORCHIDEE LSM in the assimilation system with the same cost function as Eq. (7). In this way,
the intermediate variables are adjusted towards optimal river discharge with the modification of
evaporation. This approach executes the full ORCHIDEE model thus is very time consuming and

is beyond the scope of the current study.
3.5. The inter-annual variation of correction factor and water cycle
3.5.1. The inter-annual cycles

All the results so far are obtained by averaging multi-year mean values which provides us
the bias correction information at spatial scale. To understand the inter-annual cycles of the
correction and its possible contribution, we analyze the assimilation results over two stations at

south of Spain where the discharge correction is large during the period of 1980 - 1989 (Fig. 8).

The Puente De Palmas station locates on the Guadiana River (southwest of the Iberian
Peninsula) with an upstream area of 48515 km?. The three FG simulations (with different forcing)
significantly overestimate the river discharge and the runoff coefficient (ratio of discharge and
precipitation), while the FG(WFDEIG) and FG(WFDEIC) underestimate the inter-annual
variability comparing with observations (Fig. 10a-10b). The standard-deviation of the annual
means for observation, FG(WFDEIG), FG(WFDEIC) and FG(CRUN) are 33.8 m?/s, 28.8 m?/s,
25.2 m*/s and 34.3 m’/s, respectively. One reason could be the variation of water usage by
irrigated agriculture which occupies 90% of the blue water usage (surface water and groundwater)
in this semiarid basin (Aldaya and Llamas, 2008) or model errors. Besides, there are many
interconnected wetlands and structurally complex hydrogeological boundaries between the two
upper-Guadiana aquifer in the upper Guadiana River basin (Van Loon and Van Lanen, 2013).

These complex features are difficult to represent in model thus large bias exist in river discharge
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of ORCHIDEE. The correction factor corrects these model defects (Fig. 10c) and it demonstrates
good skill in correcting the inter-annual variability of discharge and runoff coefficient (Fig. 10a-

10b).

The Masia De Pompo station (17876 km?) is on the Jucar River (southeast of Spain). The
observations over the year 1983, 1988-1989 are obtained from the climatology values due to
the unavailability of GRDC data during this period. During 1980-1989, the inter-annual
variation of observed discharge (and runoff coefficient) and FG simulation is quite inconsistent
(Figs. 10d-10e). This is probably caused by the surface water usage which occupies about 55%
over this basin (Kabhil et al., 2016). Most of them are used for agriculture (>80%) and urban
(>10%). Although the improvements in assimilated discharge are small, the correction factor is

able to capture the inter-annual variability in observations (Figs. 10d and 10f).

In summary, the inter-annual variation river discharge of FG simulation and
observations does not agree each other over the Guadiana River basin and the Jucar River basin
during 1980-1989. The human water usage (e.g., groundwater or surface water extraction)
process, which is neglected in current ORCHIDEE model, is likely to play an important role in
river discharge variation. The optimized correction factor (varies each year) improves the inter-

annual variability of the modelled river discharge.
3.5.2. The geographical distribution

To further understand the inter-annual variability of corrections over the entire Iberian
Peninsula region, Fig. 11 plots the spatial distribution of inter-annual variability of correction
factor x and river discharge which is quantified by coefficient of variation as used by Déry et al.
(2011) and Siam and Eltahir Elfatih (2017). In FG (WFDEI_GPCC) simulation, the inter-annual
variation of discharge is lower than 0.4 over most regions, which indicates an underestimation of
inter-annual variability of river discharge in FG. The inter-annul variability of discharge is
increased after assimilation over south and northeast. This change could be attributed to the
fluctuation of correction factor (human water usage) over these regions. This result agrees with the
results (Map. 6) of Cazcarro et al. (2015) with more large dams in south and northeast (nature

discharge greatly affected by human) than northwest of Spain (nature discharge less affected by
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human). The inter-annual variability of correction factor x and discharge for Y1SPO (CRUN) is

different from others, which mainly results from the different atmospheric forcing.

3.6. Comparison of bias corrected evaporation with GLEAM data

In order to evaluate the bias corrected evaporation, Figs. 12a-12h compare the GLEAM
product (v3.1a) with FG and with bias corrected E by assimilation using WFDEI GPCC,
WFDEI CRU and CRU _NCEP forcing. Due to the unavailability of parts of GLEAM’s
atmospheric forcing (e.g., air pressure, air humidity, air speed, etc.) and difficulty of maintaining
a coherence with other forcing, the assimilation system does not run with GLEAM’s precipitation
input. We find large difference between GLEAM and FG, which indicates that the evaporation is
quite uncertain for different estimations. The geographical distribution and magnitude of
difference in E between GLEAM and FG is highly consistent with that between GLEAM and bias
corrected values by using different forcing (Figs. 12a-12c, and 12e-12g). The systematic negative
difference is higher than the uncertainties of bias corrected £ with different forcing (Figs. 12d and
12h). Parts of the differences are explained by the lower P of GLEAM than ORCHIDEE forcing
(Figs. 12i-121). Generally, the P-E (in mm/d) of GLEAM is higher than bias corrected value
associated with small uncertainties (Figs. 12m-12t). Because the bias corrected P-E are corrected
by GRDC observed river discharge, the P-E (=river discharge) of GLEAM is very likely to be
higher than GRDC observations over the Iberia. This result indicates that some processes are
probably also missing in GLEAM v3.1. We also compared our bias corrected £ with GLEAM vl
data (Miralles et al., 2011), and we find the P-E between GLEAM v1 and bias corrected values
are quite consistent for different forcing. The results are quite consistent when comparing the
corrected £ with several other products which are obtained by using different methodology and
forcing (e.g., Jung et al., 2009; Vinukollu et al., 2011; Mueller et al., 2013). Considering the
availability of P-E for GLEAM data which allows to compare it with the bias corrected value, only
the results of GLEAM are shown.

4. Conclusions

There has been several studies working on estimation of fresh water input from continent
to ocean (e.g., the Mediterranean Sea) based on observation or modelling approach (e.g., Boukthir

and Barnier, 2000; Mariotti et al., 2002; Struglia et al., 2004; Peucker-Ehrenbrink, 2009; Ludwig
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et al., 2009; Szczypta et al., 2012). However, these estimations are limited either by the coarse
temporal resolution for observation approach or by the non-comprehensive representation of
physical processes (e.g., human activities) for modelling approach. As a result, the fresh water
estimations are accompanied with large uncertainties among varies studies. This proposed
methodology aims to improve the estimation of continental water cycles by merging the merits of

observations and modelling approach through data assimilation.

The basis of the method is the vertical and lateral water balance equations. The method
assumes that the precipitation minus evaporation from the model simulation is an appropriate first
guess so that all the errors in river discharge end up with runoff and drainage. Under this
assumption, the river discharges simulation at river outlet are expected to be improved by

correcting the runoff and drainage (inputs for river routing model).

The idea is achieved by embedding a river routing scheme of ORCHIDEE LSM and GRDC
river discharge observations into a data assimilation system (ORCHIDAS). The system can run
with multi-level parallel computing mode (both the routing model and the optimization are
parallelized). The river discharge is optimized through applying a correction factor x to model

runoff and drainage which translates errors in estimated P-E.

The method has been explained through its application over the Iberian Peninsula with 27
GRDC stations during 1979-1989 with x values being different each year. Main conclusions are:
First, the optimization results are not sensitive to x prior information xprior, and assimilation
strategies, but the setting of xprior by a ‘pre-estimated-prior’ (defined as Qoss/Qfz) indeed converges
faster than other xprior values. The method Y1SPO (the model spin-up uses the optimal aquifer
levels of previous optimization year) demonstrates high computing efficiency and comparable
discharge accuracy comparing with the other two methods (Y1SP0, Y10C), thus the Y1SPO is
recommended (e.g., over the full Mediterranean catchment). Second, the largest correction of
discharge is found over south and northeast of the Iberian Peninsula. These regions are
characterized by large blue water footprint with large groundwater and surface water usage by
human activity. It implies that most of the corrections by x represents the missing human processes
(at least in the south of study domain). This is consistent with the fact that ORCHIDEE model

neglects the human processes (e.g., dam operation, irrigation, etc.). The discharge correction over

22



601
602
603
604
605
606
607
608

609
610
611
612
613
614
615
616
617

618
619
620
621
622
623
624
625
626
627
628
629
630

north of the Iberian Peninsula is relatively small, where is mainly due to model systematic error.
The correction factor x can also cover errors in the model structure, model parameter, or boundary
conditions (e.g., land surface characteristics imposed to the model). Third, the assimilated
discharges reveal lower bias (from >100% to <30%) and higher inter-annual variability (due to the
fluctuation of water usage) than uncorrected ones. Fourth, the bias corrected evaporation are
compared with the GLEAM v3.1a product. The £ of GLEAM is lower than the optimized E, while
the P-E of GLEAM is higher than the optimized values. This different P-E could be caused by the
different P forcing and the missing processes in the GLEAM model.

The method takes into account both gauged rivers (usually large rivers) and un-gauged
rivers, and it provides discharge estimates at daily scale from 1980 to 2014 with the time range
depend on atmospheric forcing. By using the correction factor of adjacent catchment, this method
also improves the river discharge simulation for the catchment without assimilating observations.
Besides, this method fills the gap of the data missing period (e.g., war, instruments, etc.) by
climatology values, thus the data are complete over the whole period. The proposed method is
supposed to be superior to the simple water-balance methods, because a LSM estimates £ at sub-
diurnal scales with physically based equations and takes advantage of spatial distribution of the P

and P-E.

The result implies the necessity of parameterizing the human water uptake process in the
ORCHIDEE LSM. Besides, the poor quality of the river discharge observations (e.g., 68% stations
are discarded over the Iberian Peninsula) calls for a high quality data. The optimized correction
factors x are model and atmospheric forcing dependent. It is encouraged to apply this assimilation
method to other models, which will allow us to identify the sources of errors (e.g., model missing
process or forcing data). To improve the calculation efficiency, this study uses annual mean
correction factors without considering its seasonal variation thus the seasonal discharges do not
improved. Further improvements can be made towards optimizing seasonal/monthly x, but it will
certainly cost more computing resources. Besides, it is possible that a number of optimized x can
result in the similar river discharge at downstream. Future developments may generate ensemble
optimal x to mitigate this issue. This assimilation method can be applied for water cycles studies,
data inter-comparison, and riverine fresh water estimation over other basins (e.g., the full

catchment of the Mediterranean sea).
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Figure captions:

Figure 1. (a) The illustration of correcting river discharge (Q) simulation (simulation in blue solid
dot, observation in red star) by applying correction factors (x) to runoff and drainage over different
basins. The basin 1 and basin 2 are represented in yellow and blue, respectively. (b) The model
framework of the river discharge assimilation. The blue and red parts are run for ‘First Guess” and

for assimilation, respectively.

Figure 2. The river network (blue lines) and the GRDC stations (solid dots represent the 27
qualified stations and the gray triangles represent unqualified stations) over the study domain.

Figure 3. (a) The variation of cost function J (unit: 1; logarithmic y-axis) with iterations for xprior 1
(‘xprior = 17, in blue) and for xprior rer (‘Xprior = pre-estimated-prior’, in red). The iterations 6-15 are
enlarged in the window (normal y-axis). The Norm BIAS of optimized river discharge after 7

iterations for xprior 1 (b) and for xprior rer (C).

Figure 4. The set-up of assimilation experiments for n years (n=10, 1980-1989) and £ iterations
(k=10) with m (m=27) correction factors (x) each year (x is different over years). (a) The ith year
(Yi) optimization is initialized by the end of Yi1 optimization; (b) the initial condition of Vi
optimization is got by running Yi-1 optimization fed with the same x as Yi; (c) optimizing n years
together with one year spin-up at the beginning of n-year. The Y1SPO and Y1SP1 divide the n-
year optimization into n 1-year optimization periods. The blue and red colors mean optimization
and spin-up simulations, respectively.

Figure 5. The river discharge simulations from 1980 to 1989 using WFDEI GPCC (1 row),
WFDEI CRU (2™ row) and CRU NCEP (3" row) forcing. Left: the correlation coefficient of
river discharge between observations and simulations; Right: the Norm_ BIAS of simulated river

discharge.

Figure 6. The optimization results from 1980 to 1989 using the three methods (1% row: Y1SP1;
2" row: Y1SPO; 3 row: Y10C) forced by WFDEI_GPCC. Left: the optimized correction factor
x; Middle: the correlation coefficient of river discharge between observations and optimizations;

Right: the Norm BIAS of optimized river discharge.

Figure 7. The annual cycles of river discharge for ‘First Guess’ (FG) forced by WFDEI-GPCC
(black), Y1SP1 (blue), Y1SPO (green), Y10C (yellow) and GRDC observations (red) over the
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Alcala Del Rio station (-5.98°W, 37.52°N) on the Guadalquivir river. The dotted lines mean the

trend.

Figure 8. The correction factor x obtained from Y1SPO forced by (a) WFDEI CRU, (b)
CRU_NCEP, (¢c) WFDEI GPCC, and (d) the ‘Uncertainty’ (defined by Eq. 10) of x by different

forcing. All values are averaged over 1980-1989.

Figure 9. The evaporation (£, in mm/d) before assimilation (1* line), change of evaporation (dE,
in mm/d) after and before assimilation (2" line), and the ratio of dE and runoff + drainage (3™ line)
for forcing WFDEI-GPCC (1*t column), WFDEI-CRU (2" column), CRU-NCEP (3" column),
and the ‘Uncertainty’ (defined by Eq. 10) in different forcing (4™ column) averaged from 1980 to
1989.

Figure 10. The optimization results by different atmospheric forcing (WFDEI-GPCC in black,
WFDEI-CRU in green, and CRU-NCEP in blue) over the Puente De Palmas station on Guadiana
River (a-d, -6.97°W, 38.88°N; 48515 km?) and over the Masia De Pompo station on the Jucar river
(e-h, -0.65°W, 39.15°N; 17876 km?): (a, d) annual river discharges; (b, e) runoff coefficient; (e, f)
optimized correction factor x for the simulated/assimilated river discharge (First Guess in dark

color, Y1SPO in light color) with respect to GRDC observations (in red) from 1980 to 1989.

Figure 11. The inter-annual variation of correction factor x (@; a, d, g), simulated river discharge

—“;QS”"); b, e, h) and optimized river discharge (%; ¢, f, 1) for
sim Opt

Y1SPO WFDEIGPCC (1% row), YISPO_ WFDEICRU (2" row) and Y1SPO CRUNCEP (3" row)
averaged over 1980-1989.

without assimilation (

Figure 12. Comparison of evaporation (£, in mm/d, 1% line) between GLEAM (v3.1) and FG (First
Guess), as well as E (2™ line), precipitation (P, in mm/d, 3 line), P-E (in mm/d, 4" line) and P-E
(relative value between 0-1, 5" line) between GLEAM (v3.1) and assimilated values using
different forcing (1% column: WFDEI-GPCC; 2™ column: WFDEI-CRU; 3™ column: CRU-NCEP;
4™ column: ‘Uncertainty’ (defined by Eq. 10) of using different forcing) averaged from 1980 to
1989.
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Table 1. The assimilation and simulation experiments

Name Atmospheric Forcing Method
FG(WFDEIG) WFDEI GPCC No assimilation
FG(WFDEIC) WFDEI CRU No assimilation
FG(CRUN) CRU_NCEP No assimilation

Y ISPO(WFDEIG) WFDEI GPCC Y ISPO assimilation
Y1SP1(WFDEIG) WFDEI GPCC Y1SP1 assimilation
Y10C(WFDEIG) WFDEI_GPCC Y 10C assimilation
Y 1SPO(WFDEIC) WFDEI CRU Y 1SPO assimilation
Y 1SPO(CRUN) CRU_NCEP Y 1SPO assimilation

Note: All runs are from 1980 to 1989 with 0.5° spatial resolution; FG stands for ‘First Guess’.
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Figure 1. (a) The illustration of correcting river discharge (Q) simulation (simulation in blue solid dot,
observation in red star) by applying correction factors (x) to runoff and drainage over different basins. The
basin 1 and basin 2 are represented in yellow and blue, respectively. (b) The model framework of the river

discharge assimilation. The blue and red parts are run for ‘First Guess’ and for assimilation, respectively.
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Figure 2. The river network (blue lines) and the GRDC stations (solid dots represent the 27 qualified

stations and the gray triangles represent unqualified stations) over the study domain.
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Figure 3. (a) The variation of cost function J (unit: 1; logarithmic y-axis) with iterations for xprior 1 (‘Xprior
= 1’, in blue) and for Xprior ref (“Xprior= pre-estimated-prior’, in red). The iterations 6-15 are enlarged in the
window (normal y-axis). The Norm_BIAS of optimized river discharge after 7 iterations for xprior 7 (b) and

for xprior rer ().
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Figure 4. The set-up of assimilation experiments for n years (n=10, 1980-1989) and £ iterations (k=10)
with m (m=27) correction factors (x) each year (x is different over years). (a) The ith year (Yi) optimization
is initialized by the end of Yi.1 optimization; (b) the initial condition of Y: optimization is got by running
Yi1 optimization fed with the same x as Y;; (c) optimizing n years together with one year spin-up at the
beginning of n-year. The YISPO and Y1SP1 divide the n-year optimization into n 1-year optimization

periods. The blue and red colors mean optimization and spin-up simulations, respectively.
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Figure 5. The river discharge simulations from 1980 to 1989 using WFDEI GPCC (1% row),
WFDEI CRU (2™ row) and CRU NCEP (3™ row) forcing. Left: the correlation coefficient of river

discharge between observations and simulations; Right: the Norm_BIAS of simulated river discharge.
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Figure 6. The optimization results from 1980 to 1989 using the three methods (1% row: Y1SP1; 2™ row:
Y1SPO0; 3" row: Y10C) forced by WFDEI_GPCC. Left: the optimized correction factor x; Middle: the

correlation coefficient of river discharge between observations and optimizations; Right: the Norm BIAS

of optimized river discharge.
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Figure 7. The annual cycles of river discharge for ‘First Guess’ (FG) forced by WFDEI-GPCC (black),
Y1SPI (blue), YISPO (green), Y10C (yellow) and GRDC observations (red) over the Alcala Del Rio
station (-5.98°W, 37.52°N) on the Guadalquivir river. The dotted lines mean the trend.

42



000 015 030 045 060 075 090 105 120 135 150
Figure 8. The correction factor x obtained from Y 1SPO forced by (a) WFDEI _CRU, (b) CRU_NCEP, (c)

WFDEI GPCC, and (d) the ‘Uncertainty’ (defined by Eq. 10) of x by different forcing. All values are
averaged over 1980-1989.
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Figure 9. The evaporation (£, in mm/d) before assimilation (1% line), change of evaporation (dE, in mm/d)
after and before assimilation (2™ line), and the ratio of dE and runoff + drainage (3™ line) for forcing
WFDEI-GPCC (1% column), WFDEI-CRU (2" column), CRU-NCEP (3™ column), and the ‘Uncertainty’

(defined by Eq. 10) in different forcing (4™ column) averaged from 1980 to 1989.
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Puente De Palmas-GUADIANA(Area:48515km2;Err:-0.08%)
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Figure 10. The optimization results by different atmospheric forcing (WFDEI-GPCC in black, WFDEI-
CRU in green, and CRU-NCEP in blue) over the Puente De Palmas station on Guadiana River (a-d, -
6.97°W, 38.88°N; 48515 km?) and over the Masia De Pompo station on the Jucar river (e-h, -0.65°W,
39.15°N; 17876 km?): (a, d) annual river discharges; (b, €) runoff coefficient; (e, f) optimized correction
factor x for the simulated/assimilated river discharge (First Guess - FG in dark color, Y1SPO in light color)

with respect to GRDC observations (in red) from 1980 to 1989.
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Masia De Pompo-JUCAR(Area:17876km?2;Err:-4.61%)
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Figure 10. Continued.
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Figure 11. The inter-annual variation of correction factor x (@; a, d, g), simulated river discharge without

assimilation (@; b, e, h) and optimized river discharge (%Opt); ¢, f, i) for YISPO_WFDEIGPCC (1*
opt

sim

row), Y1ISPO_ WFDEICRU (2" row) and Y1SPO CRUNCEP (3" row) averaged over 1980-1989.
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Figure 12. Comparison of evaporation (E, in mm/d, 1% line) between GLEAM (v3.1) and FG (First Guess),
as well as E (2" line), precipitation (P, in mm/d, 3™ line), P-E (in mm/d, 4" line) and P-E (relative value

between 0-1, 5" line) between GLEAM (v3.1) and assimilated values using different forcing (1% column:
WFDEI-GPCC; 2™ column: WFDEI-CRU; 3™ column: CRU-NCEP; 4" column: ‘Uncertainty’ (defined
by Eq. 10) of using different forcing) averaged from 1980 to 1989.
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Figure S1. Comparison of precipitation (P, in mm/d) between IB02 and that used in the assimilation (a
and d: WFDEI-GPCC; b and e: WFDEI-CRU; ¢ and f: CRUNCEP) averaged from 1980 to 1989: 1% row
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