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Response to Comments from Anonymous Reviewer #2 

 
We thank reviewer #2 for the comments. The reviewer’s comments are in italic below. The 
added/modified parts are highlighted in blue, both below and in revised manuscript. The revised 
marked-up manuscript (text and figures) is attached after the responses to reviewer #2’s comments. 
 
Reviewer #2: Interactive comment on “Assimilation of river discharge in a land surface model to 
improve estimates of the continental water cycles” by Fuxing Wang et al.  
 
The manuscript presents a calibration methodology to optimize a multiplicative factor on modeled 
surface runoff and deep drainage using river discharge observations. The study focus over Iberia using 
the ORCHIDEE land surface model, incorporating a river routing scheme and benefiting from the 
ORCHIDEE data assimilation system. This study is of general interest for the land surface and large-
scale hydrological communities presenting a novel optimization/calibration methodology. The 
manuscript is well presented and organized, but there are a few points that require further attention 
before publication. 
 
Comments: 
1. “Data assimilation”: Data assimilation is normally associated with an “update” of the model state, 
e.g., via improved initial condition. In this study, merging modelled river discharge with observations 
is used to “obtain optimized discharge over the entire basin” (as mentioned in the abstract). Therefore 
I fell that the term “data assimilation” could be a bit misleading for the audience, since this manuscript 
shows a model optimization or calibration. I suggest that the authors make this point very clear to 
avoid confusion.  
Answer: The data assimilation could be applied for different cases: (1) to correct initial condition 
(correcting state variable) which is mostly used for numerical weather prediction; (2) to correct the 
state variable during the data assimilation period (i.e., in this case both the trajectory of the model and 
the initial conditions are corrected); (3) to correct the parameter of a model. These different usages can 
be mixed. In the current study, the data assimilation refers to the 3rd case which is mainly used in 
ORCHIDEE data assimilation and in other land surface models.  

We find similar descriptions of data assimilation in several papers. For example, Reichle (2008) 
mentioned that ‘All data assimilation methods share the basic tenet of merging models and 
observations, yet the sophistication of the merging algorithm varies widely. Important differences also 
remain between the specific methods that are most suitable for a given application. Since atmospheric 
and oceanic dynamics are chaotic (that is, small errors in the initial condition can lead to large 
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differences at later times in the model integration), data assimilation in these areas is very much 
concerned with the estimation of initial conditions. By contrast, land surface dynamics are damped, 
and land surface assimilation is all about estimating errors in uncertain meteorological forcing 
(boundary) conditions and model parameterizations. Clearly, ‘‘one size does not fit all” in data 
assimilation’. Smith et al. (2013) explained that ‘It is most commonly used to produce initial conditions 
for state estimation: estimating model variables whilst keeping the model parameters fixed. However, 
it is also possible to use data assimilation to provide estimates of uncertain model parameters.’ Raoult 
et al. (2016) also wrote that ‘Optimisation techniques come under the umbrella of model–data fusion 
and range from simple ad hoc parameter tuning to rigorous data assimilation frameworks. These 
approaches have been used in a number of studies, covering various LSMs, to derive vectors of 
parameters that improve model–data fit significantly.’  

For this reason, the expression of ‘data assimilation’ is kept in the paper, but a clarification is given 
at Lines 91-97: The data assimilation, a specific type of inverse problem, is generally applied for 
different cases: (1) to correct initial condition (correcting state variable) which is mostly used for 
numerical weather prediction; (2) to correct the state variable during the data assimilation period (i.e., 
in this case both the trajectory of the model and the initial conditions are corrected); and (3) to correct 
the parameter of a model. In the current study, the data assimilation refers to the 3rd case. 
References:  
Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using 

data assimilation techniques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833-2852, 
https://doi.org/10.5194/gmd-9-2833-2016, 2016. 

Reichle, R. H.: Data assimilation methods in the Earth sciences, Adv. Water Resour., 31, 1411–1418, 
doi:10.1016/j.advwatres.2008.01.001, 2008. 

Smith PJ, Thornhill GD, Dance SL, Lawless AS, Mason DC, Nichols NK. 2013. Data assimilation for 
state and parameter estimation: application to morphodynamic modelling. Q. J. R. Meteorol. Soc. 
139: 314–327. doi:10.1002/qj.1944 

 
2. River routing model: Since both references of the routing model are not published yet (Nguyen-
Quang et al., 2017; Zhou et al., 2017) and this is a key component of this study it is important to have 
a bit more details on how the three linear reservoir are represented and which model parameters are 
used and were defined (e.g., water residence time). For example the aquifer level is referred later in 
the text due to spin-up, but it is not clear from the model description how the aquifers are represented 
in the model. 
Answer: More descriptions for the three linear reservoir and the water residence time are added at 
Lines 212-219: ‘In each HTU, the water is routed through a cascade of three linear reservoirs 



3 
 

characterized by their residence times: the groundwater, overland and stream reservoirs. The runoff 
and drainage are the inputs into the overland reservoir and groundwater reservoir, then they flowed 
into the stream reservoir of the downstream sub-grid basin. The residence times are determined by 
multiplying a constant reservoir factor (g) with a slope index (k). The g for stream, overland and 
groundwater reservoirs are 0.24, 3, and 25 day/km, respectively (Ngo-Duc et al., 2007). The slope 
index is a function of distance (d) and slope (S) between a pixel and its downstream pixel (k=d/S1/2 

defined by Ducharne et al., 2003).’  
At Lines 221-224: ‘The river discharge is linear with R and D at annual scale over a small basin. 

In case of more than one observation stations are assimilated in a river basin (e.g., x1 and x2 in Fig. 1a), 
the river discharge at downstream is affected by the discharge of upstream thus it is not a linear system 
anymore. Therefore, the optimization is needed to deal with the x over the non-linear sub-basins’  

At Lines 135-136: ‘The W and A terms refer to water storage and water stored in the aquifers, 
respectively.’ 

The description of aquifers are added at Lines 196-198: ‘In other words, the ORCHIDEE LSM 
assumes that the aquifer level is below the model bottom, and it neglects the upward water flow through 
capillary forces from its underlying aquifer.’ 

The two papers are available on line now at: https://www.geosci-model-dev-discuss.net/gmd-
2018-57/ and https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-88/ . The citation of the two 
papers has been updated at Line 204 (Nguyen-Quang et al., 2018; Zhou et al., 2018). The reference 
lists are adjusted at Lines 765-768 and Lines 853-856. 
Nguyen-Quang, T., Polcher, J., Ducharne, A., Arsouze, T., Zhou, X., Schneider, A., and Fita, L.: 

ORCHIDEE-ROUTING: A new river routing scheme using a high resolution hydrological 
database, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-57, in review, 2018. 

Zhou, X., Polcher, J., Yang, T., Hirabayashi, Y., and Nguyen-Quang, T.: Understanding the water cycle 
over the upper Tarim basin: retrospect the estimated discharge bias to atmospheric variables and 
model structure, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-88, in review, 
2018. 

 
3. How does the simple estimate of the correction factor used as prior (“xprior”) compares with 
optimized values in figure 6? Are the changes significant for example in terms of improved correlation? 
Answer: For easier understanding, the methods of ‘xprior = 1’ and ‘xprior = pre-estimated-prior’ are 
named as xprior_1 and xprior_ref, respectively (Section 2.4 and Fig. 3). 

The xprior_ref is compared with optimized correction factor in Fig. R1 below. The xprior_ref captures 
the general distribution pattern of optimal x, but the correlation coefficient of using xprior_ref is lower 
than that of using optimal x. In other words, the assimilated river discharge is improved through both 
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choosing xprior_ref and optimization. The role of optimization is to find an appropriate correction factor 
when there are several basins (with observations) overlaps at upstream.  

Correction Factor                      Correlation Coefficient 

 

 
Figure R1. The xprior_ref (left) and the correlation coefficient (right) of river discharge between 
observations and simulations from 1980 to 1989 for WFDEI_GPCC (1st row), WFDEI_CRU (2nd 
row) and CRU_NCEP (3rd row) forcing.  
 

(a) (b)

(c) (d)

(e) (f)
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Explanations were added in Lines 397-401: ‘It should be mentioned that the xprior_ref is able to 
capture the general distribution pattern of optimal x, but the performance of river discharge estimation 
is significantly improved through optimization. The role of optimization is to find an appropriate 
correction factor when there are several basins (with observations) overlaps at upstream’. 
 
4. Role of forcing: To discard the role of precipitation forcing, the three datasets could be compared 
with a high resolution precipitation dataset (IB02, Belo-Pereira et al. 2011) also in terms of mean ratios: 
GPCC/IB02 CRU/IB02 NCEP/IB02 and compared with the “x” correction factor. I don’t see this as 
mandatory for the paper’s publication, but would make the results more robust. 
Belo-Pereira M, Dutra E, Viterbo P. Evaluation of global precipitation data sets over the Iberian 

Peninsula. Journal of Geophysical Research-Earth Surface. 2011. 116: D20101. 
doi:10.1029/2010jd015481. 

Answer: The precipitation of WFDEI_GPCC, WFDEI_CRU, and CRU_NCEP is compared with the 
IB02 precipitation data. The precipitation of the three forcing are higher than IB02 over most regions 
(Figs. R2a-R2c) but their spatial distributions are different with the proposed evaporation correction 
(Figs. 9e-9g). The ratios of WFDEI_GPCC/IB02, WFDEI_CRU/IB02 CRU_NCEP/IB02 are generally 
higher than 1 with few grid cells of ratios lower than 1 being distributed randomly (Figs. R2d-R2f). 
The pattern of the three ratios is not consistent with the optimized correction factor (Figs. 8a-8c), which 
indicates that the precipitation forcing error is not likely the dominant factor of the correction factor 
distribution.  

These analysis are added in the revised manuscript (Lines 452-459): ‘This is also demonstrated 
by comparing the precipitations between the three forcing and IB02 dataset. Compared to IB02, all the 
three forcing overestimate rainfall in the Iberian Peninsula (Figs. S1a-S1c), but none of these error 
patterns resembles that of the proposed E correction (Figs. 9e-9g). Unlike the pattern of the correction 
factor (Figs. 8a-8c), the ratios of annual mean precipitation between the three forcing and IB02 are 
higher than 1 over most regions (Figs. S1d-S1f). Therefore, the precipitation forcing error is not likely 
the dominant factor in determining the correction factor distribution.’ 

The IB02 dataset is described at Lines 254-257: ‘The precipitation of the three forcing is compared 
with IB02 dataset which is a gridded daily rainfall dataset for Iberia Peninsula with 0.2° resolution 
covers 1950 to 2003 (Belo-Pereira et al., 2011). It is generated by using ordinary kriging from more 
than 2400 quality-controlled stations.’ 

The reference was added at Lines 650-652. The Figs. R2d-R2f below were added in the 
‘Supplementary’ of the manuscript (Fig. S1). 
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Figure R2. Comparison of precipitation (P, in mm/d) between IB02 and that used in the assimilation 
(a and d: WFDEI-GPCC; b and e: WFDEI-CRU; c and f: CRUNCEP) averaged from 1980 to 1989: 
1st row for difference; 2nd row for ratio. 
 
5. Impact on evaporation: Section 3.4 compares the first guess evaporation by the land-surface model 
with the changes in evaporation resulting for the correction as a post-processing. Would it be possible 
to re-run the LSM applying just a constant correction factor to evaporation ? I understand that this 
might be difficult to do while conserving energy, but even if energy is not conserved, it could show 
the impact of “improving” evaporation, that would then be reflected directly in R & D and should, in 
principle improve the discharge simulations. 
Answer: We tested the possibility of improving river discharge by using a constant correction factor 
to evaporation. Theoretically, the modification of evaporation leads to a change in soil moisture thus 
surface runoff and deep drainage are changed. From Eq. (6), the correction factor for E (XEcorr) can be 
derived from x by Eq. (R1). The XEcorr is then applied to correct E (Eq. R2). Like the correction factor 
x, the XEcorr changes with year. 

ܺா௖௢௥௥ ≈ ܧ + ሺ1 − ሻݔ · ሺܴ + ܧሻܦ ,                                              ሺܴ1ሻ 

௖௢௥௥ܧ = ܺா௖௢௥௥ ·  ሺܴ2ሻ                                                         ܧ

The Eqs. R1 and R2 were implemented in ORCHIDEE LSM and the LSM was running over 
1980-1984. The Fig. R3 shows the BIAS of river discharge after correcting evaporation in ORCHIDEE 
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LSM. The absolute BIAS is reduced comparing with the reference run (forced by WFDEI_GPCC 
without correcting evaporation).  

The BIAS becomes negative after correcting evaporation, which is probably because the 
evaporation correction factor XEcorr is greater than 1 over most cases, and it leads to a decrease in R+D 
with time evolution. Unlike the correction of runoff and drainage by using a constant factor (change 
with year) in current study, the correction of evaporation leads to a feedback on soil moisture which in 
turn affects the evaporation simulation. Therefore, both energy and water balance are not conserved in 
this case. Another solution of improving river discharge simulation by correcting evaporation could be 
to run the full ORCHIDEE LSM in the assimilation system with the same cost function as Eq. (7) in 
the manuscript. In this way, the intermediate variables are adjusted towards optimal river discharge 
with the modification of evaporation. Because the optimization by running the full ORCHIDEE model 
is very time consuming, this is not done in this paper but could be one of the future work.  

The explanations were added in the revised manuscript (Line 487-496): ‘We also tested the 
possibility of improving the river discharge estimation by using a constant correction factor to 
evaporation (XEcorr). The XEcorr (different for each year) can be derived from Eq. (6).  

ܺா௖௢௥௥ ≈ ܧ + ሺ1 − ሻݔ · ሺܴ + ܧሻܦ ,                                              ሺ11ሻ 

௖௢௥௥ܧ = ܺா௖௢௥௥ ·  ሺ12ሻ                                                         ܧ

Although the Eqs. 11-12 are able to improve river discharge estimation by modifying soil 
moisture, the energy and water balance are not conserved. One solution could be to run the full 
ORCHIDEE LSM in the assimilation system with the same cost function as Eq. (7). In this way, the 
intermediate variables are adjusted towards optimal river discharge with the modification of 
evaporation. This approach executes the full ORCHIDEE model thus is very time consuming and is 
beyond the scope of the current study.’ 
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Figure R3. The BIAS of simulated river discharge before (left) and after (right) correcting evaporation 
in LSM by correction factor from 1980 to 1984.  
 
6. Comparison with GLEAM: It would be beneficial to also present the comparison between the 
original Evaporation and GLEAM in addition to the results in Fig. 12 (could be an extra panel). 
Considering the results shown, I find it difficult to understand the sentence “ ln 473: “This result further 
confirms that ….. And some processes are probably missing in GREAM v3.1”. Please expand on this 
discussion to clarify the basis for this assumption. 
Answer: The comparison between the original Evaporation and GLEAM is shown in Fig. S4 below 
(and Figs. 12a-12d in the revised manuscript).  

The explanations have been added at Lines 551-554: ‘We find large difference between GLEAM 
and FG, which indicates that the evaporation is quite uncertain for different estimations. The 
geographical distribution and magnitude of difference in E between GLEAM and FG is highly 
consistent with that between GLEAM and bias corrected values by using different forcing (Figs. 12a-
12c, and 12e-12g).’ 

The sentences have been revised at Lines 558-561 to avoid confusion: ‘Because the bias corrected 
P-E are corrected by GRDC observed river discharge, the P-E (≈river discharge) of GLEAM is very 
likely to be higher than GRDC observations over the Iberia. This result indicates that some processes 
are probably also missing in GLEAM v3.1.’  
 

(a) (b)
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Figure R4. Comparison of evaporation (E, in mm/d) between GLEAM (v3.1) and FG values using 
different forcing (a: WFDEI-GPCC; b: WFDEI-CRU; c: CRUNCEP; d: uncertainty of using different 
forcing) averaged from 1980 to 1989.  
 
 
Details: 
1. Ln 21: “earth’s water cycle” 
Answer: Revised (Line 21).  
 
2. Ln 324: The relative bias shown in figure 5 highlight the biases in the South since the absolute 
values are low. The absolute biases might be higher in the northern areas. 
Answer: Fig. R5 below plots the absolute bias over 1980-1989 by three different forcing. The high 
values of absolute bias are distributed in both northern and southern areas, and its spatial distribution 
is different for different forcing. To avoid confusion, the BIAS is named normalized bias (Norm_BIAS) 
in the revised manuscript.  

The explanations have been added at Lines 369-371: ‘The spatial pattern of the absolute bias in 
river discharge varies with the atmospheric forcing (not shown). The normalized bias is then applied 
to measure the river discharge simulation.  

The expression was also revised at Line 374: ‘The Norm_BIAS is small (within +/- 0.3) over north, 
west and southeast of the region (Figs. 5b, 5d and 5f)’. 
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Figure R5. The absolute bias (m3/s) of river discharge simulations from 1980 to 1989 using 
WFDEI_GPCC (a), WFDEI_CRU (b) and CRU_NCEP (c) forcing.  
 
3. Ln 351: Should be: “Fig. 7 shows the annual mean” and not “annual cycle”  
Answer: Revised to ‘annual mean’ (Line 407). 
 
4. Ln 357: Looking that the stations distribution in Figure 2, the station Alcala Del Rio looks very 
close to Cantillana. If this is the case, the good results in Alcala Del Rio might be just a direct effect 
of the use of Cantillana observations, and it does not “validate the hypothesis that x is distributed 
homogeneously over the upstream basin”. Please provide the distance between the stations and 
difference in upstream area and mean Qobs to show that Alcala Del Rio has other tributaries than just 
Cantillana to justify this sentence. 
Answer: Based on GRDC observations, the distance and the difference in upstream area between 
Alcala Del Rio and Cantillana stations are 15.3 km and 2124 km2 (46995 km2 and 44871 km2, 
respectively). Between the two stations, there are several tributaries flow to Alcala Del Rio station, 
which leads to different annual mean river discharges at Cantillana (49.7 m3/y) and Alcala Del Rio 

(a) FG(WFDEIG) (b) FG(WFDEIC) 

(c) FG(CRUN) 
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stations (94.8 m3/y). This result illustrates that this approach is able to correct the river discharge over 
the entire basin. The above numbers and expressions were provided in the revised manuscript at Lines 
409-416: ‘The observation of this station is not assimilated due to its large upstream area difference 
(15.53%>10%) between model (55635 km2) and GRDC (46995 km2). The overestimated discharge 
simulated by the model at this station is also corrected because it benefits from the correction factor 
estimated at the Cantillana station (-5.83ºW, 37.59ºN; 44871 km2) which locates at the 15.3 km 
upstream of Alcala Del Rio station of the Guadalquivir River (southwest of the Iberian Peninsula). 
Between the two stations, there are several tributaries flow to Alcala Del Rio station, which leads to 
different annual mean river discharges at Cantillana (49.7 m3/y) and Alcala Del Rio stations (94.8 
m3/y). This result illustrates that this approach is able to correct the river discharge over the entire 
basin.’ 
 
5. Ln 429: It is not clear that the simulations “underestimate the inter-annual variability”. Could you 
provide the standard-deviation of the annual means of the observations and simulations? 
Answer: The standard-deviations of the annual means for the FG(WFDEIG) and FG(WFDEIC) are 
28.8 m3/s and 25.2 m3/s, respectively. They are lower than observation (33.8 m3/s). The values are 
provided at Line 506-509: “… while the FG(WFDEIG) and FG(WFDEIC) underestimate the inter-
annual variability comparing with observations (Fig. 10a-10b). The standard-deviation of the annual 
means for observation, FG(WFDEIG), FG(WFDEIC) and FG(CRUN) are 33.8 m3/s, 28.8 m3/s, 25.2 
m3/s and 34.3 m3/s, respectively.” 
 
6. Ln 436 (results in Fig. 10): If we assume that the increase in discharge is due to an increase of 
groundwater abstraction should we expect decrease of the correction factor since this is a process 
which is not represented in the model? The opposite sign with an increase of the correction factor, with 
higher corrections in 1980 (around 0.2) and lower in 1989 (around 0.6) suggests that the correction 
factor is correcting for other processes and not human intervention? I think this is worth some 
discussion.  
Answer: The following sentences and references were removed to avoid confusion: “The groundwater 
usage occupies about 90%, 16% and 44% in upper, middle and lower Guadiana river basin (Aldaya 
and Llamas, 2008). The groundwater abstraction increases (irrigation intensifies) during this period 
(Llamas and Garrido, 2007), which causes a reduction in soil water storage capacity and an increase 
in river discharge (Valverde et al., 2015)”.  
Llamas, M. R. and Garrido, A.: Lessons from intensive groundwater use in Spain: Economic and 

social benefits and conflicts, In: Giordano M, Villholth KG (eds) The agricultural groundwater 
revolution: Opportunities and threats to development, Chapter 13. CABI International, 
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Oxfordshire, 266–295, 2007. 
Valverde, P., Serralheiro, R., de Carvalho, M., Maia, R., Oliveira, B., and Ramos, V.: Climate change 

impacts on irrigated agriculture in the Guadiana river basin (Portugal), Agric Water Manag, 
152:17–30, doi:10.1016/j.agwat.2014.12.012, 2015. 

 
New discussions (including a reference) and a new reference were added at Lines 511-515 and 

Lines 835-837: ‘Besides, there are many interconnected wetlands and structurally complex 
hydrogeological boundaries between the two upper-Guadiana aquifer in the upper Guadiana River 
basin (Van Loon and Van Lanen, 2013). These complex features are difficult to represent in model 
thus large bias exist in river discharge of ORCHIDEE. The correction factor corrects these model 
defects (Fig. 10c) and it demonstrates good skill in correcting the inter-annual variability of 
discharge and runoff coefficient (Fig. 10a-10b).’ 
Van Loon, A. F. and Van Lanen H. A. J.: Making the distinction between water scarcity and drought 

using an observation-modeling framework, Water Resour Res, 49, doi:10.1002/wrcr.20147, 2013.  
 
 
 
 
 



1 
 

Assimilation of river discharge in a land surface model to 1 

improve estimates of the continental water cycles  2 

 3 

Fuxing WANG1, Jan POLCHER1, Philippe PEYLIN2, and Vladislav BASTRIKOV2 4 

 5 

1Laboratoire de Météorologie Dynamique, IPSL, CNRS, Ecole Polytechnique, 91128, Palaiseau, 6 

France 7 

2Laboratoire des sciences du climat et de l'environnement, IPSL, CEA, Orme des Merisiers, 8 

91191, Gif sur Yvette, France 9 

 10 

 11 

Manuscript revised on May 20, 2018 12 

To be submitted to Hydrology and Earth System Sciences (HESS) 13 

 14 

*Correspondence to:  15 

Fuxing Wang  16 

Email: fuxing.wang@lmd.jussieu.fr 17 

Tel: 0033 (0)1 69 33 51 80 18 

  19 



2 
 

Abstract: 20 

The river discharge plays an important role in earth’s water cycle, but it is difficult to 21 

estimate due to un-gauged rivers, human activities, and measurement errors. One approach is based 22 

on the observed flux and a simple annual water balance model (ignoring human processes) for 23 

ungauged rivers, but it only provides annual mean values which is insufficient for oceanic 24 

modellings. Another way is by forcing a land surface model (LSM) with atmospheric conditions. 25 

It provides daily values but with uncertainties associated to models.  26 

We use data assimilation techniques by merging the modelled river discharges by 27 

ORCHIDEE (without human processes currently) LSM and the observations from Global Runoff 28 

Data Center (GRDC) to obtain optimized discharges over the entire basin. The ‘model systematic 29 

errors’ and ‘human impacts’ (e.g., dam operation, irrigation, etc.) are taken into account by an 30 

optimization parameter x (with annual variation), which is applied to correct model intermediate 31 

variables runoff and drainage over each sub-watershed. The method is illustrated over the Iberian 32 

Peninsula with 27 GRDC stations over the period 1979-1989. ORCHIDEE represents a realistic 33 

discharge over north of the Iberian Peninsula with small model systematic errors, while the model 34 

overestimates discharges by 30%-150% over south and northeast region where the blue water 35 

footprint is large. The normalized bias has been significantly reduced to less than 30% after 36 

assimilation, and the assimilation result is not sensitive to assimilation strategies. This method also 37 

corrects the discharge bias for the basins without observations assimilated by extrapolating the 38 

correction from adjacent basins. The ‘correction’ increases the inter-annual variability of river 39 

discharge because of the fluctuation of water usage. The E (P-E) of GLEAM (Global Land 40 

Evaporation Amsterdam Model, v3.1a) is lower (higher) than the bias corrected value, which could 41 

be due to the different P forcing and probably the missing processes in the GLEAM model. 42 

Key words: river discharge; data assimilation; human processes; water cycle; land surface model; 43 

the Mediterranean 44 

  45 
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1. Introduction 46 

The river discharge is an essential component of the earth’s water cycles, which can be 47 

used as an indicator of the hydrological cycle intensification (Munier et al., 2012). It is important 48 

not only for water resources management, climate studies, ecosystem health over land (Syed et al., 49 

2010; Sichangi et al, 2016), but also for providing freshwater inflow to ocean (Dai and Trenberth, 50 

2002). The freshwater flux at the sea surface has significant influence on the climate system (e.g., 51 

ENSO, ocean dynamics) and on ocean salinity (Kang et al., 2017). The fresh water inputs for ocean 52 

model usually requires high frequency data (e.g., daily or 10-daily, Scherbakov and Malakhova 53 

2011). Besides, as the ocean model with high spatial resolution (e.g., < 10 km) demonstrates better 54 

skills than coarse resolution model (Bricheno et al., 2014; Wang et al., 2017), there is also a 55 

requirement of high resolution fresh water fluxes. Although great efforts have been made for 56 

gridded river discharge data at global scale (e.g., RivDIS v1.1, Vorosmarty et al., 1998; Dai and 57 

Trenberth, 2002; Fekete et al., 2002), these data are usually at monthly or annual scales and have 58 

not been updated with time. Therefore, it is of great interest to estimate large scale river discharge 59 

over the long-term at high temporal and spatial resolution and low uncertainty. 60 

Estimating the river discharge input to ocean is a difficult endeavor for several reasons. 61 

First, there are many un-gauged rivers that are difficult to evaluate. Second, most large rivers are 62 

gauged by national agencies, and these data are difficult to access for public users. Besides, the 63 

number of operational gauging stations is decreasing worldwide (Syed et al., 2010; Sichangi et al, 64 

2016). Third, even though the observations are available, the observed river flow at the outlet is 65 

not well known because it is difficult to get gauging stations close to the river mouth and many 66 

observations are affected by human activities especially in semi-arid regions (Jordà et al., 2017).  67 

One approach to estimate the freshwater inflow into ocean is based on the observed water 68 

fluxes over data-rich regions and a simple annual water balance model, precipitation inputs minus 69 

the evaporation, which ignoring human usage and other processes over ungauged basins (e.g., 70 

Szczypta et al. 2012; Peucker-Ehrenbrink, 2009; Mariotti et al., 2002; Struglia et al. 2004; Boukthir 71 

and Barnier, 2000; Ludwig et al., 2009). This method is the basis of most water balance studies 72 

and oceanic modelling activities but it has several limitations. First, there are uncertainties in 73 

observations related to measurement method and post-processing method. These uncertainties are 74 
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difficult to quantify due to the incomplete information (Jordà et al., 2017). Second, only annual 75 

mean values are available over un-gauged basins (about 40% for the Mediterranean; 42% over 76 

globe excluding Greenland and Antarctica, Clark et al., 2015) by simple runoff models, which are 77 

not sufficient for oceanic modellings. 78 

Riverine input can also be obtained through forcing a state of the art land surface model 79 

(LSM) or global hydrological model (GHM) with bias corrected atmospheric conditions (e.g., aus 80 

der Beek et al., 2012; Bouraoui et al. 2010; Jin et al., 2010; Sevault et al., 2014). These numerical 81 

models can estimate river discharge at higher frequency and over more un-gauged basins (Jordà et 82 

al., 2017), but they are associated with modelling uncertainties. First, models are designed and 83 

have proved the ability to capture the natural water cycles, but relatively less progress has been 84 

made in parameterizing human processes (Pokhrel et al., 2017). The water flow of many 85 

catchments has been strongly regulated by human through irrigation use, dam operation, etc. (e.g., 86 

the southern shores of the Mediterranean). Second, there are large discrepancies among models 87 

resulting from the differences in model inputs, parameterizations, and atmospheric forcing data 88 

(Ngo-Duc et al., 2007; Wang et al., 2016; Liu et al. 2017).  89 

The objective of the present study is to illustrate a novel approach based on assimilation 90 

techniques applied to LSM to estimate continental water cycles (riverine fresh water). The data 91 

assimilation, a specific type of inverse problem, is generally applied for different cases: (1) to 92 

correct initial condition (correcting state variable) which is mostly used for numerical weather 93 

prediction; (2) to correct the state variable during the data assimilation period (i.e., in this case 94 

both the trajectory of the model and the initial conditions are corrected); and (3) to correct the 95 

parameter of a model. In the current study, the data assimilation refers to the 3rd case. This 96 

assimilation approach merges the data from the model (ORCHIDEE LSM) and the observed river 97 

discharge from the Global Runoff Data Centre (GRDC, 56068 Koblenz, Germany). This will allow 98 

to compensate for model systematic errors or missing processes and provide estimates of the 99 

riverine input into the sea at high temporal and spatial resolution. Although previous works exist 100 

on assimilation of river discharge (e.g., Li et al., 2015; Bauer-Gottwein et al., 2015; Pauwels et al., 101 

2009), these studies mainly focus on the stream flow prediction over individual catchments. They 102 

are difficult to extend to long-term scale and large catchment due to the observations and 103 

computing time limitations.  104 
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This paper focuses on the methodology and its illustration in a Mediterranean region (the 105 

Iberian Peninsula) which is considered one of the most vulnerable regions to climate change due 106 

to its geographic and socio-economic characteristics (Vargas-Amelin and Pindado, 2014). 107 

Although the amount of river discharge is relatively small (about one third to half of precipitation 108 

amount; Tixeront, 1970; Shaltout and Omstedt 2015), it is an important source of fresh water 109 

entering the Mediterranean Sea and it plays an important role in sustaining the marine productivity 110 

(Bouraoui et al., 2010) and overturning circulation (Verri et al., 2017). The river discharges to the 111 

Mediterranean Sea underwent important changes during recent decades. This variation is 112 

particularly important for this region because of its scarce water resource with increasing water 113 

demand for domestic, industrial, irrigation and tourism activities, as well as its drier and warmer 114 

conditions under climate change (Romanou et al., 2010). Considering the high stress on the water 115 

resources in the Mediterranean region, accurate estimation of the actual resources is important.  116 

The methods (including the model, datasets and numerical experiment) are described in 117 

Sect. 2. The results and discussions are given in Sect. 3. Conclusions are drawn in Sect. 4.  118 

2. Methods 119 

2.1. The theoretical background 120 

The theoretical basis of the LSM assimilation for the study is the vertical and lateral water 121 

balance. The precipitation (P) input of a basin is transferred into either evaporation, surface runoff 122 

(R), deep drainage (D) (eventually the R and D reaching the channel and leaving in the form of 123 

river discharge), or stored in the ground.  124 

ݐܹ݀݀ = ܲ − (ܴ + (ܦ −  125 (1)                                                             ,ܧ

Over long period, the change of water storage ௗௐௗ௧  is small (ௗௐௗ௧ ≈ 0), thus 126 

ܲ − ≈ ܧ ܴ +  127 (2)                                                                   ܦ

The lateral water balance over a basin (e.g., the sub-catchment 2 in blue in Fig. 1a) is given 128 

by:  129 
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ݐଶ݀ܣ݀ = ቈන (ܴଶ + ଶ)ௌమܦ ቉ݏ݀ − ܳଶ + ܳଵ,                                                  (3) 130 

where S2 is the area of sub-catchment 2; A2 is the water stored in the aquifers of area S2; Q2 and Q1 131 

are the river discharge at outlet of each sub-catchment, and they are calculated by the integral of 132 

runoff and drainage over the sub-catchment area S1 and S2. We assume the A2 variation at annual 133 

scale is small (ௗ஺మௗ௧ ≈ 0) due to its slow variability, although it can be nonzero due to the human 134 

intervention (e.g., over Indo-Gangetic Basin, MacDonald et al., 2016). The W and A terms refer to 135 

water storage and water stored in the aquifers, respectively. The Eqs. (1)-(3) describe the basic 136 

water cycle processes in the LSMs.  137 

Despite that the LSMs have developed rapidly during the last few decades, few models 138 

take into account the human water usage processes. Due to this limitation, LSMs are usually 139 

accompanied with errors in reproducing discharge and evaporation in areas where these processes 140 

are dominant. Assuming the P forcing is known in LSM, the modelled water continuity imposes a 141 

balance of errors between E, R and D. However, the R and D are conceptual variables, and their 142 

errors are impossible to evaluate by observations directly. The field measurements of E over large 143 

area are also scarce due to land surface heterogeneity (Kalma et al., 2008). Fortunately, the 144 

observations of river discharge (Qobs) are available. By fitting modelled discharge with Qobs, we 145 

can correct model intermediate variables in Eqs. (1)-(3) (e.g., correct R and D by a correction factor 146 

x, Fig. 1a) in order to get bias corrected river discharge (Qcorr).   147 

ܳ௖௢௥௥ = න ݔ) · ܴ + ݔ · ௖௔௧௖௛௠௘௡௧ܵ݀(ܦ ,                                                     (4) 148 

Recalling the ௗௐௗ௧  is small and P is known, we then transfer the x into vertical water balance 149 

and close the horizontal water balance by the corrected evaporation (Ecorr):  150 

௖௢௥௥ܧ ≈ ܲ − ݔ · (ܴ +  151 (5)                                                           ,(ܦ

The impacts of assimilation on E (∆E) can be derived from the optimal x, R, and D: 152 

ܧ∆ = ௖௢௥௥ܧ − ܧ ≈ (1 − (ݔ · (ܴ +  153 (6)                                              ,(ܦ
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The key problem remains to determine the optimal x (described in Sect. 2.2.2). Each 154 

discharge observation station corresponds to an optimal correction factor x since the discharge is 155 

the only representative of the integral over the basin. The total number of x depends on the number 156 

of available stations. The optimal x over each observation station is applied to its entire upstream 157 

area. Over each upstream area (dashed box in Fig. 1a), the optimal x of these model grid cells are 158 

the same. The ‘R + D’ and E are corrected at the same grid cell level by x and Eq. (5), respectively.  159 

2.2. The models 160 

2.2.1. Assimilation strategy and ORCHIDAS 161 

The optimal x is obtained from the ORCHIDEE Data Assimilation System (ORCHIDAS, 162 

https://orchidas.lsce.ipsl.fr/). It was designed to optimize the variables related to water, energy and 163 

carbon cycles in ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems; 164 

Krinner et al. 2005; De Rosnay et al., 2002) LSM by using various observations (e.g. in situ, 165 

satellite, etc.). The ORCHIDAS has been applied over different regions for various variables and 166 

demonstrated good performance (Santaren et al., 2007; Kuppel et al., 2012; MacBean et al., 2015).  167 

More details of ORCHIDAS are presented by Peylin et al. (2016).  168 

In this work, the ORCHIDAS drives the ORCHIDEE routing scheme which is 169 

computationally less expensive than the full ORCHIDEE model (Fig. 1b). The data assimilation 170 

approach relies on the minimization of a misfit function J(x) (aka cost function) by successive calls 171 

to “gradient-descent” minimization algorithm L-BFGS-B (Limited-memory Broyden-Fletcher-172 

Goldfarb-Shanno algorithm with simple Box constraints, Byrd et al., 1995).  173 

A new vector of parameter values x is estimated at each iteration. The J(x) measures the 174 

mismatch between the vector of observed river discharges Qobs and corresponding simulated 175 

values Qsim (x), as well as between the optimized correction factors x and its prior information xprior:  176 

(ܠ)ܬ =ሾۿ௢௕௦ − ௢௕௦ۿଵሾି܀ሿ௧(ܠ)௦௜௠ۿ − ሿ(ܠ)௦௜௠ۿ + ൫ܠ − ܠ௣௥௜௢௥൯௧۰ିଵ൫ܠ −  ௣௥௜௢௥൯,             (7) 177ܠ

where R and B represent the prior error covariance matrices for observations and parameters, 178 

respectively. Diagonal elements of R matrix represent the data uncertainties, which include both 179 
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the measurement errors (systematic and random) and model errors, we have defined it as the root 180 

mean squared error (RMSE) between the prior model simulations and the observed river 181 

discharges. Non-diagonal elements describe correlations between the data, which however are 182 

difficult to presume correctly, and are usually neglected. The prior parameter uncertainties (matrix 183 

B) have been set to 40% of the range of variation of correction factors obtained from the ratio Qobs 184 

and first guess value of river discharge simulation (Qfg) obtained from xprior. The matrix B was 185 

determined based on the expert knowledge of ORCHIDEE model (Kuppel et al., 2012; Santaren 186 

et al., 2014). Correlations between prior parameter values have not been considered. The gradient 187 

of the J(x) is calculated for all the parameters by finite difference approach at each iteration 188 

(Kuppel et al., 2012).  189 

2.2.2. ORCHIDEE LSM with high-resolution river routing model 190 

The ORCHIDEE LSM is the land component of Institut Pierre Simon Laplace Climate 191 

Model (IPSL-CM), which simulates energy, water and carbon cycles between the soil and 192 

atmosphere. The unsaturated water flow is described at each land point by the one-dimensional 193 

Richards equation with 2 m soil discretized to 11 levels. The surface runoff and deep drainage at 194 

bottom layer are computed by Horton overland flow and free drainage (equals to hydraulic 195 

conductivity), respectively. In other words, the ORCHIDEE LSM assumes that the aquifer level 196 

is below the model bottom, and it neglects the upward water flow through capillary forces from its 197 

underlying aquifer. The evaporation is partitioned into transpiration, bare soil evaporation, 198 

interception loss and snow sublimation. 199 

The ORCHIDEE is coupled with the ocean model through the river routing scheme 200 

(Polcher, 2003; Ducharne et al. 2003; Guimberteau et al., 2012) which computes river discharge 201 

by integrating the surface runoff and deep drainage over the basin. A high-resolution river routing 202 

scheme was developed recently, which allows to better describe of catchments boundaries, flow 203 

direction, and water residence time (Nguyen-Quang et al., 2018; Zhou et al., 2018). It is based on 204 

the HydroSHED (Hydrological data and maps based on SHuttle Elevation Derivatives at 205 

multiple Scales; http://www.hydrosheds.org/; Lehner et al., 2008) map with 1 km spatial resolution. 206 

There are several hydrological transfer units (HTUs) in one ORCHIDEE grid-cell (e.g., 100 in the 207 

current study). The HTU is constructed based on the Pfafstetter topological coding system and 208 
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user defined size. Each HTU represents the section of the river basin within the grid box, and many 209 

HTUs forms a river basin (Nguyen-Quang et al., 2018). Therefore, the relative locations of HTUs 210 

in each grid cell are not fixed.  211 

In each HTU, the water is routed through a cascade of three linear reservoirs characterized 212 

by their residence times: the groundwater, overland and stream reservoirs. The runoff and drainage 213 

are the inputs into the overland reservoir and groundwater reservoir, then they flowed into the 214 

stream reservoir of the downstream sub-grid basin. The residence times are determined by 215 

multiplying a constant reservoir factor (g) with a slope index (k). The g for stream, overland and 216 

groundwater reservoirs are 0.24, 3, and 25 day/km, respectively (Ngo-Duc et al., 2007). The slope 217 

index is a function of distance (d) and slope (S) between a pixel and its downstream pixel (k=d/S1/2 218 

defined by Ducharne et al., 2003). The water can flow either to the next HTU within the same grid 219 

cell or to the neighboring cell. The river discharge is diagnosed at the HTU level in the assimilation. 220 

The river discharge is linear with R and D at annual scale over a small basin. In case of more than 221 

one observation stations are assimilated in a river basin (e.g., x1 and x2 in Fig. 1a), the river 222 

discharge at downstream is affected by the discharge of upstream thus it is not a linear system 223 

anymore. Therefore, the optimization is needed to deal with the x over the non-linear sub-basins. 224 

The time steps for the ORCHIDEE model and routing scheme are 30 minutes and 3 hours, 225 

respectively. The spatial resolution of the model depends on the resolution of the atmospheric 226 

forcing, and it is 0.5° for the current study (given in Sect. 2.3.2). The soil texture map is from 227 

United States Department of Agriculture (USDA) with 12 soil textures (Reynolds et al. 2000). The 228 

vegetation map is from the European Space Agency Climate Change Initiative (ESA CCI, 229 

https://www.esa-landcover-cci.org/) reduced to the 13 plant functional types represented by the 230 

model. 231 

2.3. The study domain and the datasets 232 

2.3.1. Study domain 233 

The assimilation system is applied over the Iberian Peninsula. This region is dominated by 234 

two climate types: the oceanic climate in the Atlantic coastal region and the Mediterranean 235 

climate over most of Portugal and Spain. The annual precipitation is extremely unevenly 236 
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distributed with more than 1500 mm over northeastern Portugal, much of coastal Galicia and along 237 

the southern borders of the Pyrenees but less than 300 mm over southeast Spain (Estrela et al., 238 

2012). Over Spain, agriculture occupies approximately 50% of the land area (e.g., year 2014, 239 

https://data.worldbank.org/indicator/AG.LND.AGRI.ZS), and with around 1200 large dams 240 

(European Working Group on Dams and Floods, 2010).  241 

2.3.2. The meteorology forcing 242 

In order to study the sensitivity of the optimization results to different forcing data, three 243 

meteorology forcing are used: WFDEI_GPCC, WFDEI_CRU and CRU_NCEP. The 244 

WFDEI_GPCC and WFDEI_CRU (3-hourly, 0.5°) are based on the WFDEI meteorological 245 

forcing data which was produced using WATCH (WATer and global CHange) Forcing Data 246 

(WFD) methodology applied to ERA-Interim data at 0.5° (Weedon et al., 2014; http://www.eu-247 

watch.org/data_availability). The WFDEI is from 1979 and updates until now with eight 248 

meteorological variables at 3-hourly time steps. The precipitation of WFDEI_GPCC and 249 

WFDEI_CRU is corrected by GPCC (Global Precipitation Climatology Centre) and CRU 250 

(Climatic Research Unit), respectively. The CRU_NCEP (6-hourly, 0.5°) combines the CRU 251 

TS.3.1 (0.5°, monthly) climatology covering 1901-2012 and the NCEP (National Centers for 252 

Environmental Prediction) reanalysis (2.5°,  6-hour) beginning in 1948 253 

(https://vesg.ipsl.upmc.fr/thredds/fileServer/store/p529viov/cruncep/readme.html). The 254 

precipitation of the three forcing is compared with the IB02 which is a gridded daily rainfall dataset 255 

for the Iberia Peninsula with 0.2° resolution covers 1950 to 2003 (Belo-Pereira et al., 2011). It is 256 

generated by using ordinary kriging from more than 2400 quality-controlled stations. 257 

2.3.3. The GRDC dataset  258 

The Global Runoff Database collects the monthly river discharge from most basin agencies 259 

around the world (more than 9,300 stations) with an average record length of 43 years. Although 260 

the quality of the observations is unknown (e.g., monitoring the river transect, velocity 261 

measurements, etc.), the GRDC datasets are the most complete river discharge dataset available 262 

today. It is hosted by the German Federal Institute of Hydrology 263 
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(Bundesanstalt für Gewässerkunde or BfG; 264 

www.bafg.de/GRDC/EN/Home/homepage_node.html).  265 

2.3.4. Integration of GRDC in ORCHIDEE 266 

The location of some stations in the GRDC dataset might be incorrect for either the 267 

longitude or latitude coordinate due to simple typos, logical errors in the original coordinates, or a 268 

swapped order of the coordinate digits (Lehner, 2012). Due to this uncertainty, a quality control is 269 

applied for GRDC when matching it with the corresponding HTUs in the river routing model. For 270 

each GRDC station, the corresponding catchment surface in the model is estimated. The matching 271 

process is stringent, and the GRDC qualification is restricted by two matching criteria: (1) the 272 

difference in upstream area between GRDC and the model is less than a pre-defined percentage; 273 

(2) the distance between GRDC and the model is less than a pre-defined distance. The higher the 274 

two thresholds are, the more the matched GRDC stations can be positioned on the model’s basin 275 

representation. Meanwhile, the high threshold increases the uncertainties of the GRDC data due to 276 

the errors in location and upstream area. By compromising between the two contradictory 277 

requirements (the number of GRDC stations and the precise of the data), we choose the threshold 278 

for upstream area difference and distance to be 10% and 25 km, respectively. Under this constraint, 279 

27 GRDC stations are qualified among all 65 stations over the Iberian Peninsula domain (10ºW-280 

5.5ºE, 34ºN-45.5ºN; Fig. 2). It should be noted one GRDC station can match with several model 281 

HTUs that locate in different model grids. In this case, the HTU with the lowest upstream area 282 

difference is chosen. Therefore, the GRDC station is not necessarily in the same model grid as the 283 

model HTU.  284 

2.3.5. The evaporation products 285 

The bias corrected evaporation deduced from the assimilation is compared with the 286 

GLEAM (Global Land Evaporation Amsterdam Model; Martens et al., 2017; 287 

https://www.gleam.eu/) product. GLEAM provides daily evaporation from 1984 to 2011 at 0.25°. 288 

The evaporation is estimated by a minimalistic Priestley-Taylor potential evaporation model with 289 

the majority of inputs estimated from remote sensing. It uses the microwave-derived soil moisture, 290 

land surface temperature and vegetation density, and the detailed estimation of rainfall interception 291 
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loss. The rainfall interception loss is estimated separately using the Gash analytical model which 292 

considers the canopy storage capacity, coverage, and the ratio of mean evaporation rate from wet 293 

canopy. There are several versions of GLEAM data available, and we choose the latest version 294 

v3.1a. The precipitation forcing of GLEAM v3.1a is from the Multi-Source Weighted-Ensemble 295 

Precipitation (v1.2). 296 

2.4. Experiments design 297 

An ORCHIDEE simulation is performed to obtain the Qfg and the corresponding R and D. 298 

The ORCHIDAS with L-BFGS-B algorithm explores the full space of x by perturbing a separate 299 

x (xi) over the i th upstream catchment (i=1, 2, …, Nopt; Nopt is the total number of optimized x 300 

depending on the number of observation stations) in each iteration. To save computing time, the 301 

river routing parameterization (forced by corrected R and D) rather than the full ORCHIDEE is 302 

executed. The total execution time depends on the number of parameters to be optimized, the 303 

length of simulation years, and the number of iterations. Multi-level parallelisms of the 304 

assimilation are implemented to achieve the high computational efficiency. In each iteration, the 305 

assimilation can run with Nopt ‘river routing’ simulations, with each ‘river routing’ model 306 

parallelized with Nrouting CPUs (Nopt =27, Nrouting=16 over the study domain). Over the Iberian 307 

Peninsula, the range of x is defined between 0 and 20 which is determined by Qfg and Qobs. 308 

In order to check the impacts of prior information xprior on the optimization convergence 309 

time, the xprior is set to a constant value ‘1’ (xprior_1) or a ‘pre-estimated-prior’ (xprior_ref, defined as 310 

the ratio of Qobs/Qfg), separately. The optimal x values are assigned over the whole study domain. 311 

The x of the sub-catchment without GRDC station available is set to 1 (no correction). The 312 

climatology values (e.g., over 1979-2014) are applied to fill the observation missing values over 313 

certain period. In case of more than one GRDC stations locate in the same model grid, the averaged 314 

correction factor is used.   315 

The optimization results are not sensitive to the choice of xprior, but the convergence time 316 

indeed depends on xprior. Fig. 3a shows that the xprior_ref method requires less iteration to converge 317 

than xprior_1 (7 and 15-20 iterations, respectively). The value of the cost function of xprior_ref method 318 

is lower than that of xprior_1 for all iteration steps. The normalized bias (Norm_BIAS) of discharge 319 
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after 7 iterations is less than 0.3 for the xprior_ref method, while it is larger than 0.6 over most south 320 

regions for xprior_1 (Figs. 3b and 3c). The oscillation of J at the steps 3 and 5 could be due to the 321 

fact that the calculation of the gradient of J by finite difference is not optimal. It is also possible 322 

because the L-BFGS-B explores partly the physical range during the first few iteration to estimate 323 

the Hessian of the cost function for convergence. 324 

ܵܣܫܤ_݉ݎ݋ܰ = ܳ௦௜௠ − ܳ௢௕௦ܳ௢௕௦ ,                                                              (8) 325 

We choose xprior set by xprior_ref for n years (n=10, 1980-1989) experiment with iteration 326 

number k being 15 and number of correction factor m (i.e., the number of GRDC station) being 27. 327 

The x values vary with different years. Due to the slow variation in aquifer levels, a spin-up is 328 

necessary before optimization to get equilibrium of aquifer levels in LSM. The spin-up creates the 329 

aquifer initial states (A0corr, A1corr, A2corr, … , A10corr) at the start of the assimilation cycles over each 330 

ORCHIDEE model grid (Fig. 4), making it adapt to the bias corrected aquifer states.  331 

ݐ௖௢௥௥௜݀ܣ݀ = ቈන ଶܴ)ݔ + ଶ)ௌܦ ቉ − ܳ௖௢௥௥,ଶ + ܳ௖௢௥௥,ଵ, 0 ≤ ݅ ≤ 10                     (9) 332 

To test different assumptions of errors in initial conditions, we implemented different 333 

optimization methods with each method results in a group (m×n) of optimal x (Fig. 4). In method 334 

1, the optimization is carried out year by year with one-year spin-up for each iteration (‘Y1SP1’ 335 

here after). The x of the optimization year is applied during simulation. The method 2 is similar 336 

with Y1SP1 except that it uses optimized aquifer levels from the previous year (‘Y1SP0’ here 337 

after). This method assumes the finial state variables (aquifer levels) of the optimal solution at the 338 

current optimization year is the best initial condition for the following assimilation year. In method 339 

3, the optimization is done over 10 years continuously with 1-year spin-up at the beginning of each 340 

10-year simulation (‘Y10C’ here after). The Y10C optimizes 270 x over 10 years together, while 341 

the Y1SP1 and Y1SP0 optimize the 10 years separately with 27 x each year. The ‘river routing’ 342 

model running years required by the three methods are 8100 (=m×2×n×k), 4050 (=m×n×k) and 343 

44550 [=m×n×(n+1)×k], respectively. Take the Y1SP0 for example, in each iteration, the 344 

correction factor x is perturbed by m times. For each perturbation, the ORCHIDEE river routing 345 

model runs once with one x (e.g., xi at the ith sub-catchment) being perturbed while the x of other 346 
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sub-catchments are kept the same. Therefore, the total number of years required for m stations, n 347 

iterations and k years assimilation is m×n×k. For all experiments, the optimization is carried out at 348 

daily scale, and the diagnostics are performed for annual averages where we assume the water 349 

storage variation is neglectable. 350 

In order to further identify the impacts of atmospheric forcing on optimizations (e.g., 351 

optimal correction factor x), we measure the ‘Uncertainty’ of the variable (‘var’ in equation; ‘var’ 352 

refers to x, corrected evaporation, etc.) by Eq. (10). The higher the ‘Uncertainty’ is, the larger the 353 

uncertainty is. The 0 value means that all the three ‘var’ values are equal.  354 

(ݎܽݒ)ݕݐ݊݅ܽݐݎܷ݁ܿ݊ = ଵݎܽݒ| − |ଶݎܽݒ + ଶݎܽݒ| − |ଷݎܽݒ + ଵݎܽݒ| − ଷ|3ݎܽݒ                    (10) 355 

3. Results and discussions 356 

3.1. Evaluation of river discharge without assimilation 357 

Fig. 5 displays the first guess simulation forced with different atmospheric forcing: 358 

WFDEI_GPCC (Figs. 5a-5b), WFDEI_CRU (Figs. 5c-5d), and CRU_NCEP (Figs. 5e-5f). The 359 

Norm_BIAS and correlation coefficient (computed by the annual mean values) are used to measure 360 

the qualities of the simulated discharge. The diagnostics at each GRDC station are spread to the 361 

entire upstream basin which contributes to the errors in discharge at downstream. The correlation 362 

coefficient between FG (forced by WFDEI_GPCC and WFDEI_CRU) and observation is greater 363 

than 0.6 over most regions, but it is less than 0.2 over certain regions (e.g., middle and southeast 364 

of the Iberian Peninsula Figs. 5a and 5c). The correlation coefficient obtained by using 365 

CRU_NCEP forcing is less than 0.2 for most regions (middle and west of the Iberian Peninsula), 366 

which is worse than the simulation from WFDEI_GPCC and WFDEI_CRU. Wang et al. (2016) 367 

also show the relatively poor performance of CRU_NCEP in simulating global land surface 368 

hydrology and heat fluxes by using the Community Land Model (CLM4.5). The spatial pattern of 369 

the absolute bias in river discharge varies with the atmospheric forcing (not shown). The 370 

normalized bias is then applied to measure the river discharge simulation. The Norm_BIAS in 371 

discharge shows consistent spatial distribution for simulations of three forcing. The Norm_BIAS 372 

(positive) is higher than a factor of 1.5 over south and northeast of the Iberian Peninsula, which 373 
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means the overestimation of river discharge. The Norm_BIAS is small (within +/- 0.3) over north, 374 

west and southeast of the region (Figs. 5b, 5d and 5f).  375 

3.2. Comparison of the three optimization strategies forced by WFDEI_GPCC 376 

We apply the three assimilate approaches (Y1SP1, Y1SP0, Y10C) to ORCHIDEE 377 

simulations to correct the bias in discharge simulation by WFDEI_GPCC forcing. Fig. 6 (left) 378 

displays the geographical distribution of the average correction factor x obtained after the 379 

assimilation. The x values range between 0 and 1.5 over the study domain. The perfect discharge 380 

simulation corresponds to x equal 1. The x value lower than 1 means the discharge in FG 381 

(WFDEI_GPCC) is overestimated and thus a decrease of R and D is required, and vice versa for x 382 

being higher than 1. The further the x away from 1, the larger the corrections of runoff and drainage 383 

are. The three methods display similar spatial distribution pattern with x being less than 0.5 over 384 

south and east of the Iberian Peninsula and x being higher than 1 over north of the Iberian Peninsula. 385 

This spatial distribution of x is highly consistent with the pattern of Norm_BIAS in FG (discharge 386 

overestimated in south and northeast, underestimated in north). 387 

Fig. 6 (central column) shows the correlation coefficient between corrected discharge and 388 

GRDC observations. After assimilation, the correlation of the optimized discharge and 389 

observations is larger than 0.8 over most regions. The correlation coefficient for assimilated 390 

discharge and observation is less than 0.6 (but higher than 0.4) over some regions and seems very 391 

dependent on the forcing. This is probably because there is a contradiction of x between the 392 

upstream and downstream stations and thus the method has difficulties finding a compromise (e.g., 393 

over the Ebro basin). In general, the regions with low correlation coefficient are forcing dependent, 394 

while the regions with high correlation coefficient are very consistent among different forcing. Fig. 395 

6 (right) gives the Norm_BIAS in discharge between assimilations and observations. After 396 

assimilation, this positive bias in river discharge has been significantly reduced (within ±0.3). It 397 

should be mentioned that the xprior_ref is able to capture the general distribution pattern of optimal 398 

x, but the performance of river discharge estimation is significantly improved through optimization. 399 

The role of optimization is to find an appropriate correction factor when there are several basins 400 

(with observations) overlaps at upstream  401 
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A common validation approach is to compare the assimilated river discharge with other 402 

independent data sources. However, the river discharge observations are limited, and the GRDC 403 

is the only comprehensive river discharge datasets at global scale so far. To overcome this 404 

limitation, the assimilated river discharges are also validated over the catchments where the GRDC 405 

stations are discarded during assimilation. Fig. 7 shows the annual mean of river discharge over 406 

the Alcala Del Rio station (-5.98ºW, 37.52ºN) on the Guadalquivir river (locates at southwest of 407 

Spain) before and after correction. The observation of this station is not assimilated due to its large 408 

upstream area difference (15.53%>10%) between model (55635 km2) and GRDC (46995 km2). 409 

The overestimated discharge simulated by the model at this station is also corrected because it 410 

benefits from the correction factor estimated at the Cantillana station (-5.83ºW, 37.59ºN; 44871 411 

km2) which locates at the 15.3 km upstream of Alcala Del Rio station of the Guadalquivir River 412 

(southwest of the Iberian Peninsula). Between the two stations, there are several tributaries flow 413 

to Alcala Del Rio station, which leads to different annual mean river discharges at Cantillana (49.7 414 

m3/y) and Alcala Del Rio stations (94.8 m3/y). This result illustrates that this approach is able to 415 

correct the river discharge over the entire basin. The discharges for certain sub-basins without 416 

assimilated observations (e.g., observation unavailable or GRDC stations discarded) are corrected 417 

by x as well. Although the validation datasets are from the same GRDC source, they are from other 418 

independent observation stations thus can be seen as an independent validation (‘first order 419 

validation’). 420 

In summary, all the three methods (Y1SP1, Y1SP0, and Y10C) are able to improve the 421 

river discharge simulation by ORCHIDEE LSM. The correlation coefficient and Norm_BIAS in 422 

discharge obtained from the three methods are generally consistent. The correlation coefficient of 423 

Y10C method in northeast is lower than that of Y1SP0 and Y1SP0, which is probably resulted 424 

from its poor quality of atmospheric forcing. The Y1SP0 consumes less computing time than 425 

Y1SP1 and Y10C, and it does not worsen the optimization results. By compromising between the 426 

accuracy of results and the computing time, we choose Y1SP0 method for the further assimilation.  427 

The above assimilations are performed with the same forcing (WFDEI-GPCC) by 428 

assuming the errors in discharge are caused by model defect (e.g., model parameterization, model 429 

structure, etc.). The uncertainties of simulated discharge also result from the atmospheric forcing. 430 

The role of atmospheric forcing in assimilation is discussed in following section. 431 
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3.3. The sensitivity of the optimizations to atmospheric forcing  432 

In order to understand the response of the optimizations to different atmospheric forcing 433 

with different precipitation sources, the ORCHIDAS was also run with WFDEI_CRU and 434 

CRU_NCEP forcing using Y1SP0 optimization strategy. Using two other different forcing for the 435 

assimilation can allows us to understand how important the forcing uncertainty affects the 436 

correction factor. The multi-year mean correction factor x obtained from WFDEI_CRU (Fig. 8a) 437 

CRU_GPCC (Fig. 8b), and WFDEI_GPCC (Fig. 8c) displays quite consistent spatial patterns. The 438 

coverage of low correction factor (blue in Figs. 8a-8b, corresponds to large correction) obtained 439 

from CRU-NCEP is larger than that obtained from WFDEI_CRU and WFDEI_GPCC. This is 440 

because the positive bias in discharge of FG simulation forced by CRU-NCEP is larger than that 441 

by WFDEI_CRU and WFDEI_GPCC. Besides the atmospheric forcing, the uncertainties could 442 

also origin from boundary condition (e.g., topographic or other land surface features), model 443 

parameter, model structure or missing processes. For all forcing, the x is less than 0.3 (but greater 444 

than 0) over south, which implies that the error in discharge is probably resulted from the missing 445 

model processes (human activity). Over north, the x are close to 1 (discharge well simulated) for 446 

all the three forcing, which indicates the correction comes from model ‘random’ error (nature 447 

discharge) rather than the system error (e.g., missing processes).  448 

The uncertainty of x by three forcing is small for most regions (Fig. 8d). The high 449 

uncertainty of x over the Adoure (southwestern France) and the Chelif (in Algeria) river basins 450 

corresponds to the large uncertainty in the different atmospheric forcing. This result demonstrates 451 

the obtained correction factor x is robust in spite of using different atmospheric forcing. This is 452 

also demonstrated by comparing the precipitations between the three forcing and the IB02 dataset. 453 

Compared to the IB02, all the three forcing overestimate rainfall in the Iberian Peninsula (Figs. 454 

S1a-S1c), but none of these error patterns resembles that of the proposed E correction (Figs. 9e-455 

9g). Unlike the pattern of the correction factor (Figs. 8a-8c), the ratios of annual mean precipitation 456 

between the three forcing and the IB02 are higher than 1 over most regions (Figs. S1d-S1f). 457 

Therefore, the precipitation forcing error is not likely the dominant factor in determining the 458 

correction factor distribution.  459 
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In summary, the assimilation approach is able to correct errors in lateral water balance 460 

despite using different forcing. Recalling that the corrected R+D (through x) and the precipitation 461 

are known, we then transfer the optimal correction factor x to the vertical water balance equation 462 

(Eq. 5) to derive the bias corrected evaporation. This will enable us to understand the impacts of 463 

assimilation on evaporation.  464 

3.4. Evaporation estimations through the optimal correction factor  465 

The evaporation of FG simulation by different forcing show quite consistent spatial 466 

distribution (Figs. 9a-9c) and small uncertainty (<0.2 mm/d, Fig. 9d) with the value being higher 467 

over north than south. The change of evaporation (dE) induced by the correction is consistent for 468 

three forcing (Figs. 9e-9g) with low uncertainties (Fig. 9h). It should be mentioned that the 469 

evaporation for the regions without GRDC stations are not corrected (i.e., correction factor x equals 470 

1) such as southern France, western Portugal, and northwest, south and southeast of Spain (blank 471 

regions in Fig. 8). The dE is positive (around 0.2 to 0.4 mm/d) over south and northeast where the 472 

evaporation is underestimated in FG. Cazcarro et al. (2015) show large blue water footprint 473 

(volume of surface and groundwater consumed for production an item) of human activity over 474 

south (Jaén, Sevilla, and Malaga provinces), northeast (Palencia, Burgos, La Rioja, Navarra and 475 

Valladolid provinces), north (Tarragona province) and middle (Toledo province) of Spain (Map. 476 

1 of that paper). The large dE over south and northeast obtained in current study is consistent with 477 

the blue water footprint of Cazcarro et al. (2015). Figs 9i-9k plot the change of the ratio of water 478 

demand (dE) and water supply (R+D). This ratio measures the degree of water shortage. The 479 

greater the ratio, the higher level of water shortage. The ratio is larger over south and northeast of 480 

Spain, which is consistent with the results from other studies that measures the water deficits 481 

(Rodríguez-Díaz et al., 2007) and water exploitation index (Pedro-Monzonís et al., 2015) in Spain. 482 

Since we assume that the missing human processes is the main error in ORCHIDEE, the dE and 483 

dE/(R+D) indicate the changes induced by human processes. The spatial patterns of dE and 484 

dE/(R+D) are quite consistent with human water exploitation, thus the model missing processes 485 

(e.g., human water usage) is considered as the dominant contribution to x. 486 

We also tested the possibility of improving the river discharge estimation by using a annual 487 

constant correction factor to evaporation (XEcorr), which can be derived from Eq. (6).  488 
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ܺா௖௢௥௥ ≈ ܧ + (1 − (ݔ · (ܴ + ܧ(ܦ ,                                              (11) 489 

௖௢௥௥ܧ = ܺா௖௢௥௥ ·  490 (12)                                                         ܧ

Although the Eqs. 11-12 are able to improve river discharge estimation by modifying soil 491 

moisture, the energy and water balance are not conserved. One solution could be to run the full 492 

ORCHIDEE LSM in the assimilation system with the same cost function as Eq. (7). In this way, 493 

the intermediate variables are adjusted towards optimal river discharge with the modification of 494 

evaporation. This approach executes the full ORCHIDEE model thus is very time consuming and 495 

is beyond the scope of the current study. 496 

3.5. The inter-annual variation of correction factor and water cycle 497 

3.5.1. The inter-annual cycles  498 

All the results so far are obtained by averaging multi-year mean values which provides us 499 

the bias correction information at spatial scale. To understand the inter-annual cycles of the 500 

correction and its possible contribution, we analyze the assimilation results over two stations at 501 

south of Spain where the discharge correction is large during the period of 1980 - 1989 (Fig. 8).  502 

The Puente De Palmas station locates on the Guadiana River (southwest of the Iberian 503 

Peninsula) with an upstream area of 48515 km2. The three FG simulations (with different forcing) 504 

significantly overestimate the river discharge and the runoff coefficient (ratio of discharge and 505 

precipitation), while the FG(WFDEIG) and FG(WFDEIC) underestimate the inter-annual 506 

variability comparing with observations (Fig. 10a-10b). The standard-deviation of the annual 507 

means for observation, FG(WFDEIG), FG(WFDEIC) and FG(CRUN) are 33.8 m3/s, 28.8 m3/s, 508 

25.2 m3/s and 34.3 m3/s, respectively. One reason could be the variation of water usage by 509 

irrigated agriculture which occupies 90% of the blue water usage (surface water and groundwater) 510 

in this semiarid basin (Aldaya and Llamas, 2008) or model errors. Besides, there are many 511 

interconnected wetlands and structurally complex hydrogeological boundaries between the two 512 

upper-Guadiana aquifer in the upper Guadiana River basin (Van Loon and Van Lanen, 2013). 513 

These complex features are difficult to represent in model thus large bias exist in river discharge 514 
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of ORCHIDEE. The correction factor corrects these model defects (Fig. 10c) and it demonstrates 515 

good skill in correcting the inter-annual variability of discharge and runoff coefficient (Fig. 10a-516 

10b). 517 

The Masia De Pompo station (17876 km2) is on the Jucar River (southeast of Spain). The 518 

observations over the year 1983, 1988-1989 are obtained from the climatology values due to 519 

the unavailability of GRDC data during this period. During 1980-1989, the inter-annual 520 

variation of observed discharge (and runoff coefficient) and FG simulation is quite inconsistent 521 

(Figs. 10d-10e). This is probably caused by the surface water usage which occupies about 55% 522 

over this basin (Kahil et al., 2016). Most of them are used for agriculture (>80%) and urban 523 

(>10%). Although the improvements in assimilated discharge are small, the correction factor is 524 

able to capture the inter-annual variability in observations (Figs. 10d and 10f). 525 

In summary, the inter-annual variation river discharge of FG simulation and 526 

observations does not agree each other over the Guadiana River basin and the Jucar River basin 527 

during 1980-1989. The human water usage (e.g., groundwater or surface water extraction) 528 

process, which is neglected in current ORCHIDEE model, is likely to play an important role in 529 

river discharge variation. The optimized correction factor (varies each year) improves the inter-530 

annual variability of the modelled river discharge. 531 

3.5.2. The geographical distribution  532 

To further understand the inter-annual variability of corrections over the entire Iberian 533 

Peninsula region, Fig. 11 plots the spatial distribution of inter-annual variability of correction 534 

factor x and river discharge which is quantified by coefficient of variation as used by Déry et al. 535 

(2011) and Siam and Eltahir Elfatih (2017). In FG (WFDEI_GPCC) simulation, the inter-annual 536 

variation of discharge is lower than 0.4 over most regions, which indicates an underestimation of 537 

inter-annual variability of river discharge in FG. The inter-annul variability of discharge is 538 

increased after assimilation over south and northeast. This change could be attributed to the 539 

fluctuation of correction factor (human water usage) over these regions. This result agrees with the 540 

results (Map. 6) of Cazcarro et al. (2015) with more large dams in south and northeast (nature 541 

discharge greatly affected by human) than northwest of Spain (nature discharge less affected by 542 
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human). The inter-annual variability of correction factor x and discharge for Y1SP0 (CRUN) is 543 

different from others, which mainly results from the different atmospheric forcing. 544 

3.6. Comparison of bias corrected evaporation with GLEAM data 545 

In order to evaluate the bias corrected evaporation, Figs. 12a-12h compare the GLEAM 546 

product (v3.1a) with FG and with bias corrected E by assimilation using WFDEI_GPCC, 547 

WFDEI_CRU and CRU_NCEP forcing. Due to the unavailability of parts of GLEAM’s 548 

atmospheric forcing (e.g., air pressure, air humidity, air speed, etc.) and difficulty of maintaining 549 

a coherence with other forcing, the assimilation system does not run with GLEAM’s precipitation 550 

input. We find large difference between GLEAM and FG, which indicates that the evaporation is 551 

quite uncertain for different estimations. The geographical distribution and magnitude of 552 

difference in E between GLEAM and FG is highly consistent with that between GLEAM and bias 553 

corrected values by using different forcing (Figs. 12a-12c, and 12e-12g). The systematic negative 554 

difference is higher than the uncertainties of bias corrected E with different forcing (Figs. 12d and 555 

12h). Parts of the differences are explained by the lower P of GLEAM than ORCHIDEE forcing 556 

(Figs. 12i-12l). Generally, the P-E (in mm/d) of GLEAM is higher than bias corrected value 557 

associated with small uncertainties (Figs. 12m-12t). Because the bias corrected P-E are corrected 558 

by GRDC observed river discharge, the P-E (≈river discharge) of GLEAM is very likely to be 559 

higher than GRDC observations over the Iberia. This result indicates that some processes are 560 

probably also missing in GLEAM v3.1. We also compared our bias corrected E with GLEAM v1 561 

data (Miralles et al., 2011), and we find the P-E between GLEAM v1 and bias corrected values 562 

are quite consistent for different forcing. The results are quite consistent when comparing the 563 

corrected E with several other products which are obtained by using different methodology and 564 

forcing (e.g., Jung et al., 2009; Vinukollu et al., 2011; Mueller et al., 2013). Considering the 565 

availability of P-E for GLEAM data which allows to compare it with the bias corrected value, only 566 

the results of GLEAM are shown. 567 

4. Conclusions 568 

There has been several studies working on estimation of fresh water input from continent 569 

to ocean (e.g., the Mediterranean Sea) based on observation or modelling approach (e.g., Boukthir 570 

and Barnier, 2000; Mariotti et al., 2002; Struglia et al., 2004; Peucker-Ehrenbrink, 2009; Ludwig 571 
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et al., 2009; Szczypta et al., 2012). However, these estimations are limited either by the coarse 572 

temporal resolution for observation approach or by the non-comprehensive representation of 573 

physical processes (e.g., human activities) for modelling approach. As a result, the fresh water 574 

estimations are accompanied with large uncertainties among varies studies. This proposed 575 

methodology aims to improve the estimation of continental water cycles by merging the merits of 576 

observations and modelling approach through data assimilation.  577 

The basis of the method is the vertical and lateral water balance equations. The method 578 

assumes that the precipitation minus evaporation from the model simulation is an appropriate first 579 

guess so that all the errors in river discharge end up with runoff and drainage. Under this 580 

assumption, the river discharges simulation at river outlet are expected to be improved by 581 

correcting the runoff and drainage (inputs for river routing model).  582 

The idea is achieved by embedding a river routing scheme of ORCHIDEE LSM and GRDC 583 

river discharge observations into a data assimilation system (ORCHIDAS). The system can run 584 

with multi-level parallel computing mode (both the routing model and the optimization are 585 

parallelized). The river discharge is optimized through applying a correction factor x to model 586 

runoff and drainage which translates errors in estimated P-E.  587 

The method has been explained through its application over the Iberian Peninsula with 27 588 

GRDC stations during 1979-1989 with x values being different each year. Main conclusions are: 589 

First, the optimization results are not sensitive to x prior information xprior, and assimilation 590 

strategies, but the setting of xprior by a ‘pre-estimated-prior’ (defined as Qobs/Qfg) indeed converges 591 

faster than other xprior values. The method Y1SP0 (the model spin-up uses the optimal aquifer 592 

levels of previous optimization year) demonstrates high computing efficiency and comparable 593 

discharge accuracy comparing with the other two methods (Y1SP0, Y10C), thus the Y1SP0 is 594 

recommended (e.g., over the full Mediterranean catchment). Second, the largest correction of 595 

discharge is found over south and northeast of the Iberian Peninsula. These regions are 596 

characterized by large blue water footprint with large groundwater and surface water usage by 597 

human activity. It implies that most of the corrections by x represents the missing human processes 598 

(at least in the south of study domain). This is consistent with the fact that ORCHIDEE model 599 

neglects the human processes (e.g., dam operation, irrigation, etc.). The discharge correction over 600 
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north of the Iberian Peninsula is relatively small, where is mainly due to model systematic error. 601 

The correction factor x can also cover errors in the model structure, model parameter, or boundary 602 

conditions (e.g., land surface characteristics imposed to the model). Third, the assimilated 603 

discharges reveal lower bias (from >100% to <30%) and higher inter-annual variability (due to the 604 

fluctuation of water usage) than uncorrected ones. Fourth, the bias corrected evaporation are 605 

compared with the GLEAM v3.1a product. The E of GLEAM is lower than the optimized E, while 606 

the P-E of GLEAM is higher than the optimized values. This different P-E could be caused by the 607 

different P forcing and the missing processes in the GLEAM model. 608 

The method takes into account both gauged rivers (usually large rivers) and un-gauged 609 

rivers, and it provides discharge estimates at daily scale from 1980 to 2014 with the time range 610 

depend on atmospheric forcing. By using the correction factor of adjacent catchment, this method 611 

also improves the river discharge simulation for the catchment without assimilating observations. 612 

Besides, this method fills the gap of the data missing period (e.g., war, instruments, etc.) by 613 

climatology values, thus the data are complete over the whole period. The proposed method is 614 

supposed to be superior to the simple water-balance methods, because a LSM estimates E at sub-615 

diurnal scales with physically based equations and takes advantage of spatial distribution of the P 616 

and P-E.  617 

The result implies the necessity of parameterizing the human water uptake process in the 618 

ORCHIDEE LSM. Besides, the poor quality of the river discharge observations (e.g., 68% stations 619 

are discarded over the Iberian Peninsula) calls for a high quality data. The optimized correction 620 

factors x are model and atmospheric forcing dependent. It is encouraged to apply this assimilation 621 

method to other models, which will allow us to identify the sources of errors (e.g., model missing 622 

process or forcing data). To improve the calculation efficiency, this study uses annual mean 623 

correction factors without considering its seasonal variation thus the seasonal discharges do not 624 

improved. Further improvements can be made towards optimizing seasonal/monthly x, but it will 625 

certainly cost more computing resources. Besides, it is possible that a number of optimized x can 626 

result in the similar river discharge at downstream. Future developments may generate ensemble 627 

optimal x to mitigate this issue. This assimilation method can be applied for water cycles studies, 628 

data inter-comparison, and riverine fresh water estimation over other basins (e.g., the full 629 

catchment of the Mediterranean sea). 630 
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Figure captions: 857 

Figure 1. (a) The illustration of correcting river discharge (Q) simulation (simulation in blue solid 858 

dot, observation in red star) by applying correction factors (x) to runoff and drainage over different 859 

basins. The basin 1 and basin 2 are represented in yellow and blue, respectively. (b) The model 860 

framework of the river discharge assimilation. The blue and red parts are run for ‘First Guess’ and 861 

for assimilation, respectively.   862 

Figure 2. The river network (blue lines) and the GRDC stations (solid dots represent the 27 863 

qualified stations and the gray triangles represent unqualified stations) over the study domain. 864 

Figure 3. (a) The variation of cost function J (unit: 1; logarithmic y-axis) with iterations for xprior_1 865 

(‘xprior = 1’, in blue) and for xprior_ref (‘xprior = pre-estimated-prior’, in red). The iterations 6-15 are 866 

enlarged in the window (normal y-axis). The Norm_BIAS of optimized river discharge after 7 867 

iterations for xprior_1 (b) and for xprior_ref (c). 868 

Figure 4. The set-up of assimilation experiments for n years (n=10, 1980-1989) and k iterations 869 

(k=10) with m (m=27) correction factors (x) each year (x is different over years). (a) The ith year 870 

(Yi) optimization is initialized by the end of Yi-1 optimization; (b) the initial condition of Yi 871 

optimization is got by running Yi-1 optimization fed with the same x as Yi; (c) optimizing n years 872 

together with one year spin-up at the beginning of n-year. The Y1SP0 and Y1SP1 divide the n-873 

year optimization into n 1-year optimization periods. The blue and red colors mean optimization 874 

and spin-up simulations, respectively. 875 

Figure 5. The river discharge simulations from 1980 to 1989 using WFDEI_GPCC (1st row), 876 

WFDEI_CRU (2nd row) and CRU_NCEP (3rd row) forcing. Left: the correlation coefficient of 877 

river discharge between observations and simulations; Right: the Norm_BIAS of simulated river 878 

discharge.  879 

Figure 6. The optimization results from 1980 to 1989 using the three methods (1st row: Y1SP1; 880 

2nd row: Y1SP0; 3rd row: Y10C) forced by WFDEI_GPCC. Left: the optimized correction factor 881 

x; Middle: the correlation coefficient of river discharge between observations and optimizations; 882 

Right: the Norm_BIAS of optimized river discharge.  883 

Figure 7. The annual cycles of river discharge for ‘First Guess’ (FG) forced by WFDEI-GPCC  884 

(black), Y1SP1 (blue), Y1SP0 (green), Y10C (yellow) and GRDC observations (red) over the 885 
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Alcala Del Rio station (-5.98ºW, 37.52ºN) on the Guadalquivir river. The dotted lines mean the 886 

trend.   887 

Figure 8. The correction factor x obtained from Y1SP0 forced by (a) WFDEI_CRU, (b) 888 

CRU_NCEP, (c) WFDEI_GPCC, and (d) the ‘Uncertainty’ (defined by Eq. 10) of x by different 889 

forcing. All values are averaged over 1980-1989. 890 

Figure 9. The evaporation (E, in mm/d) before assimilation (1st line), change of evaporation (dE, 891 

in mm/d) after and before assimilation (2nd line), and the ratio of dE and runoff + drainage (3rd line) 892 

for forcing WFDEI-GPCC (1st column), WFDEI-CRU (2nd column), CRU-NCEP (3rd column), 893 

and the ‘Uncertainty’ (defined by Eq. 10) in different forcing (4th column) averaged from 1980 to 894 

1989. 895 

Figure 10. The optimization results by different atmospheric forcing (WFDEI-GPCC in black, 896 

WFDEI-CRU in green, and CRU-NCEP in blue) over the Puente De Palmas station on Guadiana 897 

River (a-d, -6.97ºW, 38.88ºN; 48515 km2) and over the Masia De Pompo station on the Jucar river 898 

(e-h, -0.65ºW, 39.15ºN; 17876 km2): (a, d) annual river discharges; (b, e) runoff coefficient; (e, f) 899 

optimized correction factor x for the simulated/assimilated river discharge (First Guess in dark 900 

color, Y1SP0 in light color) with respect to GRDC observations (in red) from 1980 to 1989. 901 

Figure 11. The inter-annual variation of correction factor x (ఙ(௫)௫̅ ; a, d, g), simulated river discharge 902 

without assimilation ( ఙ(ொೞ೔೘)ொೞഢ೘തതതതതതത  ; b, e, h) and optimized river discharge ( ఙ൫ொ೚೛೟൯ொ೚೛೟തതതതതതത  ; c, f, i) for 903 

Y1SP0_WFDEIGPCC (1st row), Y1SP0_WFDEICRU (2nd row) and Y1SP0_CRUNCEP (3rd row) 904 

averaged over 1980-1989. 905 

Figure 12. Comparison of evaporation (E, in mm/d, 1st line) between GLEAM (v3.1) and FG (First 906 

Guess), as well as E (2nd line), precipitation (P, in mm/d, 3rd line), P-E (in mm/d, 4th line) and P-E 907 

(relative value between 0-1, 5th line) between GLEAM (v3.1) and assimilated values using 908 

different forcing (1st column: WFDEI-GPCC; 2nd column: WFDEI-CRU; 3rd column: CRU-NCEP; 909 

4th column: ‘Uncertainty’ (defined by Eq. 10) of using different forcing) averaged from 1980 to 910 

1989. 911 
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Table 1. The assimilation and simulation experiments 

Name Atmospheric Forcing Method 

FG(WFDEIG) WFDEI_GPCC No assimilation 

FG(WFDEIC) WFDEI_CRU No assimilation 

FG(CRUN) CRU_NCEP No assimilation 

Y1SP0(WFDEIG) WFDEI_GPCC Y1SP0 assimilation 

Y1SP1(WFDEIG) WFDEI_GPCC Y1SP1 assimilation 

Y10C(WFDEIG) WFDEI_GPCC Y10C assimilation 

Y1SP0(WFDEIC) WFDEI_CRU Y1SP0 assimilation 

Y1SP0(CRUN) CRU_NCEP Y1SP0 assimilation 

Note: All runs are from 1980 to 1989 with 0.5º spatial resolution; FG stands for ‘First Guess’. 
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Figure 1. (a) The illustration of correcting river discharge (Q) simulation (simulation in blue solid dot, 

observation in red star) by applying correction factors (x) to runoff and drainage over different basins. The 

basin 1 and basin 2 are represented in yellow and blue, respectively. (b) The model framework of the river 

discharge assimilation. The blue and red parts are run for ‘First Guess’ and for assimilation, respectively.   
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Figure 2. The river network (blue lines) and the GRDC stations (solid dots represent the 27 qualified 

stations and the gray triangles represent unqualified stations) over the study domain.   
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Figure 3. (a) The variation of cost function J (unit: 1; logarithmic y-axis) with iterations for xprior_1 (‘xprior 

= 1’, in blue) and for xprior_ref (‘xprior = pre-estimated-prior’, in red). The iterations 6-15 are enlarged in the 

window (normal y-axis). The Norm_BIAS of optimized river discharge after 7 iterations for xprior_1 (b) and 

for xprior_ref (c). 
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(a) Y1SP1 

 

 

(b) Y1SP0 

 

 
(c) Y10C 

 
Figure 4. The set-up of assimilation experiments for n years (n=10, 1980-1989) and k iterations (k=10) 

with m (m=27) correction factors (x) each year (x is different over years). (a) The ith year (Yi) optimization 

is initialized by the end of Yi-1 optimization; (b) the initial condition of Yi optimization is got by running 

Yi-1 optimization fed with the same x as Yi; (c) optimizing n years together with one year spin-up at the 

beginning of n-year. The Y1SP0 and Y1SP1 divide the n-year optimization into n 1-year optimization 

periods. The blue and red colors mean optimization and spin-up simulations, respectively. 
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                   Correlation coefficient                                                         Norm_BIAS

 

Figure 5. The river discharge simulations from 1980 to 1989 using WFDEI_GPCC (1st row), 

WFDEI_CRU (2nd row) and CRU_NCEP (3rd row) forcing. Left: the correlation coefficient of river 

discharge between observations and simulations; Right: the Norm_BIAS of simulated river discharge.  
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         Correction factor x                          Correlation coefficient                              Norm_BIAS

 

    
Figure 6. The optimization results from 1980 to 1989 using the three methods (1st row: Y1SP1; 2nd row: 

Y1SP0; 3rd row: Y10C) forced by WFDEI_GPCC. Left: the optimized correction factor x; Middle: the 

correlation coefficient of river discharge between observations and optimizations; Right: the Norm_BIAS 

of optimized river discharge.  
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Figure 7. The annual cycles of river discharge for ‘First Guess’ (FG) forced by WFDEI-GPCC  (black), 

Y1SP1 (blue), Y1SP0 (green), Y10C (yellow) and GRDC observations (red) over the Alcala Del Rio 

station (-5.98ºW, 37.52ºN) on the Guadalquivir river. The dotted lines mean the trend.   
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Figure 8. The correction factor x obtained from Y1SP0 forced by (a) WFDEI_CRU, (b) CRU_NCEP, (c) 

WFDEI_GPCC, and (d) the ‘Uncertainty’ (defined by Eq. 10) of x by different forcing. All values are 

averaged over 1980-1989. 
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Figure 9. The evaporation (E, in mm/d) before assimilation (1st line), change of evaporation (dE, in mm/d) 

after and before assimilation (2nd line), and the ratio of dE and runoff + drainage (3rd line) for forcing 

WFDEI-GPCC (1st column), WFDEI-CRU (2nd column), CRU-NCEP (3rd column), and the ‘Uncertainty’ 

(defined by Eq. 10) in different forcing (4th column) averaged from 1980 to 1989. 
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Figure 10. The optimization results by different atmospheric forcing (WFDEI-GPCC in black, WFDEI-

CRU in green, and CRU-NCEP in blue) over the Puente De Palmas station on Guadiana River (a-d, -

6.97ºW, 38.88ºN; 48515 km2) and over the Masia De Pompo station on the Jucar river (e-h, -0.65ºW, 

39.15ºN; 17876 km2): (a, d) annual river discharges; (b, e) runoff coefficient; (e, f) optimized correction 

factor x for the simulated/assimilated river discharge (First Guess - FG in dark color, Y1SP0 in light color) 

with respect to GRDC observations (in red) from 1980 to 1989. 
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Figure 10. Continued. 
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Figure 11. The inter-annual variation of correction factor x (ఙ(௫)௫̅ ; a, d, g), simulated river discharge without 

assimilation (ఙ(ொೞ೔೘)ொೞഢ೘തതതതതതത ; b, e, h) and optimized river discharge (ఙ൫ொ೚೛೟൯ொ೚೛೟തതതതതതത ; c, f, i) for Y1SP0_WFDEIGPCC (1st 

row), Y1SP0_WFDEICRU (2nd row) and Y1SP0_CRUNCEP (3rd row) averaged over 1980-1989.
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Figure 12. Comparison of evaporation (E, in mm/d, 1st line) between GLEAM (v3.1) and FG (First Guess), 

as well as E (2nd line), precipitation (P, in mm/d, 3rd line), P-E (in mm/d, 4th line) and P-E (relative value 

between 0-1, 5th line) between GLEAM (v3.1) and assimilated values using different forcing (1st column: 

WFDEI-GPCC; 2nd column: WFDEI-CRU; 3rd column: CRU-NCEP; 4th column: ‘Uncertainty’ (defined 

by Eq. 10) of using different forcing) averaged from 1980 to 1989. 
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Figure S1. Comparison of precipitation (P, in mm/d) between IB02 and that used in the assimilation (a 
and d: WFDEI-GPCC; b and e: WFDEI-CRU; c and f: CRUNCEP) averaged from 1980 to 1989: 1st row 
for difference; 2nd row for ratio. 

 

 

 

 


