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Abstract Turbulent fluxes of latent and sensible heat are important physical processes that 

influence the energy and water budgets of the North American Great Lakes. These fluxes can be 

measured in situ using eddy covariance techniques and are regularly included as a component of 

lake-atmosphere models. To help ensure accurate projections of lake temperature, circulation, and 

regional meteorology, we validated the output of five algorithms used in three popular models to 5 

calculate surface heat fluxes; the Finite-Volume Community Ocean Model (FVCOM, with three 

different options for heat flux algorithm), the Weather Research and Forecasting (WRF) model, 

and the Large Lake Thermodynamics Model. These models are used in research and operational 

environments and concentrate on different aspects of the Great Lakes’ physical system. We 

isolated only the code for the heat flux algorithms from each model and drove them using 10 

meteorological data from four over-lake stations within the Great Lakes Evaporation Network 

(GLEN), where eddy covariance measurements were also made, enabling co-located comparison. 

All algorithms reasonably reproduced the seasonal cycle of the turbulent heat fluxes, but all of the 

algorithms except for the Coupled Ocean Atmosphere Response Experiment (COARE) algorithm 

showed notable overestimation of the fluxes in fall and winter. Overall, COARE had the best 15 

agreement with eddy covariance measurements. The four algorithms other than COARE were 

altered by updating the parameterization of roughness length scales for air temperature and 

humidity to match those used in COARE, yielding improved agreement between modeled and 

observed sensible and latent heat fluxes.  
 20 
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1. Introduction 

Simulating physical processes within and across large bodies of freshwater are typically 

achieved using oceanographic-scale models representing heat and mass exchange below, above, 

and across the air-water interface. Verification and skill assessment of these models are limited, 

however, by the quality and spatial extent of observations and data. The datasets available for 5 

validation of ocean dynamical models, for example, include satellite-based surface water 

temperatures (Reynolds et al., 2007), sea surface height (Lambin et al., 2010), and when available, 

in situ measurements of sensible and latent heat fluxes (Edson et al., 1998). Dynamical and 

thermodynamic models for large lakes are often verified using similar measurements (Chu et al., 

2011; Croley, 1989a,b; Moukomla and Blanken, 2017; Xiao et al., 2016; Xue et al., 2017). 10 

However, the spatiotemporal resolution of in situ measurements for these variables in lakes is 

comparatively sparse (Gronewold and Stow, 2014), particularly for latent and sensible heat fluxes. 

On the Laurentian Great Lakes (hereafter referred to as the Great Lakes), sensible and latent 

heat fluxes play an important role in the seasonal and interannual variability of critical physical 

processes including spring and fall lake evaporation (Spence et al., 2013), the onset, retreat, and 15 

spatial extent of winter ice cover (Clites et al., 2014; Van Cleave et al., 2014;), and air mass 

modification including processes such as lake-effect snow (Fujisaki-Manome et al., 2017; Wright 

et al., 2013). These phenomena can, in turn, impact lake water levels (Gronewold et al., 2013; 

Lenters, 2001), atmospheric and lake circulation patterns (Beletsky et al., 2006), and the fate and 

transport of watershed-borne pollutants (Michalak et al., 2013). For decades, Great Lakes 20 

dynamical and thermodynamic models simulating these processes have done so with minimal 

observations. 

The Finite-Volume Community Ocean Model (FVCOM), for example, is a widely used 

hydrodynamic ocean model that has been found to provide accurate real-time nowcasts and 

forecasts of hydrodynamic conditions across the Great Lakes including currents, water 25 

temperature, and water level fluctuations with relatively fine spatiotemporal scales (Anderson et 

al., 2015; Anderson and Schwab, 2013; Bai et al., 2013; Xue et al., 2017). FVCOM is currently 

being developed, tested, and deployed across all of the Great Lakes as part of an ongoing update 

to the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Operational 

Forecasting System (GLOFS). To date, however, there has been no direct verification of the 30 

turbulent heat flux algorithms intrinsic to FVCOM; this is an important step, in light of the fact 



4 
 

that FVCOM flux algorithms were developed primarily for the open ocean and, until now, have 

been assumed to provide reasonable turbulent heat flux simulations across broad freshwater 

surfaces as well. 

The Large Lake Thermodynamic Model (LLTM) is a conventional lumped conceptual lake 

model  (Croley, 1989a,b; Croley et al., 2002; Hunter et al., 2015). It is employed in seasonal 5 

operational water supply and water level forecasting by water resource and hydropower 

management authorities (Gronewold et al., 2011) and is used as a basis for long-term historical 

monthly average evaporation records (Hunter et al., 2015). It has historically been calibrated and 

verified using observed ice cover and surface water temperature, but not turbulent heat fluxes.  

Among more complex atmosphere-lake model systems, the Weather Research and Forecasting 10 

(WRF) system is increasingly used in Great Lakes applications (Xiao et al., 2016; Xue et al., 2015). 

However, thorough assessment of predictive skill of turbulent heat fluxes over the Great Lakes has 

not been made with this model, especially with observed data, but such assessment was conducted 

with the Global Environmental Multiscale model (GEM; Bélair et al., 2003a,b; Deacu et al., 2012), 

a Canadian weather forecast model.   15 

To address this gap in the development and testing of physically based lake-atmosphere 

exchange models for use on the Great Lakes, we employ data from a network of relatively novel 

year-round offshore eddy-covariance flux measurements collected over the past decade at 

lighthouse-based towers. Specific foci in this study are to determine: 1) the capability of the flux 

algorithms in reproducing inter-annual, seasonal, and daily latent and sensible heat fluxes, 2) how 20 

much variability occurs in the simulated latent and sensible heat fluxes from using different flux 

algorithms with common forcing data (e.g. meteorology and water surface temperature), and 3) 

the source of such variability and simulation errors. In particular, we address how different 

parameterizations of roughness length scales affect simulations of turbulent latent and sensible 

heat fluxes over the water surface of the Great Lakes.  25 

 

2. Methods 

We begin by describing the measured meteorology and turbulent heat flux data used in this 

study, followed by the flux algorithms within the larger modeling framework, and lastly the 
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intercomparison methods used to evaluate the performance of the flux algorithms. We selected the 

time period from January 2012 through December 2014; this 3-year period is ideally suited for our 

study since it allows for a comparison between two anomalously warm winters (2012 and 2013) 

and one unusually cold winter (2014) (Clites et al., 2014). 

 5 

2.1. Data 

Meteorological and turbulent heat flux data were collected from four offshore, lighthouse-based 

monitoring platforms (Fig. 1): Stannard Rock (Lake Superior), White Shoal (Lake Michigan), 

Spectacle Reef (Lake Huron), and Long Point (Lake Erie). These observations were collected as 

part of a broader collection of fixed and mobile-based platforms collectively referred to as the 10 

Great Lakes Evaporation Network (GLEN, Lenters et al., 2013). The National Data Buoy Center 

(NDBC) refers to these installations as stations STDM4, WSLM4, and SRLM4 at Stannard Rock, 

White Shoal, and Spectacle Reef, respectively.  

With the exception of Long Point, footprint analysis indicates each station is located sufficiently 

distant from shore so that there is no influence of the land surface on the turbulent flux 15 

measurements (Blanken et al., 2011). Long Point, however, is located at the tip of a narrow, 40-

km peninsula extending into Lake Erie. As a result, measured fluxes can be influenced by the 

upwind land surface when the wind direction is from directions between 180o (south) and 315o 

(northwest), therefore, the corresponding data were removed when measured wind directions were 

within this range.  20 

 

2.1.1. Turbulent heat flux measurements 

All four eddy covariance systems followed conventional protocols for calculating turbulent 

fluxes, such as those established on Great Slave Lake (Northwest Territories, Canada) by Blanken 

et al. (2000). 30-minute mean turbulent fluxes of latent and sensible heat (lE and H, respectively; 25 

W·m-2; positive upward from the surface) were calculated from 10-Hz measurements of the 

vertical wind speed (w; m·s-1), air temperature (T; °C), and water vapor density (rv; g·m-3). Wind 

speed was measured using a 3D ultrasonic anemometer (Campbell Scientific CSAT-3), while 

water vapor density was measured using a krypton hygrometer (Campbell Scientific KH20). The 

statistics (means and covariances) of the high-frequency data were collected and processed at 30-30 

minute intervals using Campbell Scientific dataloggers. Corrections to the eddy covariance 
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measurements included 2D coordinate rotation (Baldocchi et al., 1988), and corrections for air 

density fluctuations (Webb et al., 1980), sonic path length, high-frequency attenuation, and sensor 

separation (Horst, 1997; Massman, 2000). Instrument heights above the mean water levels for 

meteorological and the eddy covariance measurements were 39.0 m at Stannard Rock, 29.5 m at 

Long Point, 30.0 m at Spectacle Reef, and 42.8 m at White Shoal.  5 

As noted in section 2.1, the eddy covariance data at Long Point were filtered out when wind 

direction was between 180o (S) and 315o (NW) to remove the land surface influence on the 

measured latent and sensible heat fluxes. We also applied cross-check filtering for the eddy 

covariance data at White Shoal and Spectacle Reef. The two stations are relatively close in 

distance, and the measured latent and sensible heat fluxes at these stations were mostly similar, 10 

with daily averaged values differing by less than 100 W·m-2 (except during the ice-covered 

periods, which were not foci of this study). There were outliers during July and August 2014 where 

the measured fluxes at the two stations differed by greater than 100 W·m-2. These data were 

removed, resulting in ~5 % loss of data points at White Shoal and Spectacle Reef. See Blanken et 

al. (2011) and Spence et al. (2011, 2013) for details of the measurements and flux corrections.  15 

 

2.1.2. Meteorological data and water surface temperature 

At the same heights as the turbulent flux instruments, half-hourly meteorological variables of 

wind speed, air temperature, and relative humidity, and air pressure were obtained using RM 

Young wind sensors, Vaisala HMP45C thermohygrometers, and barometers (varied by site), 20 

respectively. Air pressure at Spectacle Reef was not measured and was approximated using data 

from the White Shoal station, a reasonable assumption given their close proximity. Water surface 

temperature for model input was taken from Great Lakes Surface Environmental Analysis 

(GLSEA, https://coastwatch.glerl.noaa.gov/glsea/doc/), which is a composite analysis based on 

NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery. In GLSEA, lake surface 25 

temperatures are updated daily with an interpolation method using information from the cloud-

free portions of the satellite imagery within ±10 days. The closest pixels to the observation sites 

were chosen to provide model inputs of water surface temperature. Ice concentration data, 

provided by the National Ice Center (NIC), were used to decide whether ice cover affected the 

eddy covariance measurements at each GLEN site. When ice concentration at the closest pixel to 30 

a GLEN station was greater than zero, we did not use any data for our comparison (i.e. the observed 
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heat fluxes, water surface temperature, and meteorological data). This was because the study 

focused on evaluating the turbulent heat fluxes over water during ice-free periods. 

Infrared thermometers (IRTs, Apogee IRR-T) were also installed on the observation platforms 

to measure water surface temperature. However, test simulations showed that the flux values 

simulated using the water surface temperature from the IRTs were generally less reliable than 5 

when using the GLSEA data. Blanken et al. (2011) found that about 30% of the IRT-measured 

lake surface temperature observations were unreliable due to condensation, frost, and interference 

from other surfaces (e.g., the lighthouse or sky), therefore, we did not use the IRT-based 

measurements of water surface temperature as input to the simulations. 

Monthly surface air temperature over the Great Lakes was used in the text as a measure of 10 

anomalously warm and cold seasons. These data were taken from the Great Lakes Monthly 

Hydrologic Data (https://www.glerl.noaa.gov/ahps/mnth-hydro.html). 

 

2.2. Flux algorithms 

We evaluated five different flux algorithms from three hydrodynamic/atmospheric/hydrologic 15 

models that are frequently used for Great Lakes operational and research applications (Fig. 2).   

In an early stage of its development, FVCOM required prescribed heat fluxes as forcing 

variables, rather than being calculated (Chen et al., 2006a,b). In a subsequent version of FVCOM 

(Version 2.7), turbulent heat fluxes began being calculated using the Coupled Ocean Atmosphere 

Response Experiment (COARE) Met Flux Algorithm version 2.6 (Fairall et al., 1996a,b), which 20 

was adopted in the official FVCOM by Chen et al. (2006a). The COARE Met Flux Algorithm is 

one of the most frequently used algorithms in the air–sea interaction community. It was 

subsequently modified and validated at higher winds in the version known as COARE 3.0 (Fairall 

et al., 2003) and the latest version COARE 3.5 (Edson et al., 2013), which includes wave influences 

on the Charnock parameter (Charnock, 1955). FVCOM has mostly incorporated these updates in 25 

their upgraded versions, including provision for freshwater implementation, except that the latest 

version of FVCOM (version 4.0) has not yet included wave influences on the Charnock parameter. 

Hereafter we refer to the COARE implementation in FVCOM as COARE, which is equivalent to 

COARE 3.0. In FVCOM version 3 and later, two additional flux calculation algorithms were added 

(Chen et al., 2013): One was adapted from a flux coupler in the Community Earth System Model 30 

(CESM, Jordan et al., 1999; Kauffman and Large, 2002) and also built into the code of the Los 
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Alamos Sea Ice Model (CICE, Hunke et al., 2015). This algorithm is hereafter referred to as J99 

(i.e., Jordan et al., 1999). The other algorithm, hereafter referred to as LS87 (Liu and Schwab, 

1987), was originally developed at NOAA's Great Lakes Environmental Research Laboratory 

(GLERL) and subsequently used in a variety of Great Lakes research and operational applications 

(Anderson and Schwab 2013; Beletsky et al. 2003; Rowe et al. 2015; Wang et al. 2010; and many 5 

others). Inclusion of LS87 in FVCOM was tied to the fact that the algorithm was historically part 

of real-time nowcasts and forecasts of NOAA’s GLOFS, which is based on the Princeton Ocean 

Model, and that GLOFS is transitioning its physical model to FVCOM. 

The WRF model (Skamarock et al., 2008) is increasingly used for regional weather and climate 

model applications over the Great Lakes (Benjamin et al., 2016; Xiao et al., 2016; Xue et al., 10 

2015). The WRF model includes a one-dimensional lake model that thermodynamically interacts 

with the overlying atmosphere (WRF-lake, Bonan, 1995; Gu et al., 2015; Henderson-Sellers, 1986; 

Hostetler and Bartlein, 1990; Hostetler et al., 1993; Subin et al., 2012) and is adapted from the lake 

component within the Community Land Model version 4.5 (CLM 4.5, Oleson et al., 2013; Zeng 

et al., 1998). The algorithm for the turbulent heat flux calculation in WRF-lake is mainly based on 15 

Zeng et al. (1998), except that roughness length scales for temperature and humidity are constant 

for its WRF-lake application, while they are updated dynamically in CLM 4.5. Hereafter, this 

algorithm in its WRF-lake application is referred to as Z98L.   

Finally, we include the flux algorithm from the LLTM (Croley, 1989a,b; Croley et al., 2002; 

Hunter et al., 2015), which is a lumped conceptual lake model developed for hydrological research 20 

and forecasting for the Great Lakes. LLTM simulates evaporation and heat fluxes as a lake-wide 

average, rather than spatially distributed. This algorithm is based primarily on the work of Croley 

et al. (1989a,b) and is hereafter referred to as C89.  

All of the above algorithms are based on applications of Monin-Obukhov similarity theory 

(Kantha and Clayson, 2000b; Obukhov, 1971), where the turbulent fluxes of sensible heat, latent 25 

heat, and momentum are expressed with state variable magnitudes associated with surface friction 

– T*, q*, u* for air temperature, specific humidity, and horizontal wind velocity, respectively. In 

each algorithm, the bulk expressions are used to calculate the sensible heat (H) and the latent heat 

(λE):  

 30 

	" = 	$%&'()*(,- − ,%),                    (1) 
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01 = 	$%0(2*(3- − 3%),                    (2) 

 

where ra is the density of air; cp and λ are the specific heat of air and the latent heat of vaporization, 

respectively; CH and CE are the bulk transfer coefficients for the sensible and latent heat, 

respectively; S is the average value of wind speed that includes the effect of the gustiness velocity 5 

in addition to horizontal wind speed U (defined later); and qw and qa (qw and qa) are potential 

temperature (specific humidity) of the water surface and of air at the measurement height, 

respectively.   

The bulk transfer coefficients have a dependence on atmospheric stability that can be 

expressed as:  10 
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where z0, z0q, and z0q are roughness length scales for momentum, temperature, and humidity 20 

respectively; CD is the drag coefficient; k is the von Kármán constant (0.40 for COARE, Z98L, 

and J99; 0.41 for C89, and 0.35 for LS87); Prt is the turbulent Prandtl number (1.0 is used in all 

the algorithms); and YM,q, q(z) are the integrated forms of stability functions for momentum, 

temperature, and humidity, respectively. All algorithms assume that temperature and humidity 

have a common value of Y, i.e. Yq =Yq=YM. z= z/L is the stability factor, where L is the Obukhov 25 

length and z is the measurement height.  

Differences among the algorithms are primarily in how they estimate YM,q, q(z), z0., and 

consequently, the bulk transfer coefficients. The profile functions YM,q, q(z) are typically divided 
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into three regimes, namely unstable, mildly stable, and strongly stable. All the algorithms use 

Businger-type parameterizations (Businger et al., 1971; Kraus and Businger, 1995) for the unstable 

regime (Table 1), except COARE, which includes convective behavior in highly unstable 

conditions by introducing a stability function for a convective limit (Fairall et al., 1996a; 

Supplemental Tables 1 and 2). For stable conditions, Holtslag et al. (1990) is used in LS87, C89, 5 

and Z98L, while Beljaars and Holtslag (1991) is used in J99 and COARE (Table 1). Note that 

there are minor differences in coefficients of YM,q,q(z) within the algorithms, which can be found 

in Supplemental Tables 1 and 2. 

The roughness length scale for momentum, z0, is often parameterized as a function of friction 

velocity u*. The LS87, C89, and COARE algorithms apply Charnock’s formula (Charnock, 1955; 10 

Smith, 1988):  

 

 MN =
OP∗Q

R
+

N.CCU

P∗
  ,                      (8) 

 

where z0 is the roughness length scale of momentum, a is the Charnock parameter, g is the 15 

acceleration due to gravity, and n is kinematic viscosity. Because the value of z0 feeds back into 

the value of u* via equations (3) and (5), equation (8) must be solved iteratively to arrive at final 

values of these variables.  Here, COARE calculates the Charnock parameter a as a function of 

wind speed, while LS87 and C89 use a constant a (Table 1). In contrast to the Charnock formula 

(equation 8), J99 directly calculates z0 as a function of wind speed based on Large and Pond (1981), 20 

while Z98L assumes z0 to be a constant 0.001 m. In the original paper of Zeng et al. (1998), non-

constant parameterizations for roughness length scales were used, namely Smith (1988) for 

momentum and Brutsaert (1982) for temperature and humidity. The constant value in Z98L is 

likely related to the fact that the implementation in WRF handles the lake surface as part of various 

land surface types, whose roughness lengths for momentum are often assumed to be constant 25 

(Mitchell et al., 2005; Oleson et al., 2013), while the original work of Zeng et al. (1998) assumed 

ocean surface applications. 

Evidence from previous studies suggests that z0 can be significantly larger than z0q,q, because 

momentum is transported across the air-sea interface by pressure forces acting on roughness 

elements, while heat and water vapor must ultimately be transferred by molecular diffusion across 30 
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the interfacial sublayer (Brutsaert, 1975; Garratt, 1992; Kantha and Clayson, 2000a). However, 

many land and lake models, including four of the five algorithms used in this study, assume the 

same roughness length for momentum and heat transfer; for example, Croley (1989b, C89); Liu 

and Schwab (1987, LS87); Oleson et al. (2013); Zeng et al. (1998, Z98L); the CICE application 

(J99), the previous NCEP Eta model described in Chen et al., 1997; and the Canadian operational 5 

weather and hydrologic models described in Deacu et al. (2012). Deacu et al. (2012) showed that 

the same value for z0 and z0q,q resulted in overestimation of turbulent heat fluxes over Lake 

Superior, and that the overestimation was reduced by using the smooth surface parameterization 

for z0q,q, with an empirical coefficient based on Beljaars (1994). 

As part of the current study, we intend to conduct a similar experiment to Deacu et al. (2012), 10 

namely, updating the original z0q,q parameterization in the LS87, C89, Z98L, and J99 algorithms 

to a more realistic parameterization. We conduct this experiment to identify errors in lE and H 

simulations with these algorithms’ original z0q,q formulation and to evaluate how much the errors 

could be reduced in this way. We use an alternative z0q,q formulation that is based on Fairall et al. 

(2003), which is used in COARE. The formulation utilizes the Liu–Katsaros–Businger model 15 

(LKB; Liu et al., 1980), with updates described in Fairall et al. (2003), where a simpler empirical 

relationship is formulated to represent the LKB model, based on a fit to observational data:    

 

  MNF,G = min	(1.6×10=\, 5.8×10=_`A=N.a>) ,             (9) 

 20 

where Rr=u*z0/n is the roughness Reynolds number, which is also updated throughout the 

iterations. We test both the original and updated parameterizations for z0q,q in the heat flux 

simulations.  

“Gustiness” velocity wg is included in Z89L and COARE to account for the additional flux 

induced by the convective boundary layer in low wind speed regimes. The average value of wind 25 

speed S is defined as, 

 

  * = b> + cR
> ,                        (10) 

 

where U is the mean horizontal wind speed. wg is defined as 30 
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)

ghi
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where b is an empirical constant set to b =1.2 in COARE and b =1.0 in Z89L. Further details of 

the gustiness velocity formulations are described by Fairall et al. (1996a). In LS87, C89, and J99, 5 

S is assumed to be identical to U. 

All algorithms require meteorological inputs of horizontal wind speed U, potential air 

temperature qa, potential temperature at the water surface qw, a humidity-related variable (dew 

point for LS87, relative humidity for C89, Z98L, COARE, and specific humidity for J99), air 

pressure, and sensor height. These meteorological inputs should represent a temporal mean field 10 

over the corresponding eddy covariance measurement. U, qa, and qw can be directly used in eqs. 

(1) and (2), while qw and qa need to be derived from relative humidity, water surface (or air) 

temperature, and air pressure.  

 

2.3. Intercomparison methods 15 

The following steps were taken to compare and verify simulated sensible and latent heat fluxes 

against observed fluxes: 

1) The five algorithms were forced by half-hourly meteorological data (U, qa, qw, relative 

humidity, air pressure). Missing values were assigned for simulated heat fluxes when any 

observed values of U, qa, qw, and relative humidity were not available or when lake ice was 20 

present at a site. 

2) Temporal averaging was applied to simulated and observed fluxes. We first calculated 

daily averaged lE and H. Gap-matching was applied to the simulated and observed fluxes. 

If either the simulated or observed lE (H) was a missing value at a half-hourly time step, 

both the simulated and observed lE (H) at this time step were not used for daily averaging. 25 

This was conducted so that daily averages from the simulation (roughly continuous in time) 

were adequately compared with those from the observations, which had more frequent data 

gaps. When more than 24 out of 48 data points were missing in a day, a missing value (-

9999) was assigned.  For time series comparison, a 10-day moving average was applied to 

simulated and observed fluxes in order to smooth the synoptic variability and highlight 30 
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comparison of the respective seasonal cycles. Daily averaging was used for one-to-one 

comparisons (i.e. scatter plots).  

3) Root-mean-square errors (RMSEs) and mean bias were calculated for daily sensible and 

latent heat fluxes.   

4) Errors of daily lE and H were calculated as functions of qw-qa, qw-qa, U, CH,E, and z.  5 

3. Results 

3.1. Observed and modeled seasonal cycles 

Figure 3 shows the time series of air temperature, water surface temperature from GLSEA, 

relative humidity, and wind speed at the four stations. The time series for Stannard Rock were 

relatively gap-free throughout the three years, while there were some data gaps in the time series 10 

for the other stations. At all the stations, the air temperature time series were characterized by a 

typical seasonal cycle (Fig. 3a), with relatively warm and cold winters in 2012-13 and 2013-14 

respectively. The winter of 2011-2012 was also very warm, but flux data from December 2011 

were not analyzed as part of this study. During the two full winters (December-February) of 2012-

13 and 2013-14, the mean surface air temperatures over the Great Lakes were -1.0 oC and -5.2 oC, 15 

respectively, while the long-term (1948-2014) mean was -2.4 oC for the same 3-month period. This 

was also reflected in the water surface temperature time series (Fig. 3b), where only White Shoal 

and Long Point were affected by ice cover in the winter (January-March) of 2012-2013, shown as 

gaps in the time series, whereas all four stations were affected by ice cover in the winter of 2013-

2014. In addition to the preceding winter, the spring and summer months of 2012 were 20 

anomalously warm. Surface air temperature over the Great Lakes for April-September in 2012 was 

16.4 oC, while the long-term (1948-2014) mean was 14.5 oC for the same months. This was also 

reflected in the 2012 summer water surface temperatures at the stations (Fig. 3b), which showed 

anomalously warm temperatures compared with the same periods during 2013 and 2014 

(particularly at Stannard Rock). Relative humidity generally fluctuated between 50 % and 90 % 25 

(Fig. 3c), while wind speed (Fig. 3d) was characterized by a weak seasonal cycle of relatively high 

wind speeds during fall and winter (October-March) and lower wind speeds during spring and 

summer (April-September).  



14 
 

Figures 4-7 show visual comparisons of 10-day running mean time series of lE and H at each 

of the four stations. Overall, all five algorithms simulated the general seasonal cycles of lE and 

H, including the observed high fluxes during fall and winter and low fluxes during spring and 

summer, which is typical for large North American lakes (Blanken et al., 1997, 2000, 2011; Spence 

et al., 2011). On the other hand, there were notable overestimations of lE and H by the original 5 

algorithms, particularly at Stannard Rock (Fig. 4) in the fall (lE) and winter (H).  

The observed lE and H at Stannard Rock were largely gap-free (Fig. 4), showing nearly 

continuous time series of seasonal cycles, aside from periods of high ice coverage during the cold 

winter of 2013-2014. A few additional data gaps also occurred, including late summer of 2012, a 

longer data gap during January-May 2014, and a very short data gap during December 2013.  10 

At Stannard Rock, late-fall (October-December) lE and H were relatively low in 2012 (3-

month averages 84 W·m-2 for lE and 55 W·m-2 for H) and high in 2013 (119 W·m-2 in lE, 85 

W·m-2 for H), indicating preconditioning of the following mild and severe winters, respectively. 

During spring and summer of both years (April-September), the observed lE and H were much 

lower due to the cool lake surface relative to the overlying air. The simulated lE and/or H mostly 15 

reproduced these lower values, but also showed occasional negative values (Fig. 4), such as during 

May 2012 and July 2014. During these periods, the air was predominantly warmer than the water 

surface (i.e Tw-Ta < 0, Fig. 1), and specific humidity gradients were near zero during May 2012 

and reversed (i.e., air-to-water) during July 2014, forcing the algorithms to simulate near-zero and 

negative (i.e. downward) fluxes, respectively. However, the observed lE and H fluxes remained 20 

close to zero, but slightly positive. 

The forcing dataset for White Shoal (Fig. 3) was relatively gap-free as well, but there was a 

missing data period before October 2013 for lE and data gaps in H due to ice cover (Fig. 5). White 

Shoal tended to be influenced by ice cover even in mild winters, since typical south-westerly winds 

pushed ice in Lake Michigan downwind, causing ice accumulation in northern parts of the lake 25 

near White Shoal. As such, the exclusion of turbulent flux data for this analysis during the mild 

winter of 2012-2013 at White Shoal was due to ice cover. These observations also showed 

contrasting late-fall heat fluxes during the two years: three-month average H was 40 W·m-2 during 

October-December 2012 and 61 W·m-2 during October-December 2013. Some model 
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underestimation of the sensible heat flux (H) occurred during July-September 2013 and June-

October 2014.  

The Spectacle Reef forcing dataset (Fig. 3) and flux dataset (Fig. 6) both contained a long gap 

from March 2012 to September 2013 due to electrical problems from lightning strikes. A data gap 

in lE and H during January-March 2014 was due to ice cover, but unlike White Shoal, Spectacle 5 

Reef was less affected by ice cover. This was because winds carried ice that formed nearshore 

toward the east and offshore in Lake Huron, keeping the area around the flux tower largely in open 

water. Although ice cover did not affect the station in the winter of 2012-2013 (based on the NIC 

data), this period was included in the above-referenced long data gap due to electrical power issues.  

The dataset at Long Point (Fig. 7) included the largest number of data gaps due to the additional 10 

filtering due to wind direction of 180o (S)-315o (NW), which included typical south-westerly winds 

in this region. The significant data gaps at Spectacle Reef and Long Point, therefore, did not allow 

us to compare the late-fall fluxes between the anomalous two years. However, for the purpose of 

the algorithm verification, the data at the two stations were still valuable, and forcing datasets were 

largely continuous (Fig. 3).  15 

Figures 4-7 also show model results using both the original and updated z0q,q parameterizations 

(eq. 9). The original results of LS87, C89, Z98L, and J99 showed overestimation of  lE and H at 

Stannard Rock by anywhere from 33-50% for most of the algorithms, to ~80 % overestimation for 

Z98L (both lE and H) and LS87 (lE) (Fig. 4, Table 2). These overestimations were particularly 

obvious during high flux events in fall and winter (October-March). The overestimation at 20 

Stannard Rock was significantly lessened to roughly 24-33% error by using the updated z0q,q 

formula (eq. 9). This was consistent with the findings of Deacu et al. (2012), who showed 

improvements in latent and sensible heat flux simulation by updating the roughness length scale 

parameterization at Stannard Rock for the December 2008 simulation period. Similar 

improvements were found at White Shoal (Fig. 5), Spectacle Reef (Fig. 6), and Long Point (Fig. 25 

7).  

3.2. Comparison of daily mean fluxes 

While the 10-day running mean time series of lE and H provided an effective way to illustrate 

the overall cycle (Figs. 4-7), abrupt changes in lE and H often occur on daily timescales, caused 
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by the passage of frontal systems and cold-air outbreaks (Blanken et al., 2008). Thus, we further 

evaluated the performance of the various algorithms at daily timescales by means of scatter plots 

of observed and modeled daily mean heat fluxes (Figs. 8 and 9). Data points of lE (Fig. 8) diverged 

more from the 1:1 line than H (Fig. 9), showing both overestimated fluxes (at Stannard Rock and Long 

Point with Z98L) and underestimated fluxes (at Spectacle Reef). Overall, the updated z0q,q formula 5 

reduced simulated lE, generally bringing the fluxes into better agreement with observations. An 

exception to this occurred for lE at Spectacle Reef, where the agreement became slightly worse with 

the updated formulation. The error reduction ratio of lE at Spectacle Reef was negative, and the mean 

bias was more negative with the updated formulation at this station (Table 2). This was also represented 

in the 10-day running mean time series (Fig. 6a-b). For H (Fig. 9, Table 3), notable overestimation was 10 

seen in the original J99, LS87, and Z98L, particularly at relatively large heat loss values (> ~300 W·m-

2). At Stannard Rock, Spectacle Reef, and Long Point, this overestimation was improved with the 

updated z0q,q formula according to error reduction ratios (Table 3). At White Shoal, however, the 

improvement was not as significant, 28% compared to 58% for Stannard Rock, 69% for Spectacle 

Reef, and 50% for Long Point. At Long Point, despite the notable error reduction, H was still 15 

overestimated in the high flux range. 

Stannard Rock showed small groups of lE and H around the origin, where the simulated fluxes 

underestimated the observed fluxes (i.e. below the 1:1 line, Figs. 8 and 9). These data represented two 

summer periods when the observed fluxes were near zero, but the simulated fluxes were negative (Fig. 

4, see the discussion in section 3.1). At White Shoal, there was a population of H values below the 1:1 20 

line (Fig. 9), representing periods when the simulation results underestimated the observations 

during July-September 2013 and June-October 2014 (Fig. 5c-d, see the discussion in section 3.1).  

 

3.3. Error dependence on meteorological conditions and transfer coefficients 

Figures 10 and 11 show the magnitude of error in simulated daily lE and H (i.e., difference 25 

from observations) as functions of qw-qa, qw-qa, CH, CE, U, and z=z/L for the five algorithms at 

Stannard Rock. Similar results were observed in the error and bias analyses at the other sites 

(supplementary Figures S1-S6). There were several features common in all the algorithms: The 

lE (H) errors were positively correlated with qw-qa (qw-qa), especially with the original algorithms; 



17 
 

the amplitudes of the errors became large (both positive and negative) as wind speed increased; 

and the majority of data were in the range -2<z<0 (unstable). Most notably, the transfer coefficients 

CH and CE were significantly reduced with the updated z0q,q formula, which also reduced the error 

in the lE and H simulations. This was to be expected, since z0q and z0q are directly translated into 

CH and CE respectively. The study period did not include the occurrence of highly unstable 5 

conditions (z<<-1, Figs. 10 and 11, Supplemental figures S1-S6), therefore, the period was not 

sufficient to evaluate the convective behavior treatment in COARE. Also, the study period did not 

include sustained low wind speeds. According to Fairall et al. (1996a), the gustiness 

parameterization has only a modest effect until the wind speed becomes less than 2-3 m s-1. The 

wind speeds during our study period were mostly greater than 3 m s-1 (Figs. 10 and 11, 10 

Supplemental figures S1-S6) and, therefore, did not allow us to evaluate the influence of the 

gustiness parameterizations in COARE and Z98L.  

 

4. Discussion 

The simulation results of four of the five algorithms investigated here (J99, C89, LS87, Z98L) 15 

were improved overall by the updated z0q,q formula (Eq. 9), bringing the simulation results into 

closer correspondence with the COARE simulations. In our study period, we did not see clear 

advantages in the simulation results with the other differences among the algorithms. For example, 

we did not observe a clear difference in the results when using the various stability functions (i.e. 

YM,q,q) in the algorithms. Evaluations of the convective behavior treatment in COARE and the 20 

gustiness effect in COARE and Z98L were not possible as our study period did not have 

appropriate conditions, as mentioned in section 3.3. The notably smaller value of the von Kármán 

constant used in LS87 (0.35) would also affect the values of the simulated lE and H. Indeed, a test 

simulation with k=0.41 with LS87 resulted in ~30% larger values of lE and H (not shown). 

However, this makes the algorithm’s overestimation of lE and H even worse. Thus, the most 25 

important factor in our analyses to improve the lE and H simulations was the parameterization of 

roughness length scales for temperature and humidity (z0q and z0q). Formulae for z0q,q with smooth 

surface parameterization (such as Eq. 9) have been widely used for air-sea interaction modeling 

(e.g. Beljaars, 1994; Fairall et al., 2003) and have also been verified in lake applications (Deacu et 
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al., 2012). It is reasonable to recommend that future updates of the four algorithms should include 

the updated or similar formulation of z0q,q  

The inclusion of the updated z0q,q formula does not guarantee immediate improvement of the 

parent model systems. This is because each of the model systems is complex and must embrace 

uncertainties from all aspects, including forcing, dynamics, and boundary conditions. Typically, 5 

such a system is calibrated to provide best estimates of certain variables for its own purpose (e.g. 

water temperature for the implementation of FVCOM in GLOFS), and a sudden change to a single 

aspect of the system would lose a balance that has been achieved by extensive calibration. An ideal 

approach to improve model systems would have to be more comprehensive in terms of model 

variables for which the system is expected to provide best estimates. For example, in FVCOM, it 10 

may be a combination of improvements to a meteorological data set that drives the hydrodynamic 

model, as well as improvements to a bulk flux algorithm within the model.    

Simulated negative values of lE and H contrast with near-zero, but positive, observed values 

during summer at Stannard Rock (Fig. 4, around May 2012 and July 2014). Although the 

magnitude of these negative values was much smaller than the positive values in fall and early 15 

winter, which were more influential on the annual energy budget, it would be desirable that reasons 

behind this discrepancy were fully understood. A similar discrepancy was found at Long Point 

(Fig. 7, around April 2013) and White Shoal (Fig. 5, around June 2014), although the discrepancy 

was only for H, and the magnitude of the discrepancy was smaller than at Stannard Rock. The 

discrepancy remained even after updating the z0q,q formula. During these periods, the temperature 20 

gradients between the air (at sensor heights) and at the water surface were commonly negative (the 

air was warmer), and wind speeds ranged from 6-12 m s-1, resulting in the negative fluxes (i.e., 

downward) simulated by the bulk flux algorithms. One possibility is that the sensors were above 

the constant flux layer during these periods, and therefore, the similarity theory was no longer 

applicable. However, evidence to confirm these possibilities is not sufficient at this time. 25 

Other possible sources of the discrepancy could be in the forcing data, particularly uncertainties 

in the GLSEA water surface temperature data. As described in section 2.1.2, the information for 

cloudy areas is created using an interpolation method from the satellite imagery within ±10 days. 

Therefore, the GLSEA data tends to have lower accuracy and could miss abrupt changes in water 

surface temperature during cloudy days. The IRT-measured water surface temperature showed 30 

somewhat warmer water surface temperature than the GLSEA data during these discrepancy 
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periods (Supplemental figure S7), indicating possible underestimation of water surface 

temperature in the GLSEA data and resulting in false negative lE and H. However, we concluded 

earlier that the accuracy of the IRT-measured water surface temperature was limited (see section 

2.1.2). An ideal way to confirm accuracy in GLSEA for such analyses would be an in situ 

measurements of water surface temperature at the flux tower sites using buoys, for example (which 5 

began in August 2017 at Stannard Rock). Also, a recent work by Moukomla and Blanken (2016) 

used an experimental method to derive water surface temperature from MODIS (Moderate 

Resolution Imaging Spectroradiometer) for all-sky conditions. This may be tested in the future.  

The normalized RMSEs at Long Point were worse than those at the other stations even though 

data were filtered out for wind direction in the range of 180o (S) -315o (NW). We believe the 10 

filtering window was sufficiently large to remove any possible land surface contamination. We 

again suspect the water surface temperature data could be a potential source of error. As noted in 

section 2.1, the station is on the shore of a narrow peninsula extending into Lake Erie. The satellite-

based observations of water surface temperature tend to lose their accuracy near the coast due to 

pixel contamination, and thus the GLSEA accuracy at this station could be lower. For such a 15 

location, FVCOM, a full hydrodynamic model, may be appropriate to reproduce the observed 

fluxes. It also should have sufficient horizontal resolution to represent the complex bathymetry 

around the peninsula, which is essential to reproduce the spatial pattern of heat capacity in the 

water column correctly, and therefore the water surface temperature.   

 20 

5. Summary and conclusions 

This study focused on the validation of surface latent and sensible heat fluxes (lE and H, 

respectively) from the surface of the Great Lakes. We isolated the surface flux algorithms 

commonly used in Great Lakes physical modeling and evaluated each algorithm using observed 

meteorology and lake surface temperatures by comparing their output to several eddy covariance 25 

stations within the GLEN network, which provided measurements of in situ turbulent heat  fluxes 

over the lake surface. All algorithms reproduced the seasonal cycle of lE and H reasonably well 

during a warm period (2012-mid 2013) and cold period (late 2013-2014). However, four of the 

original algorithms (i.e. except for COARE) presented notable disagreement with the observations 
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under certain conditions; significant positive biases in H were found under high upward heat flux 

conditions (cooling of water surface); the errors in H were also positively correlated with the 

temperature difference between air and water. 

These errors were significantly improved by introducing the updated z0q,q formula based on 

Fairall et al., (2003), which is well supported by the air-sea interaction modeling community. The 5 

update led to reduced transfer coefficients CH and CE, reducing the overestimation of the simulated 

heat fluxes. With the updated formula for z0q,q, the four models (LS87, C89, J99, Z98L) simulated 

heat fluxes similar to COARE. While it is reasonable to adopt the updated formula in the parent 

model systems where these algorithms are included, this does not guarantee immediate 

improvement of simulations by the parent model systems, since these model systems are calibrated 10 

to provide best simulations for certain variables by embracing uncertainties in all aspects. We used 

in situ meteorological forcings to drive the algorithms, which is generally ideal, but in operational 

practice, it is not possible to use in situ data over the entire lake surface. For example, GLOFS 

uses interpolated and/or model-forecasted meteorological forcings, which inevitably includes 

additional sources of error.  15 

It should not be a great surprise that adjustment of roughness length z0q,q is a primary factor in 

correcting turbulent fluxes. In eqs. (3) and (4), z0q,q
 and YM,q, q(z) are the only terms for which 

some discretion is left for the algorithm to specify a value. One anchoring point for YM,q, q(z) is 

that it must be zero for neutral stability conditions. As long as the algorithms’ values of YM,q, q(z) 

do not disagree strongly, the value of z0q,q
 primarily controls the turbulent fluxes. 20 

We successfully evaluated the flux algorithms, which are an important aspect of Great Lakes 

water and energy balance modeling, and we identified and reduced errors in simulated heat fluxes 

from these algorithms. We recommend that bulk flux algorithms use an appropriate 

parameterization for z0q and z0q instead of assuming them equal to z0, or simply employ the COARE 

algorithm, which presented the best agreement with the eddy covariance measurements in this 25 

study. We also recommend simultaneous in situ measurement of water surface temperature at the 

flux tower locations in order to allow more robust comparison between the eddy covariance 

measurements and simulated lE and H by a column model (e.g. the five algorithms independently 

driven by the forcing data in this study).  

Accurate simulation of the turbulent heat fluxes from the lake surface is important to a wide 30 

range of lake-atmosphere and earth system applications, from long-term water balance estimates 



21 
 

to numerical prediction of lake levels, weather, lake ice, and regional climate. Communities within 

and surrounding the Great Lakes basin are increasingly dependent on numerical geophysical 

models for these types of societal applications. Furthermore, the continued monitoring of turbulent 

heat fluxes at the offshore GLEN sites is critical for such models to be improved in future studies. 
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Table 1 – Summary of flux algorithm specifications. 

Algorithm 
name 

Parent 
Model Stability  

Parameterization of roughness length scales for  
Gustiness References 

momentum z0 
temperature and 

humidity z0q,q 
  Unstable Stable   No  

LS87 FVCOM 
Similar to 
Businger et al. 
(1971) 

Holtslag 
et al. 
(1990) 

!" = $
%∗'

(
+ 0.11

-

%∗
 

a=0.011 
 

!" = !.,0 No Liu and Schwab 
(1987) 

C89 LLTM Businger et al. 
(1971) 

Holtslag 
et al. 
(1990) 

!" = $
%∗'

(
 

a=0.0101 
!" = !.,0 No Croley (1989a,b) 

Z98L WRF-
Lake 

Businger et al. 
(1971) 

Holtslag 
et al. 
(1990) 

!" =0.001 m 
(Smith, 1988 for ocean) 

!" = !.,0 
(Brutsaert, 1975 
for ocean) 

Fairall et 
al. 

(1996ab), 
b=1.0 

Zeng (1998) 

J99 
FVCOM, 

UG-
CICE 

Businger et al. 
(1971) 

Beljaars 
and 
Holtslag, 
(1991) 

!" = !exp −5
2.7×109:

;

+ 1.42×109=

+ 7.64

×109?;
9@

 

(Large et al., 1994) 

!" = !.,0 
(Jordan (1999) 
used Andreas, 
(1987) for ice 
surface. 

No Jordan (1999), 
Hunke et al. (2015) 

COARE FVCOM 

Businger et al. 
(1971), 
Convective 
behavior: 
Fairall et 
al.,(1996) 

Beljaars 
and 
Holtslag, 
(1991) 

!" = $
%∗'

(
+ 0.11

-

%∗
 

a: function of wind speed 

!.,0
= 	min	 1.6
×109=, 5.8
×109?GH9".I'  

Fairall et 
al. 

(1996a,b), 
b=1.2 

Fairall et al., 
(1996a,b), Edson et 
al. (2013) 
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Table 2 Statistics of simulated latent heat flux lE for 2012-2014. For J99, LS87, Z98L, and C89, RMSEs with the updated z0q,q 

formulation  are shown. Numbers in parentheses denote RMSEs with the original z0q,q formulation. An error reduction ratio (%) 

is calculated for mean RMSEs of J99, LS87, Z98L, and C89. A mean flux (W·m-2) and mean normalized RMSE are calculated 

for all the five algorithms. 
 RMSE [W·m-2] Error 

reduction ratio 

[%] 

Mean flux 

[W·m-2] 

Mean 

Normalized 

RMSE 

Mean bias 

[%] COARE J99 LS87 Z98L C89 

Stannard Rock 26.3 33.7 (31.0) 28.3 (37.2) 28.1 (76.7) 28.2 (36.8) 35.0 56.9 0.53 (0.84) 1.8 (31.3) 

White Shoal 25.2 36. (25.3) 28.3 (25.4) 27.8 (68.0) 27.6 (25.8) 17.0 61.1 0.49 (0.59) 1.4 (24.0) 
Spectacle Reef 70.4 83.8 (66.8) 68.5 (61.9) 67.4 (72.6) 71.3 (62.5) -10.3 116.1 0.63 (0.57) -27.8 (-3.2) 

Long Point 42.9 40.1 (42.1) 47.9 (46.5) 49.1 (104.3) 45.8(47.8) 24.1 50.7 0.90 (1.19) 27.4 (49.6) 

Mean RMSE 
[W·m-2] 

41.2 48.5 (41.3) 43.2 (42.8) 43.1 (80.4) 43.2 (43.2) 14.3 81.5 0.55 (0.64) - 

Mean bias [%] -2.4 -23.5 (2.5) 11.7 (16.2) 12.4 (91.3) 5.5 (17.0) - - - 0.7 (25.4) 
 

Table 3 Same as Table 2, but for sensible heat flux H.    
 RMSE [W·m-2] Error 

reduction ratio 

[%] 

Mean flux 

[W·m-2] 

Normalized 

RMSE 

Mean bias 

[%] COARE J99 LS87 Z98L C89 

Stannard Rock 25.1 27.2 (47.8) 24.5 (81.0) 24.5 (73.4) 22.0 (29.7) 57.6 39.1 0.63 (1.48) -8.9 (36.3) 
White Shoal 32.3 31.4 (37.9) 31.8 (50.8) 31.9 (52.8) 31.0 (32.9) 27.7 40.7 0.78 (1.07) -24.9 (7.8) 

Spectacle Reef 11.4 13.2 (27.2) 13.9 (60.4) 11.9 (65.3) 13.3 (13.8) 68.6 46.1 0.28 (0.90) 6.3 (44.8) 
Long Point 27.2 26.7 (45.5) 28.5 (65.6) 27.6 (63.2) 21.5 (32.9) 49.7 11.7 2.2 (4.4) 18.5 (31.4) 

Mean RMSE  24.0 24.7 (39.6) 24.7 (64.5) 24.0 (63.7) 22.0 (27.4) 51.2 38.0 0.63 (1.28) - 
Mean bias [%] -5.6 -3.3 (25.8) 8.4 (61.4) -2.5 (58.2) -8.3 (4.9) - - - -2.3 (30.1) 



32 
 

Captions of Figures  

Figure 1. Map of the Laurentian Great Lakes including the locations of offshore lighthouse-

based monitoring stations used in this study.  Adapted from Lenters et al. (2013). Instrument 

heights above the mean water level are 39.0 m at Stannard Rock, 29.5 m at Long Point, 30.0 

m at Spectacle Reef, and 42.8 m at White Shoal.  

 

Figure 2. Schematic diagram showing the relationship between the parent model systems 

(FVCOM, WRF-Lake, and LLTM) and the flux algorithms used in the parent model 

systems. A detailed description of each flux algorithm is listed in Table 1. 

 

Figure 3. 10-day running mean time series of meteorological variables at the four stations. 

Air temperature and relative humidity were measured with Vaisala HMP45C 

thermohygrometers and wind speed was measured with the CSAT-3 (See section 2.1.1 or 

Figure 1 for the sensor heights). Water surface temperature is taken from GLSEA. Data at 

pixels closest to the stations are used. The data gaps in water surface temperature from 

January to April denote periods during which the site was affected by lake ice cover. 

Measurements at Long Point and White Shoal started in May and June of 2012. There is also 

a long data gap between February 2012 and June 2013 at Spectacle Reef.  

 

Figure 4. 10-day running mean time series of latent (lE) and sensible (H) heat fluxes at 

Stannard Rock. Black lines denote observed lE and H and the same for (a), (b) and (c), (d), 

respectively. The lE and H simulations employ the original z0q,q formula in (a), (c) and with 

the updated z0q,q formula in (b) and (d). The COARE simulation results are unchanged from 

(a) to (b) or from (c) to (d).  

Figure 5. The same as Figure 4, but at White Shoal. 

Figure 7. The same as Figure 4, but at Long Point. 

Figure 6. The same as Figure 4, but at Spectacle Reef. 

Figure 8. Scatter plots of latent heat flux (lE) comparing the observed (x-axis) and the 

simulated (y-axis) daily mean fluxes. Each row shows comparisons with a specific 
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algorithm at the four stations, while each column shows comparisons with the five 

algorithms at a specific station. Gray and blue dots indicate the results with the original 

and updated z0q,q formulae, respectively. 

Figure 9. The same as Figure 8, but for sensible heat flux (H). 

Figure 10. Errors in daily mean latent heat flux (y-axis) versus specific humidity difference 

between the water surface and air at the sensor height qw-qa [kg·kg-1], transfer coefficient CE 

[-], wind speed U [m·s-1], and stability factor z/L (x-axis) for the five algorithms at Stannard 

Rock. Gray and blue dots indicate the results using the original and updated z0q,q formulae, 

respectively.  

Figure 11. Errors in daily mean sensible heat flux (y-axis) versus potential temperature 

difference between the water surface and air at the sensor height qw-qa [oC], transfer 

coefficient CH [-], wind speed U [m·s-1], and stability factor z/L (x-axis) for the five 

algorithms at Stannard Rock. Gray and blue dots indicate the results with the original and 

updated z0q,q formulae, respectively. 
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Figure 1. Map of the Laurentian Great Lakes including the locations of offshore lighthouse-

based monitoring stations used in this study.  Adapted from Lenters et al. (2013). Instrument 

heights above the mean water level are 39.0 m at Stannard Rock, 29.5 m at Long Point, 30.0 

m at Spectacle Reef, and 42.8 m at White Shoal.  
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Figure 2. Schematic diagram showing the relationship between the parent model systems (FVCOM, WRF-Lake, and LLTM) 

and the flux algorithms used in the parent model systems. A detailed description of each flux algorithm is listed in Table 1. 
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Figure 3. 10-day running mean time series of meteorological variables at the four stations. Air temperature and relative humidity 

were measured with Vaisala HMP45C thermohygrometers and wind speed was measured with the CSAT-3 (See section 2.1.1 or 

Figure 1 for the sensor heights). Water surface temperature is taken from GLSEA. Data at pixels closest to the stations are used. 

The data gaps in water surface temperature from January to April denote periods during which the site was affected by lake ice 

cover. Measurements at Long Point and White Shoal started in May and June of 2012. There is also a long data gap between 

February 2012 and June 2013 at Spectacle Reef.  
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Figure 4. 10-day running mean time series of latent (lE) and sensible (H) heat fluxes at Stannard Rock. Black lines denote 

observed lE and H and the same for (a), (b) and (c), (d), respectively. The lE and H simulations employ the original z0q,q formula 

in (a), (c) and with the updated z0q,q formula in (b) and (d). The COARE simulation results are unchanged from (a) to (b) or 

from (c) to (d).  
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Figure 5. The same as Figure 4, but at White Shoal. 
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Figure 6. The same as Figure 4, but at Spectacle Reef. 
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Figure 7. The same as Figure 4, but at Long Point. 
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Figure 8. Scatter plots of latent heat flux (lE) comparing the observed (x-axis) and the 

simulated (y-axis) daily mean fluxes. Each row shows comparisons with a specific 

algorithm at the four stations, while each column shows comparisons with the five 

algorithms at a specific station. Gray and blue dots indicate the results with the original 5 

and updated z0q,q formulae, respectively.   
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Figure 9. The same as Figure 8, but for sensible heat flux (H). 
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Figure 10. Errors in daily mean latent heat flux (y-axis) versus specific humidity difference 

between the water surface and air at the sensor height qw-qa [kg·kg-1], transfer coefficient 

CE [-], wind speed U [m·s-1], and stability factor z/L (x-axis) for the five algorithms at 

Stannard Rock. Gray and blue dots indicate the results using the original and updated z0q,q 5 

formulae, respectively.   
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Figure 11. Errors in daily mean sensible heat flux (y-axis) versus potential temperature 

difference between the water surface and air at the sensor height qw-qa [oC], transfer 

coefficient CH [-], wind speed U [m·s-1], and stability factor z/L (x-axis) for the five 

algorithms at Stannard Rock. Gray and blue dots indicate the results with the original and 5 

updated z0q,q formulae, respectively. 


