
Response to Interactive comment on “Information content of stream level class data for 

hydrological model calibration” by W. Buytaert (Referee)  

This is a nice paper - very clearly written and overall well presented. The topic is novel and relevant - 

indeed I think that the insights are useful beyond citizen science, and help understanding the 

usefulness of other unconventional data sources such as cameras, and low-resolution sensors.  

We thank the reviewer for the positive comments about the paper. 

I have only a couple of concerns/queries:  

1. The impact of measurement frequency on the performance of the models The simulation of 

"citizen science" data pretends that stream level data are available at a daily level (p.3/16). This is a 

lot, and probably unrealistic for real citizen science applications. This matters, because the Nash 

Sutcliffe efficiency and many other performance measures are quite sensitive to timing errors, and 

daily measurements, even only of water level, will make it possible to calibrate the timing related 

parameters of a hydrological model (e.g. overland and channel flow velocities) pretty well for all but 

the smallest catchments. I expect that the constraining power of the data will decrease strongly if the 

frequency of measurement reduces. So it is a pity that this was not studied. Alternatively, it may be 

useful to evaluate the model performance using a measure that puts more weight on the water 

balance (e.g., bias), because this is of course the specific weakness of using water level data for 

calibration instead of streamflow data.  

We discussed these limitations in section 4.3, where we also described that daily data 

contains a lot of redundant information and that previous studies have shown that only a 

handful of measurements may be sufficient for model calibration (Rojas-Serna et al., 2016; 

Seibert and Beven, 2009). We now include a statement that for the 2, 3, and 5 stream level 

classes the performance of the models calibrated with weekly (instead of daily) data and 

validated with the daily streamflow is very similar to the performance of the models that 

were calibrated with daily data (P10L1-8).  

2. The reporting of the model efficiency. The model efficiency measure R_eff is not defined (p.5/2). 

Only much further in the text, it is suggested that the Nash Sutcliffe efficiency is used (p.8/22-23). Is 

that correct? Irrespective of the definition of R_eff, I think that it would be useful to report the actual 

performance of the "upper benchmark", i.e. the models calibrated with stream- flow data. This is 

useful to get an idea of the order of magnitude of model performance that can be obtained with the 

citizen science data (irrespective of the difference with a fully calibrated model).  

We made it clearer throughout the text that this is the Nash Sutcliffe efficiency.  

We also included a new table (Table 1) with the minimum, maximum and median Nash 

Sutcliffe efficiencies for the upper benchmark (Reff), the models calibration with high 

resolution water level data (rs), the models calibrated with 2, 3 and 5 water level classes and 

the two lower benchmarks.  

3. Model calibration The procedure used to calibrate the models is not clear to me. The manuscript 

states that "the model was calibrated 100 times, with each calibration trial consisting of 3500 model 

runs.", but I do not understand how exactly this is done. I suppose that the 3500 runs refer to 

different (sampled?) parameter sets, but what do the 100 times refer to? It suggests a kind of 



equifinality approach, but then I don’t understand how this results in a single performance measures. 

Similarly, I don’t understand how the 1000 randomly chosen parameters of the first lower 

benchmark (L_random), result in a single performance measure. I think that this needs to be clarified 

to make sure that it is reproducible, if only for confused minds like mine. 

We significantly rewrote the text to make this clearer (see section 2.4). 

 

Response to interactive review comment by F. Nardi (Referee) 
 
This research presents an investigation concerning the information content of stream level classes, 

potentially observed by citizens and/or using video-cameras, for improving hydrologic modelling 

performances in ungauged basins. The presented methodology and results show the potential 

value/capacity of informal hydrologic crowd-sourced observations - as respect to the case 

where/when high resolution flow monitoring or other standard hydrologic data are available - for 

monitoring and modelling river channel flows, especially in low contributing area river basins that are 

nowadays still lacking of adequate monitoring networks, also in developed regions. 

The manuscript is well structured, presented and written and the subject/goals of the research, 

considering the actual importance of the active citizenship topic in hydrology (and not only), is of 

absolute interest for HESS. Nevertheless, there are some general, yet minor, issues and further few 

specific comments that I’m inserting hereafter that I strongly suggest authors to consider to improve 

the readability and clarity of the submitted work . 

Below we respond to the three general comments. We have considered and adopted all 

minor comments in the pdf. 

General Comments 

GC.1) I fully agree with the first reviewer that the description of the calibration methodology is not 

clear. The performance parameter (Spearman rank), the modeling parameters used while performing 

the simulation used in the calibration process among others (see specific comments in the attached 

pdf) should be explained in more detail. 

The methodology description relies heavily on referenced works while the reader should be guided in 

independently following the manuscript without accessing other papers to understand data, 

methods and results.  

We added more details on the use of the Spearman rank coefficient as an objective function 

and rewrote the methods section to better explain the methodology (see section 2.4). 

GC.2) The characterization of the conversion of stream flow data into classes and the relationship of 

this crucial step with the stream flow level classification should be also better explained.  

We rewrote the section where we describe the conversion of the measured streamflow to 

the water level class data (see section 2.2) and included a new figure (Figure 1) to show this 

better.  



The modeling results are presented only in the form of performance measures and this doesn’t allow 

the reader in understanding the real “information content” of citizen-observed hydrologic 

monitoring data. Together with comments already introduced by first reviewer and already partially 

addressed by authors regarding the temporal sampling of flow data in both the monitoring and 

modeling process, I’d like to add a further major concern I have that is related to the quality/accuracy 

of the source (informal crowd-sourced) data itself within the proposed research framework. To be 

more clear: results show that from 4-5 classes and up the modeling performances of the citizen-

derived data are or may be “good”, but in minor upstream rivers 5 classes of flow levels should be 

hard to be observed. While I approve the general concept and idea of the presented work I’d like to 

invite authors to express their view on the practical applications and related issues of the proposed 

method with specific regard to the issues of citizens gathering 5+ classes of flow level observations in 

upstream, often inaccessible, vegetation-dense creeks and very minor channels. In this regard a 

sample picture from a real case study with a visual cross sections representing the potential analysis 

of the classes or a synthetic figure eventually associated with a flow chart to better depict the 

authors’ view could constitute a solid improvement for this work. 

We agree that in some streams it might be difficult to distinguish five or more water level 

classes. However, our results show that already two or three classes can be informative and 

useful for model calibration and also that this is the case regardless of where the exact class 

boundaries are. We carefully read through section 4.1 and think that we are clear in stating 

that it is good news for citizen science projects that two to three classes are already 

informative for model calibration because citizens are likely able to distinguish between two 

to three classes but not 20 classes.  

GC.3) I understand authors are proposing a novel framework and testing the performances of flow 

level classes as calibration parameter for hydrologic models gathered from citizen science/data. And I 

assume the presented synthetic case study doesn’t allow to dig into data, but I’d be glad to insert in 

the manuscript a river flow data/level plot comparing the different curves of hydrologic modeling 

results built upon the different monitoring datasets (highly detailed/resolution flow data vs citizen 

data ect). This would also help in addressing GC.1 for better describing the temporal/spatial sampling 

of parameters and results. 

Given the number of catchments, it is difficult to show time series (actually this would be 

difficult already for one catchment). Therefore, we argue that the summarizing assessment 

using model performance measures is more informative (note that the new Table 1 gives all 

the summary information on the model efficiency). 

 

In addition to these specific changes, we made several changes throughout the text to further clarify 

the text (see tracked changes). 
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Abstract. Citizen science can provide spatially distributed data over large areas, including hydrological data. Stream levels 

are easier to measure than streamflow and can beare likely observed more easily by citizen scientists. However, the challenge 

with crowd-based stream level data is that observations are taken at irregular time intervals and with a limited vertical 

resolution. The latter is especially the case at sites where no staff gauge is available and relative stream levels are observed 10 

based on (in)visible features in the stream, such as rocks. In order to assess the potential value of crowd-based stream level 

observations for model calibration, we pretended that stream level observations were available at a limited vertical resolution 

by transferring streamflow data into stream level classes. A bucket-type hydrological model was calibrated with these 

hypothetical stream level class data sets and subsequently evaluated on the observed streamflow records. Our results indicate 

that stream level data can result in good streamflow simulations, even with a reduced vertical resolution of the observations. 15 

Time series of only two stream level classes, e.g. above or below a rock in the stream, were already informative, especially 

when the class boundary was chosen towards the highest stream levels. There was some added value in using up to five stream 

level classes but there was hardly any improvement in model performance when using more level classes. These results are 

encouraging for citizen science projects and provide a basis for designing observation systems that collect data that are as 

informative as possible for deriving model-based streamflow time series for previously ungauged basins. 20 

 

Keywords. information content, stream levels, hydrological model calibration, citizen science, measurement resolution, 

ungauged catchments 

1 Introduction 

Streamflow data are crucial for water resources management decisions and the calibration of hydrological models. However, 25 

streamflow data are only available for a number of sites and gauging stations are not always installed at representative 

locations. There is, for instance, a lack of streamflow gauges in small headwater streams (Kirchner, 2006) and in developing 

countries (Mulligan, 2013). Although technological developments provide the possibility to expand the measurement network, 

the reality is that due to budget cuts, observation networks often shrink (Kundzewicz, 1997), rather than expand. Remote 

sensing images can be used to estimate stream levels or streamflow, particularly for wide lowland rivers (Smith, 1997; 30 
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Milewski et al., 2009; Pavelsky, 2014; Smith, 1997; Van Dijk et al., 2016) but estimation of streamflow from satellite images 

is likely to remain problematic for small headwater streams.  

Stream level data are easier to obtain than streamflow data because they do not require any information on the rating curve. 

Seibert and Vis (2016) tested if stream level data can be used to constrain a simple hydrological model. The results for ~600 

catchments in the USA showed that level data can be surprisingly informative for hydrological model calibration. This applies 5 

especially for humid and wet catchments (defined as catchments where the annual precipitation is larger than the annual 

potential evapotranspiration), for which the median model efficienciesefficiency (Nash and Sutcliffe, 1970) of models 

calibrated with stream level data were generally only about 0.10-0.15 units below those of models calibrated with streamflow 

data, and for all but one catchment the difference was less than 0.17. For dry catchments, additional information on the volume 

of streamflow, such as the annual mean flow or streamflow percentiles, were needed.  10 

Even though the price for water level recorders has significantly gone down in recent years and their datalogging capacity has 

increased, it is not feasible to install a water level recorder in every ungauged catchment. It is, therefore, useful to also consider 

the use of other approaches to obtain water level data. Citizen science is now more frequently used to obtain environmental 

data over large areas (Savan et al., 2003; Bonney et al., 2009; Graham et al., 2011; Fohringer et al., 2015; Graham et al., 2011; 

Huddart et al., 2016; Savan et al., 2003; Wiseman and Bardsley, 2016). Little et al. (2016) gave citizen scientists water level 15 

sounders to measure groundwater levels in private wells and found that these measurements provided valuable data on 

groundwater levels across a large area in Alberta, Canada, and that the measurements were relatively accurate; the root mean 

square error between citizen scientist observed water levels and pressure transducer based water levels ranged between 3 and 

11 cm. Lowry and Fienen (2013) installed staff gauges in rivers and asked citizen scientists to send stream level measurements 

via text message. They showed that the accuracy of the crowd-sourced measurements and pressure transducer data were similar 20 

to the staff gauge gradations (root mean square error of 0.5 cm). However, it is not feasible to install a staff gaugesgauge in 

every ungauged catchment or to equip all citizen scientists with water level recorders. Therefore, it is useful to also design 

citizen science approaches that do not require staff gauges or water level sensors. Citizen scientists have for example 

successfully mapped the occurrence of streamflow in intermittent streams (Turner and Richter, 2011) and water levels are a 

standard measurement in the Earthwatch FreshWater Watch program (https://freshwaterwatch.thewaterhub.org/). Estimates of 25 

relative stream levels or stream level classes based on features in the stream or on the streambank (i.e., whether the water is 

above or below a certain rock) are easier and can be done more quickly than actual water level measurements and are, therefore, 

likely suitable for citizen science projects where no staff gauges are available. However, the (vertical) resolution of these data 

is less than those of actual stream level measurements. 

Information from time lapse cameras or webcams can also be used to obtain information on stream water level classes. Pixel 30 

classification or image recognition to determine whether the water level is above or below a certain point can be used to 

determine the relative stream water level, even if no other information about the stream or the cross section is available. Several 

studies have shown that cameras can be used for accurate streamflow estimation (Muste et al., 2011; Tsubaki et al., 2011; 

Hilgersom and Luxemburg, 2012; Muste et al., 2011; Royem et al., 2012; Stumpf et al., 2016; Tsubaki et al., 2011) but these 
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studies used dedicated cameras that focused directly on the stream and often required information about the stream channel 

cross section. While promising, it is unlikely that many of the ungauged streams will be equipped with these systems. However, 

streams are often included in the pictures of existing webcams and time lapse cameras that were installed for other reasons, 

e.g., to show the snow conditions on a ski-slope or to highlight the view from a hotel. The information from these webcams 

can be used to obtain information about the relative changes in the stream level or width but this information might not be very 5 

precise because of the sub-optimal angle of the camera. It is, thus, more likely that these images can be used to obtain 

information about the relative water level or stream width (class), rather than the actual water level. Remotely sensed satellite 

data can also be used to rank stream levels or stream width. These data, however, as promising as they are, have limitations 

regarding their accuracy and resolution (and will likely have so for the foreseeable future). Thus also for these measurements 

time series of level (or width) classes are more realistic than high-resolution time series of actual water levels.  10 

For crowd-based (or citizen science) observations, but also for data from webcams or satellites, the resolution of the stream 

level data will be significantly poorer than for data obtained by a dedicated water level sensor. To determine the effect of this 

loss of information, we tested the usefulness of these new types of stream level class data for constraining a simple bucket-

type hydrological model. The aim was to provide a basis for designing citizen science projects that collect data that are as 

informative as possible and that can be used to derive model-based streamflow time series. We pretended that stream level 15 

class observations were available continuously (daily) but only at a limited vertical resolution by transferring the streamflow 

data into stream level classes. We then tested how the number of stream level classes (i.e., the degree of resolution) influenced 

the information content of the data with regard to constraining the model. Furthermore, we studied the effect of different 

locations of the class boundaries on model performance.  

2. Methods 20 

2.1 Study catchments and dataset 

This study largely followed the methodology of Seibert and Vis (2016), who used Spearman rank correlation to calibrate a 

hydrological modelevaluated the value of water level time series for model calibration for almost 600 catchments in the 

contiguous US based on continuous, high-resolution stream level data. In this study the model was calibrated based on stream 

level class data for a subset of these catchments. The 100 catchments used in this study were chosen randomly from the 25 

catchments used by Seibert and Vis (2016) and are spread across the contiguous US. The hydrometric data for these 1 to 12584 

km2 catchments were obtained from the dataset for 671 catchmentcatchments of Newman et al. (2015). The mean annual 

precipitation (P) was derived from DAYMET (Thornton et al., 2012) and varied for the different catchments between 249 and 

3113 mm y-1. The potential evapotranspiration (Epot) was calculated with the Priestley–Taylor equation. The annual average 

runoff ratios calculated based on the precipitation at the mean elevation varied between 0.05 and 1.18 (between 0.12 to 0.93 30 
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for 90% of the catchments). The aridity index (P/Epot) varied between 0.25 and 4.33. Of the 100 catchments, 22 are considered 

dry (P/Epot ≤ 1.0), 62 are considered humid (1.0 < P/Epot < 2.0) and 16 catchments are considered wet (P/Epot ≥ 2.0).  

2.2 Transformation of streamflow data into stream level classes 

In order to determine how many stream level classes are needed for model calibration, the daily average streamflow data were 

converted into time series of n stream level classes, where n varied from 2 to 20. (Figure 1). In real citizen science projects the 5 

class boundaries are likely chosen based on features in the stream or on the stream bank (e.g. above or below a certain rock or 

marker) but in this study we chose the boundaries so that each class contained the same number of data points (i.e.. This meant 

that for the simulations with two classes we converted all streamflow values above the median to water level class 2 and all 

streamflow values below the median to water level class 1. Similarly, when using more classes we assigned the classes so that 

there were an equal number of measurements in each class (i.e. each class had observations for a fraction of n-1 of the entire 10 

time period). For the situationscases with two and three stream level classes, we also evaluated the optimal location of the class 

boundaries. For this, we systematically varied the class boundaries by changing the fraction of the streamflow datatime that 

the water level was in each class to determine the optimal location of the class boundaries. 

2.3 Hydrological Model 

The HBV (Hydroloiska Byråns Vattenavdelning) model (Bergström, 1992; Lindström et al., 1997) was used in the software 15 

implementation HBV -light (Seibert and Vis, 2012). The HBV model is a frequently used bucket-type model and consists of 

different routines representing snow, soil, groundwater and stream routing processes. The HBV model, as it was applied here, 

has 14 free parameters, which are usually found by calibration or regionalisation. Elevation bands of 200 m were used to 

represent catchment topography, whereas only one lumped land-cover class was used for each catchment. The parameter 

ranges for the 14 model parameters in the HBV model were similar to those used by Seibert and Vis (2016) and represent the 20 

range of typical parameter values found in previous studies worldwide. 

2.4 Model calibration and validation 

For each catchment the HBV model was calibrated for the period 1.10.1982 - 30.9.1996 using a genetic optimization algorithm 

(Seibert, 2000). The data from the 1.1.1980 - 30.9.1982 period were used for warming up the model. For model calibration, 

we maximized the Spearman rank correlation coefficient (rs)For model calibration, we maximized the Spearman rank 25 

correlation coefficient (rs; Spearman, 1904) between the stream level class data and the simulated streamflow. The Spearman 

rank correlation evaluates the dynamics of the modeled streamflow but not the streamflow volume and is highest (rs =1) when 

stream level and streamflow are monotonically related. The advantage of using the Spearman rank correlation for model 

calibration based on stream level class data is that no information about the rating curve is needed. TheWhile the rank 

correlation does not evaluate streamflow volumes and, thus, a value of one does not ensure a perfect fit, the rank correlation 30 

can still be beneficial for model calibration, especially in humid catchments, where flow is constrained by the water balance 
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(Seibert and Vis, 2016). Here we used the rank correlation to evaluate the dynamics of the ‘observed’ stream level classes 

against the simulated streamflow time series. One could argue that the use of class data leads to a large number of ties 

(measurements with the same (mean) rank for the water level class) and rs values of one can, thus, not be obtained. Howeverdue 

to these ties, thus, by definition of the Spearman rank correlation, not be obtained. However, since we are not interested (or 

using) the absolute Spearman rank correlation values, but are only interested in the relative performance of different parameter 5 

sets, rs can still be used for model calibration because its value is highest when the dynamics of the stream level classes and 

streamflow are most similar. For each catchment, the model was calibrated 100 times, with each calibration trial consisting of 

3500 model runs.  

For each catchment, we used 100 independent model calibration trials resulting in 100 parameter sets (one for each model 

calibration). For each of these (100) calibration trials, a total of 3500 model runs were done to find the optimum parameter set 10 

with the genetic algorithm. The 100 calibration parameter sets for each catchment were validated by comparing the simulated 

streamflow to the observed streamflow data using the model efficiency measure (Reff). The (Nash and Sutcliffe, 1970). For 

each catchment, the median value of Reffthe model efficiency for the 100 parameter sets for each catchment was used to 

represent the performance of the model for that catchment.  

2.45 Benchmarks 15 

Different benchmarks were used to assess the performance of the models calibrated with the stream level class data: an upper 

benchmark that represents how good the model simulation would be if continuous streamflow data were available, and two 

lower benchmarks that represent a model simulation in the absence of any streamflow or stream level data.  

For the upper benchmark (Reff), the model was calibrated for each catchment using the streamflow data and optimizing the 

model efficiency for the observed and modeled streamflow (100 calibration trials per catchment, each consisting of 3500 model 20 

runs). The median model efficiency of these 100 calibration trials was used as the upper benchmark value for each catchment. 

Because the goal of this study was to assess the value of stream level class data for model calibration, rather than to evaluate 

the ability of the model to simulate the streamflow, all model validation results for the stream level class data are given as the 

difference in Reffmodel efficiency relative to this upper benchmark. (ΔReff). 

In addition, the simulations based on the stream level class data were also compared to the simulations based on calibrations 25 

derived from high-resolution stream level data (rs_∞). Here the model was calibrated by optimizing the Spearman rank 

correlation between the observed and modeled streamflow (c.f. Seibert and Vis, 2016). These simulations represent a situation 

where a water level recorder is installed in the catchmentstream and this data is used for model calibration. 

For the first lower benchmark (Lrandom), the model was run for each catchment 1000 times using randomly chosen parameters 

within the parameter ranges that were also used for model calibration. We used the median model performance for these 1000 30 

parameter sets to represent the performance of the model with random parameters for that catchment. For the second lower 

benchmark (Lregional), the model was run 9900 times using the 100 calibrated parameter sets offor each of the 99 other 
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catchments and again the median model performance for these 9900 parameter sets was used to characterize the second lower 

benchmark for that catchment.  

3. Results 

3.1 Model performance as a function of the number of water level classes 

Not surprisingly, the model efficiency (Reff) ofwas lower for the models calibrated with the stream level class data was lower 5 

than for the models calibrated with the streamflow data. (Figure 2 and Table 1). However, the differences between the models 

calibrated with the high-resolution stream level data and the models calibrated with water level class data was relatively small, 

as long as at least five stream level classes were used for model calibration (compare results for rs_5 and rs_∞ in Figure 2). and 

Table 1). The median difference in model performanceefficiency for the models calibrated on high-resolution water level data 

and the models calibrated on five stream level classes was only 0.01. The median difference was 0.06 when only two stream 10 

level classes were used. These differences are relatively small compared to the 0.17 difference in median model efficiency for 

the models calibrated on continuous streamflow (Reff) and the high-resolution stream level data (rs_∞).  

A more detailed analysis of the increase in model performance with an increasing number of water level classes suggests that 

for the wet catchments model performance increased only slightly when increasing the number of water level classes from two 

to five but that for some of the dry catchments model performance increased significantly when using more than two water 15 

level classes (Figure 3). In general, the increase in model performance with an increasing number of stream level classes was 

largest for the catchments withthat have the largest difference in model performance between the upper and lower benchmarks 

(Figure 3). 

3.2 Comparison with the benchmarks  

Comparison of the performance of the models calibrated with stream level class data to the upper benchmark suggests that 20 

especially for the wet catchments the differences between traditional model calibration based on continuous streamflow data 

and the calibration based on the stream level class data were small (Figure 4a-b). For the dry catchments, model calibration 

based on stream level class data led to larger errors in the simulated streamflow (Figure 4a-b). 

Comparison of modelthe performance forof the models calibrated with the stream level class data to the lower benchmarks 

suggests that the inclusion of stream level class data led to a huge improvement in model performance for some of the dry 25 

catchments (Figure 4c-d). However, the median improvement in model efficiency when using the data for two stream level 

class dataclasses compared to the lower benchmark (Lrandom) between the wet, humid and dry catchments was small (0.23, 0.23 

and 0.15, respectively) and not statistically significant (Kruskal Wallace test p=0.09). The differences in the median 

improvement in the efficiency when using the data for five stream level class dataclasses compared to the lower benchmark 
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(Lrandom) between the wet, humid and dry catchments were also small (0.23, 0.32 and 0.22, respectively) but statistically 

significant (Kruskal Wallis test p=0.01802).  

3.3 Optimal location of class boundaries 

In order to determine the optimal location of the class boundaries, we systematically varied them for the cases with two and 

three water level classes. The results show that model performance generally improved when at least one class boundary was 5 

located at high stream levels. For example, for the case with two classes, the median model performance for the 100 catchments 

was highest when the class boundary was chosen so that the stream water level was in the lower class for 94% of the time and 

in the upper class for 6% of the time. The smallest median difference between the model performance for two classes and the 

upper benchmark occurred at the class boundariesboundary definition of 93-7% (Figure 5a). The variability in model 

performance also decreased when the boundary was chosen at a higher stream water level, so that for fewer catchments the 10 

difference between the median model performance (i.e., median performance of the 100 calibration parameter sets) and the 

upper benchmark was larger than 0.20 (the difference in Reff for models calibrated on streamflow data and models calibrated 

with data for two water level classesΔReff was larger than 0.20 for 86, 61, 22, and 22% of the catchments when the boundary 

was set at 10-90, 50-50, 90-10, and 94-6% of the time, respectively). There was no clear spatial pattern in the optimal location 

of the class boundaries and for a few catchments the optimal class boundary was located at a much lower stream level (Figure 15 

5b). For the case with the three water level classes, on average for the 100 catchments, better model results were obtained 

when the boundary for the upper class was at thea high water level, but the other boundary could either be at a high level or at 

a low level (Figure 6). Intermediate values for the otherlower boundary resulted in a poorer model performance. The median 

performance of the models calibrated with three water level classes for the 100 catchments was highest when the class 

boundaries were set so that the water level was in the lowest, medium and highest class 94, 5 and 1% of the time, respectively.  20 

4. Discussion 

4.1 Usefulness of stream level class data 

The results of this study show that five stream level classes are as informative for model calibration as stream level data with 

a very high vertical resolution. This is good news for citizen science projects or webcam based analyses, as it is much easier 

to determine the stream level class when there are only a few classes than when there are many classes. The small difference 25 

between the performance of the models calibrated on data for a few stream level classes and the upper benchmark (Figure 4a-

b) suggests that the stream level class data from citizen science approaches or webcam images is most useful for model 

calibration for wet catchments and that stream level class data for these catchments can be used in combination with a model 

to obtain time series of streamflow. This is usefulencouraging, as it is likely much harder for citizen scientists to estimate 

streamflow than the stream level classesclass and this way the streamflow data that are needed for water management or flood- 30 

or drought forecasting can be obtained from the stream level class data.  
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On the other hand, the large improvement of the models calibrated with stream level class data compared to the lower 

benchmark for some of the dry catchments (Figure 3Figure 4c-d) suggests that stream level class data may be especially useful 

in improving model performance in some dry catchments when no other streamflow or stream level data are available. For 

these catchments, the model performance of the lower benchmark (i.e. based on the random parameter sets) was very poor, 

while for the wet catchments the model performance of the lower benchmarks was already reasonably good (see color coding 5 

in Figure 3 and Figure 3). and Figure 4). Thus the biggest gain in adding stream level class data was seen for the dry catchments, 

even though the absolute model performance was much poorer than for models calibrated on streamflow data. Seibert and Vis 

(2016) showed that model calibration based on high-resolution stream level data worked best for wet catchments and that for 

dry catchments, additional data on the water balance were needed. Using such additional information may also improve model 

performance based on stream level class data for the dry catchments. What kind of additional information might be most useful 10 

in combination with stream level class data remains to be explored.  

4.2 Location of the class boundaries 

In practice, the boundaries between the different water level classes will be chosen based on features in the river or the stream 

bank that are easy to observe. The results from this study suggest that for most streams the optimal class boundaries should be 

located at the high flow levels, but not at the very highest flows. This high optimal class boundary is good news for model 15 

calibration based on opportunistic webcam images because high flows are usually easier to observe in these images, while than 

low flows because it may be difficult to see the water level at low flows when the camera does not focus directly on the stream. 

Citizen scientists, on the other hand, are perhaps more likely to go out and estimate stream levels during nice weather conditions 

and low flow periods. However, people also tend to look at rivers when the water level is particularly high. The still relatively 

long time that the water level is in the highest class (e.g. 6% of the time or on average 22 days per year for the case with only 20 

2two water level classes for which the median model performance for the 100 catchments was highest) suggests that there is 

ample time for citizen scientist to observe the water levels during the high water level period. These results thus suggest that 

citizen science projects should communicate to the participants that measurements during high water levels are important and 

worth collecting and transmitting. 

The reasons that for the majority of the catchments the optimal boundary between the different water level classes is located 25 

at high stream levels are related to the data, the model and the choice of the model evaluation criterion. The choice of a high 

water level class boundary helps to avoid the selection of a model parameter set that leads to a too flashy streamflow response 

because the water level is in the upper water level class for only a limited fraction of time. The information content of the 

water level class data, and thus its value for hydrological model calibration, is higher when we know that for some events the 

water level doesn'tdoes not cross this boundary and for another set of events it does. If for every event, the water level crosses 30 

the boundary because it is set at a low level, then it is not possible to distinguish between the responses of the different events. 

Similarly, if the level is set too high, then the water level may cross the water level class boundary only a very few times so 

that no distinction can be made for the response of the majority of the events. For the optimal boundary definition for the two 
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classes at 94-6% of the time, the streams crossed the class boundariesthere were on average between 1.12.2 and 13.6 times27.2 

switches between the two water level classes per year (median: 7.214.4; 25th and 75th percentile 48.0 and 8.517 respectively).; 

Figure 7). One could also argue that the water level class data is most informative when the class boundaries are crossed as 

often as possible in the actual time series. For two stream level classes this would mean a class boundary between 60 and 80% 

for three quarters of the catchments.For the majority of the catchments the water level class boundary was most often crossed 5 

if it was set so that the water level was in the lower class for 60-80% of the time (Figure 7). For only eight of the 100 catchments 

the water level class boundary was most frequently crossed if it was set at such a level that it was in the lower class for less 

than 40 percent of the time; for eight other catchments the water level class boundary was crossed most often if the boundary 

was defined such that the water level was in the lower class for more than 80 percent of the time (Figure 7). 

Wani et al. (2017) used censored data in a formal Baysian framework to simulate the combined sewer overflow in an urban 10 

catchment. Similar to the results here for the usefulness of two water level classes for model calibration, they show that binary 

data (i.e. a water level above or below a threshold) is very effective in reducing the parameter uncertainty in their rainfall 

runoff model. They show that the location of the threshold matters and highlight the high information content in crossing the 

threshold but also mention that it is difficult to determine the relation between the location of the threshold and the value of 

the data in reducing the parameter space because it depends on how close the system is to the threshold and how many times 15 

the threshold is exceeded. 

The optimal location of the water level class boundaries is also dependent on the model validation criterion that is used. We 

used the Nash-Sutcliff model efficiencyWe used the model efficiency (Reff, Nash and Sutcliffe, 1970) to evaluate model 

performance, which is known to give more weight to the evaluation of high flows (Krause et al., 2005; Schaefli and Gupta, 

2007). A high water level class boundary provides more information for these high flows. Using a different model evaluation 20 

criterion that focuses less on the high flows would result in lower optimal class boundaries. For example, when using the 

efficiency of the log-transformed streamflow to evaluate the model performance, the model efficiency values (again median 

for the 100 catchments) would bewere highest when the class boundary iswas chosen so that the stream water level iswas in 

the lower class for about 60% of the time when there are only two stream level classes, and the water level was in the lower, 

middle and upper class for about 10, 60, and 30% of the time when there arewere three water level classes. In other words, the 25 

exact location of the optimal water level class boundaries depends on the model evaluation criteria and should be chosen based 

on the objective of the study (e.g. simulation of the peaks, low flow periods or the water balance).  

Because in real citizen science projects the boundaries will not be chosen based on optimality as discussed above, but will be 

chosen by citizens based on local conditions, such as identifiable features in the stream, this means that the usefulness of citizen 

science based water level class data for the simulation of different aspects of the hydrograph will differ. However, the 30 

investigation of theoretically optimal class boundaries is still valuable for at least two reasons. Firstly, these results can be used 

to provide guidance to citizen scientists on how to choose boundary levelsclass boundaries, if at all possible. Secondly, such 

results can help to decide which citizen science based water level class data might be especially useful for the simulation of 

certain aspect of the hydrographs. 
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4.3 Limitations of this study when faced with the reality of citizen science based data collection 

A challenge with citizen science-based stream level data is that observations are taken at irregular time intervals, with a limited 

vertical resolution and may contain errors. In this study, we addressed the issue of the limited vertical resolution by assessing 

the value of stream level class data. More work is needed on the issue of irregular data to determine the number of observations 

that are needed and the best times of these observations. Model calibration using weekly stream level class data for the cases 5 

with two, three and five water level classes suggest that the deterioration in model performance when weekly data are used 

instead of daily data is very small. Previous studies on model calibration based on streamflow measurements suggesthave also 

suggested that continuous streamflow data are not needed and only a few streamflow measurements, particularly during rainfall 

events, are already useful to constrain hydrological models because many of the streamflow measurements contain redundant 

information (Seibert and Beven, 2009; Rojas-Serna et al., 2016; Seibert and Beven, 2009).  10 

In this study, we pretended to have stream level class data by transforming the streamflow data to stream level classes. (Figure 

1). This data, therefore, does not include any errors in the stream level classes. In reality, citizen science data may contain 

errors and misclassification of the water levels. The effects of data errors on model results needs to be tested as well. However, 

in this respect, it has to be mentioned that several studies have shown that citizen science data can be quite accurate (Cohn, 

2008; Lowry and Fienen, 2013; Tye et al., 2016) (but not always, e.g. (Savan et al., 2003)Savan et al. (2003)) and that 15 

traditional streamflow data also can have significant uncertainties and may even contain dis-informative information that 

affects model calibration as well (McMillan et al., 2010; Beven and Westerberg, 2011; McMillan et al., 2010). 

5. Conclusion 

This study demonstrates that stream level class data can be useful for constrainingcalibrating hydrological models in otherwise 

ungauged catchments. The results confirm the conclusions from a previous study (Seibert and Vis, 2016) but more importantly 20 

extend the findings towards the use of stream level data for model calibration to cases where data is available at only a limited 

vertical resolution, such as in citizen science-based observation approaches or webcam image analysis. The results show that 

a small number of stream level classes contain almost as much information for hydrological model calibration as high-

resolution water level data for hydrological model calibration. This is good news for citizen science approaches. We also found 

that class boundaries at high water levels result in the most informative water level class time series. While in practice the class 25 

boundaries in practice are likely determined by the local situation (such as a rock that is covered by water at a certain level), 

the importance of high levels shows the importancevalue of motivating the public to collect data during high flow situations.  

More generally, this study demonstrates how hydrological modeling can be used to evaluate the potential value of certain types 

of data. Similar approaches can be used to evaluate how much the information content of water level class data might decrease 

if observations are made at irregular times or with a certain amount of error. This information is crucial for the optimal design 30 

and implementation of citizen science-based observation approaches.    
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Table 1 Median, maximum and minimum model efficiency for the 100 catchments for model calibrations using different types of 

data and the two lower benchmarks. Note that the difference in the median model efficiency for the model calibrations with all 5 
streamflow data (Reff) and the median model efficiency for the model calibrations with data for n water level classes (rs_n) is not the 

same as the median of the differences in efficiency between the model calibrated with all streamflow data and the model calibrated 

with the stream level class data (ΔReff) that is reported in the text and shown in the figures of the manuscript. 

Data used for model 

calibration 

 

 
All 

catchments 

(n=100) 

Dry 

catchments 

(n=22) 

Humid 

catchments 

(n=62) 

Wet 

catchments 

(n=16) 

Streamflow data (upper 

benchmark, Reff) 

Median 0.77* 0.77 0.75 0.86 

Max 0.92 0.92 0.90 0.92 

Min 0.53 0.56 0.53 0.64 

Water level data (rs_∞) Median 0.58 0.32 0.58 0.80 

Max 0.89 0.61 0.79 0.89 

Min -1.48 -1.48 0.13 0.53 

5 stream level classes (rs_5) Median 0.56 0.29 0.57 0.79 

Max 0.88 0.62 0.79 0.88 

Min -1.68 -1.68 0.10 0.53 

3 stream level classes (rs_3) Median 0.54 0.27 0.55 0.76 

Max 0.88 0.57 0.79 0.88 

Min -1.71 -1.71 -0.14 0.52 

2 stream level classes (rs_2) Median 0.49 0.28 0.49 0.72 

Max 0.87 0.65 0.77 0.87 

Min -0.57 -0.57 -0.12 0.47 

Parameters from other 

catchments (Lregional) 

Median 0.43 0.21 0.43 0.70 

Max 0.79 0.50 0.65 0.79 

Min -5.56 -5.56 -2.54 0.43 

Random parameters (Lrandom) Median 0.25 0.11 0.26 0.56 

Max 0.76 0.38 0.66 0.76 

Min -6.04 -6.04 -1.60 0.13 

* The median efficiency for the ~600 catchments studied by Seibert and Vis (2016) was 0.74 
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Figure 1. Time series of the observed streamflow (blue) for the first year of simulation (October 1982 – September 1983) for the 

catchment 002011460 (Back Creek near Sunrise, VA, a medium sized catchment (235 km2) with a medium aridity index (1.33) and 

the derived time series of stream level class for the case of two, three and five level classes (red), where the stream level  is in each 

water level class for, respectively, 50%, 33% and 20% of the time.  5 
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Figure 2. Box plots of the difference in the median model efficiency and the upper benchmark (ΔReff) for all 100 catchments for the 

models calibrated on stream level class data (2 to 20 classes; rs_n), models calibrated on high-resolution stream level data (rs_∞)_∞), 

and the two lower benchmarks (Lrandom and Lregional) for all 100 catchments). The box represents the interquartile range, the solid 

line the median, the whiskers reach to the furthest catchment that is still within a distance of 1.5 times the interquartile range from 5 
the box and the dots represent the outliers.  



 

16 

 

 

 

Figure 3. Difference in the median model validation results (Reffresult (model efficiency) for the models calibrated using two water 

level classes (rs_2) and five water level classes (rs_5) for all 100 catchments as a function of the aridity index. (P/Epot). The color of the 

symbols represents the difference between the upper and the lower benchmark (i.e. the difference in the median model performance 5 
when the model is calibrated with all available streamflow data (Reff) and when the model is run with randomly selected parameters 

(i.e. without any calibration; Lrandom)). Triangles indicate outliers  that would plot outside the range of the y-axis.



 

17 

 

 

Figure 4. Difference in model validation results (model efficiency) for the models calibrated with data from two (rs_2; left) and five 

(rs_5; right) stream level classes withand the upper benchmark (Reff) (upper row) and the lower benchmark (Lrandom; bottom row) as 

a function of the aridity index. (P/Epot). Each dot represents one catchment; the color of the symbol represents the difference in 5 
model efficiency between the upper and lower benchmark for that catchment. Note the difference in the scale of the y-axis for the 

comparison to the upper benchmark (upper row; a and b) and the lower benchmark (lower row; c and d). Triangles indicate outliers 

that would plot outside the range of the y-axis.  
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Figure 5. Difference in median model validation results (Reff) relative to the upper benchmark (ΔReff) for models calibrated with two 

water level classes for different class boundariesboundary definitions (a) and a map of the optimal class boundary definition for 

each catchment (b). As an example, 10-90 indicates that streamflow was in the lower water level class for 10% of the time and in the 5 
upper class for 90% of the time. The median difference in model efficiency is smallest when the class boundaries are set at 93 and -

7%.  
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Figure 6. Median difference in model efficiency (Reff) for models calibrated with data for three water level classes relative and the 

upper benchmark (ΔReff) for different class boundaries. 
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Figure 7. Box plots of the average number of times per year that the water level switched from one class to another for different 

class definitions. In the top row the number of catchments for which the number of water level class switches was highest at that 

class definition. As an example, 80-20 indicates that streamflow was in the lower water level class for 80% of the time and in the 5 
upper water level class for 20% of the time, and for 26 of the 100 catchments this class boundary definition resulted in most class 

switches per year. 
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