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Abstract. Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an im-

portant role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to

classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban

hydrological response. Nine rainfall events, measured with a Dual polarimetric X-Band radar at the CAESAR Site (Cabauw

Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution5

combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological

response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall

and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall

classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall

than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this study10

case, (4) scaling factors allow to select the adequate rainfall resolution to obtain a given level of accuracy in the calculation of

hydrological response.

1 Introduction

Rainfall variability in space and time influences the hydrological response, especially in urban areas, where hydrological

response is fast and flow peaks are high (Fabry et al., 1994; Faures et al., 1995; Smith et al., 2002; Emmanuel et al., 2012;15

Gires et al., 2012; Smith et al., 2012; Ochoa-Rodriguez et al., 2015; Thorndahl et al., 2017). Finding a proper match between

rainfall resolution and hydrological model structure and complexity is important for reliable flow prediction (Berne et al., 2004;

Ochoa-Rodriguez et al., 2015; Pina et al., 2016; Rafieeinasab et al., 2015; Yang et al., 2016). High resolution rainfall data are

required to reduce errors in estimation of hydrological responses in small urban catchments (Niemczynowicz, 1988; Schilling,

1991; Berne et al., 2004; Bruni et al., 2015; Yang et al., 2016). New technologies and instruments have been developed in20

order to improve rainfall measurements and capture its spatial and temporal variability (Einfalt et al., 2004; Thorndahl et al.,

2017). In particular, the development and use of weather radars for hydrological applications has increased in the last decades
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(Niemczynowicz, 1999; Krajewski and Smith, 2005; Leijnse et al., 2007; van de Beek et al., 2010; Otto and Russchenberg,

2011; Berne and Krajewski, 2013), improving the spatial resolution of rainfall data (Cristiano et al., 2017).

The increase of high-resolution topographical data availability led to a development of different types of hydrological models

(Mayer, 1999; Fonstad et al., 2013; Tokarczyk et al., 2015). These models represent spatial variability of catchments in several

ways, varying from lumped systems, where spatial variability is averaged into sub-catchments, to distributed models, which5

evaluate the variability dividing the basin with a mesh of interconnected elements based on elevation (Zoppou, 2000; Fletcher

et al., 2013; Pina et al., 2014; Salvadore et al., 2015). Salvadore et al. (2015) analysed the most used hydrological models,

comparing different model complexities and approaches. An investigation of the differences between high resolution semi and

fully distributed models was proposed by Pina et al. (2016), where flow patterns generated with different model types were

studied and compared to observations. This work suggested that although fully distributed models allow to represent catchment10

variability in space in a more realistic way, they did not lead to the best modelling results because the operation of this type of

models requires very high quality and resolution data, including rainfall input.

Both rainfall and model resolution and scale are expected to have strong effects on hydrological response sensitivity. An

increase of sensitivity is expected for small drainage areas and for rainfall events with high variability in space and time.

Sensitivity to rainfall data resolution generally increases for smaller urban catchments. However, sensitivity of hydrological15

models at different rainfall and catchments scale and the interaction between rainfall and catchment variability need a deeper

investigation (Ochoa-Rodriguez et al., 2015; Pina et al., 2016; Cristiano et al., 2017). This work builds upon Ochoa-Rodriguez

et al. (2015), who showed that the influence of rainfall input resolution decreases with the increase catchment area and that the

interaction between spatial and temporal rainfall resolution is quite strong. We investigate the sensitivity of urban hydrological

response to different rainfall and catchment scales, with the aim of answering the following research questions:20

– How should rainfall variability in space and time be classified?

– How does small scale rainfall variability affect hydrological response in a highly urbanized area?

– How does model complexity affect sensitivity of model outcomes to rainfall variability?

– How does the relationship between storm scale and basin scale affect hydrological response?

The paper is structured as follows. Section 2 presents the case study, describing study area, models and rainfall data used25

in this work. Methodology applied to identify variability in space and time of model and rainfall and hydrological analy-

sis are explained in Section 3. Section 4 presents the results connected to the model and rainfall variability analysis and to

the hydrological analysis respectively. In Section 5, results are discussed, by comparing the influence of rainfall and model

characteristics and identifying dimensionless parameters to describe the relation between rainfall and model scale and rainfall

resolution used. Conclusions and future steps are presented in the last section.30
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2 Pilot catchment and datasets

2.1 Study area and available models

The city of London (UK) is exposed to high pluvial flood risk in the last years. The Cranbrook catchment, in the London

Borough of Redbridge, is a densely urbanized residential area. For this reason, it has been chosen as study area. A total area of

approximately 860 ha is connected to the drainage network, and rainfall is drained with a separate sewer system.5

For this small catchment, several urban hydrodynamical models have been set up in InfoWorks ICM (Innovyze, 2014). Three

models with different representations of surface spatial variability, are used in this study: SD1 - Simplified semi-distributed

low resolution, SD2 - Semi-distributed high resolution and FD - Fully distributed 2D high resolution.

Table 2 summarises the main characteristics of the three models: number of nodes, pipes and sub-catchments, dimensions

of subacatchments, two dimensional surface elements and degree of imperviousness. The first model, SD1, is a low resolution10

semi-distributed model, initially setup by the water utility (Thames Water) back in 2010 to gain a strategic understanding of the

catchment. This model divides the area into 51 sub-catchments, connected with 242 nodes and 270 pipes, for a total drainage

network length of just over 15 km. The other two models, SD2 and FD, have been developed at Imperial College London

(Simões et al., 2015; Wang et al., 2015; Ochoa-Rodriguez et al., 2015; Pina et al., 2016). SD2 and FD share the same sewer

network design(6963 nodes and 6993 pipes), but use different surface representations. In SD2 the drainage area is divided15

into 4409 sub-catchments, where rainfall runoff processes are modelled in a lumped way and wherein rainfall is assumed to

be uniform. In FD, instead, the surface is modelled with a dense triangular mesh (over 100’000 elements), based on a high

resolution (1 m x 1 m) Digital Terrain Model (DTM). The rainfall - runoff transformation is different for the two types of

models. For SD2, runoff volumes are estimated from rainfall depending on the land use type and routed, while for FD, runoff

volumes are estimated and applied directly on the two-dimensional elements of the overland surface. Figure 1 illustrates how20

the surface area is modelled for each of the three models and sewer networks.

2.2 Rainfall data

Cranbrook was chosen for this study because of the availability of high quality models at different spatial resolutions. However,

for this study area, only low-resolution rainfall data were available. For this reason, rainfall events measured at a different

location, with similar climatological characteristics, were synthetically applied over the Cranbrook catchment. Rainfall events25

were selected from a dataset collected by a dual polarimetric X-Band weather radar located in Cabauw (CAESAR weather

station, NL), considering that the Netherlands and United Kingdom are both in the European temperate oceanic climate (Cfb,

following the Köppen classification (?)). For technical specifications of the X-band radar device see Ochoa-Rodriguez et al.

(2015). The selected events were measured with a resolution of 100 m x 100 m in space and 1 min in time, much higher than

what is obtained with conventional radar networks (1000 m x 1000 m and 5 min). Rainfall data where applied to the Cranbrook30

catchment, using sixteen combinations of space and time resolution aggregated from the 100 m - 1 min resolution: four spatial

resolutions, ∆s, (100 m, 500 m, 1000 m and 3000 m) with four temporal resolutions, ∆t, (1 min, 3 min, 5 min and 10 min)
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(see Ochoa-Rodriguez et al. (2015) for a motivation of the different resolution combinations). Nine rainfall events, measured

between January 2011 and May 2014, were used as model input in this study. Storm characteristics are presented in Table 3.

3 Methods

In this section, different ways of classifying spatial and temporal rainfall scale are described, as well as some possible classi-

fication of catchment characteristics. We propose a new characterization of spatial and temporal rainfall variability, based on5

percentage of coverage above selected thresholds. Table 1 presents the list of symbols and abbreviations used in this work.

3.1 Characterizing storms’ spatial and temporal rainfall scale

3.1.1 Spatial rainfall scale based on climatological variogram

We computed characteristics spatial scale based on a climatological variogram, following the approach outlined by Ochoa-

Rodriguez et al. (2015). Ochoa-Rodriguez et al. (2015) presented the theoretical spatial rainfall resolution required for an10

hydrological model in urban area, deriving it starting from a climatological (semi-) variogram. The (semi-) variogram γ was

calculated at each time step as:

γ =
1

2n

n∑
t

(R(x)−R(x+h))2, (1)

where n is the numbers of radar pixel pairs located at a distance h, R is the rainfall rate and x is the center of the given

pixel, normalized by the sample variance and averaged over the time period. The obtained variogram, characteristic of the15

averaged rainfall spatial structure during the peak period, was then fitted with an exponential variogram and the area A under

the correlogram was calculated for the exponential variogram as: Ar = 2πr2

9 . Ar can be considered as the average area of

spatial rainfall structure estimated with radar measurements over the study area (Ochoa-Rodriguez et al., 2015). Characteristic

length scale rc[L] of a rainfall event was defined as: rc = (
√

2π
3 )r, where r [L] is the variogram range. Minimum required

spatial resolution ∆sr was defined in this work as half of the storm characteristic length scale:20

∆sr =
rc
2
∼= 0.418r. (2)

This parameter describes the spatial variability of the rainfall event core.

3.1.2 Rainfall Spatial Variability Index

Another parameter to quantify and compare the spatial variability of rainfall is the spatial rainfall variability index Iσ . This

parameter was at first proposed by Smith et al. (2004), called index of rainfall variability, and then recently redefined by25

Lobligeois et al. (2014). This index was estimated as:

Iσ =

∑
tσtRt∑
tRt

(3)
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where σt is the standard deviation of spatially distributed hourly rainfall across all pixels in the basin, per time-step t, and

Rt represents the spatially averaged rainfall intensity per time step. As can be seen, Iσ corresponds to a weighted average,

based on instantaneous intensity, of the standard deviation of the rainfall field during a given storm event. Small values of Iσ

indicate a low rainfall variability, typical of stratiform rainfall events. Large values of Iσ generally represent convective storms,

characterized by high spatial variability. In the study presented by Lobligeois et al. (2014), Iσ was applied to rainfall data5

measured in the French region with a resolution of 1000 m - 5 min and it was varying between 0 and 5.

3.1.3 Storm motion velocity and temporal rainfall variability based on storm cell tracking

Ochoa-Rodriguez et al. (2015) presented a characterization of storm motion and a definition of the minimum required temporal

resolution. Storm motion was defined applying the TREC method (TRacking Radar Echoes by Correlation) proposed by

Rinehart and Garvey (1978) This method allows to obtain at each time step a vector representing storm motion velocity10

magnitude and direction of the rainfall event. The minimum required temporal resolution ∆tr, was obtained considering time

that a storm needs to pass over the storm event characteristic length scale rc. ∆tr can be written as:

∆tr =
rc
|v̄|
, (4)

where |v̄| [L T−1] correspond to the mean storm motion velocity magnitude. |v̄| is obtained from the average of the storm

motion velocity vectors, estimated at each time step during the peak period.15

3.1.4 Rainfall spatial scale based on fractional coverage of basin by storm core

In this work, a different approach to classify rainfall events is presented, considering storm spatial and temporal variability in

combination with rainfall intensity thresholds. To select the thresholds Z for the 9 rainfall events over the radar grid (6 km x

6 km), percentiles at 25%, 50%, 75% and 95% of the entire 100 m - 1 min resolution rainfall dataset were calculated. In this

way it was possible to calculate the different thresholds Z25,Z50,Z75 and Z95, corresponding to the 25%-,50%-, 75%- and20

95%-ile.

Fractional coverage was largely studied in the literature and it was shown that it has a strong influence on flood response

(Syed et al., 2003; ten Veldhuis and Schleiss, 2017). The percentage of coverage %cov, used in this study, was defined as the

sum of the number of pixel Nt above a threshold at each time step t divided over the total number of pixels of the catchment

Ntot and over the total number of time steps d of the event:25

%cov =
∑

tNt

Ntot∗d . (5)

The percentage of coverage was calculated for each event, in order to give a first classification of the spatial rainfall variability.
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3.1.5 Rainfall cluster classification

Since variograms provide a strongly smoothed measure of rainfall field, we used alternative metrics to characterize space and

time scale of storm events based on cluster identification. To analyse the spatial variability of the storm core, we identified, for

each rainfall event, the main rainfall cluster dimension SZ above the selected thresholds Z, as defined in Section 3.1.4.

For each time step, the area covered by rainfall above a certain threshold was considered. Main clusters were defined as the5

union of rainfall pixels above a given threshold. To identify the clusters, an algorithm based on Cristiano and Gaitan (2017),

has been used. The algorithm executes the following rules:

– All pixels above a certain threshold are considered.

– A pixel is included in the cluster if at least one of its boundaries borders the cluster.

– Small clusters, with an area smaller than 9 ha (about 1% of catchment area) are ignored.10

– In case of more than one cluster, the average of cluster areas is considered, in order to compare the cluster size at different

time steps. This happens in only few cases.

To obtain a characteristic number for each storm, cluster sizes per time step were averaged over the entire duration of rainfall

event. Figure 2 presents an example of rainfall coverage at a time step t. Rainfall was divided considering different thresholds

and the red line highlights the cluster for Z75 in Fig. 2 (a) and for Z95 in Fig. 2 (b). The clusters identified with yellow circles15

are ignored because they are too small to give a considerable contribution. In case there is more than one cluster, as for Fig. 2

(b), the average of the main clusters is considered.

3.1.6 Maximum wetness period above rainfall threshold

To identify characteristic time scale of rainfall events, maximum wetness periods were defined as the number of time steps was

estimated for which rainfall at a pixel is constantly above a given threshold. With this aim, every pixel in the catchment was20

analysed and maximum number of consecutive time steps above the chosen threshold was retrieved. Figure 2 (c) illustrates of

the process followed to select the maximum duration Twmax above the threshold Z. For each pixel, the value of the maximum

duration above the threshold is identified. These values are averaged over the whole catchment to obtain a temporal length

scale that characterizes rainfall event TwZ .

For each pixel n, the maximum wetness period TwZ above a selected threshold Z is defined as

Ntot∑
n

Twmax∑
Ntot

, where Ntot is25

the total number of pixels.

In order to characterize the intermittency of rainfall events, the maximum dry period Tdmax, defined as the maximum

number of time steps during which the threshold Z was not exceeded, was also identified. Figure 2 (c) shows how these lengths,

TwZ and TdZ , were selected. The combination of these two parameters gives an indication of how constant or intermittent is

the rainfall event.30
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3.2 Characterizing hydrological models’ spatial and temporal scales

3.2.1 Models’ spatial scales

Several studies have shown that drainage area is one of the dominating factors affecting the variation in urban hydrological re-

sponses resulting from using rainfall at different spatial and temporal resolutions as input (Berne et al., 2004; Ochoa-Rodriguez

et al., 2015; Yang et al., 2016). Considering a larger drainage area implies aggregating and averaging rainfall and consequently5

smoothing rainfall peaks, with the result of having large areas that are less sensitive to high resolution measurements.

In order to compare spatial scale of models and rainfall spatial variability, the average dimension of subachatchments was

analysed to characterize the model spatial scales. To investigate the effects of the drainage area Ad on hydrological response

sensitivity, thirteen locations, with connected surface that varies from less than 1 ha to more than 600 ha, were considered.

Given that the coarser resolution model (SD1) does not contain small drainage areas (<35ha), only eight of the thirteen se-10

lected locations were available for SD1. To compare FD with SD models, we assumed that FD sub-catchments have the same

dimension of SD2 sub-catchments. Table 2(b) presents the drainage area Ad connected to each location, while in Figure 1 the

location of the selected pipes is highlighted on the catchment, with a red thick line.

Dimensionless parameters as proposed by Bruni et al. (2015) and Ogden and Julien (1994) were determined to investigate the

interaction and relation between rainfall resolution and different model properties and characteristic. The catchment sampling15

number ∆s
LC

was introduced as the ratio between the rainfall spatial resolution ∆s and the characteristic length of the catchment

LC (square root of the total area). This parameter describes the interaction between rainfall resolution and study area. If the

catchment sampling number is higher than 1, rainfall variability is insufficiently captured and for small rainfall events the

position might not be properly represented. The runoff sampling number was defined as ∆s
LRA

, where LRA indicates the spatial

resolution of the runoff model, defined as the square root of the averaged sub-catchment size (Bruni et al., 2015). Lower values20

of this ratio indicate that the model is unable to capture rainfall variability, while higher values indicate possible incorrect

transformation of rainfall into runoff. The sewer sampling number ∆s
LS

, describes the interaction between rainfall resolution

and sewer length LS , indicating higher sensitivity to rainfall variability with increasing values of this ratio.

3.2.2 Models’ temporal scales

In the literature, there is no unique parameter to characterize the temporal variability of the model. Several authors have25

proposed different time scale characteristics (see Cristiano et al. (2017) for a review), but no unique formulation has been

chosen yet, especially for urban areas. Time of concentration (McCuen et al., 1984; Singh, 1997; Musy and Higy, 2010) and

lag time (Berne et al., 2004; Marchi et al., 2010) are the most commonly used temporal model scales, but other time length have

been proposed in the literature (Ogden et al., 1995; Morin et al., 2001). In this study, temporal variability of the three models

was classified using lag time tlag, which describes the runoff delay compared to rainfall input. tlag can be defined in different30

ways: as difference between the centroid of hyetograph and the centroid of hydrograph (Berne et al., 2004), or as the distance

between rainfall and flow peaks (Marchi et al., 2010; Yao et al., 2016). Hyetograph in a specific location was estimated as

average of rainfall intensity that interests the considered sub-catchment, while the hydrograph was represented using the flow
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in selected pipes. The lag time can be considered as a characteristic basin element. It depends on drainage area size, slope and

imperviousness (Gericke and Smithers, 2014; Morin et al., 2001; Berne et al., 2004; Yao et al., 2016), but it is also influenced

by rainfall characteristics. For this reason, tlag was calculated for the nine rainfall events and the average of these values was

taken as representative number.

Lag time increases with drainage area, following a power law as proposed by Berne et al. (2004). For urban areas, an5

empirical relation between catchment area A (ha) and lag time tlag (min) was presented:

tlag = 3A0.3. (6)

This relation was confirmed, incorporating results obtained by Schaake and Knapp (1967) and Morin et al. (2001). tlag was

calculated for each selected sub-catchments, and then compared with the rainfall temporal scale, to investigate the interaction

between model and rainfall scale. The relation between averaged lag time and connected drainage area was studied at each10

location.

3.3 Statistical indicator for analysing rainfall sensitivity

To investigate effects of rainfall aggregation on peak intensity, the peak attenuation ratio ReR was calculated for rainfall. This

parameter represents peak underestimation, when aggregating in space and time and it was defined as:

ReR =
Pst−Pref

Pst
(7)15

where Pref is the peak of the measured rainfall at 100 m - 1 min resolution and Pst is the rainfall peak at the aggregated

resolution s in space and t in time. ReR values vary from 0 to 1, condition for which there is no underestimation.

The coefficient of determination R2
R was used to describe rainfall intensity sensitivity to aggregation in space and time. R2

R

represents the portion of variance of dependent variable that is predictable from the independent one. This parameter indicates

how well regression approximates real data points.R2
R values can varies between 1 and 0, where 1 represents the perfect match20

between observed rainfall values Rref and aggregated one Rst at spatial resolution s and temporal resolution t.

3.4 Statistical indicators for analysing hydrological response

Rainfall was synthetically applied over models and flow and depth were calculated in 13 selected locations, to study the

hydrological response and to compare the three models. Following Ochoa-Rodriguez et al. (2015), rainfall was applied in such

way that the storm movement main direction was parallel to the main downstream direction of flow in pipes. The rainfall grid25

centroid coincided with the catchment centroid.

Using aggregated rainfall data as input and hydrodynamic simulation results derived from the highest-resolution rainfall

(100 m and 1 min) as reference, the following two statistical indicators were calculated and analysed to quantify the influence

of rainfall input resolution, at selected locations.

– Relative Error in peak flow ReQ30

ReQst =
Qmaxst−Qmaxref

Qmaxref
where Rest is the relative error in peak (Qmaxst) corresponding to a rainfall input of spa-
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tial resolution s and temporal resolution t, in relation to the reference (100 m - 1 min) flow peak, Qmaxref (Ochoa-

Rodriguez et al., 2015). Rest values bigger than zero indicate an overestimation of the peak associated to the rainfall

input st, and vice versa, Rest values smaller than zero indicate an underestimation.

– Coefficient of determination R2
Q

R2
Q, as described in Section 3.3 for rainfall, was applied also to the flow, to investigate effects of rainfall aggregation on5

hydrological response.

3.5 Scaling factors characterising rainfall and model scales

To investigate the impact of spatial and temporal scales of rainfall events on the sensitivity of simulated runoff to different

rainfall input resolutions, Ochoa-Rodriguez et al. (2015) defined spatial and temporal scaling factors, θS and θT . These factors

were defined as the ratio between required spatial and temporal minimum resolutions, ∆sr and ∆tr, and spatial and temporal10

resolutions considered as input ∆s and ∆t: θS = ∆sr
∆s and θT = ∆tr

∆t . The combined effects of spatial and temporal charac-

teristics were evaluated defining a combined spatial−temporal factor which accounts for spatial−temporal scaling anisotropy

factor Ht (Ochoa-Rodriguez et al., 2015). The anisotropy factor represents the relation between spatial and temporal scales,

assuming that atmospheric properties and Kolgomorov’s theory (Kolgomorov, 1962) are valid also for rainfall (Marsan et al.,

1996; Deidda, 2000; Gires et al., 2011). Combined spatial-temporal factor is then defined as: θST = θS ∗ θ
1

1−Ht

T , where Ht15

usually assumes the value of 1/3 (Marsan et al., 1996; Gires et al., 2011, 2012).

Building on the work of Ochoa-Rodriguez et al. (2015), we proposed spatial and temporal scaling rainfall factors, δS and δT .

Rainfall cluster classification and maximum wetness period were used to describe the rainfall scale. The 75%-ile threshold was

chosen as reference, accordingly to the results presented in Section4.4.3. The rainfall factors are defined as ratio between cluster

dimension SZ75 above Z75 and maximum wetness period TwZ75 above Z75 and spatial and temporal rainfall resolutions:20

δS =

√
SZ75

∆s
δT =

TwZ75

∆t
(8)

The characteristic spatial length of the main cluster, corresponding to the square root of the main cluster, was used to define

the spatial rainfall scaling factor. Combined effects of spatial and temporal rainfall scale were investigated defining δST as a

combination of δS and δT .

δST = δS ∗ δT (9)25

The coefficient of anisotropy was not considered for the new parameters. The assumption that the anisotropy observed in the

atmosphere is present also in the hydrological response is not always applicable. Results were however investigated with and

without the anisotropy and no big differences were identified.

A similar concept was applied to model characteristics and spatial and temporal model scaling factors were defined. These

factors were obtained comparing model characteristic length (square root of drainage area Ad) and lag time tlag with spatial30

and temporal resolution relatively.

γS =

√
Ad

∆s
γT =

tlag
∆t

(10)
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The combined model scaling factor was defined as:

γST = γS ∗ γT (11)

With the aim to identify a factor that represents the behaviour of hydrological response sensitivity well, three new parameters

are presented. The first factor is α1, which accounts only for the spatial aspects of model and rainfall variability. α1 was defined

as:5

α1 =

√
SZ75 ∗Ad

∆s2
(12)

A second possible way to combine rainfall and model characteristics was α2:

α2 =

√
SZ75

∆s
∗ tlag

∆t
= δS ∗ γT (13)

In this case, both spatial and temporal aspects were considered. The catchment temporal scaling factor represents both spatial

and temporal variability of the catchment, because of the strong relationship between lag time and drainage area described in10

Section 3.2.2.

The third scaling factor, α3, combines all spatial and temporal rainfall and model characteristics. α3 was defined as:

α3 =

√
SZ75 ∗Ad

∆s2
∗ TwZ75 ∗ tlag

∆t2
= δST ∗ γST (14)

These parameters allow to choose the best rainfall resolution or model scale to use. Depending on the available data and on

the level of performance that we want to achieve, it is possible to identify the required rainfall resolution.15

4 Results and discussion

4.1 Rainfall analysis

In this section, methods for quantifying rainfall space and time scales proposed in the literature (Ochoa-Rodriguez et al., 2015;

Lobligeois et al., 2014), are compared to the cluster classification we propose in this paper. Additionally, change in rainfall

characteristics with spatial and temporal aggregation scale will be analysed.20

4.1.1 Spatial and temporal classification results

Spatial variability index values for each of the 9 rainfall events are presented in Table 4 for the observed rainfall at 100 m - 1

min (Iσ) and at 1000 m - 5 min (Iσ1000m). Last values were added to have a direct comparison with the values presented by

Lobligeois et al. (2014), using the same resolution. Iσ values are generally high when compared to values found by Lobligeois

et al. (2014) for all the investigated regions. This indicates that most events are characterised by high spatial variability. Ag-25

gregation has a strong impact on this parameter, which becomes smaller with a coarser resolution, highlighting the fact that

information about rainfall variability is lost during the coarsening process. Iσ1000m values are generally higher than values
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presented for the Northern region, where values are below 1, but are comparable to the Mediterranean area, where Iσ reaches

values around 4.

Values obtained based on variogram analysis (spatial range) and storm tracking (temporal development) following Ochoa-

Rodriguez et al. (2015) are also presented in Table 4.

Results show that the spatial variability index tends to increase as well as the required spatial resolution for storms larger than5

2500 m spatial range, while events with small spatial range (E5, E7 and E9, spatial range below 2500 m) are characterised by

relatively high spatial variability indexes. Required temporal resolution ∆tr, obtained from the combination of storm motion

velocity and required spatial resolution (see Section 3.1.3) varies between 1.7 and 5.9 minutes; lowest values of ∆tr are

associated with fast storm events (e.g. E8 and E5) and small-scale events (e.g. E9 and E7).

4.1.2 Thresholds and percentage of coverage10

The first step in obtaining cluster dimensions is to identify rainfall thresholds (Z) characterising the rainfall values’ distribution

(see Section 3.1.4). Table 5 shows rainfall threshold values corresponding to the 25-, 50-, 75- and 90-%iles for the 9 rainfall

events.

The 25%-ile of the rainfall values distribution is zero, indicative of strong intermittency and small areal coverage of some

of the events (especially events E7 and E9). The 95%-ile is 22 mm/h (over a 1-minute time window), corresponding to a15

recurrence interval of less than a half year (KNMI, 2011), indicating that the selected events are representative of frequently

occurring events. For this region, rainfall intensities above 25 mm/h, over a 15-minute time window, correspond to a return

period of once per year, indicating an intense rainfall event. For only few rainfall events, E1, E2, E3 and E7, the 25 mm/h

threshold is exceeded over a 15-minute time window, for few time steps and, in particular, for E7 this happens only at the peak.

This implies that rainfall events considered in this study are not classifiable as extreme.20

The percentage of areal coverage, estimated for the catchment, is presented in Fig. 3(a, d, g, j). Areal coverage associated with

25%-ile values provides an indication of event scale intermittency. Events with 25%-iles close to 1 cover the entire catchment

most of the time, while smaller and more intermittent events, especially E7 and E9, are characterised by lower 25%-ile values.

Areal coverage for 95%-ile thresholds indicates the size of storm cell cores: E1 and E2 have storm cores covering up to 65-70%

of the catchment; E4 and E6 have median coverage values close to zero, indicating that these are mild events without an intense25

storm core.

Boxplots in Fig. 3 (b, e, h, k) show the number of time steps above selected thresholds as a percentage of total event

duration, to enable comparison between events. Results confirm patterns identified based on areal coverage: events E7 and E9

are identified as high intermittency events (based on 25%-ile threshold). Maximum percentage of time steps above the highest

threshold is 30% for events E1 and E2. Each boxplot represents the spatial variability of rainfall between pixels. ThresholdsZ5030

and Z75 present a high intra-event variability, highlighting the differences between rainfall events. For the other two thresholds,

the intra-event variability is not high, suggesting that the rainfall event characteristics might not be well represented. For Z95,

all events present a coverage variability lower than 30%, and differences between events are not properly defined. Thresholds
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Z50 and Z75 present also a high inter-event variability, indicating that in these cases the spatial variability of the rainfall event

above the catchment area is high.

4.1.3 Rainfall cluster classification

Dimensions of the main cluster were determined for each of the four thresholds and for all time steps of the nine events. Results

are presented in Fig. 3 (c, f, i, l), where the red line indicates the median and the blue dot the average.5

The plots show that for Z25 only intermittent events, like E7 and E9, present a median below 861 ha (entire catchment area).

The intra-event variability is generally quite high for most of the events, especially for the 50%-ile and 75%-ile, indicating that

clusters change their dimension and shape during the event. Only few events, E4 and E2, do not show high variability above

Z25 and Z50 threshold. For Z95, the cluster dimension variability is relatively small, suggesting that the average or the median

can be a good approximation of the storm core dimension. Values above Z50 present high inter-event variability. There is a10

clear distinction between constant events, such as E2 and E4, and intermittent events, E7 and E9, which show low median and

average values.

Intense and constant rainfall events are also characterized by median values being generally higher than the mean. On the

other hand, intermittent events, such as E9, have an average higher than the median, especially for the 50%- and 75%-ile. This

results suggest that Z50 and Z75 are able to describe well rainfall spatial and temporal scale.15

4.1.4 Maximum wet and dry period

The maximum wet period TwZ and maximum dry period TdZ were calculated for four rainfall intensity thresholds in order

to represent temporal variability of a rainfall event. Table 6 presents maximum wetness period TwZ and maximum dry period

TdZ , normalized by total duration of the rainfall event, to enable comparison between events and to investigate how long the

main core is in relation to the total duration of the event.20

For some events TwZ decreases depending on the threshold, passing from values close to 1 for Z25 to values close to 0 for

Z95. The change between different thresholds can be gradual, as for example for E2, E8 or E5, or sharp, as is the case of E3 or

E4. For intermittent events, on the other hand, the maximum wet period does not vary too much, and it is relatively short, like

E7 or E9. This implies that there are probably multiple short periods above the threshold. When comparing TwZ and TdZ ,

we can observe that some events show a symmetrical behaviour, when decrease in wet period coincides with increase in dry25

period, with the increase of the threshold (E4, E3). E7 and E9 present a moderate decrease of TwZ while they have a steep

increase of TdZ , indicative of strong intermittency. For the other events, the behaviour is generally the opposite, indicative of

a concentrate storm core.
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4.2 Hydrological models, spatial and temporal scales

4.2.1 Spatial model scale

Dimensionless sampling numbers, presented at first by Ogden and Julien (1994), and then re-proposed by Bruni et al. (2015),

are presented in Table 7 for the three models (for underlying equations see Section 3.2.1). SD2 and FD model have the same

contributing area and network length, hence they show that values for the catchment sampling number and sewer sampling5

number are the same.

Catchment sampling numbers higher than 1 indicate that models can not properly represent rainfall variability (Bruni et al.,

2015). In this study, for 3000 m spatial rainfall resolution values are bigger than 1, so poor model performance at this resolution

is expected. The runoff sampling number suggests that SD1 will not be able to capture rainfall variability, because it presents

low values for all spatial resolutions, while FD has high values of this parameter, which highlights some uncertainty in rainfall-10

runoff transformation. SD2, instead, presents runoff sampling numbers similar to the values found by Bruni et al. (2015), where

this parameter varied between 2.6 for high resolution and 93 for lower resolution. The sewer sampling number applied to SD2

and FD, presents similar results to Bruni et al. (2015), where the values were varying between 2 for high resolution and 77

for low resolution. On the other hand, the sewer sampling number is pretty low for SD1, which indicates a low sensitivity of

this model to rainfall variability. This parameter increases with coarsening of spatial resolution, suggesting a high sensitivity15

to coarser rainfall resolutions.

The catchment sampling number can be applied also to the selected sub-catchments, comparing spatial resolution with the

sub-catchments dimension reported in Table2(b). Also in this case, when the ratio is bigger than 1 the rainfall might not be

well represented. This happens for sub-catchment L1, which is smaller than 100 m, and for all locations when they have to deal

with 3000 m rainfall resolution. Locations from L2 to L5, presenting a drainage area between 100 m and 500 m, should show20

the effects of aggregation for spatial resolution of 500 m and 1000 m, when the catchment sampling coefficient is higher than

1, and the variability is not well captured. When the catchment sampling number is lower than 0.2, the catchment is too large

to be compared to the rainfall input, and the effects of averaging over the area should be visible, as for example for L13 when

considering a 100 m input resolution.

4.2.2 Temporal model scale25

Lag time tlag was computed for nine storms for each model at twelve sub-catchments and at the catchment outlet, as explained

in Section 3.2.2. Results, presented in Fig. 4 (a), show that tlag increases with drainage area and varies from just above 1 min

for FD at L1 (upstream location with the smallest Ad) to over 100 min for the coarsest model and largest catchment scale.

Only for a few locations, tlag is lower than 10 min and for this reason a low sensitivity to temporal variability of rainfall

events is expected. On the other hand, lag times vary over a wide range between events and this highlights a strong influence of30

event characteristics. Model scale clearly influences computed lag times, which are generally larger for coarser model, where

sub-catchments are bigger. However, for locations with smaller drainage area (< 245 ha), SD1 presents tlag values comparable

with the other models, but with a much lower variability compared to the finer scale models.
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As discussed in Section 3.2.2, tlag strongly depends on drainage area. Figure 4(b) shows how lag time varies, as a function

of drainage area, for SD2, based on average, median, minimum and maximum values across rainfall events. Results confirm

that tlag increases with the drainage area, fitting a power law, similar to the one suggested by Berne et al. (2004) (eq. 6). In this

case the power law that fits at best the average of empirical data is tlag = 8.9 ∗A0.27
d (R2 = 0.841), equation that presents the

same exponent of the one proposed by Berne et al. (2004) and slightly higher coefficient. The power law proposed by Berne5

et al. (2004) represents a wider range of surface areas wider than what is presented in this work, hence only a small part of it

is considered.

4.3 Sensitivity of rainfall: effects of spatial and temporal aggregation on rainfall peak and distribution

4.3.1 Effects of aggregating on the maximum rainfall intensity at catchment scale

Figure 5 presents rainfall peak attenuation ratios ReR for the range of spatial and temporal aggregation levels investigated.10

The plot shows the median over the nine events (marker) and the variability of the data (from 25% to 75% solid lines and total

range dotted lines).

Rainfall peaks are reduced up to 80% when aggregating in space or time and up to 88% when combining the spatial and

temporal aggregation at the coarsest resolution. For high resolution, aggregation over time seems to play a larger role then

over space. Aggregating from 1 min to 3 min approximately half of the rainfall peak is lost, while from 100 m to 500 m peak15

attenuation is relatively smaller (40%). For lower resolutions, spatial aggregation has a slightly stronger attenuating effect than

temporal aggregation. At 3000 m spatial resolution, rainfall peaks are strongly underestimated, independent of the temporal

resolution.

4.3.2 Rainfall aggregation analysis at sub-catchment scale

In this sub-section, we compare effects of spatial and temporal aggregation on rainfall variability and peak intensity across20

sub-catchment scales. Figure 6 shows examples of rainfall aggregation effects, as a function of the drainage area. Results for

two rainfall events are shown: E4 is a constant, low intensity event, which has a low variability in time and space, while E9 is

an intermittent events, with multiple peaks. The plots clearly show that rainfall variability for the constant event is less sensitive

to aggregation than that for the intermittent event. Rainfall sensitivity to aggregation decreases for larger size. ReR and R2
R

results for all the 9 studied events are available in the supplement.25

4.4 Rainfall and model influence on hydrological response

4.4.1 Sensitivity of the hydrological response to rainfall input resolution

Figure 7 shows results for statistical indicators ReQ and R2
Q for sixteen combinations of rainfall resolution and in relation

to catchment area. Results are shown for a stratiform low intensity rainfall event (E4) and a convective intermittent storm

(E9)for increasing catchment. For both events, the sensitivity to rainfall input resolution generally decreases for increasing30
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of catchment size. Variability of ReQ and R2
Q is much stronger for E9 than E4, pointing out the important role of rain event

characteristics.

Comparing Fig. 6 with Fig. 7, similar patterns are observed for rainfall and flow. In both cases, sensitivity to rainfall aggre-

gation in space and time decreases with increase of the drainage area. Moreover, in both cases, the small and constant event

(E4) is less sensitive to aggregation than the intermittent one (E9). Rainfall patterns are more sensitive to aggregation than flow,5

due to smoothing induced by rainfall runoff processes.

4.4.2 Influence of the model complexity on hydrological response sensitivity

To investigate the influence that model complexity has on hydrological response sensitivity, results obtained with the three

models are analysed. Figure 8 compares the influence of model complexity to the impact of spatial rainfall variability on the

sensitivity of hydrological response. For each model, outputs at all locations are plotted for the 16 different rainfall input10

resolutions. There is not a clear behaviour that characterizes differences between sensitivity of the three models. All models

appear sensitive to 3000 m spatial resolution and 10 min temporal resolution: in these cases the performance is lower. For

upstream location, SD1 seems to be slightly more sensitive than the other models to spatial coarsening for the upstream

location, while FD performs worse for L13. The plot shows that there are some minor differences between the outputs of

the three models, but the strongest sensitivity is connected to the rainfall scale as characterized by the cluster dimension. All15

models show higher sensitivity to small clusters, especially for cluster sizes below 100 ha. For small clusters, SD1 presents a

higher sensitivity for both statistical indicators, while it is less sensitive than SD2 and FD for large clusters.

Model complexity does not have a large influence on sensitivity to rainfall resolution coarsening, while other characteristics,

such as rainfall parameters or catchment details, seem to have a higher impact.

4.4.3 Influence of rainfall scale classification on hydrological response20

Several approaches to classify rainfall variability have been presented and discussed in Section 3.1 and in Section 4.1. In these

sections, their influence on the hydrological response will be analysed.

Figure 9 compares the influence of spatial and temporal required resolutions (∆sr and ∆tr), spatial variability index Iσ ,

cluster above Z75 and Z95 and the maximum wet period TwZ75 to model performance for different resolutions. Sensitivity to

rainfall input resolution generally increases for smaller required spatial and temporal resolution, for higher spatial variability25

index and for smaller cluster size. Clearest relationships are observed for required temporal resolution and cluster size above

Z75. This parameter seems to represent quite well spatial scale of the rainfall events, and therefore is chosen in this work to

characterize the spatial scale of rainfall events.

Figure 10 compares the influence of rainfall spatial scale, based on cluster size above Z75, with drainage area size. Variability

of R2
Q is higher for lower values of both rainfall scale and drainage area and decreases in a similar way with increase in both30

rainfall and catchment dimensions.
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For this study case, we can conclude that sensitivity to rainfall resolution depends mainly on the scale of rainfall events and

study catchment, and much less on complexity of models used. Choosing a complex model is useful only when studying small

scale events and catchments only if high resolution rainfall data are available.

4.5 Rainfall and model scaling factors

Spatial, temporal and combined scaling factors proposed by Ochoa-Rodriguez et al. (2015) and described in Section 3.5, were5

calculated for this study and are presented in Fig. 11(a-c). Higher values of the scaling factors θS (ratio between minimum

required spatial resolution and rainfall spatial resolution), θT (ratio between minimum required temporal resolution and rain-

fall temporal resolution) and θST (combination of spatial and temporal scaling factors) are generally associated with higher

modelling performance, expressed in terms of R2. The combined spatial-temporal scaling factor, θST , in particular indicates

how high R2
Q values are obtained for θST > 15 (R2 > 0.9).10

As discussed in Section 4.4.3, both rainfall scale and catchment characteristics strongly affect sensitivity of hydrological

response to rainfall resolution. For this reason, the new dimensionless factors proposed combine rainfall and catchment prop-

erties. From results shown in Fig. 11(a-c), spatial variability seems to have a better relation with the sensitivity variability than

the temporal scale and, for this reason, the factor α1 especially focuses on the spatial scale of model and rainfall variability.

Figure 11(d) and Fig. 12(a) shows R2
Q as a function of α1. The plot presents a clear trend, indicating low model performance15

for low values of α1 and high performance for values of α1 larger than 100.

Figure 11(e) shows α2 and response sensitivity. For values of α2 > 40, R2
Q is higher than 0.95, indicating a very good

performance. For values of α2 < 10, R2
Q is lower than 0.8. Figure 12(b) shows the same plot on a logarithmic scale, which

better visualises thresholds of performance. Different resolutions are highlighted in the plot. Low resolution in space generally

lead to a lower α’s values than low temporal resolution, and consequently to a lower performance of the model.20

Figure 11(f) and Fig. 12(c) plot R2
Q against α3. Figure 12(c) indicates that for values of α3 higher than 3000 a high perfor-

mance of R2
Q is guaranteed (R2 > 0.90). For 400< α3 < 3000 the performance of R2

Q drops to 0.8.

Comparing the scaling factors, we observe that α2 works better in distinguishing critical resolutions for a given model

performance. There are indeed, less points with high R2
Q below the identified thresholds. Moreover, α2 should be preferred

because it allows to use fewer parameters, without losing information about temporal characteristics, as it is for α1.25

5 Conclusions

In this study we investigated effects of rainfall and catchment scales on sensitivity of urban hydrological models to different

rainfall input resolutions. The aim was to identify dimensionless ratios of storm and catchment scales that support critical

resolution for reproducing hydrological response. Cranbrook, a small urbanized area of 861 ha, was analysed with the help of

two semi-distributed and a fully distributed models. Rainfall data measured at 100 m and 1 min resolution by a dual polarimetric30

X-band radar located in the Netherlands, , were aggregated to obtain different rainfall resolutions and then used as input for

the hydrological models. Storm events were assumed to be representative of the rainfall regime in the London area, as London
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and Cabauw are situated in the same temperate oceanic climatological region. A new rainfall classification method, based on

cluster identification was presented in this work. Different rainfall classification methods were used to characterize storm event

scales.

From this work we draw the following conclusions.

– Rainfall classification based on clustering is an easy and fast method to quantify spatial scale of rainfall events. In5

particular, rainfall clusters associated with the 75%-ile threshold turned out to give a realistic approximation of the

spatial dimension of the storm core.

– Spatial and temporal aggregation of rainfall data can have a strong effect on rainfall peak and intensity. Rainfall peaks

were reduced up to 80% when aggregating in space to 3000 m resolution or in time at 10 min resolution. Both space and

time have a strong influence on peak attenuation. Temporal aggregation has a stronger influence at 1 - 5 min resolution,10

while aggregation in space has bigger impact at low (1000 - 3000 m) resolution.

– Lag time estimated for the investigated sub-catchments was used to represent the temporal characteristics of models. Lag

time increased with the catchment area size, yet varied strongly between events (approx. by a factor of 2, 25-75%-ile

range). Mean lag time fitted an empirical power law similar to the one proposed by Berne et al. (2004), yet with a higher

intercept.15

– Effects of rainfall aggregation in space and time on hydrological response depend on rainfall event characteristics. Rain-

fall events with constant intensity are less affected by aggregation than small scale intermittent events. However, results

showed that aggregation effects are stronger for rainfall than flow. Results showed that smoothing of rainfall peak in-

tensities by aggregation was much stronger than for flows. Rainfall aggregation effects on hydrological response are

smoothed during the rainfall runoff transformation processes.20

– For the case study under consideration, model spatial resolution does not appear to have a big impact on hydrological

response sensitivity to rainfall input resolution. Three models of different complexity were all sensitive to rainfall reso-

lution. Low resolution model was more sensitive to rainfall resolution for small scale storms, while the high resolution

fully distributed model showed stronger sensitivity at larger catchment scale.

– Rainfall and catchment scales were shown to have a strong impact on hydrological response sensitivity. This indicates25

that the relation between rainfall and catchment scale needs to be taken into account when investigating the hydrological

response of a system.

– New spatial, temporal and combined scaling factors were introduced to analyse hydrological response sensitivity to rain-

fall resolution. These dimensionless scaling factors combine rainfall scale, model scale and rainfall input resolution and

enable identification of critical rainfall resolution thresholds to achieve a given level of accuracy. Thus, the scaling factors30

support selection of adequate rainfall resolution to obtain a certain level of accuracy in the calculation of hydrological

response.
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However, there are still some aspects that need further investigation. Rainfall events measured directly over the study area

should be evaluated to allow a proper comparison between model results and observations. In particular, using local rainfall

data as input for the model combined with local discharge measurements, would enable direct investigation the sensitivity of

the hydrological response with respective to an observed reference. Results presented in this paper are related to one specific5

study case and need further investigations, based on cases in different climatological regions and with different hydrological

characteristics to test to what extent they can be generalised. More and different rainfall events and different catchments should

be investigated in order to test the applicability of the scaling factors and thresholds identified for other geographical and

climatological conditions. In further work, cluster rainfall classification and dimensionless α parameters will be investigated

based on field observations in combination with modelling. Different scales will be considered to investigate the range of10

applicability of the scaling factors. Additionally, a better definition of temporal rainfall scale needs to be developed, with a

parameter able to represent rainfall variability, highlighting the constant or intermittent character of rainfall events.

Code availability. Cristiano and Gaitan (2017)

Data availability.

Competing interests. No competing interests are present.15

Acknowledgements. The authors would like to thank Innovyze for providing a InfoWorks licence. This study was funded by the EU INTER-

REG IVB RainGain Project.

18



References

Berne, A. and Krajewski, W.: Radar for hydrology: Unfulfilled promise or unrecognized potential?, Advances in Water Resources, 51,

357–366, https://doi.org/https://doi.org/10.1016/j.advwatres.2012.05.005, 2013.

Berne, A., Delrieu, G., Creutin, G., and C., O.: Temporal and spatial resolution of rainfall measurements required for urban hydrology,5

Journal of hydrology, 299, 166–179, https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.

Bruni, G., Reinoso, R., van de Giesen, N. C., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: On the sensitivity of urban hydrodynamic

modelling to rainfall spatial and temporal resolution, Hydrol. Earth Syst. Sci, 19, 691–709, https://doi.org/10.5194/hessd-11-5991-2014,

2015.

Cristiano, E. and Gaitan, S.: rainfall-clustering: Initial version of protocol for intensity based rainfall radar imagery clustering., Zenodo,10

https://doi.org/10.5281/zenodo.1069327, 2017.

Cristiano, E., ten Veldhuis, M.-C., and van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological

response in urban areas – a review, Hydrology and Earth System Sciences, 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017,

https://www.hydrol-earth-syst-sci.net/21/3859/2017/, 2017.

Deidda, R.: Rainfall downscaling in a space time multifractal framework, Water resourches research, 36, 1779–1794,15

https://doi.org/10.1029/2000WR900038, 2000.

Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N., Quirmbach, M., Vaes, G., and Vieux, B.: Towards a Roadmap for Use of Radar

Rainfall data use in Urban Drainage, Journal of hydrology, 299, 186–202, https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.08.004,

2004.

Emmanuel, I., Andrieu, H., and Leblois, E.and Flahaut, B.: Temporal and spatial variability of rainfall at the urban hydrological scale, Journal20

of hydrology, 430-431, 162–172, https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.02.013, 2012.

Fabry, F., Bellon, A., Duncan, M. R., and Austin, G. L.: High resolution rainfall measurements by radar for very small basins: the sampling

problem reexamined., Journal of Hydrology, 161, 415–428, https://doi.org/https://doi.org/10.1016/0022-1694(94)90138-4, 1994.

Faures, J., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S.: Impact of small scale spatial rainfall variability on runoff modelling,

Journal of Hydrology, 173, 309–326, https://doi.org/https://doi.org/10.1016/0022-1694(95)02704-S, 1995.25

Fletcher, T. D., Andrieu, H., and Hamel, P.: Understanding, management and modelling of urban hydrology and its consequences for receiving

waters: a state of the art, Adv. Water Resour., 51, 261–279, https://doi.org/https://doi.org/10.1016/j.advwatres.2012.09.001, 2013.

Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E.: Topographic structure from motion: a new development

in photogrammetric measurement, Earth Surface Processes and Landforms, 38, 421–430, https://doi.org/10.1002/esp.3366, 2013.

Gericke, O. J. and Smithers, J. C.: Review of methods used to estimate catchment response time for the purpose of peak discharge estimation,30

Hydrological Sciences Journal, 59, 1935–1971, https://doi.org/http://dx.doi.org/10.1080/02626667.2013.866712, 2014.

Gires, A. Onof, C., Tchiguirinskaia, I., , Schertzer, D., and Lovejoy, S.: Analyses multifractales et spatio-temporelles des précipitations

du modèle Méso-NH et des données radar, Hydrological Sciences Journal, 56, 380–396, https://doi.org/10.1080/02626667.2011.564174,

2011.

Gires, A. Onof, C., Maksimovic, C., Schertzer, D., Tchiguirinskaia, I., and Simoes, N.: Quantifying the impact of small scale unmea-35

sured rainfall variability on urban hydrology through multifractal downscaling: a case study, Journal of hydrology, 442-443, 117–128,

https://doi.org/10.1016/j.jhydrol.2012.04.005, 2012.

Innovyze: InfoWorks ICM v.5.5, 2014.

19

https://doi.org/https://doi.org/10.1016/j.advwatres.2012.05.005
https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.08.002
https://doi.org/10.5194/hessd-11-5991-2014
https://doi.org/10.5281/zenodo.1069327
https://doi.org/10.5194/hess-21-3859-2017
https://www.hydrol-earth-syst-sci.net/21/3859/2017/
https://doi.org/10.1029/2000WR900038
https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.08.004
https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.02.013
https://doi.org/https://doi.org/10.1016/0022-1694(94)90138-4
https://doi.org/https://doi.org/10.1016/0022-1694(95)02704-S
https://doi.org/https://doi.org/10.1016/j.advwatres.2012.09.001
https://doi.org/10.1002/esp.3366
https://doi.org/http://dx.doi.org/10.1080/02626667.2013.866712
https://doi.org/10.1080/02626667.2011.564174
https://doi.org/10.1016/j.jhydrol.2012.04.005


KNMI: Koninklijk Nederlands Meteorologisch Instituut, Neerslagstatistiek, http://projects.knmi.nl/klimatologie/achtergrondinformatie/neerslagstatistiek.pdf,

2011.

Kolgomorov, A. N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at

high Reynolds number, J. Fluid Mech., 13, 82–85, https://doi.org/https://doi.org/10.1017/S0022112062000518, 1962.5

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z.,

15, 259–263, https://doi.org/DOI: 10.1127/0941-2948/2006/0130, 2006.

Krajewski, W. F. and Smith, J. A.: Radar hydrology: rainfall estimation, Advances in Water Resources, 25, 1387–1394,

https://doi.org/https://doi.org/10.1016/S0309-1708(02)00062-3, 2005.

Leijnse, H., Uijlenhoet, R., and Stricker, J.: Rainfall measurement using radio links from cellular communication networks, Water Resour.10

Res., 43, https://doi.org/10.1029/2006WR005631, 2007.

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall information improve

streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-

575-2014, 2014.

Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of selected extreme flash floods in Europe and implications for flood15

risk management, Hydrological Processes, 23, 2714–2727, https://doi.org/https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.

Marsan, D., Schertzer, D., and Lovejoy, S.: Causal space-time multifractal processes: Predictability and forecasting of rain fields, Journal of

geophysical research, 101, 26 333–26 346, https://doi.org/10.1029/96JD01840, 1996.

Mayer, H.: Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings, Computer Vision and Image Understanding,

74, 138–149, https://doi.org/https://doi.org/10.1006/cviu.1999.0750, 1999.20

McCuen, R. H., Wong, S. L., and Rawls, W. J.: Estimating Urban Time of Concentration, Journal of Hydraulic Engineering, 110,

https://doi.org/http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:7(887), 1984.

Morin, E., Enzel, Y., Shamir, U., and Garti, R.: The characteristic time scale for basin hydrological response using radar data, Journal of

hydrology, 252, 85–99, https://doi.org/https://doi.org/10.1016/S0022-1694(01)00451-6, 2001.

Musy, A. and Higy, C.: Hydrology A Science of Nature, Science Publishers, 2010.25

Niemczynowicz, J.: The rainfall movement – A valuable complement to short-term rainfall data, J. Hydrol., 104, 311–326, 1988.

Niemczynowicz, J.: Urban hydrology and water management - present and future challenges, Urban Water, 1, 1–14, 1999.

Ochoa-Rodriguez, S., Wang, L., Gires, A., Pina, R., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., Assel, J., Kroll,

S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., and ten Veldhuis, A. E. J.: Impact of Spatial

and Temporal Resolution of Rainfall Inputs on Urban Hydrodynamic Modelling Outputs: A Multi-Catchment Investigation, Journal of30

Hydrology, 531, 389–407, 2015.

Ogden, F. L. and Julien, P. Y.: Runoff model sensitivity to radar rainfall resolution, Journal of Hydrology, 158, 1–18, 1994.

Ogden, F. L., Richardson, J. R., and Julien, P. Y.: Similarity in catchment response, Water Resources Research, 31, 1543 – 1547, 1995.

Otto, T. and Russchenberg, H. W.: Estimation of Specific Differential Phase Backscatter Phase From Polarimetric Weather Radar Measure-

ment of Rain, IEEE Geoscience and Remote Sensing Letters, 5, 988–922, 2011.35

Pina, R., Ochoa-Rodriguez, S., Simones, N.and Mijic, A., Sa Marques, A., and Maksimovik, C.: Semi-distributed or fully distributed rainfall-

runoff models for urban pluvial flood modelling?, 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7-12 September

2014, -, 2014.

20

https://doi.org/https://doi.org/10.1017/S0022112062000518
https://doi.org/DOI: 10.1127/0941-2948/2006/0130
https://doi.org/https://doi.org/10.1016/S0309-1708(02)00062-3
https://doi.org/10.1029/2006WR005631
https://doi.org/10.5194/hess-18-575-2014
https://doi.org/10.5194/hess-18-575-2014
https://doi.org/10.5194/hess-18-575-2014
https://doi.org/https://doi.org/10.1016/j.jhydrol.2010.07.017
https://doi.org/10.1029/96JD01840
https://doi.org/https://doi.org/10.1006/cviu.1999.0750
https://doi.org/http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:7(887)
https://doi.org/https://doi.org/10.1016/S0022-1694(01)00451-6


Pina, R., Ochoa-Rodriguez, S., Simones, N.and Mijic, A., Sa Marques, A., and Maksimovik, C.: Semi- vs fully- distributed urban stormwater

models: model set up and comparison with two real case studies, Water, 8, 58, 2016.

Rafieeinasab, A., Norouzi, A., Kim, S.and Habibi, H., Nazari, B., Seo, D., Lee, H., Cosgrove, B., and Cui, Z.: Toward high-resolution flash

flood prediction in large urban areas – Analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling,5

Journal of Hydrology, 531, 370–388, 2015.

Rinehart, R. and Garvey, E.: Three-dimensional storm motion detection by conventional weather radar, Nature, 273, 287–289, 1978.

Salvadore, E., Bronders, J., and Batelaan, O.: Hydrological modelling of urbanized catchments: A review and future directions, Journal of

hydrology, 529, 61–81, 2015.

Schaake, J.and Geyer, J. and Knapp, J.: Experimental examination of the rational method, Journal of Hydrological Division, -, 353–370,10

1967.

Schilling, W.: Rainfall data for urban hydrology: What do we need?, Atmospheric Research, 27, 5–21, 1991.

Simões, N. E., Ochoa-Rodríguez, S., Wang, L.-P., Pina, R. D., Marques, A. S., Onof, C., and Leitão, J. P.: Stochastic Urban Pluvial Flood

Hazard Maps Based upon a Spatial-Temporal Rainfall Generator, Water, 7, 3396–3406, https://doi.org/10.3390/w7073396, 2015.

Singh, V. P.: Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrographs, Hydrological15

processes, 11, 1649–1669, 1997.

Smith, A. J., Baeck, M. L., Morrison, J. E., Sturevant-Rees, P., Turner-Gillespie, D. F., and Bates, P. D.: The regional hydrology of extreme

floods in an urbanizing drainage basin, American Meterological Society, 3, 267–282, 2002.

Smith, A. J., Baeck, M. L., Villarini, G., Welty, C., Miller, A. J., and Krajewski, W. F.: Analyses of a long term, high resolution radar rainfall

data set for the Baltimore metropolitan region, Water Resour. Res., 48, W04 504, 2012.20

Smith, M. B., Koren, V. I., Zhang, Z., Reed, S. M., Pan, J.-J., and Moreda, F.: Runoff response to spatial variability in precipitation: an

analysis of observed data, Journal of Hydrology, 298, 267 – 286, https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2004.03.039, http:

//www.sciencedirect.com/science/article/pii/S0022169404002483, the Distributed Model Intercomparison Project (DMIP), 2004.

Syed, K. H., Goodrich, D. C., Myers, D. E., and Sorooshian, S.: Spatial characteristics of thunderstorm rainfall fields and their relation to

runoff, Journal of Hydrology, 271, 1 – 21, https://doi.org/https://doi.org/10.1016/S0022-1694(02)00311-6, http://www.sciencedirect.com/25

science/article/pii/S0022169402003116, 2003.

ten Veldhuis, M.-C. and Schleiss, M.: Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling

using inter-amount times, Hydrology and Earth System Sciences, 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017, https://

www.hydrol-earth-syst-sci.net/21/1991/2017/, 2017.

Thorndahl, S., Einfalt, T., Willems, P., Nielsen, J. E., ten Veldhuis, M.-C., Arnbjerg-Nielsen, K., Rasmussen, M. R., and Molnar, P.: Weather30

radar rainfall data in urban hydrology, Hydrology and Earth System Sciences, 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017,

https://www.hydrol-earth-syst-sci.net/21/1359/2017/, 2017.

Tokarczyk, P., Leitao, J. P., Rieckermann, J., Schindler, K., and Blumensaat, F.: High-quality observation of surface imperviousness for urban

runoff modelling using UAV imagery, Hydrol. Earth Syst. Sci., 19, 4215–4228, https://doi.org/10.5194/hess-19-4215-2015, 2015.

van de Beek, C. Z., Leijnse, H., Stricker, J. N. M., Uijlenhoet, R., and Russchenberg, H. W. J.: Performance of high-resolution X-band radar35

for rainfall measurement in the Netherlands, Hydrol. Earth Syst. Sci., 14, 205–221, https://doi.org/https://doi.org/10.5194/hess-14-205-

2010, 2010.

Wang, L.-P., Ochoa-Rodríguez, S., Assel, J. V., Pina, R. D., Pessemier, M., Kroll, S., Willems, P., and Onof, C.: Enhancement of radar

rainfall estimates for urban hydrology through optical flow temporal interpolation and Bayesian gauge-based adjustment, Journal of

21

https://doi.org/10.3390/w7073396
https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2004.03.039
http://www.sciencedirect.com/science/article/pii/S0022169404002483
http://www.sciencedirect.com/science/article/pii/S0022169404002483
http://www.sciencedirect.com/science/article/pii/S0022169404002483
https://doi.org/https://doi.org/10.1016/S0022-1694(02)00311-6
http://www.sciencedirect.com/science/article/pii/S0022169402003116
http://www.sciencedirect.com/science/article/pii/S0022169402003116
http://www.sciencedirect.com/science/article/pii/S0022169402003116
https://doi.org/10.5194/hess-21-1991-2017
https://www.hydrol-earth-syst-sci.net/21/1991/2017/
https://www.hydrol-earth-syst-sci.net/21/1991/2017/
https://www.hydrol-earth-syst-sci.net/21/1991/2017/
https://doi.org/10.5194/hess-21-1359-2017
https://www.hydrol-earth-syst-sci.net/21/1359/2017/
https://doi.org/10.5194/hess-19-4215-2015
https://doi.org/https://doi.org/10.5194/hess-14-205-2010
https://doi.org/https://doi.org/10.5194/hess-14-205-2010
https://doi.org/https://doi.org/10.5194/hess-14-205-2010


Hydrology, 531, 408 – 426, https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2015.05.049, http://www.sciencedirect.com/science/article/

pii/S0022169415003996, hydrologic Applications of Weather Radar, 2015.

Yang, L., Smith, J. A., Baeck, M. L., and Zhang, Y.: Flash flooding in small urban watersheds: storm event hydrological response, Water

Resources Research, 52, 2016.5

Yao, L., Wei, W., and Chen, L.: How does imperviousness impact the urban rainfall-runoff process under various storm cases?, Ecological

Indicators, 60, 893–905, 2016.

Zoppou, C.: Review of urban storm water models, Environ. Model. Softw, 16, 195–231, 2000.645

22

https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2015.05.049
http://www.sciencedirect.com/science/article/pii/S0022169415003996
http://www.sciencedirect.com/science/article/pii/S0022169415003996
http://www.sciencedirect.com/science/article/pii/S0022169415003996


(a) SD1 (b) SD2 (c) FD

Figure 1. Catchment area represented with the 3 different models: (a) SD1, (b) SD2 and (c) FD. The subdivision of the surface in sub-

catchments or 2D elements is shown for each model, as well as the sewer network. The selected 13 locations/pipes are highlighted.
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(a) (b)

(c)

Figure 2. Illustration of rainfall cluster classification. Different colors represent different rainfall thresholds. The pixels above the same

threshold are used to estimate the percentage of coverage above a certain threshold. The red line encloses the clusters above threshold Z25

and Z95 in (a) and (b) respectively. Single isolated pixels and small clusters (yellow dotted circles) are ignored. (c) Schematic representation

of maximum wet period TwZ (red) and the maximum dry period TdZ (light blue) for a pixel, for each threshold.
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Figure 3. Percentage of areal coverage above selected threshold, calculated over all time steps and per rainfall event (a, d, g, j). Temporal

percentage of coverage above the selected threshold, defined as number of time steps above the threshold at each pixel, divided by the total

duration of the event (b, e, h, k). Temporal percentage is presented for each rainfall event and the number above each boxplot indicates the

total duration of the rainfall event. Cluster dimensions across all time steps per event for the four selected thresholds (c, f, i, l). Blue dots

represent the average, green or red lines the median, boxes indicate the first to third quartile and whiskers extend 1.5 times the interquartile

range below the first and above the third quartile.
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(a)

(b)

Figure 4. Variability of the lag time, depending on the location, for each model (a). The boxplots represent the median (red line), the upper

(third quartile) and lower (first quartile) quartile (boxes boundaries), and 1.5 times the interquartile range below the first and above the third

quartile (whiskers). Drainage areas corresponding to each location are presented in Table 2(b). Average, median, minimum and maximum

value of the lag time as function of Ad for SD2.(b) Fitting power law curves and the power law relation proposed by Berne et al. (2004) are

plotted.
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Figure 5. Peak attenuation ratio ReR for the 9 rainfall events, as a function of temporal and spatial rainfall resolution. Symbols indicate the

median over the 9 events, solid lines represent the first to the third quartile, dotted lines vary from minimum to maximum. Colours represent

different temporal resolutions and markers used for the median indicate different spatial resolutions.
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(a) (b)

(c) (d)

Figure 6. Impact of aggregation in space and time on rainfall peak (ReR) and overall pattern (R2
R) for two selected events, as function of

sub-catchment size (Ad). E4 is a constant low intensity event with low spatial variability. E9 is an example of intermittent event, with a high

storm motion velocity. Different colors and symbols indicates different rainfall resolutions used as input. Other events are presented in the

supplement material
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(a) (b)

(c) (d)

Figure 7. Relative error in peak ReQ and coefficient of determination R2
Q for SD2, plotted as function of Ad, for the sixteen combinations

of rainfall input resolutions. Two different events are presented: E4, a low-intensity constant event, and E9, a multiple peak event.
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(a) (b)

Figure 8. ReQ and R2
Q variability, in relation to model type and rainfall characterized by cluster dimension SZ75, for all locations and all

combinations of rainfall input resolution. Colours identify the three different models.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. R2
Q at Loc2 for different rainfall resolution, plotted against different rainfall characterising scales: spatial (a) and temporal (b)

required resolution, Spatial Variability Index (c), dimension of cluster above Z75 (d) and Z95 (e) and maximum wet period above Z75 (f).
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Figure 10. ReQ and R2
Q as function of cluster dimension above Z75 and Ad. Different colors and symbols indicates different rainfall

resolution input.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Performance statistic R2
Q as a function of dimensionless numbers θS , θT , θST , α1, α2, α3. For each parameter all events, rainfall

resolutions and locations are plotted.
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(a) (b)

(C)

Figure 12. Logarithmic plots of R2
Q as function of (a) α1, (b) α2 and (c) α3. Different colours indicate different resolutions.
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Table 1. List of Symbols and Abbreviations

Model Characterization

A [L2] Total catchment area FD Fully distributed model

LC [L] Characteristic length of the catchment LRA [L] Spatial resolution of the runoff model

LS [L] Sewer length SD1 Low resolution semi-distributed model

SD2 High resolution semi-distributed model tlag [T] Lag time centroid to centroid

Rainfall Resolution

d [T] Rainfall event duration Ntot [-] Total number of pixels over the catchment

∆s [L] Spatial rainfall resolution ∆t [min] Temporal rainfall resolution

Variogram

Ar [L2] Areal average of spatial rainfall structure n [-] Number of radar pixel

R [L T−1] Rainfall Rate r [L] Variogram range

rc [L] Characteristic length scale |v̄| [L T−1] Storm motion

γ Climatological semi - variogram ∆sr [L] Minimum required spatial resolution

∆tr [T] Minimum required temporal resolution

Spatial Variability Index

Iσ [L T−1] Spatial variability index Rt [L T−1] Spatially averaged rainfall intensity

σt [L T−1] Standard deviation of spatially distributed hourly rainfall

Statistical indicators

Pst [L T−1] Peak of aggregated rainfall Pref [L T−1] Measured rainfall peak (100 m - 1 min)

ReQ [-] Relative error on maximum flow peak ReR [-] Peak attenuation ratio

R2
Q [-] Coefficient of determination for flow R2

R [-] Coefficient of determination for rainfall

Cluster

%cov [-] Percentage of coverage Nt [-] Number of pixel above Z at each time-step

SZ [L2] Cluster dimension above Z Z [L T−1] Selected threshold

Twmax [T] Maximum wet period above Z Tdmax [T] Maximum dry period above Z

Zx [L T−1] Threshold above the x-%ile, with x ∈ [25,50,75,95]

SZx [L2] Cluster dimension above the threshold Zx, with x ∈ [25,50,75,95]

TwZx [T] Maximum wet period above Zx averaged over d, with x ∈ [25,50,75,95]

TdZx [T] Maximum dry period above Zx averaged over d, with x ∈ [25,50,75,95]

Dimensionless Parameters

S [-] Subscript for spatial factors T [-] Subscript for temporal factors

ST [-] Subscript for combined scaling factors α1 [-] Scaling factor that combines δS and γS

α2 [-] Scaling factor that combines δS and γT α3 [-] Scaling factor that combines δST and γST

δ [-] Rainfall scaling factor using SZ75 γ [-] Model scaling factor

Θ [-] Scaling factors proposed by Ochoa-Rodriguez et al. (2015)
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Table 2. (a) Summary of the hydrological model characteristics of the 3 models. (b) Drainage area connected to the investigated locations

for each model

(a)

SD1 SD2 FD

# of sub-catchments 51 4409 4367

# of node 242 6963 6963

# of pipes 270 6993 6993

Catchment Area (ha) 846 851 851

Contributing % Impervious 43 40 15

Contributing % Pervious 56 60 0

Average area (ha) 16.6 0.2 0.006*

St. Dev (ha) 13.4 0.8 0.000*

Max (ha) 61.8 40.1 0.099*

Min (ha) 11.7 0.005 0.006*

Total length (km) ∼ 16 ∼ 150 ∼ 150

N of manholes 236 6207 6207

N of 2D Elements no no 117712

* Dimension of the 2D triangular mesh elements

(b)

SD1 SD2 FD

(ha) (ha) (ha)

Loc1 - 0.9 0.9

Loc2 - 6.7 6.6

Loc3 - 9.5 9.5

Loc4 - 21.3 21.3

Loc5 - 24.6 24.6

Loc6 36 42.9 42.9

Loc7 80 43.7 43.7

Loc8 80 83.9 83.9

Loc9 137 129.2 129.2

Loc10 290 254.8 254.8

Loc11 484 448.3 448.3

Loc12 538 502.5 502.5

Loc13 846 626.6 626.6
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Table 3. Rainfall events characteristics

Event Date Initial - ending Total depth Max intensity over 1 min

ID times (areal average / pixel min / pixel max) (areal average / individual pixel)

(mm) (mm/h)

E1 18/01/2011 05:10-08:00 31 / 18 / 46 32 / 1120

E2 18/01/2011 05:10-08:00 36 / 16 / 47 26 / 124

E3 28/06/2011 22:05-23:55 9 / 4 / 18 28 / 242

E4 18/06/2012 05:55-07:10 10 / 8 / 12 12 / 24

E5 29/10/2012 17:05-19:00 5 / 1 / 14 7 / 83

E6 02/12/2012 00:05-03:00 5 / 2 / 8 7 / 39

E7 23/06/2013 08:05-11:30 4 / 1 / 13 9 / 307

E8 09/05/2014 18:15-19:35 4 / 1 / 9 13 / 67

E9 11/05/2014 19:05-23:55 6 / 1 / 13 11 / 247
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Table 4. Rainfall spatial and temporal characterization proposed by Ochoa-Rodriguez et al. (2015) and rainfall spatial variability index

proposed by Lobligeois et al. (2014)

Ochoa-Rodriguez et al. (2015) Lobligeois et al. (2014)

Event Spatial Mean Required Required Spatial Variability Spatial Variability

ID range storm motion spatial temporal r Index Index

velocity resolution resolution at 100 m − 1 min at 1000 m − 5 min

(r) (|v̄|) ∆sr ∆tr Iσ Iσ1000m

(m) (m/s) (m) (min) (mm/h) (mm/h)

E1 4057 9.8 1695 5.8 12.7 6.4

E2 3525 9.9 1473 5.0 7.4 5.2

E3 4655 14.0 1945 4.6 10.4 6.5

E4 3219 11.7 1345 3.8 2.6 1.5

E5 2062 14.1 861 2.0 7.7 4.2

E6 3738 11.7 1561 4.5 3.7 2.0

E7 1703 14.0 711 1.7 16.6 5.9

E8 3644 18.4 1523 2.8 7.9 4.2

E9 2355 17.0 984 1.9 15.3 6.5
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Table 5. Thresholds values obtained for the 9 rainfall events considered.

Threshold Z25 Z50 Z75 Z95

Percentile 25% 50% 75% 95%

Values 0 mm/h 0.5 mm/h 7 mm/h 22 mm/h
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Table 6. Maximum wetness periods above the threshold, calculated for each pixel, averaged over the total catchment, and then divided by

the total duration.

Maximum wet period Maximum dry period

Event ID TwZ25 TwZ50 TwZ75 TwZ95 TdZ25 TdZ50 TdZ75 TdZ95

[-] [-] [-] [-] [-] [-] [-] [-]

E1 0.53 0.50 0.42 0.17 0.16 0.25 0.27 0.35

E2 0.98 0.74 0.30 0.06 0.02 0.07 0.13 0.30

E3 0.97 0.43 0.10 0.06 0.02 0.08 0.63 0.72

E4 1.00 0.98 0.32 0.01 0.01 0.02 0.11 1.00

E5 0.77 0.57 0.14 0.11 0.11 0.28 0.38 0.57

E6 0.52 0.24 0.13 0.12 0.12 0.29 0.52 0.99

E7 0.28 0.14 0.13 0.12 0.13 0.28 0.53 0.71

E8 0.83 0.43 0.14 0.07 0.07 0.22 0.34 0.53

E9 0.22 0.19 0.18 0.17 0.17 0.30 0.56 0.69
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Table 7. Dimensionless parameters for the three models used in this study, based on Bruni et al. (2015), used to describe the interaction

between spatial rainfall resolution and model scale

Catchment sampling number Runoff sampling number Sewer sampling number

∆s SD1 SD2 FD SD1 SD2 FD SD1 SD2 FD

100 m 0.03 0.04 0.04 0.25 2.29 10 0.19 1.73 1.73

500 m 0.17 0.20 0.20 1.23 11.47 50 0.94 8.65 8.65

1000 m 0.34 0.40 0.40 2.45 22.94 100 1.87 17.30 17.30

3000 m 1.03 1.20 1.20 7.35 68.82 300 5.62 51.91 51.91
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