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Abstract. A method of multiple working hypotheses was applied to a range of catchments in the Mediterranean area to analyse

different types of possible flow dynamics in soils during flash flood events. The distributed, process-oriented model, MARINE,

was used to test several representations of subsurface flows, including flows at depth in fractured bedrock, and flows through

preferential pathways in macropores. Results showed contrasted perfomances of the submitted models, revealing different

hydrological behaviours along the catchment set. The benchmark study offered a characterization of the catchments reactivity5

through the description of the hydrographs formation. The quantification of the different flow processes (surface, intra soil

flows) were consistent with the scarse in-situ observations but remains uncertain, as a result of equifinality issue. The spatial

description of the simulated flows over the catchments, made available by the model, enabled to spot counterbalancing effects

between internal flow processes, including the compensation for the water transit time in the hillslopes and in the drainage

network. New insights are finally proposed into strategical monitoring and calibration constraints setting up.10
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1 Introduction

1.1 Flash flood events: an issue for forecasters

Flash floods are “sudden floods with high peak discharges, produced by severe thunderstorms that are generally of limited areal

extent”. (IAHS-UNESCO-WMO (1974); Garambois (2012); Braud et al. (2014)). They are often linked to localised and major15

forcings (greater than 100 mm, Gaume et al. (2009)) at the heads of steep-sided, meso-scale catchments (with surface areas of

10-250 km2).

The large specific discharges, and intensities of precipitation, makes the flash floods being classified as extreme. Never-

theless, those events are not scarce nor unusual since on average, there were no fewer than five flash floods a year on the

Mediterranean Arc between 1958 and 1994 (Jacq, 1994), and they tend to be amplifed against a background of climate change20

(Llasat et al., 2014; Colmet Daage et al., 2016). Flash floods constitute a significant hazard and, therefore, a considerable risk

for populations (UNISDR 2009, Llasat et al. (2014)). They are particularly dangerous due to their characteristics: (i) the sud-
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denness of events makes it difficult to warn populations in time, and can lead to panic, thus increasing risk, when a population

is unprepared (Ruin et al., 2008); ii) the traditional connected monitoring system are not adapted to the temporal and spatial

scales of the flash floods (Borga et al., 2008; Braud et al., 2014); iii) the magnitude of floods implies significant amounts of ki-

netic energy, which can transform transitory rivers into torrents, resulting in the transport of debris ranging from fine sediments

to tree trunks, as well as the scouring of river beds and the erosion of banks (Borga et al., 2014).5

A major area of interest for flash floods is, therefore, better risk assessment, to enable them to be forecast and the relevant

populations to be pre-warned. Greater knowledge and understanding is required to better identify the determining factors that

result in flash floods. In particular, in order to implement a regional forecasting system, the properties of the catchments, and

the climatic forcing and linkages between them which lead to flash flood events need to be characterised.

1.2 Flash flood events: understanding flow processes10

Due to the challenges involved in forecasting flash floods, there has been considerable research done on the subject over the last

ten years. Examples include the HYDRATE project (2006-2010, Gaume and Borga (2013)), which enabled the setting up of a

comprehensive European database of flash flood flash events, as well as the development of a reference methodology for the

observation of post-flood events; the EXTRAFLO project (2009-2013, Lang et al. (2014)) to estimate extreme precipitation and

floods for French catchments; the HYMEX project (2010-2020, Drobinski et al. (2014)) focusing on the meteorological cycle15

at the Mediterranean scale, and, in particular, on the conditions that allow extreme events to develop; the FLASH project (2012

- 2017, Gourley et al. (2017)) assessing the ability and the improvement of a flash flood forecasting framework in USA on the

basis of real-time hydrological modelling with high resolution forcing; or the FLOODSCALE project (2012-2016, Braud et al.

(2014)), based on a multi-scale experimental approach to improve observation of the hydrological processes that lead to flash

floods.20

In the North-Western Mediterranean context - specially concerned by specific autumnal convective meteorological events -

the European cited research demonstrates, in particular, the importance of cumulative rainfall (Arnaud et al., 1999; Sangati et al.,

2009; Camarasa-Belmonte, 2016), previous soil moisture state (Cassardo et al., 2002; Marchandise and Viel, 2009; Hegedüs et al.,

2013; Mateo Lázaro et al., 2014; Raynaud et al., 2015) and the storage capacity of the area affected by the precipitation

(Viglione et al., 2010; Zoccatelli et al., 2010; Lobligeois, 2014; Garambois et al., 2015a; Douinot et al., 2016). The combined25

influence of the spatial distribution of precipitation and event-related storage capacities, reported in the study of a number of

particular events (Anquetin et al., 2010; Le Lay and Saulnier, 2007; Laganier et al., 2014; Garambois et al., 2014; Faccini et al.,

2016), suggests a hydrological reaction, in some areas of the catchments, that arises from localised soil saturation. This state-

ment surmises that there is little direct Hortonian flow, but rather the production of runoff through excess soil saturation, or

lateral fluxes in the soil resulting from the activation of preferential pathways.30

The geochemical monitoring of eight intense precipitation events, over a 3.9 km2 catchment area (Braud et al., 2014), un-

derlined the dominance of the intra-soil dynamic. First, analysis of the water from the first 40 cm of the soil layer revealed

a ”flushing" phenomenon, the water present at the start being replaced by so-called ”new" rainwater (Braud et al., 2016a;

Bouvier et al., 2017). In addition, even if the peaks of the floods mainly consisted of new water, with a proportion varying
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between 50% and 80%, it appears that, over the entire period of the events, old water accounts for between 70% and 80% of

the total volume of water discharged, which supports the dominance of water pathways in the soil.

Finally the geological properties themselves appear to be markers of the storage capacities available over the time scales

involved in flash floods (which are of the order of a day). From simple flow balances of flash flood events (Douinot, 2016),

studies of the diverse hydrological responses of several catchments over the same precipitation episode (Payrastre et al., 2012),5

or the application of regional hydrological models dedicated to flash flood simulation (Garambois et al., 2015b), the literature

tends to demonstrate the low storage capacity of non-karst sedimentary and marl-type catchments, and, conversely, the potential

for storing large volumes of water in the altered rocks of granitic or schist formations.

1.3 Applying a multi-hypothesis framework for improving hydrological understanding of the flash flood events

The knowledge gained about the development of the flow processes (for example, the tracing of events carried out during the10

FLOODSCALE project, Braud et al. (2014)), relates to studies on a number of specific sites where flash floods could be ob-

served while they were taking place. However, being able to generalise the knowledge gained is limited by the specific nature

of each study (McDonnell et al., 2007) and by the gap between the spatial scale of forecasts (meso-scale), compared with that

of the in-situ observations (<10 km2) (Sivapalan, 2003). Hydrological modelling work can be considered as a means of extrap-

olating knowledge to an extended geographical area, possibly covering catchments with differing physiographic properties.15

Moreover, hydrological models viewed as "tentative hypotheses about catchment dynamics" are interesting tools for testing

hypotheses about hydrological functioning using a systematic methodology. A considerable amount of recently published work

has involved comparative studies, using numerical models to develop or validate the hypotheses about the type of hydrological

functioning that is most likely to reproduce hydrological responses accurately (Buytaert and Beven, 2011; Clark et al., 2011;

Fenicia et al., 2014; Coxon et al., 2014; Ley et al., 2016; Fenicia et al., 2016). Using a same model’s structure but differing20

solely in terms of the hypotheses tested, in the form of modules, the comparision is then focused and restricted to the hydro-

logical assumtions tested. Doing this avoids the limitations on interpretation that are often encountered in comparative studies

of models (Perrin et al., 2013), where numerical choices can influence results independently of the underlying assumptions.

The multiple working hypotheses framework is usually applied using a flexible conceptual and lumped model framework,

such as the FUSE (Clark et al., 2008) or SUPERFLEX (Fenicia et al., 2011). But also, Clark et al. (2015a) and Clark et al.25

(2015b) have proposed a unified structure to test multiple working hypotheses within a distributed modeling framework. To

our knowledge, the case study using the aforementioned frameworks are related to continuous hydrological studies in order

to assess hydrological hypotheses through the overall hydrological signature of the catchments. In this work, we extend the

method of multiple working hypotheses to the assessment of an event-based hydrological model framework.

The objective is to test a number of proposed hydrological functioning that occur during flash flood events on a set of30

contrasting catchments in the French Mediterranean area. While the proportion of flows passing through the soil appears to be

significant, questions arise about how they form:
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– Are they subsurface flows that take place in a restricted area of the root layer, as a result of preferential path activation?

Or, are they lateral flows taking place at greater depth comparable to those seen in some aquifer?

– Does the geological bedrock or an altered substratum play a role limited to that of mere storage reservoir, or is it actively

involved in flood flows formation?

– Which are the flow processes proportions, according to the events and the catchments?5

The aim of this article is to attempt to answer these questions using a multi-model approach that tests different types of hy-

drological dynamics. The study was based on MARINE, a physically based, distributed hydrological model (Roux et al., 2011;

Garambois et al., 2015a), which was developed specifically to model flash floods in the catchments of the French Mediterranean

Arc. Several new representations for the soil column and underground flows were proposed (Douinot, 2016) and included in

the MARINE model, in the form of modules that can be used to test different hydrological functions (Section 3). Those dif-10

ferent hydrological dynamics were applied to a set of catchments - presented in Section 2 - with physiographic properties

representative of the whole of the French Mediterranean Arc. The performance of each model was then examined and sub-

jected to a comparative study (Section 4 and 5). The contributions of the results for improving the hydrological functionnning

understanding are lastly discussed in Section 6 before concluding.

2 Catchments and data used in the study15

2.1 Study catchment set

We studied the behaviour of four catchments and eight nested catchments in the French Mediterranean Arc (Figure 1). The

catchments (in the order they are numbered in Figure 1) were those of the Ardèche, Gardon, Hérault and Salz rivers; these

were selected for the following reasons: (i) they are representative of the physiographic variability found in areas where flash

floods occur; (ii) numerous studies of flash floods have already been carried out on the Gardon and Ardèche (Ruin et al., 2008;20

Anquetin et al., 2010; Delrieu et al., 2005; Maréchal et al., 2009; Braud et al., 2014), which could guide the interpretation of

the modelling results (Fenicia et al., 2014); and (iii) a considerable number of observations of flash flood events are available

for these catchments.

The main physiographical and hydrological properties of the catchments are presented in Table 1. Figure 2 shows the con-

trasted geological properties of the studied area : the catchments are marked by a clear upstream / downstream difference. The25

Ardèche catchment upstream of Ucel sits essentially on a granite bedrock with some sandstone on its edges, while downstream,

the geology changes to a predominantly schist and limestone formations. Similarly, the upstream part of the Gardon catchment

consists of schistose bedrock while, downstream, the bedrock is impermeable marl-type and granite formation. The Herault

catchment is splited into mostly schist and granitic head watersheds (the Valleraugue and la Terrisse sub-catchments) and a

predominantly limestone plateau (Saint Laurent le Minier sub-catchment). Finally, the Salz is characterised by sedimentary30

bedrock comprising sandstone and limestone (Figure 2).

4



Figure 1. Locations of the catchments studied, with a topographic visualisation at 25 m resolution (Source: IGN, MNT BDALTI)

The Ardèche and the Gardon catchments have been subject to intensive monitoring and studies (see lter reference, https://data.lter-

europe.net/deims/site/rbv_fr_13), leading to prior knowledge on hydrological understanding. Both the local in-situ experi-

ments (Ribolzi et al., 1997; Braud and Vandervaere, 2015; Braud et al., 2016a, b) and the modelling studies focused on this

area (Garambois et al., 2013; Vannier et al., 2013) tend to a hydrological classification according to those contrasted geo-

logical properties and, in agreements with the usual hydrogeological signature found in the litterature (Sayama et al., 2011;5

Pfister et al., 2017a). Marls, sandstone and limestones without karst are characterized by limited storage capacities, resulting

in higher runoff coefficients, and high sensitivity to the initial soil moisture (Ribolzi et al., 1997; Braud et al., 2016a). In con-

trast, in granite and schist transects located on hillslope of the Ardèche catchment, infiltration tests and analysis of electrical

resisitivity signals show high permeability of the geological substratum in depth (measured up to 2.5 m in depth); and high

storage capacities reaching up to 600 mm in 7 out of 10 assessments with artificial forcing, the 3 remaining test suggesting10

local unaltered bedrock (Braud et al., 2016a, b). The natural resistivity profile suggests a regular soil bedrock interface when

the latter consist in schist, while the granite one presents a more chaotic structure. Finally, the continous comparative study of

two experimental sites over surface areas of the order of one km2 - one located on the schist upstream part of the Gardon catch-

ment, the other one on it granite downstream part - suggests rapid subsurface flow processing on the schist area, while flow

formation appears to be controlled by the extension of the saturated zone related to the river on the granitic site (Ayral et al.,15

2005; Maréchal et al., 2009, 2013).
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Table 1. Physiographic properties and hydrological statistics of the 12 catchments ID: coding name of the catchments used at figure 1 and table 2; area [km2]; mean

slope [-]; soil properties: mean soil depth [m] and main soil texture (Tx) : Ls = sandy loam texture, L = loam texture; Lsi = silty loam texture; Geology: percentage

of bedrock geology [%] including sandstone (Sa), limestone (Li), granite and gneiss (GG), marls (Ma) and schists (Sc) subcategories - (i) bold values are the

dominant geology; mean annual precipitation (P [mm]) ; Hydrometry: discharge time-series availability (Period); mean inter-annual discharge (Q[m3.km−2.s−1]);

2 year return period of maximum daily discharge (QD2[m
3.km−2.s−1]); 10 year return period of maximum hourly discharge (QH10[m

3.km−2.s−1]). Hydrometric

statistics are calculated from HydroFrance databank, (http://www.hydro.eaufrance.fr/) and the pluviometric ones using rainfall data from the raingauge network of

the French flood forecasting services.

ID River Outlet Soil properties Geology(i) Hydrometry

Area Slope Depth Tx Sa Li GG Ma Sc P Q QD2 QH10 Period

[km2] [−] [m] [-] [%] [%] [%] [%] [%] [mm] [m3.km−2.s−1] Period

♯1a L’Ardèche Vogüé 622 0.17 0.47 Ls 10.5 5.7 71.9 0.0 11.9 1587 0.041 0.62 2.25 00 - 15

♯1b Ucel 477 0.20 0.45 Ls 13.7 0.0 84.5 0.0 1.8 1577 0.046 0.79 2.30 05 - 15

♯1c Pont de la Beaume 292 0.22 0.39 Ls 14.0 0.0 86.0 0.0 0.0 1690 0.056 0.75 2.53 00 - 15

♯1d Meyras 99 0.24 0.32 Ls 5.4 0.0 94.6 0.0 0.0 1720 0.036 0.72 2.92 00 - 15

♯2a Le Gardon Anduze 543 0.16 0.25 L 7.2 1.5 18.0 12.1 61.2 1370 0.026 0.48 1.82 94 - 15

♯2b Corbès 220 0.16 0.27 L 9.3 0.0 34.2 9.0 47.5 1460 0.022 0.57 2.28 94 - 15

♯2c Mialet Roucan 240 0.17 0.22 L 2.0 0.6 2.9 9.4 85.1 1407 0.023 0.62 2.54 02 - 15

♯3a L’Hérault Laroque 912 0.14 0.26 Lsi 6.7 54.5 11.7 3.2 24.0 1160 0.019 0.39 1.21 00 - 15

♯3b La Vis St Laurent le Minier 499 0.10 0.26 Lsi 4.0 83.0 1.0 3.2 8.8 930 0.018 0.42 1.10 00 - 15

♯3c L’Arre La Terrisse 155 0.19 0.25 L 19.5 12.3 27.2 6.2 34.8 1130 0.027 0.61 2.0 00 - 15

♯3d L’Hérault Valleraugue 46 0.27 0.25 L 0.0 0.0 0.0 0.0 100.0 1920 0.049 1.13 4.0 08 - 15

♯4 La Salz Cassaigne 144 0.13 0.37 Lsi 33.5 56.5 0.0 5.1 4.9 700 0.008 0.20 1.31 01 - 15
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Figure 2. The geology of the Ardèche catchment (left), the Gardon and Hérault catchments (center), and the Salz catchment (sources : BD

Million-Géol, BRGM)

2.2 Forcing inputs and hydrometric data

The hydrometric data were derived from the network of operational measurements (HydroFrance databank, http://www.hydro.

eaufrance.fr/). Eight to twenty years of hourly discharge observations were available, according to the dates when the hydro-

metric stations were installed (Table 1).

Flood events with peak discharges that had exceeded the 2-year return period daily discharge (QD2, in Table 1, corresponds5

to the alert threshold for flood forecasting centres in France) were selected as events to be included in the study. Thus, only

one criterion for hydrological response was considered. This led to a selection of precipitation events of varying origins (for

instance: rainfall induced by mountains, stagnant convective cells; and rainfall occurring in different seasons - mainly in autumn

and early spring). Such a selection risked complicating the study because flow processes can vary from one season to another.

Nevertheless, it allowed us to test the ability of the model to deal with different (non linear) flow physics regimes. Note also that,10

moderate or intense rainfall events without respective hydrological response might be abducted from the analysis. Nevertheless

the first alert threshold used here is small enough to have a selection of flood events with contrasted runoff coefficient (see

Table 2).

Precipitation measurements were taken from Météo France’s ARAMIS radar network (Tabary, 2007), which provides pre-

cipitation measurements, at a resolution of 1 km× 1 km, every five minutes. The French flood forecasting service (SCHAPI:15

Service central d’hydrométéorologie et d’appui à la prévision des inondations) used then the CALAMAR patented software

(Badoche-Jacquet et al., 1992) to produce rainfall depth data by combining these radar measurements with raingauge data. This

processed dataset is here used as inputs of the model. Each rainfall product is firstly assessed through an individual sensitivity

analysis of the standard MARINE model (DWF model, see section 3.1). When presenting an atypical sensivity to the soil depth

parameter, the rainfall event is discarded of the study, as suggesting questionable measurements. Depending on the availability20

of the results of rainfall and hydrometric measurements, 7 to 14 intense events were selected for each catchment (Table 2).
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Each set is finally splitted into a calibration and validation subsets as follow: the extreme events were kept for validation, and

a minimum number of 3 calibration events is chosen in order to cover the wide range of soil moisture initial condition.

As the MARINE model is event-based, it must be initialised to take into account the previous moisture state of the catchment,

which is linked to the history of the hydrological cycle. This was done using spatial model outputs from Météo-France’s SIM

operational chain (Habets et al., 2008), including a meteorological analysis system (SAFRAN, Vidal et al. (2010)), a soil -5

vegetation - atmosphere model (ISBA, Mahfouf et al. (1995)) and a hydrogeological model (MODCOU, Ledoux et al. (1989)).

Based on the work of Marchandise and Viel (2009), the spatial daily root-zone humidity outputs (resolution = 8 km× 8 km)

simulated by the SIM conceptual model were used for the systematic initialisation of MARINE.

Table 2. Properties of the flash flood events: average on the event set (± standard deviation). ID: coding name of the concerned catchments

(Figure 1 : ♯1 for the Ardèche; ♯2 for the Gardon; ♯3 for the Hérault and ♯4 for the Salz); Nevt: number of observed flash flood events; P

[mm] mean precipitation ; Imax[mm.h−1]: maximal intensity rainfall per event; Qpeak: specific flood peak [m3.km−2.s−1]; Hum: initial

soil moil moisture according to SIM output (Habets et al., 2008); CR: runoff coeficient [%]

ID Outlet Nevt P [mm] Imax[mm.h−1] Qpeak[m
3.km−2.s−1] Hum [%] CR [−]

♯1a Vogüé 10 192 (±93) 17.3 (±6.2) 1.33 (±0.57) 58 (±6) 0.50 (±0.16)

♯1b Ucel 10 208 (±105) 19.1 (±7.1) 1.41 (±0.70) 56 (±5) 0.47 (±0.17)

♯1c Pont de la Beaume 10 222 (±122) 20.5 (±6.2) 1.79 (±0.82) 56 (±5) 0.51 (±0.22)

♯1c Meyras 10 235 (±141) 25.6 (±10.6) 2.15 (±1.15) 56 (±4) 0.51 (±0.20)

♯2a Anduze 13 182 (±69) 26.9 (±12.6) 2.10(±1.67) 53 (±7) 0.31 (±0.13)

♯2b Corbès 14 196 (±73) 31.4 (±11.6) 1.90 (±0.93) 55 (±7) 0.32 (±0.15)

♯2c Mialet Roucan 14 177 (±72) 30.9 (±13.2) 1.85 (±0.85) 51 (±7) 0.33 (±0.15)

♯3a Laroque 7 188 (±95) 16.0 (±8.1) 0.82 (±0.43) 59 (±8) 0.45 (±0.16)

♯3b St Laurent le Minier 7 153 (±95) 18.4 (±8.9) 1.14 (±0.31) 56 (±9) 0.47 (±0.16)

♯3c La Terrisse 7 193 (±103) 22.1 (±12.1) 1.63 (±0.87) 52 (±8) 0.60 (±0.23)

♯3d Valleraugue 7 156 (±110) 16.4 (±8.7) 2.14 (±1.33) 48 (±6) 0.62 (±0.22)

♯4 Cassaigne 8 136 (±47) 17.8 (±6.2) 1.48 (±0.64) 57 (±7) 0.55 (±0.24)

3 The multi-hypothesis hydrological modelling framework

3.1 The MARINE model10

The MARINE model is a distributed mecanistic hydrological model specially developed for flash flood simulations. It models

the main physical processes in flash floods: infiltration, overland flow, lateral flows in soil and channel routing. Conversely, it

does not incorporate low-rate flow processes such as evapotranspiration or base flow.
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MARINE is structured into three main modules that are run for each catchment grid cell (see Figure 3). The first module

allows the separation of surface runoff and infiltration using the Green-Ampt model. The second module represents subsurface

downhill flow. It was initially based on the generalised Darcy Law used in the TOPMODEL hydrological model (Roux et al.,

2011), but was developed in greater detail as part of this study (see Section 3.2). Lastly, the third module represents overland

and channel flows. Rainfall excess is transferred to the catchment outlet using the Saint-Venant equations simplified with5

kinematic wave assumptions. The model distinguishes grid cells with a drainage network - where channel flow is calculated

on a triangular channel section (Maubourguet et al., 2007), from grid cells on hillslopes - where overland flow is calculated for

the entire surface area of the cell.

Figure 3. The MARINE model structure, parameters and variables. The Green and Ampt infiltration equation contains the following param-

eters: infiltration rate i [m.s−1], cumulative infiltration I [mm], saturated hydraulic conductivity K [m.s−1], soil suction at the wetting front

Ψ [m], and, saturated and initial water contents, θs and θi [m3.m−3], respectively. Subsurface flow contains the following parameters: soil

thickness [m], lateral saturated hydraulic conductivity K [m.s−1], local water depth h [m], transmissivity decay with depth mh (m), and bed

slope S [m.m−1]. The kinematic wave contains the following parameters: surface water depth h [m], time t [s], space variable x [m], rainfall

rate r [m.s−1], infiltration rate i [m.s−1], bed slope S [m.m−1], Manning roughness coefficient n [m−1/3.s]. The module 2 described in this

figure corresponds to the standard definition applied in the MARINE model.

The MARINE model works with distributed input data such as: i) a digital elevation model (DEM) of the catchment to

shape the flow pathway and distinguish hillslope cells from drainage network cells, according to a drained area threshold; ii)10

soil survey data to initialize the hydraulic and storage properties of the soil, which are used as parameters in the infiltration and

lateral flow models; iii) vegetation and land-use data to configure the surface roughness parameters used in the overland flow

model.

The MARINE model requires parameters to be calibrated in order to be able to reproduce hydrological behaviours accurately.

Based on sensitivity analyses of the Garambois et al. (2013) model, five parameters are calibrated: soil depth - Cz , the saturation15

hydraulic conductivity used in lateral flow modelling - Ckss, hydraulic conductivity at saturation, used in infiltration modelling
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- Ck, and friction coefficients for low and high-water channels - nr and np, respectively, with nr and np uniform throughout

the drainage network. Ckss, Ck and Cz are the multiplier coefficients for spatialised, saturated hydraulic conductivities and

soil depths. In this study, modifications of the module 2 (i.e. subsurface downhill flow) were tested in order to determine the

possible ways that a number of proposals for intra-soil hydrological functioning could be modelled. Consequently, instead of

Cz and Ckss, new parameters of calibration were introduced, as described in the following section.5

3.2 Modelling lateral flows in the soil: the development of a multi-hypothesis framework

We proposed several modifications to Module 2 covering three hypotheses about hydrological functioning:

– Deep Water Flow model (DWF): it assumed deep infiltration and the formation of an aquifer flow in highly altered

rocks. In hydrological terms the pedology-geology boundary was transparent. The soil column could be modelled as a

single entity of depth Dtot (m), which is at least equal to the soil depth DBDsol (m) (see Figure 4). Given the lack10

of knowledge and available observations, a uniform calibration was applied to the depth of altered rocks - DWB (m)

- which is rapidly accessible on the scale of a rain event. Groundwater flow was described using the generalised Darcy

Law (qdw, Equation 1). The exponential growth of the hydraulic conductivity at saturation, as the water table (hdw) rises,

assumed an altered-rock structure where hydraulic conductivity at saturation decreases with depth (the TOPMODEL

approach).15

qdw = Kdw ·Dtot exp

(

hdw −Dtot

mh

)

·S (1)

with hdw[m], the water depth of the unique water table; mh[m], the decay factor of the hydraulic conductivity at saturation with

soil depth; S[−], the bed slope; Kdw = Ckdw ·KBDsol[m.s−1], the simulated hydraulic conductivity at saturation; and Dtot =

DBDsol +DWB , the soil column depth. Calibrated parameters are in red color.

– Subsurface Flow model (SSF): it assumed that the formation of subsurface lateral flows was due to the activation of20

preferential paths, like the in-situ observations of Katsura et al. (2014) and Katsuyama et al. (2005). The altered soil-

rock interface acts as a hydrological barrier. The rapid saturation of shallow soils results in the development of rapid

flows due to the steep slopes of the catchments and the existence of rapid water flows circulating through the macropores

as the soil becomes saturated. The soil column was thus represented by a two-layer model (see Figure 5): an upper layer

of depth equal to the soil depth DBDsol (m) and a lower layer of uniform depth DWB (m). The lateral flows in the upper25

layer were described by the generalised Darcy Law. However, variations in hydraulic conductivity were expressed as a

function of the mean water content of the layer (θsoil) and not of the height of water (hsoil) that would form a perched

water table (Equation 2). Expressing the variability in hydraulic conductivity as a function of the saturation rate indeed

appears to be a more appropriate choice for representing the activation of preferential paths in the soil by the increase in

the degree to which the soil is filled. The decay factor of the hydraulic conductivity as a function of the saturation rate30

- mθ - was set according to the linearized empirical relations, developed by Van Genuchten (1980), between hydraulic

conductivity and soil water content for the different classes of soil textures. Flows in the lower soil layer (qdw, Equation
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3), in the form of a deep aquifer, were limited by setting the hydraulic conductivity of the substratum as being equivalent

to that of the soil divided by 50 (this choice being guided by the orders of magnitude generally observed in the literature

(Le Bourgeois et al., 2016; Katsura et al., 2014)). The altered rocks were thus assumed to mainly play a storage role.

Infiltration occurring between the two layers was initially restricted by the Richards equations which were incorporated

using the set hydraulic properties of the substratum (Equation 4). When the upper layer is saturated, filling by a piston5

effect is allowed. The depth of the soil layer, DBDsol, was set according to the soil data, while the depth of the substratum

- DWB - was calibrated in the same way as in the DWF model.

qss = Kss ·DBDsol exp

(

θsoil − 1

mθ

)

·S (2)

qdw = Kdw ·DWB exp

(

hWB −DWB

mh

)

·S (3)

qinf =−Kdw

δH(θsoil,θWB)

δz
(4)10

with: hsoil and hWB [m], the soil water depth in the upper and lower layer respectively; θsoil and θWB [−], the soil water content

of the upper and lower layer respectively; mθ[−], the decay factor of the hydraulic conductivity with soil water content θsoil; and

Kss = Ckss ·KBDsol and Kdw = 0.02·Kss [m.s−1], the simulated hydraulic conductivity at saturation of the upper and lower layer

in the SSF model respectively.

– The Subsurface and Deep Water Flow model (SSF-DWF): it assumed that the presence of subsurface flow was due to15

both local saturation of the top of the soil column, but also the development of a flow at depth, as a result of significant

volumes of water introduced by infiltration and a very altered substratum whose apparent hydraulic conductivity was

already relatively high. This hypothesis of the process led to a modelling approach analogous to the SSF model (Figure

5), where the hydraulic conductivity at substrate saturation - Kdw - was no longer simply imposed, but, instead, calibrated

using an additional coefficient, Ckdw .20

Kdw = Ckdw ·KBDsol in SSF-DWF model (5)

The soil water content prior to simulation was, similarly, initialised for each model, in order to ensure, for a fixed depth of

altered rock, that the same volume of water was allocated for all models. The SIM humidity indices (Section 2.2) were used

to set an overall water content for all groundwater flow models for a given flood, with the two compartments of the SSF and

SSF-DWF models then having an equal water content at initialisation.25

4 Methodology for calibrating and evaluating the models

4.1 Calibration method

The three hydrological models studied - DWF, SSF and SSF-DWF - were calibrated for each catchment by weighting 5,000

randomly drawn samples from the parameter space for each model (the Monte Carlo Method). The weighting was done using

11



Figure 4. DWF model: flow generation by infiltration at depth

and support of a deep aquifer (qdw(hdw), equation 1).

Figure 5. SSF and SSF-DWF models: flow generation by the

saturation of the upper part of soil column and activation of pref-

erential paths (qss), with support flow at depth (qdw), and water

exchanges from the upper layer to the lower one according to

both soil water content (qinf (θsoil , θWB)). See equations 2, 3

and 4, for the definition of the flows.

the DEC (Discharge Envelope Catching) score (equation 6), discussed by Douinot et al. (2017), in order to integrate the a priori

uncertainties of modelling
(

(

σmod,i

)

, i= 1...n
)

(equation 7) and those related to the flow measurements
(

(

σŷi

)

, i= 1...n
)

(equation 8). The choice of DEC is justified by the desire to adapt the evaluation criterion to the modelling objectives (for

example, by focusing calibration on reproduction of the rise and peaks of floods in order to be able to forecast flash floods)

while always being aware of the uncertainties in the reference flow measurements.5

Given the lack of information, these uncertainties
(

(

σŷi

)

, i= 1...n
)

were set at 20 % of the measured discharge, which

is in line with the literature on discharge measurements from operational stations (Le Coz et al., 2014), and increased linearly

with the 10-year hourly discharge, beyond which, as a general rule, the observed flow is no longer measured, but derived by

extrapolation from a discharge curve, making it less accurate (equation 8). The envelop
(

(

ŷi±2σŷi

)

, i= 1...n
)

consequently

defines the 95 % confidence interval of the observed flows.10

The modelling uncertainties
(

(

σmod,i

)

, i = 1...n
)

were set at a minimum value - as a function of the basic catchment

module, thus ensuring that the evaluation of the hydrographs would not be unduly affected by the reproduction of relatively

low flows which were strongly dependent on initialisation using previous moisture data that were not the subject of this study. In

addition, it was assumed that a modelling uncertainty of 10 % around the confidence interval of observed flows was acceptable

(equation 7). Finally, the overall overarching envelop
(

(

ŷi± 2σŷi
± 2σmod,i

)

, i= 1...n
)

defines hereafter the acceptability15

zone, that is to say the interval into which any simulated flow would be considered as acceptable, according to the modelling

and measurement uncertainty definitions.
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DEC =
1

n

n
∑

i=1

ǫDEC
i =

1

n

n
∑

i=1

di
σmod,i

(6)

σmod,i = 0.5 ∗Q+0.025 ∗ ŷi (7)

σŷi
= 0.05 ∗ ŷi ∗

(

1+
ŷi

QH10

)

(8)

with ǫDEC
i the DEC modelling error at time i; ŷi and σŷi

the observed discharge and the uncertainty of measurement at time i;

di the discharge distance between the model prediction at time i (yi) and the confidence interval of observed flows
(

ŷi±2σŷi

)

;5

σmod,i the simulated uncertainty at time i; Q and QH10 respectively the mean inter-annual discharge and the 10-year maximum

hourly discharge of the related catchment.

4.2 Metrics and key points in model evaluation and comparison

Results of the models were firstly assessed and benchmarked using performance scores (section 5.1). The evaluation focused

on the performance of the models in reproducing the hydrographs in overall terms, but also, more specifically, on their ability10

to reproduce the characteristic stages of floods: rising flood waters, high discharges, and flood recession. These stages were

defined as follows:

– Rising flood waters: the period between the moment when the observed flow rate exceeded the mean inter-annual dis-

charge of the catchment and the date of the first flood peak.

– High discharges: this stage includes the points for which the observed flow was greater than 0.25 times the maximum15

flow during the event.

– Flood recession: this stage begins after a period of tc (the catchment concentration time according to Bransby’s formula

(Pilgrim and Cordery, 1992): tc = 21.3 ·L/(A0.1 ·S0.2)) after the peak of the flood, and ends when discharge is rising

again (or, where appropriate, at the end of the event - the time of peak flooding + 48h).

While the DEC score has provided a standard assessment of the modelling errors enabling a reasonable weighting of the sim-20

ulations, for a sake of easy understanding ,the percentage of acceptable points of the simulated median time series - Qmed_INT

[%] (Douinot et al., 2017) - was chosen to evaluate the ability of the models to reproduce overall flows, rising flood waters and

high discharges. A point is defined as acceptable when the median simulated value stands within the modelling acceptability

zone, the latter one being determined by σmod et σŷ .

Conversely, Qmed_INT was not relevant for the evaluation of the capacity to reproduce recessions, because the calculation25

of this score - based on simulated discharge values - during the recession interval strongly depends on performance at high

discharges. Instead, we used the Aslope score defined in the equation 9. It calculates the average standard error in simulating

the decreasing rate of the discharge during the flood recession interval. Through the consideration of the Aslope score here, it
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was assumed that the recession rate is a relevant feature of the catchment’s hydrologic properties(Troch et al., 2013; Kirchner,

2009).

Aslope =

∑l

i=k |
dyi

dt
− dŷi

dt
|

∑l

i=k
dŷi

dt

(9)

where dŷi

dt
and dyi

dt
are respectively the observed and the simulated recession rates at a time step i which belongs to the flood

recession interval
(

i= k...l
)

.5

The evaluation was completed through the description of the modelling errors (section 5.2), in order to identify those that

were inherent in the choice of model structure, regardless of the calibration methodology adopted. Attention was paid on the

a priori and a posteriori confidence interval of the model simulations respectively defined by
(

[

yprior−5th
i , yprior−95th

i

]

, i=

1...n
)

and
(

[

yDEC−5th
i , yDEC−95th

i

]

, i= 1...n
)

where yprior−5th
i and yprior−95th

i are the 5th and the 95th percentile of the

5000 model simulation values at time i, and where yDEC−5th
i and yDEC−95th

i are the 5th and the 95th percentile of the same10

but weighted series according to the DEC calibration criterion.

Those confidence intervals were standardized according to the DEC modelling error definition (equation 6), respectively

defining the a priori and a posteriori confidence intervals of the modelling errors:

ǫα−xth
i =











0 if | yα−xth
i |≤ 2 ·σŷi

y
α−xth
i

±2·σŷi

2·σmodi

otherwise (− if yα−xth
i > 0 ; + if yα−xth

i ≤ 0)
(10)

with ǫα−xth
i is the xth percentile of the α modelling errors distribution at time i.15

The latter definition allows for an informative translation of the prior and posterior confidence intervals (Douinot et al. (2017)):

a value of ǫα−xth
i equal to 0 indicates that the yα−xth

i bound lies within the discharge confidence interval; if 0< ǫα−xth
i ≤ 1,

the yα−xth
i bound lies within the acceptability zone; and if ǫα−xth

i is larger than 1 then errors of modelling is detected or

remained. In addition, the benchmark of both a priori and a posteriori confidence intervals allows for highlighting which were

the remaining modelling errors that were induced by the model’s assumptions, and those that were induced by the calibration.20

For those reasons, ǫα−xth
i were used as the baseline of the modelling errors analysis.

5 Results

5.1 Performance of the models

5.1.1 Overall performances of the models

Assessment of the performances by catchment : Figure 6 shows the average Qmed_INT scores obtained after calibration25

of the DWF, SSF and SSF-DWF models for each catchment studied. It also shows the mean and standard deviations obtained

from the series of calibration (top) and validation (bottom) events, calculated over all the catchments.
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The DWF model assuming deep infiltration and the formation of an aquifer flow in altered bedrocks showed better perfor-

mance in the Ardèche catchment (♯1), while in the Gardon (♯2) and the Salz (♯4) catchments, the SSF and SSF-DWF models,

assuming the formation of subsurface flows due to the activation of preferential flowpaths by local saturation (SSF), with devel-

opment of flow at depth (SSF-DWF), produced the most accurate results. On the Hérault catchment (♯3), the modelling results

obtained with each model, in terms of Qmed_INT, were less obvious, although the SSF-DWF model seemed to stand out to5

some extent. The differences in model performance were more pronounced for the validation events. The better-performing

models tended to be more consistent, with equivalent Qmed_INT scores on calibration and validation events (for example,

the DWF model on the Ardèche (♯1) or the SSF and SSF-DWF models on the Gardon (♯2). There was also a deterioration in

performance in several models that had already been judged less effective (for example, the SSF and SSF-DWF models on the

Ardèche (♯1), or the DWF model on the two catchments of the Hérault, ♯3c and ♯3d).10
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Figure 6. Qmed_INT scores: mean Qmed_INT scores obtained for the calibration (top) and validation (bottom) events, by model and

catchment. The Qmed_INT scores were calculated for the whole hydrograph. The x axis refers to the ID number of each catchment (Figure

1). Finally, Mean attribute refers to the average results over all the catchments obtained with each model.

SSF model versus SSF-DWF model: As a reminder, the difference between the SSF and SSF-DWF models is that the latter

has an extra calibration parameter - Ckdw - to be able to initialise a significant lateral flow in the subsoil horizons of the soil

column (see Equation 3). The lateral hydraulic conductivity in the deep layer is configured using the hydraulic conductivity

from BD-sol: Kdw = Ckdw ·KBDsol, with Ckdw set to 0.02 ·Ckss in the SSF model and calibrated in the SSF-DWF model.

The small differences between the SSF and SSF-DWF models showed that this flexibility does not produce any significant15

improvement, with the exceptions of the Ardèche catchment at Meyras and the Hérault catchment at Valleraugue. These two

areas have a number of common features that could explain the similar modelling results: they are at the heads of high elevation

15



m
o
d
u
le

 Q
 

0
.0

1
0
.0

5

#
1
a

#
1
b

#
1
c

#
1
d

#
2
a

#
2
b

#
2
c

#
3
a

#
3
b

#
3
c

#
3
d

#
4

C
k
d
w
 [
−

]

0
.0

1
0
.0

5

Figure 7. Top: Mean inter-annual discharge (m3.km−2.s−1) for the catchments. Bottom: a posteriori distribution of the calibration of the

subsoil horizon hydraulic conductivity in the SSF-DWF model (the Ckdw parameter, Equation 3)

catchments with steep slopes (Table 1), and are subject to considerable annual meteorological forcing. Therefore calibration

of the saturation hydraulic conductivity parameter of the subsoil horizon tended to result in a significant flow at depth for

these two catchments (Ckdw ∈ [0.028 ,0.33] for ♯1d and Ckdw ∈ [0.03 ,0.2] for ♯3d, Figure 7, with this ratio set to 0.02 in the

SSF model). In general, the calibration of the Ckdw parameter of the SSF-DWF model (Figure 7) seems to be correlated with

the more or less sustained, annual hydrological activity of the catchments: the confidence interval of the Ckdw coefficient is5

restricted to low values for the catchments with low mean inter-annual discharges (Figure 7, ♯2a, ♯2b, ♯2c, ♯3a, ♯3b, ♯4) and

inversely for the catchments with high mean inter-annual discharges (♯1, ♯3c and ♯3d).

5.1.2 Detailed performances: assessment of the models to simulate the different stages of an hydrograph

Figure 8 shows the detailed assessments according to the specific stages of the hydrographs. The objective is to highlight

whether the overall performances (Figure 6) reflect uniform results along the hydrographs, or if they actually hide contrasted10

likelihood of the simulations over the different hydrographs’s stages.

Uniform results are observed on the Gardon catchment at Corbes and Anduze (♯2a and ♯2b) and on the Salz catchment

(♯4): the SSF and SSF-DWF models demonstrated clearly superior performances for all stage-specific assessment on those

catchments. For the Gardon catchment at Mialet (♯2c), the detailed assessment (Figure 8) shows that the overall superiority of

the SSF and SSF-DWF models is mainly due to a better simulation of the rising limb. Nevertheless, for any score, the SSF and15

SSF-DWF models present either similar of the best modelling results compared to the DWF model.

On the Ardèche catchments (♯1a, ♯1b, ♯1c, ♯1d), the overall performances reflect the simulation of the high discharges and

of the flood recessions. There, the DWF model gives the best results to simulate those hydrograph’s stages. Conversely, it deals

slightly less well with the simulation of the rising flood waters. As it would be shown in the section 5.2, all the model tend

to underestimate initial flows prior to the event and during the onset of a flood. The DWF model, in particular, exhibits this20

modelling weakness (see, for example, the onset of floods in the hydrographs for the 18/10/2006 and 01/11/2014 events in Ucel

(♯1b), Figure 10), which explains the poorer performance. It can be noticed that the SSF-DWF model clearly better simulated

16



the rising flood waters of the Ardèche head watershed (♯1d), explaining the overall good performance as well of this model on

this catchment (Figure 6).
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Figure 8. Assessment of the models by catchment over the different stages of the hydrographs. Left : Qmed_INT scores calculated over the

rising flood waters stage; center: Qmed_INT scores calculated over the high discharges stage; right: Aslope scores. High Qmed_INT scores

and conversely low Aslope values indicate good performances of the model.

On the Hérault, the detailed evaluation enabled us to distinguish the performance of the different models. On the one hand, on

the 2 larger catchments (♯1a and ♯1b), the DWF model get slightly better performances for rising flood waters simulations, while

the SSF model gave more clearly better simulations of the flood recessions. On the other hand the SSF-DWF model generated5

the best simulations of the rising flood waters and of the high flows on the upstream catchments of La Terrisse (♯3c) and

Valleraugue (♯3d), while the DWF model simulated better flood recession. These constrated results explained why there is not

a specific model that stands out on this catchment. In addition, it suggests a marked influence of the physiographic properties

on the development of flow processes because they are correlated with the differences in the geological and topographical

properties of the Hérault (♯3; see Figure 2 and Table 1). The hydrological behaviours simulated for the Valleraugue and La10

Terrisse sub-catchments, which are predominantly granitic and schistose, and where slopes are very steep, can be distinguished

from those of Laroque and Saint-Laurent-le-Minier, which are mainly sedimentary and in the form of large plateaus.

5.1.3 Summary of the assessment

The figure 9 sums up the highlighted models according to the assessed hydrograph’s stage. It shows when one’s model has a

clearly higher performance according to the following definition: a model is assessed as clearly superior when the lower bound15

of the confidence interval of it score is higher than the median values of the scores obtained with the other models. It reveals

that the catchments set might be divided in 4 groups:
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Figure 9. Summary of the models’s benchmark. A (2) color(s) is (are) attributed for each score and each catchment when one (or two )

models give(s) clearly superior performance: the score of a model is defined as clearly superior when the lower bound of it confidence

interval is higher than the median values obtained with the other models. The superiority of a model might be half attributed whether the

criteria is only respected for the calibration processes. Color attribution: orange for the DWF model; blue for the SSF model; green for the

DWF-SSF model; and grey when the superiority of one’s model is undetermined.

– a first group of catchments where the SSF and DWF-SSF models uniformly give either similar or better performances

than the DWF models. This is the case for the Gardon (♯2) and the Salz (♯4) catchments;

– a second group of catchments where the DWF model gives the best results according to all the scores besides the rising

flood waters assessment. This is the case for the downstream Ardèche catchments (♯1a, ♯1b, ♯1c);

– a third group where the models’s results are not really discernible. For those catchment, the DWF model appears to5

slightly simulate better the rising flood and the high discharge, while the recession is better represented by SSF model.

This is the case for the downstream Hérault catchments (♯3a, ♯3b);

– a last group where the SSF-DWF model slighty generated better the rising flood and the high discharge, while the

recession is better represented by DWF model. In this group are the head watersheds of the Hérault (♯3c, ♯3d) and of the

Ardèche (♯1d) catchments.10

5.2 Modelling errors inherent in the models’ structures

For the sake of conciseness, only the simulation of severals hydrographs of one catchment is presented. Figure 10 shows the

simulation results of the three models over the Ardèche catchment at Ucel (♯1b). It shows the simulated hydrographs, and

their confidence intervals, compared with observed flows, as well as the inherent errors in the simulations. This highlights the

modelling errors due to the choice of model structure (DWF, SSF or SSF-DWF models). When - at a time i - the a priori15

confidence interval (grey color) does not cross the acceptability region (green color), it means that no parameter set gives an

acceptable simulation, and consequently modelling errors due to the structure - assumptions - of the model is detected. When

the posterior confidence interval (salmon color) is outside the acceptability zone, modelling error is remaining. Finally whether

the prior (posterior) interval is large or small, the model’s structure allows for reaching a more or less large range of simulated

values (the model prediction is more or less uncertain).20
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Representing the soil column with either one compartment (the DWF model) or two compartments (SSF or SSF-DWF

models) leads to distinct a priori confidence interval of modelling errors (grey). The first structure (the DWF model) constrains

the simulated flows at the beginning of the event, before the onset of precipitation, because the width of the confidence interval

of the modelling errors is low at that point. More specifically, it tends to underestimate the initialisation discharges because

the variation interval of the errors over this period is predominantly negative. This may explain this model’s relative difficulty5

in reproducing the onset of floods, since the calibration of the parameters did not allow the acceptability zone on this part of

the hydrograph to be reached. A resulting interpretation applicable to the catchment sets is that good results in modelling the

rising flood waters with the DWF model means that the observed rising flow is relatively slow and could be reached in spite of

the restrictive modelling structure (as example ♯3a, ♯3b).

Likewise, it can be noted that the one-compartment structure (in the DWF model) allows flexibility in the modelling of10

high discharges and flood recessions, because the confidence interval of the modelling errors is quite large over these periods

in the hydrograph. However, it also led to the underestimation of high discharges and flood recessions. In fact, the prior

modelling error interval (in gray color) has a negative bias with respect to the acceptability zone. The calibration finally allows

the simulations to be selected, at the intersection of the acceptability zones and a priori confidence in modelling errors. This

generally corresponds to the calibration of a low-depth altered rock DWB , in order to make the model more sensitive to soil15

saturation and more responsive, via the generation of early runoff. From that resulted low DWB , the simulated water storage

capacity is limited, which might explains the inequacy of the DWF model for catchment with small runoff coefficients (♯2,

table 2).

Conversely, the two-compartment structure (the SSF and SSF-DWF models) offers flexibility in modelling the beginning

of events, flood warnings and high discharges, but the ability to model flood recessions is more constrained. SSF and SSF-20

DWF models simulate fast flood recession in comparison to the DWF model, suggesting that good results in modelling the

flood recession with the SSF model might be interpreted as fast return to normal or low discharge are observed on the related

catchments (as example, ♯2, ♯4).

In the SSF and SSF-DWF models, the addition of a flux calibration parameter in the subsoil horizons, not surprisingly,

leads to wider variations in the a priori modelling errors. A surprising finding, however, is that the calibration of the lateral25

conductivity of the deep layer, Ckdw , seems to affect only the simulation at the beginning of the hydrographs (see the events

of 01/11/2011 and 13/11/2014, figure 10), and has very little effect on flood recessions. The high similiraties of the prior

modelling intervals of the SSF and SSF-DWF models explain the similar performances of those models. In the same way,

when there is improvement of the performnance through the SSF-DWF, it concerns the early rising of the flood, as the detailed

perfomances has already shown it, the SSF-DWF enabling high and early start of the flood events.30
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Figure 10. Calibration of the three models for the Ardèche catchment at Ucel, ♯1b). The results of the simulation of five flood hydrographs,

and the inherent modelling errors (equation 10) for each model (top: DWF; centre: SSF; bottom: SSF-DWF). The median simulation and the

posterior confidence interval are shown, respectively, in red and salmon. The confidence intervals of the measured flows and the acceptability

zone are shown, respectively, in green and blue. The a priori confidence interval for each model (i.e. with no calibration) are shown in grey.

(∗): event of calibration; (∗∗): event of validation.
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5.3 Analysis of relevance of the internal hydrological processes simulated

5.3.1 Characterisation of the hydrological processes simulated

Each time a model is run it generates its own paths for water flow as it attempts to reproduce the hydrograph. The proportional

volumes of the water making up the hydrographs, that arise from the three main simulated paths - on the surface, through the

top or through the deep layer of the soil - were calculated. Figure 11 shows the results for the runoff contribution, i.e. the water5

which has not passed through the soil at any point. The contributions of these surface flows on the whole of the hydrograph

(Figure 11, left) and those that support high discharges (Figure 11, right) are distinguished. (Note that the other contributions

are not detailed, being correlated to the runoff assessment, and therefore leading to a similar analysis).

The runoff contribution simulated by the DWF model discredits even more that model for representing the hydrological

behaviour of the Gardon (♯2) and Salz (♯4) catchments. Really high proportion of runoff contribution over the entire hydrograph10

were simulated, ranging from 40 to 98 %. In contrast, the few experimental measurements made on the Gardon (Bouvier et al.,

2017; Braud et al., 2016a) provide evidence on the proportions of new water - which might be seen as an upper bound for runoff

contribution volume - ranging from 20 to 40 % of the volumes in the hydrograph. The SSF and SSF-DWF model conversely

gave more reasonable runoff contribution, although remaining high, ranging from 19 % and 62 %.

The DWF model suggests a larger contribution from runoff to the generation of high discharges, whatever the catchment15

modelled. We observed an increase from 15% to 30 % of the proportions of surface flow between the DWF model and the SSF

and SSF-DWF models. But when considering the most suitable models, revealed in section 5.1, i.e. the DWF model for the

Ardèche catchment and the SSF and SSF-DWF models for the Gardons catchment, the flow contribution assessment seems

to be consistant with catchemnt set’s diversity. The runoff contributions to the high flows of the hydrographs were slightly

lower on the three downstream Ardèche catchments (♯1a, ♯1b, ♯1c, with runoff contributions included between 17 and 57 %)20

compared to the runoff contributions on the Gardon catchment (♯2a, ♯2b, ♯2c) and on the upstream part of the Ardèche (♯1d,

with runoff contributions between 20 and 78 %). It correlates the properties of the catchments and the rainfall forcing, the first

catchment subset (♯1a, ♯1b, ♯1c) having deeper soil cover, with more permeable soil texture (see table 1), and being forced

by rainfall with lower maximal intensities (see table 2) than the second one ♯2a, ♯2b, ♯2c). Without validating the estimation

done, it clearly suggests that the assessment of the flow contributions through the most suitable model’s simulations for each25

catchment are consistant with each other.

On the downstream catchments of the Hérault (♯3a, ♯3b), the variation intervals of the surface flows estimated by the three

models overlap. It may explain why the three models can achieve good reproductions of the hydrological signal : the calibration

step makes possible, from that integrated point of view, to obtain an analogous distribution of the flows processes.

Notwithstanding the uncertainty related to the model’s choice when any model has been identified most suitable through the30

performances, the largest uncertainties are related to the parameterization of the models, a consequence of the equifinality of

the solutions when calibrating a hydrological model against the solely criterion of the reproduction of the hydrological signal.

While, in terms of plausibility, several sets of parameters may be equivalent, even for the same model, these sets of parameters

are likely to lead to different hydrological functioning.
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Figure 11. Proportion of surface runoff in the flows at the outlet. Left: The proportion over the whole hydrograph; right: the proportion at

high discharges (Observed flow greater than 0.25 times the maximum flow during the event).

5.3.2 Detailed study of four plausible simulations on the Hérault watershed at Saint Laurent-le-Minier

In order to detail the different impacts behind the hypotheses on which the models are based, but also to explain the resulting

uncertainty when assessing the flow processes distribution, other variables, such as (spatialised and integrated) changes in

moisture levels in the catchments or the flow velocities generated by modelling choices, have to be considered. Next, are

described the results of four simulations, equally considered to be plausible according to the DEC criterion, obtained from the5

DWF and SSF models (2 simulations by model, see Table 3). The Hérault catchment at Saint-Laurent-le-Minier (♯3b) has been

considered because of the equivalence of the models to represent that catchment.

Table 3. Realistic models and parameter sets for the Hérault catchment at Saint-Laurent-le-Minier (♯3b). Csoil: the contribution to the

hydrograph of flows passing through the soil ; Ckdw/C
∗

kss : the value of the parameter Ckdw for model DWF (Equation 1) or the value of

the parameter C∗

kss for the model SSF (Equation 2).

ID NSE DWB [m] Ck[−] Ckdw/C
∗

kss[−] nr[−] np[−] Csoil[%]

DWF1 0.82 0.15 17.3 8711 19.6 19.11 61

DWF2 0.84 0.11 2.34 4416 19.16 7.63 39

SSF1 0.89 0.40 15.81 45284 15.96 5.86 68

SSF2 0.89 0.34 2.08 22543 14.06 6.42 53

The figure 12 compares the changes over time in the state of soil saturation and the different simulated flow velocities of

the four “model + parameter set” configurations (Table 3). Figure 13 compares the spatial distributions of these variables, at a

given moment.10

In terms of hydrographs, quite logically given the similar likelihood scores, the simulations differ very little. Overall, the

DWF1 configuration anticipate flood peaks; the DWF model (in the DWF1 and DWF2 configurations) generated greater flows
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at the end of rain episodes; and these same configurations result in a slight underestimation of peaks for floods of average

intensity (18/10/2009 and 05/03/2013) and, conversely, an overestimation of the peaks for exceptional floods (12/03/2011 and

01/11/2011), compared with the SSF model (in the SSF1 and SSF2 configurations). The notable difference in the generation of

hydrographs is the contribution of the different simulated flowpaths. The proportions of water passing through the soil column

(via sub or surface-soil horizons) are highly variable: with an average of 39 % for the DWF2 model, 53 % for the SSF2 model,5

61 % for the DWF1 model and 68 % for the SSF1 model. This is due both to the structural choices (DWF and SSF) which

involve a saturation dynamic and the incorporation of different types of flow, and the choice of the parameters which involves

flow velocities of differing orders of magnitude.

The choice of a model’s structure (DWF and SSF) implied differences in soil moisture spatial distribution and dynamic,

which in turn impacts the timing of the flow processes. With the DWF structure, the soil moisture distribution is sensitive to10

the spatial soil depth distribution, as a result of the decrease in the simulated intra soil flows as a function of water table height

(cf. Section 3.2, Equation 1). Consequently, the DWF model produced a greater contrast in saturation levels between different

areas of the catchment (Figure 13, a, d). With the SSF model, the overall catchment saturation levels is more related to the

topography: saturated cells were observed close to the drainage network, and, conversely, lower water content in the upper

reaches of the catchments. In fact, for the SSF model, rainfall forcing is mainly involved in saturation of the upper soil layer15

(the dashed lines in Figure 12-b), which reacts very rapidly to precipitation.

As a result of the contrasted soil moisture dynamic, the flow velocities simulated in the soil showed consecutive differences.

At the start of flooding, the SSF structure resulted in an early increase in flow velocities due to a higher and more homogeneous

saturation level of the upper soil layer (Figure 12-c). Conversely, with the DWF model that simulated a more heterogeneous

spatial saturation of the catchment, the simulated velocities increase was delayed, and the maximum values reached was two20

to four times lower.

On the surface, only the dynamic in the drainage network is impacted by the choice of the structure, the runoff velocities

average over the hillslopes showing the overall same shape whatever the model choose (figure 12- d). The runoff velocities

average in the drainage network actually reflected the earlier inlet of the subsurface flow processes through the fast saturation

of the upper compartment with the SSF model, as it increased earlier at each beginning of the simulated events (figure 12- e).25

The DWF model yields a more contrasting variation in the runoff velocities in the drainage network, mirroring variations in

soil saturation levels.

The choice of parameters mainly implied different range of value for the velocities simulated, in the soil, on the surface of

the hillslope and in the drainage network. For both models, the different parameter sets reflected different time transition and

water proportions going through the different pathways. As exemple, the calibration of the Ckss and Ckdw parameters in the30

four configurations controlled the order of magnitude in the subsurface velocities (table 3, and figure 13, b, e, h, k). As well,

the calibrated Ck (infiltration capacity control) and DWB (depth of the subsoil horizon) parameters controlled the infiltration,

leading to more or less high number of cell with saturation excess or infiltration capacity reached (figure 13, c, f, i, l), and

consequently to more or less high proportion of runoff over the hillslope (figure 12, d).
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e) Mean runoff velocities in the drainage network
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Figure 12. Comparison of the results of four equally plausible simulations on the Hérault at Saint Laurent le Minier (Table 3). a) Flood

hydrographs (solid lines) and outlet flows transiting via the soil (dashed lines). b) Evolution in the overall moisture content of the soil

column. c) Evolution in simulated mean velocities in the subsoil horizon (DWF model) and in the upper part of the soil column (SSF model).

d) Average runoff velocities on the hillslopes. e) Average runoff velocities in the drainage network. (∗): event of calibration; (∗∗): event of

validation.

24



Figure 13. Spatialised outputs for a given moment during the event of 18/10/2009 (during the development of the flood, where Q=

74m3.s−1): a-d-g-j) soil moisture conditions simulated, respectively, by the configurations DWF1, DWF2, SSF1, SSF2; b-e-h-k) discharges

in the soil simulated, respectively, by the configurations DWF1, DWF2, SSF1, SSF2 (N.B: different colour scheme); c-f-i-l) surface flow

velocities simulated, respectively, by the configurations DWF1, DWF2, SSF1, SSF2.

Several order of magnitude were actually allowed while respecting the calibration objective because transit time of the

different water pathways compensate each other. Taking the example of the four configurations, the selection of plausible

parameter sets appears to show a correlation between the parameters Ck , and nr and np. This is actually a general results of the
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models calibration. There are high values of the Pearson correlation coefficient, especially for the Gardon catchment at Anduze

(♯2a): ρDWF = 0.46 and ρSSF = 0.18. This shows the necessity of slowing down flows in the drainage network when a larger

proportion of runoff from the catchments is simulated (i.e Ck is low) and vice versa. In the same way, we noticed positive

correlation between Ck ans Ckss, Ckdw parameters. Thus, as a result of the model calibration, a degree of compensation

occurs in the simulated transfer times between the various water paths, from the hillslopes to the drainage network, and from5

the drainage network towards the outlet.

6 Discussion

6.1 On the hydrological functioning of the catchments studied

The benchmark of the models’s performance on the catchment set leads to reveal 4 subsets, suggesting 4 distinct hydrological

behaviours. According to the modelling assumptions (Section 5.1), the resulting errors in simulating the different stages of10

the hydrographs (Section 5.2), and according to the catchment properties (Section 2.1), the hydrological behaviour of the

catchment can be interpreted subset by subset as follow:

– The SSF and SSF-DWF models shows better overall performance (with no particular pattern) in the first subset : the

Gardon (♯2) and Salz (♯4) catchments. This suggests, on the one hand, rapid catchment reactivity with fast rising flood

waters as well as fast flood recession, and on the other, formation of the flows in the soil through local saturation tied to15

the climate forcing. Although the models exhibit similar performances, the contrasting physiographic characteristics of

these catchments suggest that there are different explanations for this better fit of the SSF-DWF model. On the Gardon,

the very high intensities of the observed events (Table 2) and/or the low soil depth (Table 1) may explain the limitations

on vertical infiltration due to the properties of the soil and/or geological bedrock. As a result, the rapid formation of

a saturated zone at the top of the soil column, favours runoff and subsurface flux by activating preferential paths in20

the soil. This interpretation is in agreements with the field studies achieved on a shist upstream sub-catchment of the

Gardon, the shist substratum being the predominantly geology of the Gardon catchment (see section 2.1, Ayral et al.

(2005); Maréchal et al. (2009, 2013)). On the Salz (♯4), the soil is deeper and the precipitation intensities lower. On the

other hand, the geological bedrock composed of marls, sandstone and limestone is assumed to have low permeability

and the soil is less conductive due to its predominantly silt-loam texture. As a result, despite the lower forcing intensities,25

the surface soil can reach saturation, which might explain why the SSF model offers the best fit.

– The considerable hydrological responses, in terms of volumes, on the Ardèche second subset, appear to be linked to

hydrological activity at depth, including that taking place during intense floods, as suggested by the better fit of the

DWF model. Here, in particular, the model gives a better representation of the relatively slow and uniform hydrologi-

cal recessions from one event to the next, reflecting an aquifer-type flow whose discharge properties are governed by30

the properties of the catchment bedrock only. This interpretation is enforced by the field studies achieved this time in

a granite experimental sub-catchment localised in the downstream part of the Gardon (Section 2.1, Ayral et al. (2005);
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Maréchal et al. (2009, 2013)), the Ardèche catchment being granitic. The somewhat delayed flood timing that the struc-

ture of the one-compartment model imposes seems to indicate that there are more rapid flows at the beginning of an

event, which this model structure is not able to represent. An initial explanation for this may lie in the design of the

model: the drainage network being structured into 1 km2 drained areas. The comparison with the observed hydrographic

network for the catchment showed an under-representation of the upstream drainage network, which may have resulted5

in a delay in the modelling of the signal, despite the model offering a good overall fit. A second possible explanation is

the default calibration, which uses a uniform depth of active subsoil horizons, DWB , during a flood. This might mask the

appearance of local saturation zones, and the subsequent runoff due to shallow soil and discontinuities in the permeable

base layer (for example, in the downstream sedimentary layers, where infiltration tests have shown the appearance of

runoff, see Section 2.1). In contrast, the SSF and SSF-DWF models do not display this weakness because the varying10

nature of soil depths (DBDsol, which determines the depth of the upper compartment) allows the rapid development of

flows via preferential paths in the soil blocks, thus enabling the simulation of such local dynamics.

– The third subset consists in the downstream part of the Hérault (♯3a, ♯3b). The models’s performances constrast with the

Hérault catchment heads (♯3c, ♯3d), suggesting a hydrological behaviours related to the contrasted geological properties.

An interpretation of hydrological functioning is nevertheless not possible, given the good overall results offered by other15

models and that no distinctions can be drawn according to other criteria, such as performance in terms of the simulation

of flood recession, for example.

– The last subset consists in the catchment heads (♯1d, ♯3c, and ♯3d). We observe superior performances from the DWF

and SSF-DWF models, with a particular improvement in the forecasting of rising flood waters when using the SSF-DWF

model. This suggests the presence of several types of flow in the soil with strong support from flows at depth, which20

corroborates the high mean inter-annual discharges associated with these catchments, and additionally the presence

of rapidly formed flows, providing a good simulation of the rising flood waters. It should be noted that, here again,

modelling the drainage network for an area greater than that observed on these steep-sloped catchments can also affect

the results.

6.2 Overcoming the remaining uncertainty25

The substantiated results in Section 5 explained the remaining equifinality issue and highlighted the points of differentiation

between models. The benchmark of modelling configurations, scanning the different simulated processes (section 5.3.2) re-

vealed the actual internal differences - discrepancy in the soil saturation dynamic and in the resulting set up of the intra soil

flow processes - and the clearing mechanisms through the counterbalancing effects of the velocities and the flow proportions

simulated. This points out direct guidelines for improving the calibration of the models. A multi objective calibration strategy30

function should be prospected according to the prevailing observation capacities:

– The distinguished spatial saturation patterns generated by the DWF and SSF structures enlighted the interest of a spatial

distribution assessment. The current availability of high-resolution telemetry measurements with high spatial coverage
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(for example, Sentinel-1-based satellite Earth Observation data (Enenkel et al., 2016; Cenci et al., 2017)) offers this op-

portunity. The temporal resolution (up to six days) is not adapted to flash-flood time scales and prevents their use for

real-time evaluation of hydrological simulations. However, observing some saturation patterns for a number of events

during, or shortly after, an episode would provide an interesting research avenue, in terms of distinguishing the hydro-

logical reactions of the catchments in a spatialised manner.5

– The remaining uncertainty when assessing the different flow proportions points out the need of a specific control to one

of those flow processes assessed. Either flow partitioning measurement or the experimental assessment of the transit

time along the different pathways, at catchment scale, would be judicious observations to integrate. Imaginatives indirect

methods to detect the degree of surface flows in a flood, such as diatom tracing (Pfister et al., 2017b), suspended particles

or water turbidity measurements provide new avenues for partitioning the hydrographs. As well, a specific calibration10

of the drainage network, focused on the flood propagation, through intermediate discharge time series evaluation, is

promising, as it would provide stronger constraint on surface flow velocities, and consequently limit the counterbalancing

effects between the transit times of the different flow processes .

The description of the a priori modelling errors (section 5.2), representing the spectrum of possibilities for a given rainfall

forcing, revealed the hydrograph’s simulated points mostly controlled by the model’s structure, namely the early rising limb15

for the DWF model and the flood recession for the SSF and SSF-DWF models. It actually points the way towards an optimal

consideration of these parts of the hydrograph, when calibrating the models. In the same way, the relevant information of these

parts of the hydrograph must guide toward high temporal resolution of the river level measurements, the rising and receding

flood stages being short periods, and toward efforts for reducing the uncertainty of the rating curve at low and moderate flow,

rather than getting extreme discharge measurments, including as example hysterisis of the discharge curves (Le Coz et al.,20

2014).

7 Conclusions and Perspectives

7.1 Summary of the study’s objectives and methodology

The objective of the study was to improve our understanding of flash flooding on the French Mediterranean Arc. In particular,

attention was paid to the dynamics of soil saturation in catchments during these events, and their possible relationship with25

the physiographic diversity encountered. The method used consisted in considering hydrological models as a diagnostic tool

to test hypotheses about the functioning of catchments.

Based on the structure of the MARINE model - a hydrological model with a physical and distributed basis - three types of

dynamic of soil saturation were postulated and tested. In the first case (the DWF model), we assumed an aquifer dynamic, with

infiltration at depth, and the generation of strong base support, according to the volume of infiltrated water; in the second case30

(the SSF model), it was the activation of preferential paths at the soil/altered rock interface that generated the majority of the

flows passing through the soil, with the lower part of the soil column serving only as a storage reservoir; and in the third case
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(the SSF-DWF model), there was flow generation via both the activation of preferential pathways, initially by saturation of

the top of the soil column, and a significant increase in the base flux via the subsequent infiltration of water present at deeper

levels.

The same calibration strategy was used for the three models on a set of 12 catchments which are representative of the diverse

characteristics of the Mediterranean Arc. Whether a model offers a good fit was evaluated on the basis of: scores representing5

overall, or partial model performance in terms of simulating the hydrographs; the proportions of the processes simulated; and

the timing and form of flood recession.

7.2 Conclusions on our understanding of the processes involved

From the application and validation of the three hydrological models, the 12 catchments of the study could be classified into

four categories: i) the Gardon and Salz catchments, for which the SSF model is better suited to reproducing the hydrological10

signal. For these catchments, this highlights the importance of local and surface soil dynamics in the generation of flows,

especially at the beginning of a flood; (ii) the Ardèche catchments, for which the DWF model most accurately reproduce the

observed flows. This indicates more regular and integrated hydrological functioning at the catchment level, with the flows

generated being directly related to the moisture history and rainfall volumes; (iii) the Hérault catchments at Valleraugue and

La Terrisse, and the Ardèche catchment at Meyras, which have steep-sloped catchment heads, where the SSF-DWF model15

stands out, suggesting both sustained and significant hydrological activity at depth during flash floods, and surface activity in

the establishment of early flows at the beginning of events; (iv) the Hérault catchments at Laroque and Saint-Laurent-le-Minier,

for which no model shows any significant difference.

The modelling results help to draw consistent assumptions on hydrological behaviours, which corroborate when available,

the knowledge and observations on the overall hydrological functioning of the catchments, or the experimental estimations of20

flow processes. The results suggest that the behaviour of catchments under extreme forcing is a continuation of the hydrological

functioning normally encountered. Several earlier studies have pointed to a potential correspondence between hydrological

functioning and the nature of the geological bedrock. This is in evidence on the Hérault, where the evaluation of the three

models highlighted different hydrological behaviours which are linked to differences in the geological nature of the catchments.

Also, the Gardon and Ardèche catchments, which have respectively mainly schistose and granitic geology, exhibited different25

behaviours, in correspondance with the field experimental studies of the region. On the other hand, the similar hydrological

behaviours of the Gardon and the sedimentary Salz catchment are quite surprising owing to their contrasted geological and

other physiographical properties. These results, however, did not contradict the earlier studies, which suggest a relationship

between storage capacity in the substratum and the nature of the geological bedrock, while the similarity highlighted here

concern the formation of flows in the soil.30

Another objective of the study, was the assessment of the flow processes. Owing to the equifinality issues, the assessment

remains uncertain. Nevertheless, the analysis of the internal processes highlighted the compensation between the flow processes

simulated - in the drainage network and in the hillslope - that is made possible through a wide range of flow velocities simulated,
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as being the main reason of the equifinality issue. The detailed description enables finally to propose new strategies for a better

constraint of the models.

Lastly, identifying the most pertinent hydrological models for each catchment enables the key elements in the generation

of flash floods to be highlighted, which, in turn, could serve to further develop methods for forecasting flash floods. For

example, distinctions in hydrological behaviour revealed between the catchments of the Gardon and the Ardèche - the first5

one appearing more reactive with important runoff and subsurface flows through preferential flowpaths - might shift towards

different considerations when setting up a flash flood forecasting method over those contrasted area. It corroborates the results

of Douinot et al. (2016) which highlighted contrasted impacts of taking into account the spatial variability of precipitation in a

flash flood forecasting method. These contrasted impacts can indeed be explained by the more pronounced spatial variability

of the rainfall over the Gardon catchment, but also by the local dynamic of the soil water content of the Gardon catchment10

revealed in the present study.

7.3 Conclusions about the method used

The use of the hydrological model as a diagnostic tool allowed the classification of the catchments studied. It also contributes to

the overall knowledge of these catchments in order to improve understanding of hydrological functioning during flash floods.

The study also demonstrates: i) the complementarity of field observations in the interpretation of results, ii) the limitations15

in the evaluation and drawing of distinctions between models when constrained solely on the basis of the reproduction of

an integrated response; and iii) the contribution that an analysis of equally performing parameter sets and possible model

functioning can make to guide the choice of new and better constraints, and the strategic observations that need to be made

in order to differentiate between equally plausible models. Lastly, distinguishing between models based on the evolution of

internal variables - flow velocities and soil saturation states - makes it possible to highlight the value added by the descriptive20

potential of a distributed model with a physical basis, such as MARINE.
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