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Abstract 12 

Groundwater is one of the most valuable natural resources in the world; however, the 13 

groundwater is not an unlimited resource, therefore understanding groundwater potential is 14 
crucial to ensure its sustainable use. The aim of the current study is to propose and verify new 15 

artificial intelligence methods for spatial prediction of groundwater spring potential mapping at 16 
the Koohdasht-Nourabad plain, Lorestan province, Iran. These methods are new hybrids of 17 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and five meta-heuristic algorithms, namely 18 

Invasive Weed Optimization (IWO), Differential Evolution (DE), Firefly Algorithm (FA), 19 
Particle Swarm Optimization (PSO), and Bees Algorithm (BA). A total of 2463 spring locations 20 

were identified and collected, and then, divided in two subsets randomly: 70% (1725 locations) 21 
were used for training models and the remaining (30%, 738 spring locations) were utilized for 22 

evaluating the models. Thirteen groundwater conditioning factors were prepared for modeling, 23 
namely slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), 24 

topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance 25 
from river, land-use/land-cover, rainfall, soil order, and lithology. In the next step, the Stepwise 26 

Assessment Ratio Analysis (SWARA) method was applied to quantify the degree of relevance of 27 
these groundwater conditioning factors. The global performance of these derived models was 28 

assessed using the Area Under the Curve (AUC). In addition, the Friedman and Wilcoxon signed 29 
rank tests were carried out to check and confirm the best model to use in this study. The result 30 

showed that all models have high prediction performance; however, the ANFIS-DE model has 31 
the highest prediction capability (AUC = 0.875), followed by the ANFIS-IWO model, the 32 

ANFIS-FA model (0.873), the ANFIS-PSO model (0.865), and the ANFIS-BA model (0.839). 33 
The results of this research can be useful for decision makers responsible for sustainable 34 

management of groundwater resources. 35 
 36 
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1. Introduction 42 

Groundwater is defined as the water in a saturated zone which fills rock and pore spaces 43 

(Berhanu et al., 2014; Fitts, 2002), whereas groundwater potential is the probability of 44 
groundwater occurrence in an area (Jha et al., 2010). The occurrence and movement of 45 

groundwater in an aquifer are affected by various geo-environmental factors including lithology, 46 
topography, geology, fault and fracture and its connectivity, drainage pattern, and land-use/land-47 

cover (Mukherjee, 1996). Geological strata acts like a conduit and reservoir for groundwater 48 
while storage and transmissivity influence the suitability of exploitation of groundwater in a 49 

given geological formation. Downhill and depression slopes impart runoff and improve recharge 50 
and infiltration, respectively (Waikar and Nilawar, 2014). Globally, groundwater is a major 51 

source of drinking water for around two billion people(Richey et al., 2015), whereas in 52 
agriculture, about 278.8 million ha of agricultural lands are irrigated by the groundwater (Siebert 53 

et al., 2013). Due to population and economic growth, the demand of groundwater is anticipated 54 
increasing in the future (Ercin and Hoekstra, 2014). For the case of Iran, approximately two-third 55 

of the land is covered by deserts and groundwater is still the main water source for drinking and 56 
other uses (Nosrati and Van Den Eeckhaut, 2012). According to Rahmati et al. (2016), 57 

groundwater in Iran supplies around 65% of the water use-up and the remaining 35% is supplied 58 
by surface water. However, groundwater is not an unlimited resource, therefore understanding 59 

groundwater potential is crucial to ensure its sustainable use. One of the most efficient methods 60 
for the protection and management of groundwater to identify groundwater potential zoning 61 

(Ozdemir, 2011b). 62 

There are a number of methods for groundwater potential zoning and exploitation. Traditional 63 
methods i.e. drilling, geological, geophysical, and hydrogeological methods are the most widely 64 

used (Israil et al., 2006; Jha et al., 2010; David Keith Todd and Mays, 1980; Sander et al., 1996; 65 
Singh and Prakash, 2002). However, they are time-consuming and costly methods, especially for 66 

large areas. In recent years, Geographic Information Systems (GIS) and remote sensing (RS) 67 
have become effective tools for groundwater potential mapping (Fashae et al., 2014) due to their 68 

ability in handling huge amount of spatial data.  69 

In more recent years, some probabilistic models such as frequency ratio (Oh et al., 2011), multi-70 
criteria decision analysis (Kaliraj et al., 2014; Rahmati et al., 2015), weights-of-evidence (WoE) 71 

(Pourtaghi and Pourghasemi, 2014), logistic regression (Ozdemir, 2011a; Pourtaghi and 72 
Pourghasemi, 2014), evidential belief function (Nampak et al., 2014; Pourghasemi and 73 

Beheshtirad, 2015), and Shannon's entropy (Naghibi et al., 2015) have been considered for 74 
groundwater potential mapping. Bivariate and multivariate statistical models have disadvantages 75 

in measuring the relationship between groundwater occurrence and conditioning factors 76 
(Tehrany et al., 2013; Umar et al., 2014), whereas MCDA technique is a source of bias due to 77 

expert opinion. Therefore, machine learning has been considered and has proven efficient due to 78 
ability to handle non-linear structured data from various sources with different scales. In 79 

addition, machine learning requires no statistical assumptions. Among machine learning 80 
methods, artificial neural network (ANN) is a widely used method for groundwater mapping due 81 

to its computational efficiency (Sun et al., 2016; Mohanty et al., 2015; Maiti and Tiwari, 2014). 82 
However, the ANN model has a number of weaknesses such as poor prediction and error in 83 

modeling process (Bui et al., 2016); therefore, hybrid models have been proposed. Among 84 
hybrid frameworks, ensemble of fuzzy logic and neural networks i.e. Adaptive Neuro-Fuzzy 85 
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Inference System (ANFIS) has proven it’s efficient in term of high accuracy (Lohani et al., 86 

2012; Emamgholizadeh et al., 2014; Zare and Koch, 2018; Nourani et al., 2016). It should be 87 

noted that although ANFIS model has a higher accuracy than other models, it is still difficult in 88 
finding the best internal weight values of ANFIS due to the limited nature of the adaptive 89 

algorithm used (Bui et al., 2016). Thus, these weights should be optimized by new metaheuristic 90 
optimization algorithms to enhance the prediction accuracy of ground water models.  91 

The main goal of the current study is to propose and verify integration of new metaheuristic 92 

optimization algorithms with ANFIS for groundwater spring potential mapping (GSPM) in 93 
Koohdasht-Nourabad plain, Iran. Accordingly, five new metaheuristic algorithms are 94 

investigated, Invasive Weed Optimization (IWO), Differential Evolution (DE), Firefly Algorithm 95 
(FA), Particle Swarm Optimization (PSO), and Bees algorithm (BA). According to current 96 

literature, it is the first time such study is conducted for groundwater potential mapping. 97 

2. Description of the study area 98 

Koohdasht-Nourabad plain is located in the western part of the Lorestan province (Iran) and 99 

covers an area of around 9531.9 km2. It lies between latitudes 33°3′ 28 N and 34° 22′ 55 N, and 100 
between longitudes 46° 50′ 19 E and 48° 21′ 18 E (Figure 1). The region is located in the semi-101 

arid area with mean annual precipitation of about 450 mm (Iran Meteorological Organization).  102 
The altitude of the study area varies between 531 m and 3175 m above sea level. The maximum 103 
slope and minimum slope are 64o and 0o, respectively. Geologically, the study area is located in 104 

the Zagros structural zone of Iran and is mostly covered by Quaternary and Cretaceous-105 
Paleocene geologic time scale. The dominant land-use/land-cover of the study area is moderate 106 

forest (20%). The residential areas cover about 3% of the plain. Rock crop/inceptisoils are the 107 
dominant soil types in the study area and covering about 51% of the study area. Population of the 108 

plain is 362,000 people (according to 2016 census) and agriculture is the primary occupation. In 109 
this plain, groundwater is the main water source for drinking and agricultural activities.   110 

http://link.springer.com/chapter/10.1007%2F978-3-319-03404-1_13
https://en.wikipedia.org/wiki/Differential_evolution
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 111 

Figure 1. Groundwater well locations with DEM of the study area. 112 

 113 

3. Methodology 114 

An overview of the methodological approach is shown in Fig 2. 115 
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 116 

Figure 2. Conceptual model of methodology applied in the current study. 117 

3.1. Data preparation 118 

3.1.1. Groundwater spring inventory map 119 

In groundwater modeling, spatial relationships between groundwater springs and conditioning 120 
factors should be analyzed and assessed to determine the best subset of these factors. In the 121 

Koohdasht-Nourabad plain, a total of 2463 spring locations were provided by Iranian Water 122 
Resources Management Bureau. Most of these spring locations were checked during extensive 123 

field surveys using a GPS hand held unit.  124 

3.1.2. Construction of the training and testing datasets 125 

Spatial prediction of groundwater potential mapping using machine learning model is considered 126 

a binary classification with two classes, spring and non-spring. Therefore, a total of 2463 non-127 
spring locations were randomly generated using the random point tool in ArcGIS10.2. According 128 

to Chung and Fabbri (2003), it is possible to validate the model performance using a cross 129 
validation method that splits the dataset into the two parts for both of spring and non-spring 130 

location. The first part is used for model building which is called a training dataset and the other 131 
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part is utilized for validating the model performance named as a testing dataset (Pham et al., 132 
2017a). In this study, a ratio of 70/30 was selected randomly for generating the training and 133 

testing the dataset (Pourghasemi et al., 2012; Pourghasemi et al., 2013a; Pourghasemi et al., 134 
2013b; Xu et al., 2012). Accordingly, both spring locations and non-spring locations have been 135 

randomly divided into two groups for training (1725 locations) and validating (738 locations) 136 
purposes (Figure 1). 137 

Both the training and the testing datasets were converted to raster format where spring pixels 138 
were assigned as “1” and non-spring pixels were assigned to “0” (Bui et al., 2015), and then, 139 

these pixels were overlaid with 13 groundwater conditioning factors to extract their attribute 140 
values. 141 

3.1.3. Groundwater conditioning factor analysis 142 

3.1.3.1. Selection of the Groundwater conditioning factor  143 

After the initial selection of the conditioning factors, these factors should be assessed for multi-144 

collinearity problems. Multi-collinearity takes place when two or more independent conditioning 145 
factors are highly correlated or in other words inter-dependent (Li et al., 2010). Several methods 146 

have been proposed to diagnose multi-collinearity, and among them, Variance Inflation Factor 147 
(VIF) and Tolerance (TOL) are widely used in environmental modeling (O’brien, 2007; Bui et 148 

al., 2016); therefore, they were selected for this research. Factors with VIFs greater than 5 and 149 
TOL are less than 0.1 indicate multi-collinearity problems existed (O’brien, 2007; Bui et al., 150 

2011). Another method namely Information Gain Ratio (IGR) technique was applied to 151 
identifying the relative importance of the conditioning factor and also to obtain factors with null 152 

effect. These factors must be removed to increase the accuracy of the model (Khosravi et al, 153 
2018). 154 

In the current study, 13 conditioning factors have been selected, namely slope degree, slope 155 

aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), 156 
Terrain roughness index (TRI), distance from fault, distance from river, land-use/land-cover, 157 

rainfall, soil order, and lithology units. These factors have been determined based on literature 158 
review, characteristics of the study area, and data availability (Nampak et al., 2014; Mukherjee, 159 

1996; Oh et al., 2011; Ozdemir, 2011b). The process of converting continuous variables into 160 
categorical classes were carried out based on our frequency analysis of springs location 161 

(Khosravi et al, 2018) in order to define the class intervals.  162 

Digital Elevation Model (DEM) for the study area was downloaded from ASTER global DEM  163 

(https://asterweb.jpl.nasa.gov/gdem.asp) with 30x30 m grid size. Based on the DEM, slope 164 
degree, slope aspect, altitude, plan curvature, SPI, TWI and TRI were derived. Slope degree has 165 

been divided in five categories using the quantile classification scheme (Tehrany et al., 2013, 166 
2014), namely 0-5.5, 5.5-12.11, 12.11-19.4, 19.4-28.7, 28.7-64.3 degrees (Figure 3a). Slope 167 
aspect is selected because it controls solar radiation budgets that influence the groundwater 168 

potential. Slope aspect has been provided in 5 different classes, flat, north, west, south and east 169 
(Figure 3b). Altitude was divided into five classes using the quantile classification scheme, 170 

namely 531-1070, 1070-1385, 1385-1703, 1703-2068 and 2068-3175 m (Figure 3c). Plan 171 
curvature was divided into three classes, namely concave (<−0.05), flat (−0.05–0.05), and 172 

convex (>0.05) (Figure 3d) (Pham et al. 2017).  173 

https://asterweb.jpl.nasa.gov/gdem.asp
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SPI is related to erosive power of surface runoff, whereas TWI relates to amount of the flow that 174 
accumulates at any point in the catchment. In this research, SPI, TWI and TRI were constructed 175 

using the System for Automated Geoscientific Analyses SAGA-GIS 2.2 software, and finally, 176 
were divided into five classes. These classes are 0-48664, 48664-227099, 227099-583969, 177 

583969-1330153, and 1330153-4136452 for SPI (Figure 3e). For TWI, these classes are 2.1-4.6, 178 
4.6-5.6, 5.6-6.6, 6.6-7.9, 7.9-11.9 (Figure 3f), and for TRI, these classes are 0-8.7, 8.7-18.2, 18.2-179 

29.9, 29.9-46.6, 46.6-185 (Figure 3g). 180 

Distance from fault and river for the study area were generated with five classes using the 181 

multiple ring-buffer tool in ArcGIS10.2, 0-200, 200-500, 500-1000, 1000-2000 and >2000 m 182 
(Figures  3h and 3i). Lithology plays a key role in determining the groundwater potential due to 183 

different infiltration rate of formation (Adiat et al., 2012; Nampak et al., 2014). Land-use/land-184 
cover of the study area was obtained using Landsat 7 Enhanced Thematic Mapper plus (ETM+) 185 

images that are downloaded from the US Geological Survey (available at 186 
https://earthexplorer.usgs.gov). Accordingly, 25 land-use/land-cover types were recognized: 187 

agriculture (A), garden (G), dense-forest (DF), good rangeland (GR), poor forest (PF), waterway 188 
(W), mixture of garden and agriculture (MGA), mixture of agriculture with dry farming 189 

(MADF), mixture of agriculture with poor-garden (MAPG), dry farming (DF), follow (F), dense 190 
rangeland (DR), very poor forest (VPF), mixture of waterway and vegetation (MWV), mixture of 191 

moderate forest and agriculture (MMFA), mixture of moderate rangeland and agriculture 192 
(MMRA), mixture of poor rangeland and follow (MPRF), mixture of low forest and follow 193 

(MLFF), wood-land (WL), moderate forest (MF), moderate rangeland (MR), poor rangeland 194 
(PR), bare soil and rock (BSR), urban and residential (UR), mixture of  very poor forest (MVPF), 195 

and rangeland (R) have been identified (Figure  3j).  196 

Rainfall is the major source of recharge to the groundwater. In this research, mean annual rainfall 197 
data of 15 years (2000–2015) at 4 rain-gauge stations of the study area was used. The rainfall 198 

map (Figure 3k) with five categories (300-400, 400-500, 500-600, 600-700, and 700-800 mm) 199 
was generated using Inverse distance weighted method due to lower RMSE (Khosravi et al, 200 

2016a,b). Soil map at scale of 1:50,000 for the study area was provided by the Iranian Water 201 
Resources Department (IWRD). The soil types are soil rock outcrop/entisols, rock 202 

outcrop/inceptisols, inceptisols, inceptisols/vertisols, and badlands (Figure 3l). 203 

 204 

https://earthexplorer.usgs.gov/
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 205 

Figure 3. Groundwater conditioning factors for the study area used in this research: (a) slope degree; (b) 206 
slope aspect; (c) altitude; (d) plan curvature; (e) SPI; (f) TWI. 207 
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 209 

Figure 3. (Continued). (g) TRI; (h) distance from fault; (i) distance from river; (j) land-use/land-210 
cover; (k) rainfall; (l) soil order; and (m) lithology units 211 

Lithology at scale of 1:100000 for the study area was provided by Iranian Department of 212 

Geology Survey (IDGS). Accordingly, 30 classes were used: OMq, PeEf, PlQc, K1bl, Plc, pd, 213 
TRKubl, TRJvm, MPlfgp, OMql, Plbk, E2c, TRKurl, Qft2, MuPlaj, KEpd-gu, Kgu, Qft1, Ekn, 214 

KPeam, PeEtz, Kbgp, EMas-sb, Mgs, TRJlr, Klsol, JKbl, Kur, OMas and Mmn (Figure 3m).  215 
Finally, all the aforementioned groundwater conditioning factors for modeling purposes were 216 

converted to a raster grid with 30 m × 30 m in the ArcGIS 10.2 software.   217 

3.2. Spatial relationship between spring location and conditioning factors 218 

To assess the spatial relationship between the spring locations and these conditioning factors, in 219 

this research, Step-wise Assessment Ratio Analysis (SWARA) (Keršuliene et al., 2010), a Multi-220 
Criteria Decision Making (MCDM) was used. SWARA has received great attention in various 221 

fields in the last five years (Alimardani et al., 2013; Hong et al., 2017). The working principal of 222 
SWARA was briefly described as follows:   223 

Phase one: first, the experts will define the problem-solving criteria. By using the practical 224 

knowledge of the experts, the priority for the criteria is determined and these criteria are 225 
organized in descending order.  226 

Phase two: the following trends is employed for estimating the weight for the criteria: 227 

Starting from the second criterion, the respondent explains the relative importance of the 228 

criterion  𝑗 in relation to the (𝑗 − 1) criterion, and for each particular criterion as well. As 229 

Keršuliene mentioned, this process specifies the Comparative Importance of the Average 230 

Value, 𝑆𝑗 as follows (Keršuliene et al., 2010): 231 

𝑆𝑗 =
∑ 𝐴𝑖

𝑛
1

𝑛
                                                                                                                                                 (1) 232 
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where 𝑛 is the number of experts; 𝐴𝑖 explicates the offered ranks for each factor by the experts; j 233 

stands for the number of the factor. 234 

Subsequently, the coefficient 𝐾𝑗 is determined as follows: 235 

𝐾𝑗 = {
1                              𝑗 = 1
𝑆𝑗 + 1                    𝑗 > 1                                                                                                                    (2) 236 

Recalculation of weight 𝑄𝑗 is done as follows: 237 

𝑄𝑗 =
𝑋𝑗−1

𝐾𝑗
                                                                                                                                                       (3) 238 

The relative weights of the evaluation criteria are calculated by the following equation: 239 

𝑊𝑗 =
𝑄𝑗

∑ 𝑄𝑗
𝑚
𝑗=1

                                                                                                                                                (4) 240 

where 𝑊𝑗 shows the relative weight of j-th criterion, and m is the total number of criteria. 241 

3.3. Groundwater spring prediction modeling 242 

As mentioned earlier, in this research, five new metaheuristic optimization algorithms (IWO, 243 
DE, FA, PSO, and BA) were investigated for optimizing the parameters of ANFIS. This section 244 

briefly presents the theoretical background of these algorithms and ANFIS. 245 

3.3.1. Adaptive Neuro-Fuzzy Inference System  246 

Adaptive Neuro-Fuzzy Inference System (ANFIS) was proposed by Jang (1993) to solve 247 
nonlinear and complex problems in one framework. ANFIS convert input data to fuzzy inputs by 248 

using membership function, Also, there are a different membership functions that describing the 249 
system behavior (Jang, 1993). ANFIS applies to the Takagi-Sugeno-Kang (TSK) fuzzy model 250 

with two “If-Then” rules both having two inputs x1 and  x2, and one output 𝑓 (Takagi and 251 

Sugeno, 1985), as follows: 252 

𝑅𝑢𝑙𝑒 1: 𝑖𝑓 𝑥2 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵2 , 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥2 + 𝑞2𝑥2 + 𝑟2                                                               (5) 253 

𝑅𝑢𝑙𝑒 2 1: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1                                                             (6) 254 

Jang’s ANFIS consists of feed-forward neural network with six distinct layers. Detailed 255 

description of ANFIS can be found in (Jangs, 1993). 256 

3.3.2. Meta-heuristic optimization algorithms 257 

The main goal of these algorithms is to find the optimal antecedent and the consequent 258 

parameters of the ANFIS model using IWO, DE, FA, PSO, and BA algorithms. Figure 4 259 
illustrates a general methodological data flow of the ANFIS model. 260 
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 261 

Figure 4. General methodological flow of ANFIS. 262 

3.3.2.1. Invasive Weed Optimization algorithm 263 

Invasive weed optimization (IWO) mimics the colonizing behavior of weeds. Its design is based 264 
on the way to find proper place for growth and reproduction of weeds by Mehrabian and Lucas 265 

(2006). One characteristic of this algorithm is its simple structure; the number of input 266 
parameters is low and it has strong robustness. Furthermore, it is easy to understand and the same 267 

merit causes it to be used for solving difficult nonlinear optimization problems (Ghasemi et al., 268 
2014; Naidu and Ojha, 2015; Zhou et al., 2015). This algorithm consists of 4 parts: initialization, 269 

reproduction, spatial dispersal, competitive exclusion and termination condition. 270 

3.3.2.2. Differential Evolution algorithm 271 

Differential Evolution (DE) is an evolutionary algorithm for finding global optimal answers for 272 
problems with continuous space (Das et al., 2009).  This algorithm starts by producing a random 273 

population in which each individual of the population is a solution to the problem. Vector  Xi
G =274 

(x1,i
G , x2,i

G , x3,i
G , … , xD,i

G ) shows each individual of the population, i = {0,1,2, … , NP} is a number 275 

denoting each individual, in which D stands for the search dimension, or in other words, is a 276 

component problem and G = {0,1,2, … , Gmax} generation time that Gmax is the total number of 277 

generations.  278 

By assuming the maximum and minimum of every dimension of searching space, there are XL =279 

(x1,L, x2,L, … , xD,L) and XU = (, x2,U, … , xD,U), respectively; initial population is defined as the 280 

following (Storn and Price, 1997): 281 

𝑥𝑗,𝑖
0 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿)                                                                                                    (7) 282 

where rand(0,1) is a uniformly distributed random number in [0, 1]. Detailed description of DE 283 
can be found in (Chen et al., 2017a). 284 

https://en.wikipedia.org/wiki/Differential_evolution
https://en.wikipedia.org/wiki/Differential_evolution
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3.3.2.3. Firefly Algorithm 285 
Firefly Algorithm (FA) is as a meta-heuristic algorithm that is originated from flashing and 286 

communication behavior of fireflies proposed by Yang (2010). Like other swarm intelligence 287 
algorithms, where their components are known as solutions for the problems, in this algorithm, 288 

each firefly is a solution and its light intensity is the objective function value. In general, FA 289 
algorithm follows three idealized rules as below: (1) All firefly species are unisex, with each of 290 

them attracting other fireflies without considering their gender (Amiri et al., 2013); (2) 291 
Attractiveness of a firefly is related to its light intensity, and thus, from two flashing firefly 292 

species, one with lower light intensity moves toward the other one with higher light intensity; (3) 293 
Light intensity of a firefly is defined as an objective function value and must be optimized.  294 

3.3.2.4. Particle Swarm Optimization algorithm 295 

Particle Swarm Optimization (PSO) algorithm has been inspired by the way birds use their 296 

collective intelligence for finding the best way to get food (Kennedy and Eberhart, 1995). Each 297 
bird implemented in this algorithm acts as a particle that is in fact a representative of a solution 298 

to the problem. These particles find the optimum answers for the problem by searching in “n” 299 
dimensional space, whereas “n” is the number of the problem's parameters. For this purpose, 300 

particles were scattered randomly in space at the beginning of algorithm execution. Detailed 301 
description of PSO can be found in Kennedy (2011) 302 

3.3.2.5. Bee algorithm 303 

Bee algorithm (BA), which was introduced by Pham (Pham et al., 2005), is inspired by 304 

foraging behavior of bees' colonies in search of food sources located near the hive. In 305 
the initial setup, evenly distributed scout bees are scattered randomly in different 306 

directions to identify flower patches. After that, scout bees come back to hive and start 307 
a specific dance called the waggle dance. This dance is for communicating with others 308 

in order to share the information of discovered flower patches. The information 309 
indicates direction, distance, and nectar quality of the flower patches, and helps the 310 

colony to have proper evaluation of all flower patches. After evaluation, scout bees 311 
come back to the location of discovered flower patches with other bees, named recruit 312 

bees. Dependent on the distance and the amount of nectar, different number of recruit 313 
bees is assigned to each flower patch. In other words, those flower patches with better 314 

nectar quality dedicate more recruit bees to themselves. Recruit bees then evaluate the 315 
quality of flower patches when performing the harvest process, and leave the flower 316 

patches having low quality. Conversely, if the flower patch quality is good, it will be 317 
announced during the next waggle dance. 318 

3.4. Performance assessment of models 319 

According to Chung and Fabbari (Chung and Fabbri, 2003), without validation, the 320 

result (achieved maps) of the models do not have any scientific significance. Prediction 321 
capability of these five spatial groundwater models must be evaluated using both 322 

success-rate and prediction-rate curves (Hong et al., 2015). Success-rate curves show 323 
how suitable the built model is for the groundwater potential assessment 324 

(Gaprindashvili et al., 2014). Success-rate curves have been constructed using 325 
groundwater potential maps and the number of spring locations used in training dataset 326 

(Pradhan et al. 2010). Prediction rate curves constructed using testing dataset 327 
demonstrate how good the model is and evaluate the prediction power of the models. 328 
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Therefore, it can be used for model prediction capabilities (Brenning, 2005). The area 329 
under the curve (AUC) of success and prediction rate is the base for assessment 330 

accuracy of the groundwater potential models quantitatively (Khosravi et al., 2016a; 331 
Khosravi et al., 2016b; Pham et al., 2017b). The AUC value varies from 0.5 to 1; the 332 

higher the AUC, the better the prediction capability of models. 333 

In addition, Mean Squared Error (MSE) was further used (Tien Bui et al, 2016) as 334 

follows: 335 
 336 

 𝑀𝑆𝐸 =
∑ (𝑂𝑖−𝐸𝑖)2𝑛

𝑖=1

𝑁
                                             (8) 337 

where 𝑂𝑖 and 𝐸𝑖  are observation (target) and prediction (output) values in both training 338 
and testing dataset and N is the total samples in the training or the testing dataset. 339 

3.5. Inferential statistics 340 

3.5.1 Friedman test 341 

Non-parametric statistical procedures such as Freidman test (Friedman, 1937) can be 342 

used regardless of statistical assumptions (Derrac et al., 2011) and do not presuppose 343 
the data to be normally distributed. The main aim of this test is to find whether there is 344 

a significant difference between the performed models or not. In other words, 345 
performing multiple comparisons to detect significant differences between the 346 

behaviors of two or more models (Beasley and Zumbo, 2003). The null hypothesis 347 
(H0) is that there are no differences among the performance of the groundwater 348 

potential models. The higher the P-value, the higher the probability that the null 349 
hypothesis is not true since if the p-value is less than the significance level (α=0.05), 350 

the null hypothesis will be rejected. 351 

3.6.2 Wilcoxon signed-rank test 352 

Because Freidman test only illustrates whether there is any difference between the 353 
models or not, this test does not provide pairwise comparisons among compared 354 

models. Therefore, another non-parametric statistical test named Wilcoxon signed-rank 355 
test have been applied. To evaluate the significance of differences between the 356 

performed groundwater potential models, the P value and Z value have been used. 357 

4. Result and analysis 358 

4.1. Multi-collinearity diagnosis 359 

Result of the multi-collinearity analysis in this study is shown in Table 1. The analysis 360 
revealed that as VIF is less than 5 and the tolerance is greater than 0.1 indicating no 361 

multi-collinearity problem exists among conditioning factors. 362 

 363 

 364 

 365 

 366 
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Table.1 Multi-collinearity analysis for conditioning factors. 367 

No Groundwater conditioning factor 
Collinearity Statistics 

Tolerance VIF 

1 Slope degree 0.231 2.401 

2 Slope aspect 0.206 4.270 

3 Altitude 0.801 2.097 

4 Plan curvature 0.513 1.446 

5 SPI 0.410 1.689 

6 TWI 0.541 2.113 

7 TRI 0.328 1.939 

8 Distance from fault 0.408 2.25 

9 Distance from river 0.212 3.126 

11 Land-use/land-cover 0.296 3.891 

12 Rainfall 0.298 1.686 

13 Soil order 0.205 4.039 

10 Geology (Unit) 0.215 4.150 

4.2. Determination of the most important parameters 368 

The most common method of Information Gain Ratio (IGR) was applied to identification of the 369 
most important conditioning factors. Result shows that all thirteen conditioning factors are 370 

effective on groundwater occurrences. The land-use/land-cover factor has the most important 371 
impact on groundwater (IGR=0.502) followed by lithology (IGR=0.465), rainfall (IGR=0.421), 372 

TWI (IGR=0.400), soil (IGR=0.370), TRI (IGR=0.337), slope degree (IGR=0.317), altitude 373 
(IGR=0.287), distance to river (IGR=0.139), aspect (IGR=0.066), plan curvature (IGR=0.0548), 374 

distance to fault (IGR=0.0482) and SPI (IGR=0.0323). 375 

4.3. Spatial relationship between springs and the conditioning factors by SWARA method 376 

The spatial correlation between the groundwater springs and the conditioning factors is shown in 377 
Table 2 (in the appendix). Regarding the slope, the class of 0-5.5 degree shows the highest 378 

probability (0.45) on spring groundwater occurrences. As the slope degree increases, the 379 
probability of spring occurrence is reduced. In the case of slope aspect, the east aspect (0.44) has 380 

the most impact on spring occurrences. According to calculated results, in terms of altitude, the 381 
springs are the most abundant in the altitude of 1703-2068 m (0.6). The SWARA model is high 382 

in flat areas (0.4), followed by concave (0.38) and convex (0.2). For SPI, the highest SWARA 383 
value is found for the classes of 583969-1330153 (0.46). In the case of the TWI, the SWARA 384 

values decrease when the TWI reduces. There is an inverse relationship between TRI and 385 
SWARA value, and as the TRI increases, the SWARA value reduces. 386 

 Regarding distance from the fault, distance less than 2000 m has the highest impact on spring 387 
occurrences and with increase in the distance (greater than 2000 m), the probability of spring 388 

occurrence is reduced.  Regarding distance to river, it can be seen that the class of 0-200 m has 389 
the highest correlation with the spring occurrence (0.46) and there is an inverse relationship 390 

between spring occurrence and SWARA values. In the case of land-use, the highest SWARA 391 
values are shown for garden areas (0.219), followed by mixture of garden and agriculture (0.17), 392 

agricultural areas (0.12), whereas the lowest SWARA is for bare soil and rock (0.00063). The 393 
rainfall between 500 and 600 mm has the highest SWARA value (0.61). The inceptisols class has 394 
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the highest SWARA values (0.5) followed by rock outcrop/entisols (0.39), rock 395 
outcrop/inceptisols (0.056), inceptisoils/Vertisoils (0.028), and badlands (0.014). The highest 396 

probability belongs to the highly porous and very good water reservoir karstic oligomiocene and 397 
cretaceous pure carbonate formation (OMq and K1bl), the young and poorly consolidated highly 398 

porous detrital rock units (PeEf and Plq) and the unconsolidated quaternary alluvium (PlQc). 399 

4.4. Application of ANFIS ensemble models and model’s assessment 400 

In the current study, hybrids of ANFIS model and five meta-heuristic algorithms were designed, 401 
constructed and implemented in MATLAB 8.0 software. These models were built using the 402 

training dataset. Weights gained by the SWARA method for each conditioning factor was fed as 403 
the input for training dataset. The result is shown in Figures 5 and 6. 404 

As it can be seen in Figure 5, MSE of the ANFIS-IWO model, the ANFIS-DE model, the 405 
ANFIS-FA model, the ANFIS-PSO model, and the ANFIS-BA model using the training dataset 406 

are 0.066, 0.066, 0.066, 0.049, and 0.09, respectively. This indicates that the ANFIS-PSO model 407 
has the highest performance, whereas the ANFIS-BA model presents the lowest one. The 408 

prediction performance of the five models using the validation dataset is shown in Figure 6. MSE 409 
of the ANFIS-IWO model, the ANFIS-DE model, the ANFIS-FA model, the ANFIS-PSO 410 

model, and the ANFIS-BA model are 0.060, 0.060, 0.060, 0.045, and 0.09, respectively. 411 
Therefore, it could be concluded that the ANFIS-PSO model and ANFIS-BA model have the 412 

highest and lowest prediction performances, respectively. 413 

 414 
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 415 

Figure 5. MSE and RMSE values of the five models using the training dataset of: (a) ANFIS-416 
IWO; (c) ANFIS-DE; (e) ANFIS-FA; (g) ANFIS-PSO; and (l) ANFIS-BA. Frequency errors of 417 

the five models using the train dataset: (b) ANFIS-IWO; (d) ANFIS-DE; (f) ANFIS-FA; (h) 418 
ANFIS-PSO; and (j) ANFIS-BA. 419 

 420 
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 421 

Figure 6. MSE and RMSE values of the five models using the validation dataset: (a) ANFIS-422 
WO; (c) ANFIS-DE; (e) ANFIS-FA; (g) ANFIS-PSO; and (l) ANFIS-BA. Frequency errors of 423 

the five models using the validation dataset:  (b) ANFIS-IWO; (d) ANFIS-DE; (f) ANFIS-FA; 424 
(h) ANFIS-PSO; and (j) ANFIS-BA. 425 
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However, it should be noticed that, in addition to accuracy, the execution speed of the five 426 
models was found significance. To measure this, the running time for 1000 iteration was 427 

estimated. The result is shown in Figure 7. It could be seen that the running time of the ANFIS-428 
IWO model, the ANFIS-DE model, the ANFIS-FA model, the ANFIS-PSO model, and the 429 

ANFIS-BA model was 8036, 547, 22111, 1050, and 6993 seconds, respectively. It can be 430 
concluded that the ANFIS-DE model had the lowest running time and the ANFIS-FA model had 431 

the maximum time.  432 

 433 

Figure 7. Processing time used for training the five models. 434 

On the other hand, it is possible to test how each model achieves convergence in learning. Using 435 
the cost function values, a convergence graph for all five models was constructed and shown in 436 

Figure 8. The results show that cost function values of the ANFIS-DE model and the ANFIS-BA 437 
model were stable from 30 and 95 iterations, indicating a rapid convergence of the models. 438 

While the ANFIS-PSO model, the ANFIS-IWO model, and the ANFIS-FA model showed a 439 
convergence after 650, 650, and 360 iterations, respectively. This indicates a slow convergence.  440 
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 441 

Figure 8. Convergence plot of the models 442 

4.5. Generation of groundwater spring potential maps using ANFIS hybrid models 443 

Once the five models were successfully trained and validated, these models were used to 444 
compute groundwater spring indices for all the pixels of the study areas. Then, these indices 445 

were exported from MATLAB into ArcGIS10.2 software for generating groundwater spring 446 
potential maps. Ultimately, the achieved maps were visualized by five classes: very low, low, 447 

moderate, high and very high (Figures 9a, 9b, 9c, 9d, and 9e).  448 

Many methods can be used for determining thresholds for the five classes, manual, equal 449 
interval, geometric interval, quantile, natural break and standard deviation. Selection of a method 450 

depends on the characteristics of the data and the distribution of the groundwater spring indexes 451 
in a histogram (Ayalew and Yamagishi, 2005). If the indexes have a positive or negative 452 

skewness, the quantile or natural break classification is proper for indexes classification (Akgun, 453 
2012). In this research, the histogram was checked and the results revealed that the quantile 454 

method was better than other methods for index classification.   455 
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 461 

Figure 9. Groundwater spring potential map using: (a) the ANFIS-IWO model; (b) the ANFIS-462 

DE model; (c) the ANFIS-FA model; (d) the ANFIS-PSO model; and (e) the ANFIS-BA model. 463 

4.6. Validation and comparisons of the groundwater spring potential map 464 

The prediction ability and reliability of the five achieved maps have been evaluated using both 465 
the training and the validating datasets. The results of the success rate revealed that the ANFIS-466 

DE model had the highest AUC value (0.883) followed by the ANFIS-IWO model (0.882), the 467 
ANFIS-FA model (0.882), the ANFIS-PSO model (0.871), and the ANFIS-BA model (0.852) 468 

(Figure 10a). Regarding the prediction rate, all five models had a good prediction capability but 469 
the ANFIS-DE model has the highest prediction rate (0.873) followed by the NFIS-IWO model 470 

(0.873) and the ANFIS-FA model (0.873), the ANFIS-PSO model (0.865), and the ANFIS-BA 471 
model (0.839), respectively (Figure 10b).  472 
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 473 

 474 

Figure 10. (a) Success rate and (b) prediction rate of the five models. 475 

4.7. Statistical tests 476 

The result of the Friedman test (Table.3) revealed that as Sig and chi-square values were less 477 
than 0.05 and greater than 3.84, respectively, the null hypothesis has been rejected. The result 478 

also indicated that there was a statistically significant difference between prediction capabilities 479 
of the five models.  480 

Table 3. Result of Freidman test. 481 

No Performed models Mean rank Chi-square Sig 

1 ANFIS-DE 3.04 

64.84 0.00 
2 ANFIS-IWO 3.13 

3 ANFIS-FA 2.98 

4 ANFIS-PSO 2.72 

5 ANFIS-BA 3.12 

The results of the Wilcoxon signed-rank test showed that both P-values and z-values were far 482 

from the standard values of 0.05 and (from -1.96 to + 1.96), respectively, except for the ANFIS-483 
FA model vs. the ANFIS-DE model and the ANFIS-PSO model vs. the ANFIS-DE model (Table 484 

4). This indicates that there are statistically significant differences between models performance, 485 
except for ANFIS-FA vs. ANFIS-DE and ANFIS-PSO vs. ANFIS-DE. 486 

Table 4. Result of Wilcoxon signed rank test. 487 

No Pairwise comparison Z-Value P-Value Significance 

1 ANFIS-DE vs. ANFIS-BA -3.97 0.00 Yes 

2 ANFIS-FA vs. ANFIS-BA -2.37 0.017 Yes 

3 ANFIS-IWO vs. ANFIS-BA -2.35 0.018 Yes 

4 ANFIS-PSO vs. ANFIS-BA -3.04 0.002 Yes 

5 ANFIS-FA vs. ANFIS-DE -1.32 0.185 No 

6 ANFIS-IWO vs. ANFIS-DE -3.96 0.00 Yes 
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7 ANFIS-PSO vs. ANFIS-DE -0.841 0.41 NO 

8 ANFIS-IWO vs. ANFIS-FA -3.19 0.001 Yes 

9 ANFIS-PSO vs. ANFIS-FA -1.90 0.057 Yes 

10 ANFIS-PSO vs. ANFIS-IWO -2.44 0.015 Yes 

4.8. Percentage area 488 

The percentage area of each class of final map resulting from the five hybrid models is shown in 489 
Figure 11. According to results of the ANFIS-DE as a most accurate models in groundwater 490 

spring potential mapping, the percentage areas of very low, low, moderate, high and very high 491 
groundwater spring potential are about 19.06, 19.88, 21.72, 20.55 and 18.78 % of the study area, 492 

respectively.  493 

  494 

Figure 11. Percentage areas of different groundwater spring potential classes for five models 495 

5. Discussion 496 

5.1. The impact of conditioning factor classes on GSPM 497 

Assessment of conditioning factor is a necessary step in finding the correlation analysis between 498 
the groundwater spring and the conditioning factors. It should be noted that no universal 499 

guideline is available regarding the number and size of the classes as well as selecting the 500 
conditioning factors. They were selected mostly based on characteristics of the study area and 501 

previous similar studies (Xu et al., 2013). As the slope increase, the probability of water 502 
infiltration reduces and runoff generation will increase. Thus, the steeper the slope, the lower the 503 

spring occurrence probability is. According to the result of the SWARA method, the springs 504 
almost occur in a middle altitude or mountain slopes. The flat curvature class retains and 505 

infiltrates rainfall. Therefore, the amount of groundwater in these areas is higher than concave or 506 
convex curvature. The east aspect has more springs than other aspects. These results are in 507 

accordance with Pourtaghi and Pourghasemi (2014) who reported that most springs occurred in 508 
the elevation of 1600-1900 m and east slope aspect (with FR method).  509 

TWI shows the amount of wetness, and it is obvious that the more the TWI, the higher the 510 
groundwater springs probability occurrence is. Terrain Roughness Index (TRI) or topographic 511 
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roughness or terrain ruggedness, calculates the sum of change in elevation between a grid cell 512 
and its neighborhood, and as the less the roughness, the higher spring potential mapping. The SPI 513 

shows the erosive power of the water and mountainous area is higher than plain area. So, as the 514 
SPI increases, the spring potential occurrence increases. Rivers are one of the most important 515 

sources of groundwater recharge and the nearer to river, the higher probability to springs 516 
occurrences. Also, as the rainfall increases, the higher groundwater springs incident, but in the 517 

current study, some other conditioning factors affected the spring occurrences.  518 

Most of the springs were located in the garden land-use/land-cover. Therefore, it can be stated 519 

that the gardens have been established near the springs. Pliocene-Quaternary formation in a 520 
geologic time scale is newer and Quaternary formation has a high potential to groundwater 521 

springs incident due to high permeability. The fault is discontinuity in a volume of rock. Thus, 522 
the nearer to the fault, the higher the spring occurrence probability will be. Inceptisols soils are 523 

relatively new and are characterized by having only the weakest appearance of horizons, the 524 
most abundant on the Earth (https://www.britannica.com/science/Inceptisol) and mostly formed 525 

from colluvial and alluvial materials. So, due to high permeability and high rainfall infiltration, 526 
they have a high potential for springs occurrences. In the case of lithological unit, there are four 527 

suitable rock type as water reservoir based on physical phenomena such as porosity and 528 
permeability that consist of: 1. unconsolidated sands and gravels; 2. sandstones; 3. lime-stones; 529 

and 4. basaltic lava flows. In this study area lithological units include sedimentary rocks mostly 530 
carbonate and detrital rocks with cover of alluvium and minor soil. 531 

5.2. Advantages/disadvantages of the models and performance analysis 532 

The highest accuracy based on MSE in both the training and validating datasets is for the 533 

ANFIS-PSO model. However, based on the AUC of the success rate and the prediction rate, the 534 
ANFIS-DE model has the highest performance. The problem with MSE comes from the fact that 535 

it is based on the error assessment. But the models should be acted upon holistically based on 536 
abilities. AUC is based on the true positive (TP), true negative (TN), false positive (FP) and false 537 

negative (FN), and therefore is more accurate than RMSE for comparison (Termeh et al., 2018).  538 

ANFIS has a potential to capture the benefits of both neural network and fuzzy logic in a 539 

single framework and can be considered as a robust model. ANFIS had some advantages 540 
including: (1) much better learning ability, (2) need for fewer adjustable parameters than those 541 

required in other neural network structure, (3) allowing a better integration with other control 542 
design methods by its networks and is (4) more flexible (Vahidnia et al., 2010; Isanta Navarro, 543 

2013).  544 

Despite several advantages of ANFIS, non-adjutancy of membership function is the biggest 545 
disadvantage of this model. Finding the optimal parameter for neural fuzzy model in a 546 

membership function is difficult; therefore, the best parameter should be finding other 547 
optimization models. This problem was addressed in this paper for being solved by five meta-548 

heuristic algorithms, namely IWO, DE, FA, PSO and BA. . 549 

In the current study, the results showed that DE algorithm optimized the parameter for neural 550 
fuzzy model better than the four other algorithms. The main DE algorithm’s advantage is its 551 

simplicity as it consists of only three parameters called N (size of population), F (mutation 552 
parameter) and C (crossover parameter) for controlling the search process (Tvrdık, 2006). 553 

https://en.wikipedia.org/wiki/Rock_(geology)
https://www.britannica.com/science/horizon-soil
https://www.britannica.com/place/Earth
https://en.wiktionary.org/wiki/framework
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Advantages of DE algorithm can be explained as follows: (1) Ability to handle non-554 
differentiable, nonlinear and multimodal cost functions, (2) parallelizability to cope with 555 

computation intensive cost functions, (3) good convergence properties, and (4) random sampling 556 
and combining vectors in the present population for creating vectors for the next generation.  557 

Finally, it should be noted that each algorithm has some advantages or disadvantages according 558 
to the optimization problems which can be summarized as: 559 

Some of the advantages of IWO include the way of reproduction, spatial dispersal, and 560 

competitive exclusion (Mehrabian and Lucas, 2006) as well as the fact that seeds and their 561 
parents are ranked together and those with better fitness survive and become reproductive 562 

(Ahmed et al., 2014). This algorithm can benefit from combined advantages of retaining the 563 
dominant poles and the error minimization (Abu-Al-Nadi et al., 2013). 564 

Bees algorithm doesn’t employ any probability approach, but utilizes fitness evaluation to drive 565 

the search (Yuce et al., 2013). This algorithm uses a set of parameters that makes it powerful, 566 
including the number of scout bees in the selected patches, the number of best patches in the 567 

selected patches, the number of elite patches in the selected best patches, the number of recruited 568 
bees in the elite patches, the number of recruited bees in the non-elite best patches, the size of 569 

neighborhood for each patch, the number of iterations and the difference between the value of 570 
first and last iterations. 571 

Firefly Algorithm’s (FA) advantages are summarized as: (1) handling highly non-linear, multi-572 
modal optimization problems efficiently, (2) not utilizing velocities (3) ability to be integrated 573 

with other optimization techniques as a flexible method, and finally (4) not needing a good initial 574 
solution to beginning of its iteration process. 575 

Advantages of Particle Swarm Optimization (PSO) algorithm can be summarized as follows: (1) 576 

Particles update themselves with the internal velocity; (2) particles have a memory important to 577 
the algorithm, (3) the ‘best’ particle gives out the information to others, (4) it often produces 578 

quality solutions more rapidly than alternative methods, (5) it automatically searches for the 579 
optimum solution in the solution  space (Wan, 2013). 580 

As a result, there isn’t any algorithm which works perfectly for all optimization problems, and 581 

each algorithm has a different performance accuracy based on different data. New algorithms, 582 
therefore, should be applied, tested and finally the most powerful algorithm should be selected; 583 

as the conclusion of the research demands.  584 

5.3. Previous works and future work proposal 585 

Some research has been carried out in groundwater well or spring potential mapping using 586 

bivariate statistical models (Nampak et al., 2014; Guru et al., 2017; Al-Manmi and Rauf, 2016) 587 
using random forest (Rahmati et al., 2016) and using boosted regression tree and classification 588 

and regression tree (Naghibi et al., 2016). The ANFIS-metaheuristic hybrid models have not 589 
been used in groundwater potential mapping. However, these hybrid models have proven 590 

efficient in flood susceptibility mapping (Bui et al., 2016;Termeh et al., 2018) and landslide 591 
susceptibility mapping (Chen et al., 2017). Bui et al. (Bui et al., 2016) ensemble the ANFIS 592 

using two optimization models, namely Genetic (GA) and PSO for the identification of flood 593 
prone areas in Vietnam. Razavi Termeh et al. (Termeh et al., 2018), used ANFIS-Ant Colony 594 
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Optimization, ANFIS-GA and ANFIS-PSO in flood susceptibility mapping of Jahrom basin and 595 
stated that ANFIS-PSO had higher prediction capabilities than the two other models. Chen et al 596 

(2017) applied three hybrid models, namely ANFIS- Genetic Algorithm (GA), ANFIS-597 
Differential Evolution (DE) and ANFIS-Particle Swarm Optimization (PSO) for identifying the 598 

areas prone to landslides in Hanyuan County, China. The results showed that ANFIS-DE had a 599 
higher performance (AUC=0.84) followed by ANFIS-GA (AUC=0.82) and ANFIS-PSO 600 

(AUC=0.78).  601 

In general, the results of the present study, as well as previous research, find that by applying 602 

hybrid models, better results could be achieved for spatial prediction modeling including 603 
groundwater potential mapping. The ensembles of ANFIS by meta-heuristic algorithms can be 604 

applied for any spatial prediction modeling such as groundwater potential mapping, flood 605 
susceptibility mapping, landslide susceptibility assessment, gully occurrences susceptibility 606 

mapping and other endeavors at a regional scale and in other areas.  607 

For future work, it is recommended that (1) the water quality of the Koohdasht-Nourabad plain 608 
be investigated and the water quality of areas with high potential be determined for different 609 

aspects such as drinking, agricultural and industrial activities, and (2) the groundwater 610 
vulnerability assessment should be applied by some common methods including DRASTIC 611 

model for which the zones with high potential to groundwater occurrences should be preserved 612 
against pollution.  613 

6. Conclusion 614 

Groundwater is the most important natural resource in the world and about 25 percent of all fresh 615 
water is estimated as groundwater. Thus, the groundwater potential mapping has been considered 616 

as one of the most effective methods for the management of groundwater resources for better 617 
exploitation. The main result of the present study can be summarized as:  618 

1) The results showed that although all models had good results, but, the ANFIS-DE had the 619 

highest prediction power (0.875) followed by ANFIS-IWO and ANFIS-FA (0.873), ANFIS-PSO 620 
(0.865) and ANFIS-BA (0.839).  621 

2) According to the results of the SWARA method, most springs existed in an altitude of 1703-622 

2068 m, flat curvature, east aspect, TWI of 6.6-7.9, TRI of 0-8.7, SPI of 583969-1330153, 623 
Inceptisols soil, slope of 0-5.5 degree, 0-200 m distance from river, 500-1000 m distance from 624 

fault, rainfall between 500-600 mm, in a garden, in a Pliocene-Quaternary lithological age and 625 
OMq lithology unit at the case study. 626 

3) Based on the information gain ratio, the most important factors on the groundwater occurrence 627 
are land-use/land-cover, lithology, rainfall and TWI. The least important factors are plan 628 

curvature, distance to fault and SPI. 629 

4) Based on the ANFIS-DE model, totally 39.33% of the case study have a high and very high 630 
groundwater potential placed at north of the case study. 631 

The result of the current study is helpful for Iran Water Resources Management Company 632 

(IWRMC) for sustainable management of the groundwater resources. Overall, the maps resulting 633 



29 
 

from these hybrid artificial intelligence algorithms can be applied for better management of the 634 
groundwater resources in the study area. 635 
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Appendix 865 

Table.2. Spatial correlation between conditioning factors and the spring locations by SWARA methods 866 

Factors Classes 

Comparative 
importance of 
average value 

Kj 

Coefficient 
Kj=Sj +1 

wj=(X(j-1))/kj weight wj/ sigma wj 

Slope 
(degree) 

0 - 5.55  1.000 1.000 0.454 

5.55 - 12.11 0.300 1.300 0.769 0.349 

12.11 - 19.43 1.500 2.500 0.308 0.140 

19.43 - 28.77 2.000 3.000 0.103 0.047 

28.77 - 64.37 3.500 4.500 0.023 0.010 
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Slope aspect 

East  1.000 1.000 0.448 

North 1.000 2.000 0.500 0.224 

West 0.300 1.300 0.385 0.172 

South 0.100 1.100 0.350 0.156 

Flat 0.8 1.05 0.31 0.121 

Altitude (m) 

1703 - 2068  1.000 1.000 0.608 

1385 - 1703 2.200 3.200 0.313 0.190 

2068 - 3175 0.800 1.800 0.174 0.106 

531 - 1070 1.000 2.000 0.087 0.053 

1070 - 1385 0.200 1.200 0.072 0.044 

Plan 
curvature 

Flat  1.000 1.000 0.408 

concave 0.050 1.050 0.952 0.388 

convex 0.900 1.900 0.501 0.204 

SPI 

583969.72 - 1330153.27  1.000 1.000 0.466 

227099.33 - 583969.72 1.000 2.000 0.500 0.233 

48664.14 - 227099.33 0.200 1.200 0.417 0.194 

0 - 48664.14 1.000 2.000 0.208 0.097 

1330153.27 - 4136452.25 10.000 11.000 0.019 0.009 

TWI 

6.64 - 7.92  1.000 1.000 0.471 

5.60 - 6.64 0.700 1.700 0.588 0.277 

7.92 - 11.97 1.300 2.300 0.256 0.120 

4.63 - 5.60 0.100 1.100 0.233 0.110 

2.12 - 4.63 4.000 5.000 0.047 0.022 

TRI 

0 - 5.59  1.000 1.000 0.544 

5.59 - 12.66 0.800 1.800 0.556 0.302 

12.66 - 20.62 1.500 2.500 0.222 0.121 

20.62 - 30.93 3.000 4.000 0.056 0.030 

30.93 - 75.13 10.000 11.000 0.005 0.003 

Distance 
from fault 

(m) 

0 - 200  1.000 1.000 0.242 

200 - 500 0.050 1.050 0.952 0.231 

500 - 1000 0.100 1.100 0.866 0.210 
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1000 - 2000 0.050 1.050 0.825 0.200 

> 2000 0.700 1.700 0.485 0.118 

Distance 
from river 

(m) 

0 - 200  1.000 1.000 0.464 

200 - 500 1.900 2.900 0.345 0.160 

500 - 1000 0.050 1.050 0.328 0.152 

1000 - 2000 0.300 1.300 0.253 0.117 

> 2000 0.100 1.100 0.230 0.107 

Land-
use/land-

cover 

Garden  1.000 1.000 0.219 

Mixture of garden and 
agriculture 

0.282 1.282 0.780 0.171 

Agriculture 0.340 1.340 0.582 0.128 

Mixture of poor rangeland and 
follow 

0.419 1.419 0.410 0.090 

Follow 0.233 1.233 0.333 0.073 

Mixture of moderate rangeland 
and agriculture 

0.294 1.294 0.257 0.056 

Mixture of  very poor forest 0.124 1.124 0.229 0.050 

Mixture of waterway and 
vegetation 

0.549 1.549 0.148 0.032 

Moderate forest 0.205 1.205 0.122 0.027 

Mixture of agriculture with dry 
farming 

0.064 1.064 0.115 0.025 

Wood-land 0.030 1.030 0.112 0.024 

Good rangeland 0.043 1.043 0.107 0.023 

Rangeland 0.333 1.333 0.080 0.018 

Poor rangeland 0.030 1.030 0.078 0.017 

Poor forest 0.210 1.210 0.065 0.014 

Moderate rangeland 0.281 1.281 0.050 0.011 

Bare soil and rock 0.237 1.237 0.041 0.009 

Dense rangeland 0.278 1.278 0.032 0.007 

Dense-forest 10.000 11.000 0.003 0.001 

Waterway 0.000 1.000 0.003 0.001 

Mixture of agriculture with 
poor-garden 

0.000 1.000 0.003 0.001 
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Very poor forest 0.000 1.000 0.003 0.001 

Mixture of moderate forest and 
agriculture 

0.000 1.000 0.003 0.001 

Mixture of low forest and 
follow, 

0.000 1.000 0.003 0.001 

Urban and residential 0.000 1.000 0.003 0.001 

Rainfall 
(mm) 

600 - 700  1.000 1.000 0.617 

700 - 800 2.200 3.200 0.313 0.193 

800 - 900 0.600 1.600 0.195 0.121 

500 - 600 1.500 2.500 0.078 0.048 

400 - 500 1.300 2.300 0.034 0.021 

Soil order 

Rock Outcrops/Entisols  1.000 1.000 0.509 

Rock Outcrops/Inceptisols 0.300 1.300 0.769 0.392 

Inceptisols 5.900 6.900 0.111 0.057 

Inceptisols/Vertisols 1.000 2.000 0.056 0.028 

Bad Lands 1.000 2.000 0.028 0.014 

Lithology 
(unit) 

OMq  1.000 1.000 0.133 

PeEf 0.309 1.309 0.764 0.101 

PlQc 0.253 1.253 0.610 0.081 

K1bl 0.113 1.113 0.548 0.073 

Plc 0.014 1.014 0.541 0.072 

pd 0.059 1.059 0.511 0.068 

TRKubl 0.223 1.223 0.417 0.055 

TRJvm 0.027 1.027 0.406 0.054 

MPlfgp 0.048 1.048 0.388 0.051 

OMql 0.015 1.015 0.382 0.051 

Plbk 0.081 1.081 0.353 0.047 

E2c 0.291 1.291 0.274 0.036 

TRKurl 0.059 1.059 0.258 0.034 

Qft2 0.335 1.335 0.194 0.026 

MuPlaj 0.100 1.100 0.176 0.023 

KEpd-gu 0.080 1.080 0.163 0.022 



37 
 

Kgu 0.566 1.566 0.104 0.014 

Qft1 0.064 1.064 0.098 0.013 

Ekn 0.109 1.109 0.088 0.012 

KPeam 0.027 1.027 0.086 0.011 

PeEtz 0.328 1.328 0.065 0.009 

Kbgp 0.445 1.445 0.045 0.006 

EMas-sb 0.310 1.310 0.034 0.005 

Mgs 0.626 1.626 0.021 0.003 

TRJlr 10.000 11.000 0.002 0.000 

Klsol 0.000 1.000 0.002 0.000 

JKbl 0.000 1.000 0.002 0.000 

Kur 0.000 1.000 0.002 0.000 

OMas 0.000 1.000 0.002 0.000 

Mmn 0.000 1.000 0.002 0.000 
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