
1 
 

A comprehensive study of new hybrid models for ANFIS with five meta-1 

heuristic algorithms (IWO, DE, FA, PSO, BA) for spatial prediction of 2 

groundwater spring potential mapping 3 

Khabat Khosravi1, Mahdi Panahi*2, Dieu Tien Bui*3 4 

1-Department of watershed management engineering, Faculty of Natural Resources, Sari Agricultural Science and 5 
Natural Resources University, Sari, Iran. (E-mail: khabat.khosravi@gmail.com) 6 
2- Department of Geophysics, Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, 7 
Tehran, Iran. (E-mail: panahi2012@yahoo.com) 8 
3- Geographic Information System Group, Department of Business and IT, University College of Southeast Norway, 9 
Gullbringvengen 36, 3800 Bø i Telemark, Norway. (E-mail: Dieu.T.Bui@usn.no) 10 
 11 
 12 
 13 
Abstract 14 
Groundwater is one of the most valuable natural resources in the world; therefore developing 15 
advanced tools for  sustainable management of the groundwater is highly necessary. One of the 16 

most important tools for the management of the groundwater is  groundwater potential map 17 
(GPM). The current study’s aim is to proposed and verified new artificial intelligence methods for 18 

spatial prediction of groundwater spring potential mapping at Koohdasht-Nourabad plain, 19 
Lorestan province, Iran. These methods are new hybrids of Adaptive Neuro-Fuzzy Inference 20 

System (ANFIS) with five meta-heuristic algorithms, Invasive Weed Optimization (IWO), 21 

Differential Evolution (DE), Firefly (FA), Particle Swarm Optimization (PSO), and Bees (BA) 22 
algorithm. Accordingly, a total  of 2463 springs were identified and collected, and then, divided in 23 

two subsets randomly, including 70% (1725 locations) of the total springs were used for training 24 
models, whereas the remaining 30% (738 spring locations) were utilized for the model evaluation. 25 

Thirteen groundwater  conditioning factors, slope degree, slope aspect, altitude, plan curvature, 26 
stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), 27 

distance from fault, distance from river, land-use/land-cover, rainfall, soil order, and lithology  28 
were prepared for modeling. In the next step, the Stepwise Assessment Ratio Analysis (SWARA) 29 

method was employed  to quantify the degree of relevance of these conditioning factors and the 30 
springs. The global performance of these derived models was assessed using the Area Under the 31 

curve (AUC). In addition, the Freidman and Wilcoxon signed rank test were carried out to check 32 
and confirm the best model in this study.  The result showed that these models has high 33 

performance; however, the ANFIS-DE mdel has the highest prediction capability ( AUC = 0.875), 34 
followed by the ANFIS-IWO model, the ANFIS-FA model (0.873), the ANFIS-PSO model 35 

(0.865), and the ANFIS-BA model (0.839). The results of this research can be useful for decision 36 
makers to sustainable management of groundwater resources. 37 

 38 
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BA, Iran. 40 

1. Introduction 41 

Groundwater is defined as the water in a saturated zone which fills rock and pore spaces (Berhanu 42 

et al., 2014; Fitts, 2002), whereas groundwater potential is the possibility of groundwater 43 
occurrence in an area (Jha et al., 2010). The occurrence of groundwater in an aquifer is affected 44 
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by various geo-environmental factors including lithology, topography, geology, fault and fracture 45 
and its connectivity, drainage pattern and land-use/land-cover (Mukherjee, 1996). Geological 46 

strata acts like a conduit and reservoir for groundwater whilestorage and transmissivity  influence  47 
the suitability of exploitation of groundwater in a given geological formation. Downhill and 48 

depression slopes impart runoff and improve recharge and infiltration, respectively (Waikar and 49 
Nilawar, 2014).   50 

Groundwater, which serves as a major source of drinking water to communities, agricultural and  51 
industrial sectors, is one of the most precious natural resources in the world (David Keith Todd 52 

and Mays, 1980) due to its consistent temperature and widespread availability, low vulnerability 53 
to pollution, low development cost, and drought dependability (Jha et al., 2007). Globally, 1.5 54 

billion people are dependent on groundwater, solely for drinking purposes, and about 38% of the 55 
irrigated lands depend on the groundwater itself (Siebert et al., 2013). Due to population growth, , 56 

the demand of water is constantly increased. A major challenge now is how to have sustainable 57 
management system of groundwater to preserve and ensure continuous supply with regards to the 58 

water demand. One of the most important measures for the groundwater resource management is 59 
to collect adequate knowledge on spatial and temporal distribution of groundwater, its quantity as 60 

well as its quality. 61 

For the case of Iran, Approximately two-third of the land is covered by deserts. As a result, similar 62 
to other arid regions, the main sources of water supply for drinking and other are the groundwater 63 

(Nosrati and Van Den Eeckhaut, 2012). Agriculture, which is one of the most prominent economic 64 
sectors in Iran, and especially, in the study area, is still be limited due to water scarcity (Zehtabian 65 

et al., 2010). Groundwater in Iran supplies around 65% of the water use-up and the remaining 35% 66 
is supplied by surface water (Rahmati et al., 2016). One of the most important measures to 67 

responsible for the increase of fresh-water is to identify groundwater potential zoning, an essential 68 
tool for performing a successful groundwater determination, protection, and management program 69 

(Ozdemir, 2011a). 70 

There are a number of methods for groundwater exploitation in traditional approaches including 71 
drilling as well as geological, geophysical, and hydrogeological methods. Yet, they are  time-72 

consuming, costly  (David Keith Todd and Mays, 1980; Israil et al., 2006; Jha et al., 2010; Sander 73 
et al., 1996; Singh and Prakash, 2002). Recently, the application of geographic information 74 

systems (GIS) and remote sensing (RS) has become an effective procedure for groundwater 75 
potential mapping (Fashae et al., 2014) due to their ability in handling huge amount of spatial data, 76 

and their applicability for being used efficiently in various fields, including water resources 77 
management, In more recent years, some probabilistic models such as frequency ratio (Oh et al., 78 

2011), multi-criteria decision analysis (MCDA) (Kaliraj et al., 2014) (Rahmati et al., 2015) 79 
weights-of-evidence (WofE) (Pourtaghi and Pourghasemi, 2014), logistic regression (LR) 80 

(Ozdemir, 2011b; Pourtaghi and Pourghasemi, 2014), evidential belief function (EBF) (Nampak 81 
et al., 2014; Pourghasemi and Beheshtirad, 2015), decision tree (DT) (Chenini and Mammou, 82 

2010), artificial neural network model (ANN) (Lee et al., 2012), and Shannon's entropy (Naghibi 83 
et al., 2015) have been considered for groundwater potential mapping. Bivariate and multivariate 84 

statistical models have disadvantages in measuring the relationship between groundwater 85 
occurrence and conditioning factors (Tehrany et al., 2013; Umar et al., 2014), whereas MCDA 86 

technique is source of bias due to expert opinion. Traditional modeling approaches are mainly 87 
based on linear or additive modeling that is not consistent with natural process in the environment 88 
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(Clapcott et al., 2013). in recent year, machine learning has proven efficient due  to ability to hand  89 
non-linear structure data from various sources with different scales. In addition, machine learning 90 

requires no statistical assumptions. Among machine learning,  ANN  is considered as the most 91 
widely used model for environmental modeling  due to its computational efficiency (Bui et al., 92 

2016; Ghalkhani et al., 2013; Rezaeianzadeh et al., 2014). However, the ANN model has a number 93 
of weaknesses such as poor prediction and error in modeling process (Bui et al., 2016); therefore, 94 

hybrid models have been proposed.  Among hybrid frameworks,  ensemble of fuzzy logic  and 95 
Adaptive Neuro-Fuzzy Inference System (ANFIS) was reported efficient due to its high accuracy 96 

(Güçlü and Şen, 2016; Lohani et al., 2012; Shu and Ouarda, 2008) (Chang and Tsai, 2016). It 97 
should be noted that even though ANFIS model has a higher accuracy than the two other model 98 

individually (Mukerji et al., 2009; Nayak et al., 2005), it has some disadvantages since it is weak 99 
in finding the best weight parameters affecting the prediction accuracy (Bui et al., 2016). Thus, 100 

these weights can be optimized to enhance the prediction accuracy of ground water models with 101 
the use of machine learningoptimization algorithm.  102 

The main aim of the current study is to carry out groundwater spring potential mapping (GSPM) 103 
in Koohdasht-Nourabad plain, Iran using ANFIS model combined with new metaheuristic  104 

algorithms,  Invasive Weed Optimization (IWO), Differential Evolution (DE), Firefly, Particle 105 
Swarm Optimization (PSO), and Bees algorithm (BA). Consequently, the new models have ability 106 

to solve the weakness of the traditional ANFIS model. Another goal of the present study is drawing 107 
a comparison between prediction capabilities of these five new hybrid models in groundwater 108 

potential modeling in the study area as well.. Since no such studies have been published so far in 109 
the study area, the current study is the pioneer work in this subject.   110 

2. Case study description 111 

Koohdasht-Nourabad Plain is located in the west part of the Lorestan province, Iran. It lies between 112 

33°3′ 28 and 34° 22′ 55 N latitudes and between 46° 50′ 19 and 48° 21′ 18 E longitudes (Fig. 1). 113 
The region is located in the semi-arid area with mean annual precipitation of about 450 mm 114 

(Lorestan Weather Bureau report, 2016). The plain covers around 9531.9 km2 with the population 115 
of 362,000 people (according to 2016 census). The primary occupation of most people living in 116 

the region is agriculture with groundwater is the main source. The altitude of the study area varies 117 

between 531 m and 3175 m above the sea level, while the maximum and minimum slope is 0o and 118 
64o, respectively. Geologically, the study area is located in Zagros structural zone of Iran and is 119 

mostly covered by Quaternary and Cretaceous-Paleocene geologic time scale. The dominant land-120 
use/land-cover of the study area is moderate forest (20%) and rocks covers the smallest area 121 

percentage (0.0007%). The residential areas also covers about 3% of the Koohdasht-Nourabad 122 
plain. Rock crop/Inceptisoils are the dominant soil types in the study area, covering about 51% of 123 

the study area. 124 

 125 
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 126 

Fig.1. Groundwater well locations with DEM of the study area 127 

 128 

3. Methodology 129 

The methodological approach is shown in Fig 2.. 130 

3.1. Data preparation 131 

3.1.1. Groundwater spring inventory map 132 

In groundwater modeling, spatial relationship between groundwater springs and conditioning 133 

factors should be analyzed and assessed to determine the best subset of these factors. In Koohdasht-134 
Nourabad plain, a total of 2463 springs were provided by Iranian Water Resources Management. 135 

In which, most of the spring locations were checked during extensive field surveys with GPS hand 136 
hole.  137 
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 138 

Fig.2. Conceptual modelling adopted in the current study 139 

3.1.2. Construction of the training and validation datasets 140 

Spatial prediction of groundwater potential mapping  using machine learning model is considered 141 

as a binary classification with two classes, spring  and non-spring . Therefore, a total of 2463 non-142 
spring locations were randomly generated using the random point tool in ArcGIS10.2. According 143 

to Chung and Fabbri (Chung and Fabbri, 2003), it is possible to validate the model performance 144 
using a cross validation method that splits the dataset for the two parts. The first part is used for 145 

building model called training dataset and the other part is utilized for validating the model 146 
performance named as testing dataset (Pham et al., 2017a). In this study, a ratio of 70/30 was 147 

selected randomly for generating the training and testing the dataset (Pourghasemi et al., 2013a; 148 
Pourghasemi et al., 2012; Pourghasemi et al., 2013b; Xu et al., 2012). Accordingly, both spring 149 

location and non-spring location have been divided into two groups for the training (1725 location) 150 
and the validating (738 location) purposes (Fig 1). 151 

Finally, both the training and the testing datasets were converted to raster format and then overlaid 152 
with 13 groundwater conditioning factors to extract their attribute values, where the spring pixels 153 

were assigned to  “1” and non-spring pixels were assigned to “0” (Bui et al., 2015). 154 
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3.1.3. Groundwater conditioning factor analysis 155 

3.1.3.1. Selection of the Groundwater conditioning factor and multi-collinearity analysis 156 

After the initial selection of the conditioning factors, these factors should be assessed for multi-157 

collinearity problems. Multi-collinearity takes place when two or more non-independence 158 
conditioning factors are highly correlated or in other words inter-dependent (Li et al., 2010). 159 

Several methods have been proposed to diagnose multi-collinearity,  andamong them, Variance 160 
Inflation Factor (VIF) and Tolerance are widely used in environmental modeling (Bui et al., 2016; 161 

O’brien, 2007). Factors with VIF greater than 5 and tolerance less than 0.1 indicate multi-162 
collinearity problems existed (Bui et al., 2011; O’brien, 2007).  163 

In the current study, 13 conditioning factors have been selected including slope degree, slope 164 

aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), 165 
Terrain roughness index (TRI), distance from fault, distance from river, land-use/land-cover, 166 

rainfall, soil order, and lithology units. These factors have been determined based literature review, 167 
characteristics of the study area, and data availability (Mukherjee, 1996; Nampak et al., 2014; Oh 168 

et al., 2011; Ozdemir, 2011a). In fact, no agreement is reached on which the factors to be used for 169 
modeling. The process of converting continuous variables into categorical classes were carried out 170 

based on our frequency analysis of springs location (Khosravi et al, 2018; Ahmadisharaf et al., 171 
2016) in order to define the class intervals (Bui et al., 2011).  172 

Digital Elevation Model (DEM) has been downloaded from ASTER global DEM with 30x30 m 173 
grid size. Based on the DEM,  slope degree, slope aspect, altitude,  plan curvature, SPI, TWI and 174 

TRI were derived. Slope degree of the study areas varies between 0-64 degree. Slope factor has a 175 
direct impact on the runoff generation and groundwater recharge. As the lower the slope, the lower 176 

runoff generation and the higher groundwater recharge. The slope degree has been divided in five 177 
categories using the quantile classification scheme (Tehrany et al., 2013; Tehrany et al., 2014), 178 

including 0-5.5, 5.5-12.11, 12.11-19.4, 19.4-28.7, 28.7-64.3 degree (Fig 3a). Slope aspect is 179 
selected because it affects the groundwater potential through solar radiation. In the study area, the 180 

north aspect receives a lower sun light, and as a result, is less wet and low evapotranspiration. The 181 
slope aspect has been provided in 5 different classes including, flat, north, west, south and east 182 

(Fig 3b). The third conditioning factor is altitude. Altitude was divided into five classes using the 183 
quantile classification scheme, including 531-1070, 1070-1385, 1385-1703, 1703-2068 and 2068-184 

3175 m (Fig.3c). Plan curvature used used with  three classes, namely concave (<−0.05), flat 185 
(−0.05–0.05), and convex (>0.05) (Fig.3d) (Pham et al.2017). SPI is related to erosive power of 186 

surface runoff, whreas TWI links to amount of the flow that accumulates at any point in the 187 
catchment.. SPI, TWI and TRI were constructed using the Automated Geoscientific Analyses tool 188 

in SAGA-GIS 2.2 software and finally divided into five classes. They are 0-48664, 48664-227099, 189 
227099-583969, 583969-1330153, 1330153-4136452 (Fig.3e) for SPI. For TWI, these classes are 190 
2.1-4.6, 4.6-5.6, 5.6-6.6, 6.6-7.9, 7.9-11.9 (Fig.3f)  and for TRI, these classes are 0-8.7, 8.7-18.2, 191 

18.2-29.9, 29.9-46.6, 46.6-185 (Fig.3g). 192 

Distance from fault and river factors have been generated using fault and river of the study area 193 

using the multiple ring-buffer tool in ArcGIS10.2. with five classes including: 0-200, 200-500, 194 
500-1000, 1000-2000 and >2000 m (Fig. 3h and Fig. 3i). Lithology plays a key role in determining 195 

the groundwater potential occurrences due to different infiltration rate of formation that has been 196 
considered in some previous studies (Adiat et al., 2012; Nampak et al., 2014; Pradhan, 2009). 197 
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Land-use/land-cover of the study area has been provided through Landsat 7 Enhanced Thematic 198 
Mapper plus (ETM+) images downloaded from the US Geological Survey (USGS) and supervised 199 

image classification techniques (Lillesand et al., 2014). Finally, the accuracy of the land-use/land-200 
cover map has been controlled by filed surveys.  201 

For the case of land-use/land-cover, twenty five types were recognized including agriculture, 202 
garden, dense-forest, good rangeland, poor forest, waterway, mixture of garden and agriculture, 203 

mixture of agriculture with dry farming, mixture of agriculture with poor-garden, dry farming, 204 
follow, dense rangeland, very poor forest, mixture of waterway and vegetation, mixture of 205 

moderate forest and agriculture, mixture of moderate rangeland and agriculture, mixture of poor 206 
rangeland and follow, mixture of low forest and follow, wood-land, moderate forest, moderate 207 

rangeland, poor rangeland, bare soil and rock, urban and residential, mixture of  very poor forest, 208 
and rangeland have been identified and assigned to code 1 to 25 respectively (Fig.3j).  209 

As the major source of recharge to the groundwater, rainfall has been provided via mean annual 210 

historical rainfall data of past 15 years (2000–2015) using 4 rain-gauge stations in the study area. 211 
Inverse distance weighted (IDW) method has been used for deriving the rainfall map with five 212 

categories including: 300-400, 400-500, 500-600, 600-700, 700-800 mm (Fig 3k). The soil 213 
properties directly affect the water infiltration rate as well as groundwater recharge. The 1:50,000 214 

soil map of Lorestan province obtained from the Iranian Water Resources Department (IWRD) 215 
has been used for the analysis. The soil map was in a polygon format which needed to be converted 216 

to grid. The most dominant feature of the study area is rock outcrop/Entisols, rock 217 
outcrop/Inceptisols, Inceptisols, Inceptisols/Vertisols and Badlands (Fig.3l). 218 

 219 
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 220 

Fig.3. Thematic Groundwater conditioning factor in the study area: slope degree(a), slope aspect (b), 221 
altitude (c), plan curvature (d), SPI (e), TWI (f), TRI (g), distance from fault (h), distance from river (i), 222 
land-use/land-cover (j), rainfall (k), soil order (l), and lithology units (m). 223 
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 224 

Fig.3.Continued 225 



10 
 

 226 

Fig.3. Continued 227 

 228 

Finally, all the aforementioned groundwater conditioning factors for modeling purposes were 229 
converted to a raster grid with 30 m × 30 m in the ArcGIS 10.2 software.  Lithology (unit) has a 230 

high influence on infiltration; thus, it has been considered in the current study. Lithology for the 231 
study area has been constructed in scale of 1:100000, which was provided by Iranian Department 232 

of Geology Survey (IDGS). Accordingly,  thirty classes were used including: OMq, PeEf, PlQc, 233 
K1bl, Plc, pd, TRKubl, TRJvm, MPlfgp, OMql, Plbk, E2c, TRKurl, Qft2, MuPlaj, KEpd-gu, Kgu, 234 

Qft1, Ekn, KPeam, PeEtz, Kbgp, EMas-sb, Mgs, TRJlr, Klsol, JKbl, Kur, OMas and Mmn and 235 
assigned to code 1 to 30 respectively (Fig.3m).  236 

3.2. Spatial relationship between spring location and conditioning factors 237 

Step-wise Assessment Ratio Analysis (SWARA),  a Multi-Criteria Decision Making (MCDM) 238 
was first introduced by Keršuliene (Keršuliene et al., 2010) was used due to both simple and rooted 239 

on experts’ views SWARA has received great attention in various fields in the last five years 240 
(Alimardani et al., 2013; Hong et al., 2017).  In SWARA, the expert allocates the highest and 241 

lowest rank from the most and least valuable criterion, respectively. Afterwards, the all-inclusive 242 
ranks are specified by the average value of ranks. The phases of method are as the following:  243 

Phase one  (for evolving decision making models): first, the experts define the problem solving 244 

criteria. By using the practical knowledge of the experts, the priority for each criteria are 245 
determined as well and the criteria are organized in descending order finally.  246 

Phase two( regarding to each parameter’s ranking): the following trend is employed for calculation 247 
of the weight in each criteria: 248 

Starting from the second criterion, the respondent explains the relative importance of the criterion 249 

 𝑗 in relation to the (𝑗 − 1)  criterion, and for each particular criterion as well. As Keršuliene 250 
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mentioned, this process specifies the Comparative Importance of the Average Value, 𝑆𝑗 as follows 251 

(Keršuliene et al., 2010): 252 

𝑆𝑗 =
∑ 𝐴𝑖

𝑛
𝑖

𝑛
                                                                                                                                                      (1) 253 

where 𝑛 is the number of experts; 𝐴𝑖 explicates the offered ranks for each factor by the experts; j 254 

stands for the number of the factor. 255 

Subsequently, the coefficient 𝐾𝑗 is determined as follows: 256 

𝐾𝑗 = {
1                              𝑗 = 1
𝑆𝑗 + 1                    𝑗 > 1                                                                                                                    (2) 257 

Recalculation of weight𝑄𝑗 is as the following: 258 

𝑄𝑗 =
𝑋𝑗−1

𝐾𝑗
                                                                                                                                                       (3) 259 

The relative weights of the evaluation criteria are calculated by the following equation: 260 

𝑊𝑗 =
𝑄𝑗

∑ 𝑄𝑗
𝑚
𝑗=1

                                                                                                                                                (4) 261 

where 𝑊𝑗 shows the relative weight of j-th criterion, and m stands for the total criteria number. 262 

3.3. Groundwater spring prediction modelling 263 

In this research, five new hybrid models namely ANFIS-DE, ANFIS-IWO, ANFIS-FA, ANFIS-264 
PSO, ANFIS-BA were utilized for the analysis of determination of groundwater potential zonation 265 

in the study areas and for comparison between their prediction capabilities.   266 

3.3.1. Adaptive Neuro-Fuzzy Inference System  267 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is obtained from the combination of Artificial 268 

Neural Network (ANN) and fuzzy logic (Jang, 1993). ANFIS has been proven more efficient than 269 
the two mentioned models in various fields (Bui et al., 2016). This is because ANN has the 270 

automatic ability but is not able to explain how to get the output from decision making. Fuzzy 271 
logic, on the other hand, is the reverse of ANN by generating output from fuzzy logical decision 272 

without the ability of self-operating learning (Aghdam et al., 2017; Chen et al., 2017b; 273 
Phootrakornchai and Jiriwibhakorn, 2015). Consequently, ANFIS was proposed to solve nonlinear 274 

and complex problems in one framework (Rezakazemi et al., 2017). This model has been used in 275 
date processing, fuzzy control and others fields (Zengqiang et al., 2008). The members of ANFIS 276 

are the function parameters from dataset for describing the system behavior (Jang, 1993). ANFIS 277 
applies to Takgi-Sugeno-Kang (TSK) fuzzy model with two rules of “If-Then” with two inputs 278 

x1 and  x2, and one output 𝑓 (Takagi and Sugeno, 1985), as follows: 279 

𝑅𝑢𝑙𝑒2 1: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1                                                             (5) 280 
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𝑅𝑢𝑙𝑒 1: 𝑖𝑓 𝑥2 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵2 , 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥2 + 𝑞2𝑥2 + 𝑟2                                                              (6) 281 

Jang’s ANFIS consists of feed-forward neural network with six distinct layers. Detailed 282 

description of ANFIS can be seen in (Jangs, 1993). 283 

3.3.2. Meta-heuristic optimization 284 

The main goal of this phase is to find the optimal antecedent and the consequent parameters of 285 

the ANFIS model using IWO, DE, FA, PSO, and Bee algorithms. Fig.4 illustrates a general 286 
methodological flow of ANFIS  287 

 288 

 289 
 290 

Fig.4. General methodological flow of ANFIS 291 

3.3.2.1. IWO algorithm 292 

Invasive weed optimization (IWO) is one of the metaheuristic algorithms which mimics the 293 

colonizing behavior of weeds. Its design is based on the way to find proper place for growth and 294 
reproduction of weeds by Mehrabian and Locus (Mehrabian and Lucas, 2006). One characteristic 295 

of this algorithm is its simplified structure; the number of input parameters is low and has strong 296 
robustness. Furthermore, it is easy to understand and the same merit causes it to be used for solving 297 
difficult nonlinear optimization problems (Ghasemi et al., 2014; Naidu and Ojha, 2015; Zhou et 298 

al., 2015). Moreover, by comparing the results of IWO algorithm and other algorithms like SFLA 299 
and PSO for solving optimization problems, IWO algorithm can compete with other ones 300 

(Ghasemi et al., 2014). This algorithm consists of 4 parts as following:  301 

1- Initialization 302 
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Random spread of some limited weeds in searching area with dimension D is considered as the 303 
initial population of solutions.  304 

2- Reproduction 305 

Weeds are able to reproduce some seeds in accordance with their fitness during their growth. In 306 

other words, the number of produced seeds from Smin value for weeds starts with Worst fitness 307 

and then increases in linear fashion to Smax  for them with best fitness.  308 

3- Spatial dispersal 309 

Produced seeds are distributed in the searching area randomly in a way that is located close to their 310 
families with normal distribution, their mean equal to zero, and different variances. Moreover, 311 

standard deviation decreases in each iteration from σmin  to σmax and is calculated by the following 312 
non-linear equation:  313 

σ𝑖𝑡𝑒𝑟 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)𝑛

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)𝑛 (σ
𝑚𝑖𝑛

− σ𝑚𝑎𝑥) + σ𝑚𝑎𝑥                                                                                        (7) 314 

 315 

where itermax  is the last iteration, σiter is the standard deviation of iteration, and n is the non-linear 316 

index considered between 2 and 3 (Saravanan et al., 2013).  317 

4- Competitive exclusion 318 

All weeds and their seeds combine in order to make up the population of next generation. If the 319 

population exceeds a definite maximum, those weeds with lower fitness will be removed. The 320 
reproduction mechanism and the competition provide breeding opportunity for proper weeds. If 321 

they generate fitter offspring, the offspring can survive the competition. 322 

5- Termination Condition  323 

Step 2 to 4 were repeated to reach its maximum defined value and the weeds with the best fitness 324 
will be the nearest condition to optimal solution. 325 

3.3.2.2. DE algorithm 326 

DE is another popular algorithm used as an evolutionary algorithm in recent years used for finding 327 
global optimal answers in a problem with continuous space  (Chen et al., 2017a; Das et al., 2009). 328 

This method was first introduced by Storn and Price (Storn and Price, 1997). It is very similar to 329 
genetic algorithm that produces next optimum generation by three operators: mutation, crossover, 330 

and selection. This algorithm starts by producing random population in which each individual of 331 

population is a symbol of solution to the problem. Vector  Xi
G = (x1,i

G , x2,i
G , x3,i

G , … , xD,i
G ) shows each 332 

individual of population i = {0,1,2, … , NP} is a number of each individual, in which D stands for 333 

the search dimension or in other words, is a component problem and G = {0,1,2, … , Gmax} 334 

generation time that Gmax is the total number of generations. By assuming the maximum and 335 

minimum of every dimension of searching space, there are XL = {x1,L, x2,L, … , xD,L} and XU =336 

{x1,U, x2,U, … , xD,U}, respecitivly; initial population is defined as the following (Storn and Price, 337 

1997): 338 

𝑥𝑗,𝑖
0 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿)                                                                                                    (8) 339 
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where rand(0,1) is a uniformly distributed random number in [0, 1] 340 

3.3.2.2.1. Mutation 341 

The first operator in DE algorithm is mutation, which produces mutant vector Vi
G =342 

(Vi
G, V2

G, … , VD
G) by using each individual which is called target vector. Four well-known mutant 343 

operators that are used are as the following:  344 

DE/rand/1 : 𝑉𝑖
𝐺 = 𝑋𝑟1

𝐺 + 𝐹. (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) 345 

DE/rand/2 : 𝑉𝑖
𝐺 = 𝑋𝑟1

𝐺 + 𝐹. (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) + 𝐹. (𝑋𝑟4
𝐺 − 𝑋𝑟5

𝐺 ) 346 

DE/best/1 : 𝑉𝑖
𝐺 = 𝑋𝑏𝑒𝑠𝑡

𝐺 + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 ) 347 

DE/best/2 : 𝑉𝑖
𝐺 = 𝑋𝑏𝑒𝑠𝑡

𝐺 + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 ) + 𝐹. (𝑋𝑟3
𝐺 − 𝑋𝑟4

𝐺 ) 348 

DE/current – to – rand/1 : 𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑖

𝐺) + 𝐹. (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) 349 

DE/current – to – rand/1 : 𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹. (𝑋𝑏𝑒𝑠𝑡
𝐺 − 𝑋𝑖

𝐺) + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 )                                               (9) 350 

r1, r2, r3, r4, are the integer numbers that have been chosen randomly from [0,NP] and the 351 

condition of r1 ≠ r2 ≠ r3 ≠ r4 exists. F is the Scale factor that determines the mutation scale. It 352 

is generally selected as a random number from [0,1]. Xbest
G  is an individual that has the best fitness 353 

value in G generation.  354 

3.3.2.2.2. Crossover 355 

The purpose of this step is to produce trail vector (Uij). Thus, this operator is defined by replacing 356 

some elements of the target vector Xi
G with mutant vector Vi

G as the following (Storn and Price, 357 

1997):  358 

𝑈𝑖𝑗 = {
𝑉𝑖𝑗

𝐺      𝑖𝑓 𝑟𝑎𝑛𝑑 [0,1] ≤ 𝐶𝑅  𝑜𝑟  𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑋𝑖𝑗
𝐺    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

                                                                                     (10) 359 

where i ∈ {1,2, … , NP}, j ∈ {1,2, … , D}, jrand, is a random number from [1,D] and CR is the 360 
crossover rate which is uniformly distributed random number in [0,1].  361 

3.3.2.2.3. Selection 362 

Selection is characterized by comparing fitness value of Uij trail vector with the target vector (Xi
G) 363 

and choosing the best ones as the next generation (Storn and Price, 1997).  364 

𝑋𝑖 = {
𝑈𝑖

𝐺      𝑖𝑓 𝑓(𝑈𝑖
𝐺 ≤ 𝑓(𝑋𝑖)

𝑋𝑖
𝐺       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

                                                                                                              (11) 365 

  366 

3.3.2.3. FA algorithm 367 
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. Firefly algorithm has been defined by Yang in Cambridge University (Yang, 2009) as an 368 
evolutionary algorithm. In recent years, many researches in different fields have taken advantage 369 

of this algorithm for optimization. This algorithm is known as meta-heuristic algorithm that is 370 
originated from flashing and communication behavior of fireflies (Yang, 2009; Yang, 2010).  Like 371 

in every other swarm intelligence algorithm, where their components are known as solutions for 372 
the problems, in this algorithm each firefly is a solution and its light intensity is the objective 373 

function value. In other words, a firefly with more light intensity is known as a solution. On the 374 
other hand, this firefly attracts more fireflies.  375 

Generally, FA algorithm follows three idealized rules as below: 376 

1- All firefly species are unisex, with each of them attracting other fireflies without considering 377 
their gender (Amiri et al., 2013). 378 

 2- Attractiveness of a firefly is related to its light intensity. Thus, from two flashing firefly species, 379 

the one with lower light intensity moves toward the other one with higher light intensity. It should 380 
be noted that the distance between fireflies is significant because the farther they are from each 381 

other, the dimmer the light gets and the attractiveness declines exponentially (Gandomi et al., 382 
2013). Moreover, if the light intensity of fireflies were the same; they would move randomly 383 

(Senapati and Dash, 2013).  384 

3- Light intensity of a firefly is defined as an objective function value and must be optimized.  385 

In order to design FA, two substantial issues are needed to be defined: light intensity variation (I) 386 

and the attractiveness' formulation(β). Fireflies’ attractiveness is determined by their light 387 
intensity or brightness. In addition, brightness is associated with the objective function. The light 388 

intensity I(r) varies with the distance r monotonically and exponentially as: 389 

I(r) = I0e−γr2
                                                                                                                        (12) 390 

where I is the original light intensity, γ is the fixed light absorption coefficient and  r is the distance 391 

between the two fireflies. Also, attractiveness rate is defined as below:  392 

β = β0e−γr2
                                                                                                                             (13) 393 

where β0  is the attractiveness when r=0. Also, the distance between two fireflies i and j with Xj 394 

and Xj is determined by the following equation:  395 

rij = ‖Xi − Xj‖ = √∑ (Xi,k − Xi,k)2d
k=1                                                                                   (14) 396 

where 𝑑 is the number of the problem dimensions and  𝑋𝑖,𝑘 is the 𝑘 − 𝑡ℎ element of the 𝑖 − 𝑡ℎ 397 

firefly. Also, the movement of a firefly 𝑖 which is attracted to another attractive firefly 𝑗, is 398 
determined by (Yang, 2009): 399 

𝑋𝑖 = 𝑋𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑋𝑗 − 𝑋𝑖) + 𝛼(𝑟𝑎𝑛𝑑 −
1

2
)                                                                                     (15) 400 
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In Eq. (21), the first and the second terms determines the attraction. However; the third term is 401 

regarded as a randomization with α, which is the step parameter, and ultimately, the rand is a 402 

random number generator which is uniformly distributed in a range from 0  to 1. 403 

3.3.2.4. PSO algorithm 404 

PSO was first designed by Eberhart and Kennedy (Eberhart and Kennedy, 1995). Sensible 405 

characteristics of this algorithm include being powerful for optimizing the non-linear problems, its 406 
quick convergence, and relatively low calculations. These characteristics have made distinctions 407 

between this algorithm and other algorithms (Cheng et al., 2010). Thus, PSO algorithm in those 408 
problems that need optimization has a special place among researches. This algorithm has been 409 

inspired by the way the birds and fish use their collective intelligence for finding the best way to 410 
get food (Kennedy, 2011; Kennedy and Eberhart, 1995). Therefore, each bird implemented in this 411 

algorithm acts as a particle that is in fact a representative of solution to problems. These particles 412 
find the optimum answers for the problem by searching in “n” dimension space whereas “n” is the 413 

number of problem's parameters. For this purpose, particles were scattered randomly in considered 414 
space at the beginning of algorithm implementation. Then, the positioning in each iteration can 415 

improve by using equation 1 and 2 and finding better situations in that iteration and the best 416 

position of particles vector addition.  Assuming that xi
t = (xi1

t , xi2
t , … , xin

t ) and vi
t =417 

(vi1
t , vi2

t , … , vin
t ) are the position and velocity of the "i − th" particle in "t th" iteration, 418 

respectively. Then, position and velocity of "i th" particle in "(i + 1) th" iteration is calculated by 419 
summing equation 1-2 (Eberhart and Kennedy 1995).  420 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑖
𝑡 − 𝑥𝑖

𝑡)           𝑤𝑖𝑡ℎ   −𝑣𝑚𝑎𝑥 ≤ 𝑣𝑖
𝑡+1 ≤ 𝑣𝑚𝑎𝑥   421 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                                                                                     (16) 422 

where xi
t is the last position of "i th" particle, pi

t the best found position by "i th" 423 

particle, gi
t the best found location by particles, r1, r2 the random number between 1 424 

and 0. ω, c1 and c2 the inertia weight, cognitive coefficient, and social coefficient, 425 

respectively. In order to value them, many papers have been presented (Olsson, 2010) 426 
and finally the following equation has been used (Nieto et al., 2015).  427 

𝜔 =
1

2𝑙𝑛2
  𝑎𝑛𝑑  𝑐1 = 𝑐2 = 0.5 + 𝑙𝑛2                                                                                       (17)  428 

It is noteworthy that the algorithm continues until the best found position by each 429 
particles unifies with the best found position of particles. In other words, all particles 430 

accumulate in one position and actually the answer to the problem is optimized.  431 

3.3.2.5. Bee algorithm 432 

One of the meta-heuristic algorithms designed according to bee swarm-based is Bee 433 

Algorithm. This algorithm which was first introduced by Pham (Pham et al., 2005; 434 
Pham et al., 2011) is inspired by foraging behavior of bees' colonies in search of food 435 

sources (flower patches) located near the hive. In the beginning, evenly distributed 436 
scout bees are scattered randomly in different directions to identify flower patches. 437 

After that, scout bees come back to hive and start a specific dance called waggle dance. 438 
This dance is for communicating with others in order to share the information of 439 
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discovered flower patches. This information indicates direction, distance, and nectar 440 
quality of the flower patches. All the information helps the colony to have proper 441 

evaluation of all flower patches. After evaluation, scout bees come back to the location 442 
of discovered flower patches with other bees named recruit bees. Regarding the 443 

distance and the amount of nectar, different number of recruit bees are assigned to each 444 
flower patch. In other words, those flower patches with better nectar quality dedicate 445 

more recruit bees to themselves. Following that, recruit bees evaluate the quality of 446 
flower patches when performing the harvest process so that they leave the flower 447 

patches if they have low quality. Conversely, if the flower patch quality is good, it will 448 
be announced during the next waggle dance. Before implementing the BA algorithm, 449 

the following parameters need to be defined:  450 

The number of scout bees (n), the number of patches selected out of n visited points 451 

(m), the number of best patches out of m selected patches (e), the number of bees 452 
recruited for e best patches (nep), the number of bees recruited for other (m–e) selected 453 

patches (nsp), the size of patches (ngh) and the stopping criterion. 454 

At first, “n” number of scout bees with uniform distribution is scattered in search space 455 
randomly. Then, the algorithm starts to evaluate the fitness of those seen places by 456 

scout bees in order to define and select suitable bees as elite bees.  457 

The sites of elite bees are selected from local search and the algorithm implements the 458 

neighborhood searches within the selected bees’ sites for the best ones where more 459 
bees exist. Only the proper bee is chosen to survive the next bee population in each site 460 

and other bees are allocated around the search space randomly to find new potential 461 
solutions. These steps continue until the algorithm convergences. 462 

3.4. Model’s performance assessment 463 

Forecasting error as the quantitative approaches, define as the difference between the 464 

observed and estimated values which have been used for determination of the accuracy 465 
of the performed models. In the current study the model prediction capabilities for each 466 

hybrid model in terms of spatial groundwater prediction was evaluated using Mean 467 
Squared Error (MSE) as follows (Tien Bui et al, 2016): 468 

 𝑀𝑆𝐸 =
∑ (𝑂𝑖−𝐸𝑖)2𝑛

𝑖=1

𝑁
                          (18) 469 

where 𝑂𝑖 and 𝐸𝑖  are observation (target) and prediction (output) values in both training 470 

and testing dataset and N is the total samples in the training or the testing dataset. 471 

3.5. Model’s performance validation and comparisons 472 

According to Chung and Fabbari (Chung and Fabbri, 2003), validation is one of the 473 

most important steps in any spatial prediction modeling and without validation, the 474 
result of the models do not have any scientific significance. Prediction capability of 475 

these five spatial groundwater models must be evaluated using both success-rate and 476 
prediction-rate curves (Hong et al., 2015). Success-rate curves show how suitable the 477 

built model is for the groundwater potential assessment or for the evaluation of the 478 
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goodness of fit (Gaprindashvili et al., 2014). Success-rate curves have been constructed 479 
using groundwater potential maps and the number of spring locations used in training 480 

dataset (Pradhan et al. 2010). Prediction rate curves which show the probabilities of the 481 
groundwater occurrences demonstrate how good the model is or evaluate the prediction 482 

power of the models. Therefore, it can be used for model prediction capabilities 483 
(Brenning, 2005). The construction procedure of prediction rate is similar to the 484 

success rate which the testing dataset (were not used in the training phase) has been 485 
used for instead of training dataset. The area under the curve (AUC) of success and 486 

prediction rate is the base for evaluation of model prediction power or assessment 487 
accuracy of the groundwater potential models quantitatively (Khosravi et al., 2016a; 488 

Khosravi et al., 2016b; Pham et al., 2017b). The AUC value varies from 0.5 to 1; the 489 
higher the AUC, the better the prediction capability of models. 490 

 3.6. Inferential statistics 491 

3.6.1-Freidman test 492 

As the conditioning factors have been classified into different classes, non-parametric 493 
test has been used in the current study. Non-parametric statistical procedures such as 494 

Freidman test (Friedman, 1937) have been used regardless of statistical assumptions 495 
(Derrac et al., 2011) and do not need the data to be normally distributed. The main aim 496 

of this test is to find whether there is a significant difference between the performed 497 
models or not. In other words, performing multiple comparisons to detect significant 498 

differences between the behaviors of two or more models (Beasley and Zumbo, 2003). 499 
The null hypothesis (H0) is that there are no differences among the performance of the 500 

groundwater potential models. The higher the P-value, the higher the probability that 501 
the null hypothesis is not true since if the p-value is less than the significance level 502 

(α=0.05), the null hypothesis will be rejected. 503 

3.6.2 Wilcoxon signed-rank test 504 

The most important drawback of Freidman test is that it only illustrates whether there 505 

is any difference between the models or not, and does not have the ability to show 506 
pairwise comparisons among performed model. Therefore, another non-parametric 507 

statistical test named Wilcoxon signed-rank test have been performed. To evaluate the 508 
significance of differences between the performed groundwater potential models, the P 509 

value and Z value have been used. 510 

4. Result and analysis 511 

4.1. Multi-collinearity diagnosis 512 

Result of multi-collinearity analysis is shown in Table 1. Result has revealed that as 513 

VIF is less than 5 and the tolerance is greater than 0.1, there isn’t any multi-collinearity 514 
problem among conditioning factors and all of factors are independent.  515 

Table.1. Multi-collinearity analysis for conditioning factors 516 

No 

Groundwater conditioning factors Collinearity Statistics 

 Tolerance VIF 
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1 Slope degree 0.231 2.401 

2 Slope aspect 0.206 4.270 

3 Altitude 0.801 2.097 

4 Plan curvature 0.513 1.446 

5 SPI 0.410 1.689 

6 TWI 0.541 2.113 

7 TRI 0.328 1.939 

8 Distance from fault 0.408 2.25 

9 Distance from river 0.212 3.126 

11 Land-use/land-cover 0.296 3.891 

12 Rainfall 0.298 1.686 

13 Soil order 0.205 4.039 

10 Geology (Unit) 0.215 4.150 

 517 

4.2. Determination of the most important parameters 518 

The most common method of information gain ratio (IGR) was applied to identification of the 519 

most important conditioning factors. Result shows that all thirteen conditioning factors are 520 
effective on groundwater occurrences as the land-use/landcover factor has the most important 521 

impact on groundwater (IGR=0.502) followed by lithology (IGR=0.465), rainfall (IGR=0.421), 522 
TWI (IGR=0.400), soil (IGR=0.370), TRI (IGR=0.337), slope degree (IGR=0.317), altitude 523 

(IGR=0.287), distance to river (IGR=0.139), aspect (IGR=0.066), plan curvature (IGR=0.0548), 524 
distance to fault (IGR=0.0482) and SPI (IGR=0.0323). 525 

4.3. Spatial relationship between springs and the conditioning factors by SWARA method 526 

The spatial correlation between springs and the conditioning factor has been shown in Table 2. For 527 
the slope, the class of 0-5.5 degree shows the highest probability (0.45) on spring groundwater 528 

occurrences and there is a contrary correlation between slope degree and SWARA values. As the 529 
slope degree increases, the probability of spring occurrence has reduced. In the case of slope 530 

aspect, the east aspect (0.44) has the most impact on spring occurrences followed by north (0.22), 531 
west (0.177), south (0.15) and flat (0.12) in the Koohdasht- Nourabad plain. According to 532 

calculated results, in terms of altitude, the springs are the most abundant in the altitude of 1703-533 
2068 m (0.6) and the least abundant in the altitude of 1070-1385 m (0.04). The SWARA model is 534 

high in flat areas (0.4), followed by concave (0.38) and convex (0.2). For SPI, the highest SWARA 535 
value is found for the classes of 583969-1330153 (0.46), followed by the classes of 227099-536 

583969(0.0.23) and 48664-227099 (0.19). In the case of the TWI, the SWARA values decrease 537 
when the TWI reduces, while the highest TWI belongs to the classes of 6.6-7.9 (0.47), and the 538 

lowest is for 2.1-4.6 (0.02). There is an adverse relationship between TRI and SWARA value, and 539 
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as the TRI increases, the SWARA value reduces. The highest and the lowest values of SWARA 540 
also belongs to classes 0-8.7 (0.54) and 46.6-185 (0.001), respectively. For distance from the fault, 541 

distance less than 2000 m has the highest impact on spring occurrences and with increase in the 542 
distance (greater than 2000 m), the probability of spring occurrences has reduced. The highest 543 

SWRA value belongs to distance from the fault of 500-1000 m (0.29) and the lowest value is for 544 
greater than 2000 m (0.1). For the distance to river, it can be seen that the class of 0-200 m has the 545 

highest correlation with the spring occurrence (0.46) and there is a contrary relationship between 546 
spring occurrence and SWARA values; as the more the distance from the river, the lower the spring 547 

occurrence probability. In the case of land use, the highest SWARA values are shown for garden 548 
areas (0.219), followed by mixture of garden and agriculture (0.17), agricultural areas (0.12), 549 

whereas the lowest SWARA is for bare soil and rock (0.00063). The rainfall between 500 and 600 550 
mm has the highest SWARA value with 0.61 and the lowest SWARA belongs to 300-400 mm 551 

(0.02). The Inceptisols have the highest SWARA values (0.5) followed by rock outcrop/Entisols 552 
(0.39), rock outcrop/Inceptisols (0.056), Inceptisoils/Vertisoils (0.028), and Badlands (0.014). The 553 

highest probability respectively belongs to the highly porous and very good water reservoir karstic 554 
oligomiocene and cretaceous pure carbonate formation (OMq and K1bl), the young and poorly 555 

consolidated highly porous detrital rock units (PeEf and Plq) and the unconsolidated quaternary 556 
alluvium (PlQc). 557 

Table.2. Spatial correlation between conditioning factors and the spring locations by SWARA methods 558 

Factors Classes 

Comparative 
importance of 
average value 

Kj 

Coefficient 
Kj=Sj +1 

wj=(X(j-1))/kj weight wj/ sigma wj 

Slope 

(degree) 

0 - 5.55  1.000 1.000 0.454 

5.55 - 12.11 0.300 1.300 0.769 0.349 

12.11 - 19.43 1.500 2.500 0.308 0.140 

19.43 - 28.77 2.000 3.000 0.103 0.047 

28.77 - 64.37 3.500 4.500 0.023 0.010 

Slope aspect 

East  1.000 1.000 0.448 

North 1.000 2.000 0.500 0.224 

West 0.300 1.300 0.385 0.172 

South 0.100 1.100 0.350 0.156 

Flat 0.8 1.05 0.31 0.121 

Altitude (m) 

1703 - 2068  1.000 1.000 0.608 

1385 - 1703 2.200 3.200 0.313 0.190 

2068 - 3175 0.800 1.800 0.174 0.106 

531 - 1070 1.000 2.000 0.087 0.053 

1070 - 1385 0.200 1.200 0.072 0.044 
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Plan 
curvature 

Flat  1.000 1.000 0.408 

concave 0.050 1.050 0.952 0.388 

convex 0.900 1.900 0.501 0.204 

SPI 

583969.72 - 1330153.27  1.000 1.000 0.466 

227099.33 - 583969.72 1.000 2.000 0.500 0.233 

48664.14 - 227099.33 0.200 1.200 0.417 0.194 

0 - 48664.14 1.000 2.000 0.208 0.097 

1330153.27 - 4136452.25 10.000 11.000 0.019 0.009 

TWI 

6.64 - 7.92  1.000 1.000 0.471 

5.60 - 6.64 0.700 1.700 0.588 0.277 

7.92 - 11.97 1.300 2.300 0.256 0.120 

4.63 - 5.60 0.100 1.100 0.233 0.110 

2.12 - 4.63 4.000 5.000 0.047 0.022 

TRI 

0 - 5.59  1.000 1.000 0.544 

5.59 - 12.66 0.800 1.800 0.556 0.302 

12.66 - 20.62 1.500 2.500 0.222 0.121 

20.62 - 30.93 3.000 4.000 0.056 0.030 

30.93 - 75.13 10.000 11.000 0.005 0.003 

Distance 
from fault 

(m) 

0 - 200  1.000 1.000 0.242 

200 - 500 0.050 1.050 0.952 0.231 

500 - 1000 0.100 1.100 0.866 0.210 

1000 - 2000 0.050 1.050 0.825 0.200 

> 2000 0.700 1.700 0.485 0.118 

Distance 

from river 
(m) 

0 - 200  1.000 1.000 0.464 

200 - 500 1.900 2.900 0.345 0.160 

500 - 1000 0.050 1.050 0.328 0.152 

1000 - 2000 0.300 1.300 0.253 0.117 

> 2000 0.100 1.100 0.230 0.107 

Land-
use/land-

cover 

Garden  1.000 1.000 0.219 

mixture of garden and 
agriculture 

0.282 1.282 0.780 0.171 

agriculture 0.340 1.340 0.582 0.128 
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mixture of poor rangeland and 
follow 

0.419 1.419 0.410 0.090 

follow 0.233 1.233 0.333 0.073 

mixture of moderate rangeland 
and agriculture 

0.294 1.294 0.257 0.056 

mixture of  very poor forest 0.124 1.124 0.229 0.050 

mixture of waterway and 
vegetation 

0.549 1.549 0.148 0.032 

moderate forest 0.205 1.205 0.122 0.027 

mixture of agriculture with dry 
farming 

0.064 1.064 0.115 0.025 

wood-land 0.030 1.030 0.112 0.024 

good rangeland 0.043 1.043 0.107 0.023 

rangeland 0.333 1.333 0.080 0.018 

poor rangeland 0.030 1.030 0.078 0.017 

poor forest 0.210 1.210 0.065 0.014 

moderate rangeland 0.281 1.281 0.050 0.011 

bare soil and rock 0.237 1.237 0.041 0.009 

dense rangeland 0.278 1.278 0.032 0.007 

dense-forest 10.000 11.000 0.003 0.001 

waterway 0.000 1.000 0.003 0.001 

mixture of agriculture with 
poor-garden 

0.000 1.000 0.003 0.001 

very poor forest 0.000 1.000 0.003 0.001 

mixture of moderate forest and 
agriculture 

0.000 1.000 0.003 0.001 

mixture of low forest and 
follow, 

0.000 1.000 0.003 0.001 

urban and residential 0.000 1.000 0.003 0.001 

Rainfall 
(mm) 

600 - 700  1.000 1.000 0.617 

700 - 800 2.200 3.200 0.313 0.193 

800 - 900 0.600 1.600 0.195 0.121 

500 - 600 1.500 2.500 0.078 0.048 

400 - 500 1.300 2.300 0.034 0.021 

Soil order 
Rock Outcrops/Entisols  1.000 1.000 0.509 
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Rock Outcrops/Inceptisols 0.300 1.300 0.769 0.392 

Inceptisols 5.900 6.900 0.111 0.057 

Inceptisols/Vertisols 1.000 2.000 0.056 0.028 

Bad Lands 1.000 2.000 0.028 0.014 

Lithology 
(unit) 

OMq  1.000 1.000 0.133 

PeEf 0.309 1.309 0.764 0.101 

PlQc 0.253 1.253 0.610 0.081 

K1bl 0.113 1.113 0.548 0.073 

Plc 0.014 1.014 0.541 0.072 

pd 0.059 1.059 0.511 0.068 

TRKubl 0.223 1.223 0.417 0.055 

TRJvm 0.027 1.027 0.406 0.054 

MPlfgp 0.048 1.048 0.388 0.051 

OMql 0.015 1.015 0.382 0.051 

Plbk 0.081 1.081 0.353 0.047 

E2c 0.291 1.291 0.274 0.036 

TRKurl 0.059 1.059 0.258 0.034 

Qft2 0.335 1.335 0.194 0.026 

MuPlaj 0.100 1.100 0.176 0.023 

KEpd-gu 0.080 1.080 0.163 0.022 

Kgu 0.566 1.566 0.104 0.014 

Qft1 0.064 1.064 0.098 0.013 

Ekn 0.109 1.109 0.088 0.012 

KPeam 0.027 1.027 0.086 0.011 

PeEtz 0.328 1.328 0.065 0.009 

Kbgp 0.445 1.445 0.045 0.006 

EMas-sb 0.310 1.310 0.034 0.005 

Mgs 0.626 1.626 0.021 0.003 

TRJlr 10.000 11.000 0.002 0.000 

Klsol 0.000 1.000 0.002 0.000 

JKbl 0.000 1.000 0.002 0.000 
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Kur 0.000 1.000 0.002 0.000 

OMas 0.000 1.000 0.002 0.000 

Mmn 0.000 1.000 0.002 0.000 

 559 

4.4. Application of ANFIS ensemble models and model’s assessment 560 

In the current study, hybrids of ANFIS model and five meta-heuristic algorithms were designed, 561 
constructed and implemented in MATLAB 8.0 software. These models are trained using the 562 

training dataset were applied in building the model. Methods of these models are like this: gained 563 
weights by SWARA method for each conditioning factor was fed as the input for training dataset. 564 

Also, the spring and non-springs were assigned to 1 and 0 respectively, entered into a hybrid model 565 
as an output. It can find and model the relationships between input and output data and the 566 

modeling accuracy is calculated by statistical methods. The prediction ability of the five hybrid 567 
models with training dataset as a target and estimated springs pixel as an output (in a training 568 

phase) and testing dataset (in a validation phase) was shown in Fig.5 and Fig.6. 569 

MSE indicates how much output of each hybrid’s model is close to real rate. As it can be seen in 570 
Fig. 5, MSE of ANFIS-IWO, ANFIS-DE, ANFIS-FA, ANFIS-PSO, and ANFIS-BA have been 571 

calculated for the training step 0.066, 0.066, 0.066, 0.049, and 0.09, respectively. This shows that 572 
compared to other models, ANFIS-PSO had the best performance while ANFIS-BA had the worst 573 

one for training step. However, it should be noted that training step is not adequate for determining 574 
the best model for MSE optimization, and MSE level for testing phase needs to be reviewed. 575 

According to the results shown in Fig.5, values of MSE – 0.060, 0.060, 0.060, 0.045, and 0.09 – 576 
relate to the hybrid models; ANFIS-IWO, ANFIS-FA, ANFIS-PSO, and ANFIS-BEE have been 577 

calculated and indicate that the best performance is for ANFIS-PSO, the worst for ANFIS-BA.  578 
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 579 

Fig.5. MSE and RMSE values in the training dataset  of: a) ANFIS-IWO, c) ANFIS-DE, e) ANFIS-FA, 580 
g) ANFIS-PSO l) ANFIS-BA frequency errors of train data samples of b) ANFIS-IWO, d) ANFIS-DE, f) 581 

ANFIS-FA, h) ANFIS-PSO j) ANFIS-BA 582 
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 583 

Fig.6. MSE and RMSE values of the validation data samples of a) ANFIS-IWO, c) ANFIS-DE, e) 584 
ANFIS-FA, g) ANFIS-PSO l) ANFIS-BA frequency errors of test data samples of b) ANFIS-IWO, d) 585 

ANFIS-DE, f) ANFIS-FA, h) ANFIS-PSO j) ANFIS-BA 586 
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However, it must be noticed that in addition to accuracy, determining the speed of used models 587 
has recently found significance. To accomplish this, therefore, the processing time of 1000 588 

iteration is calculated for each model where the amounts of 8036, 547, 22111, 1050, and 6993 589 
seconds are related to ANFIS-IWO, ANFIS-DE, ANFIS-FA, ANFIS-PSO, and ANFIS-BA, 590 

respectively (Fig. 7). As a result, it can be concluded that ANFIS-DE has had the minimum time 591 
of processing speed compared to other models and ANFIS-FA has had the maximum time.  592 

 593 

Fig. 7. Processing time used for training the models 594 

On the other hand, it is possible to test how each model achieves convergence in learning. By 595 
drawing a diagram, cost function values have been calculated in each iteration of convergence 596 

graph for all five models as depicted in Fig.8. The results show that cost function values of ANFIS-597 
DE and ANFIS-BA become constant in 30 and 95 iterations. This indicates a rapid convergence 598 

of every model. On the other side, ANFIS-PSO, ANFIS-IWO, and ANFIS-FA achieved 599 
convergence in 650, 650, and 360 iterations, respectively that indicates the low speed of these 600 

methods in reaching convergence.  601 
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 602 

Fig.8. Convergence plot of the models 603 

4.5. Preparation of groundwater spring potential maps using ANFIS hybrid models 604 

In this study, SWARA values were standardized between 0-1 and were then transformed to 605 
MATLAB software. Following that, ANFIS hybrid models of ANFIS with IWO, DE, FA, PSO 606 

and BA algorithms were constructed using training dataset and standardized SWARA values. In 607 
the next step, the built models were used for estimating the groundwater spring index (GSI), which 608 

was assigned to whole the pixels of the study area and finally, the groundwater spring potential 609 
mapping was developed from groundwater spring indices. At first, each pixel was assigned to a 610 

unique groundwater spring index. In second step, all indices were exported in ArcGIS10.2 611 
software and were utilized in the construction of the groundwater spring potential mapping. 612 

Ultimately, the archived maps were divided into five potential classes, namely very low, low, 613 
moderate, high and very high based on quantile classification scheme. Therefore, based on the five 614 

hybrid model, five maps of groundwater spring potential were prepared (Figs.9 a-e). There are six 615 
methods, namely manual, equal interval, geometric interval, quantile, natural break and standard 616 

deviation for classification based on the different purposes. The selection of the best method 617 
depends on the characteristics of the data and the distribution of the groundwater spring indexes 618 

in a histogram (Ayalew and Yamagishi, 2005). If the distribution of the indexes in the histogram 619 
is normal or close to normal, two methods of Equal interval and standard deviation are used. 620 

However, if the indexes have a positive or negative skewness, the quantile or natural break 621 
classification is proper for indexes classification (Akgun, 2012). In this research, the histogram 622 

was checked and the results revealed that quantile method was better than other methods for 623 
indexes classification.   624 
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 625 

 626 

 627 

Fig.9. Groundwater spring potential mapping using ANFIS-IWO (a), ANFIS-DE (b), ANFIS-FA (c), ANFIS-PSO 628 
(d) and ANFIS-BA (e). 629 
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 630 

 631 

Fig.9. Continued 632 
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 633 

Fig.9. Continued 634 

4.6. Validation and comparisons of the groundwater spring potential map 635 

The prediction ability and reliability of the five achieved maps have been evaluated by both the 636 

training and the validating dataset. The results of the success rate revealed that the ANFIS-DE had 637 
the highest AUC value of 0.883 followed by ANFIS-IWO and ANFIS-FA (0.882), ANFIS-PSO 638 

(0.871) and ANFIS-BA (0.852) (Fig.10a). The results exhibited that all five models had a very 639 
good prediction capability but the ANFIS-DE has the highest prediction rate (0.873) followed by 640 

NFIS-IWO and ANFIS-FA (0.873), ANFIS-PSO (0.865) and ANFIS-BA (0.839), respectively 641 
(Fig.10b).  642 
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Fig.10. Success rate (a) and prediction rate (b) curves for the five performed models 645 

4.7. Non-parametric statistical tests 646 

The two tests of Freidman and Wilcoxon signed rank have been performed to determine whether 647 

there are any statistically significant differences between the models performance or not. The result 648 
of Freidman test revealed that (Table.3) as Sig and chi-square values were less than 0.05 and 649 

greater than 3.84, respectively, null hypothesis has been rejected. The result also indicated that 650 
there was statistically a significant difference between prediction capabilities of these five models.  651 

Table.3. The result of Freidman test 652 

NO Performed models Mean rank Chi-square Sig 

1 ANFIS-DE 3.04 

64.84 0.00 

2 ANFIS-IWO 3.13 

3 ANFIS-FA 2.98 

4 ANFIS-PSO 2.72 

5 ANFIS-BA 3.12 

 653 

To show the pairwise differences between models performance, the Wilcoxon signed rank test was 654 

carried out and result were shown in Table 4. Result of the Wilcoxon signed-rank test showed that 655 
both P-values and z were far from the standard values of 0.05 and (from -1.96 to + 1.96), 656 

respectively except for ANFIS-FA vs. ANFIS-DE and ANFIS-PSO vs. ANFIS-DE. This indicates 657 
that there are statistically significant differences between models performance except for ANFIS-658 

FA vs. ANFIS-DE and ANFIS-PSO vs. ANFIS-DE. 659 

Table.4. The result of Wilcoxon signed rank test 660 

NO Pairwise comparison Z-Value P-Value Significance 

1 ANFIS-DE vs. ANFIS-BA -3.97 0.00 Yes 

2 ANFIS-FA vs. ANFIS-BA -2.37 0.017 Yes 

3 ANFIS-IWO vs. ANFIS-BA -2.35 0.018 Yes 

4 ANFIS-PSO vs. ANFIS-BA -3.04 0.002 Yes 

5 ANFIS-FA vs. ANFIS-DE -1.32 0.185 No 

6 ANFIS-IWO vs. ANFIS-DE -3.96 0.00 Yes 

7 ANFIS-PSO vs. ANFIS-DE -0.841 0.41 NO 

8 ANFIS-IWO vs. ANFIS-FA -3.19 0.001 Yes 

9 ANFIS-PSO vs. ANFIS-FA -1.90 0.057 Yes 
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10 ANFIS-PSO vs. ANFIS-IWO -2.44 0.015 Yes 

 661 

4.8. Percentage area 662 

The percentage area of each class of final map resulting from five hybrid models has been 663 

represented in Fig.11. According to results, as ANFIS-DE is more accurate in groundwater spring 664 
prediction capabilities, the percentage areas of very low, low, moderate, high and very high 665 

groundwater spring potential are about 19.06, 19.88, 21.72, 20.55 and 18.78 % of the study area, 666 
respectively.  667 

.  668 

Fig.11. Percentage areas of different groundwater spring potential classes for five models 669 

5. Discussion 670 

5.1. The impact of conditioning factor’s classes on GSPM 671 

Assessment of conditioning factor is a necessary step in finding the correlation analysis between 672 

spring and conditioning factor. It should be noted that no universal guideline is available regarding 673 
the number and size of the classes as well as selecting the conditioning factors. They were selected 674 
mostly based on characteristics of the study area and previous similar studies (Xu et al., 2013). As 675 

the slope increase, the probability of the water infiltration reduces and runoff generation will 676 
increase. Thus, the more the slope, the lowest the spring occurrence probability. According to the 677 

result of the SWARA method, the springs almost occur in a middle altitude or mountain slopes 678 
(but wells are dug in a low-land area). The flat curvature class retains and infiltrates rainfall. 679 

Therefore, the amount of groundwater in these areas is higher than concave or convex curvature. 680 
The east aspect has more springs than other aspects. These results are in accordance with Pourtaghi 681 

and Pourghasemi ( 2014), that had explained most springs occurred in the elevation of 1600-1900 682 
m and east slope aspect (with FR method). TWI shows the amount of wetness, and it is obvious 683 

that the more the TWI, the higher the springs probability occurrence is. Terrain Roughness Index 684 
(TRI) or topographic roughness or terrain ruggedness calculates the sum of change in elevation 685 

between a grid cell and its neighborhood, and as the lowest the roughness, the highest spring 686 
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potential mapping. The SPI shows the erosive power of the water and mountainous area is higher 687 
than plain area. So, As the SPI increases, the spring potential occurrence increases. Rivers are one 688 

of the most important sources of groundwater recharge and the nearer to river, the higher 689 
probability to springs occurrences. Also, as the rainfall increases, the higher springs incident, but 690 

in the current study, some other conditioning factors affected the spring occurrences.  691 

Most of the springs were located in the garden land-use/land-cover. Therefore, it can be stated that 692 

the gardens have been established near the springs. Pliocene-Quaternary formation in a geologic 693 
time scale is newer and Quaternary formation has a high potential to groundwater springs incident 694 

due to high permeability. The fault is discontinuity in a volume of rock. Thus, the nearer to the 695 
fault, the higher the spring occurrence probability will be. Inceptisols soils are relatively new and 696 

are characterized by having only the weakest appearance of horizons, the most abundant on the 697 
Earth (https://www.britannica.com/science/Inceptisol) and mostly formed from colluvial and 698 

alluvial materials. So, due to high permeability and high rainfall infiltration, they have a high 699 
potential for springs occurrences. In the case of lithological unit, there are four suitable rock type 700 

as water reservoir based on physical phenomena such as porosity and permeability that consist of: 701 
1. unconsolidated sands and gravels; 2. sandstones; 3. Lime-stones; and 4. basaltic lava flows. In 702 

this study area lithological units include sedimentary rocks mostly carbonate and detrital rocks 703 
with cover of alluvium and minor soil. 704 

5.2. Advantages/disadvantages of the models and performance analysis 705 

The highest accuracy based on the RMSE in both training and testing dataset belonged to the 706 

ANFIS-PSO model. However,  based on the AUC for success and prediction rate, the ANFIS-DE 707 
model has the highest prediction capability. The problem with RMSE comes from the fact that it 708 

is based on the error assessment. But the models should be acted upon holistically based on the 709 
abilities. AUC for Receiver operating characteristic (ROC) curves (success and prediction rate 710 

curves) is based on the true positive (TP), true negative (TN), false positive (FP) and false negative 711 
(FN), it is more accurate than RMSE for comparison (Termeh et al., 2018).  712 

ANFIS is one of the machine learning algorithms that is proper for natural phenomenon modeling 713 
due to its non-linear structure. The ANFIS model, which is based on Takagi–Sugeno 714 

fuzzy inference system, is a hybrid of ANNs and fuzzy logic. Therefore, it has a potential to 715 
capture the benefits of both in a single framework and can be considered as a robust model. The 716 

predictions in ANFIS model are based on learning the ‘‘if–then’’ rules between groundwater 717 
spring locations and conditioning factors.  718 

Polykretis et al. (Polykretis et al., 2017), applied ANFIS for landslide susceptibility mapping 719 

(LSM) in Peloponnese peninsula, Grece and stated that ANFIS model was a robust model. 720 
Vahidinia et al. (Vahidnia et al., 2010), applied ANFIS model to LSM in the Mazandaran Province, 721 

Iran, and revealed that ANFIS was a flexible and non-linear model and was completely appropriate 722 
for building a framework of easy inferences. Isanta Navarro (Isanta Navarro, 2013), applied 723 

ANFIS to stability augmentation of an airplane and stated that ANFIS had some advantages 724 
including: (1) much better learning ability, (2) need for fewer adjustable parameters than those 725 

required in other neural network structure and (3) allowing a better integration with other control 726 
design methods by its networks.  727 

https://en.wikipedia.org/wiki/Rock_(geology)
https://www.britannica.com/science/horizon-soil
https://www.britannica.com/place/Earth
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Inference_system
https://en.wiktionary.org/wiki/framework
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Despite several advantages of ANFIS, non-adjutancy of membership function is the biggest 728 
disadvantage of this model. Finding the optimal parameter for neural fuzzy model in a membership 729 

function is difficult; therefore, the best parameter should be finding other optimization models. 730 
This problem was addressed in this paper for being solved by five meta-heuristic algorithms, 731 

namely Invasive Weed Optimization, Differential Evolution, Firefly, Particle Swarm Optimization 732 
and Bees algorithms. The aim of any optimization is to find values of the variable to gratify the 733 

restriction by minimizing or maximizing the objective function. These optimization algorithms are 734 
completely new in environmental modeling (especially in groundwater potential mapping) and 735 

have been used for natural hazards assessment by a few researchers in landslide susceptibility 736 
assessment (Chen et al., 2017a) as well as in flood susceptibility mapping (Bui et al., 2016; Termeh 737 

et al., 2018). 738 

In the current study, the results showed that DE algorithm optimized the parameter for neural fuzzy 739 

model better than four other algorithms. The main DE algorithm’s advantage is its simplicity as it 740 
consists of only three parameters called N (size of population), F (mutation parameter) and C 741 

(crossover parameter) for controlling the search process (Tvrdık, 2006). Advantages of DE 742 
algorithm can be explained as follows: (1) Ability to handle non-differentiable, nonlinear and 743 

multimodal cost functions, (2) Parallelizability to cope with computation intensive cost functions, 744 
(4) good convergence properties, i.e. consistent convergence to the global minimum in consecutive 745 

independent trials, and (5) random sampling and combining vectors in the present population for 746 
creating vectors for the next generation.  747 

Finally, it should be noted that each algorithm has some advantages or disadvantages according to 748 

the optimization problems which can be summarized as: 749 

Some of the advantages of IWO in comparison to other evolutionary algorithms include the way 750 
of reproduction, spatial dispersal, and competitive exclusion (Mehrabian and Lucas, 2006) as well 751 

as the fact that seeds and their parents are ranked together and those with better fitness survive and 752 
become reproductive (Ahmed et al., 2014). This algorithm can benefit from combined advantages 753 

of retaining the dominant poles and the error minimization (Abu-Al-Nadi et al., 2013) and there is 754 

no need for continuity or differentiability of the objective function.  755 

Bees algorithm doesn’t employ any probability approach, but utilizes fitness evaluation to drive 756 

the search (Yuce et al., 2013). This algorithm is implemented with several optimization problems 757 
or in other words, BA uses a set of parameters including the number of scout bees in the selected 758 

patches, the number of best patches in the selected patches, the number of elite patches in the 759 
selected best patches, the number of recruited bees in the elite patches, the number of recruited 760 

bees in the non-elite best patches, the size of neighborhood for each patch, the number of iterations 761 
and the difference between the value of first and last iterations that makes it powerful. BA also has 762 

both local and global search capability and the local search step of the algorithm covers the best 763 
locations. BA is really easy to use and available for hybridization combination with other 764 

algorithms (Yuce et al., 2013). Another advantage is hiring smart bees since bees (artificial insects) 765 
can memorize the location of the best food source and its quality which has been found before. If 766 

the new solution has a lower fitness than the best-saved solution in the SB memory, it is replaced 767 
with new candidate solution (Gorji-Bandpy and Mozaffari, 2012).   768 

Firefly Algorithm’s (FA) advantages are summarized as: (1) handling highly non-linear, multi-769 

modal optimization problems efficiently, (2) not utilizing velocities (3) very high speed of 770 

http://link.springer.com/chapter/10.1007%2F978-3-319-03404-1_13
https://en.wikipedia.org/wiki/Differential_evolution
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convergence in finding the global optimized answer (4) ability to be integrated with other 771 
optimization techniques as a flexible method, and finally (5) not needing a good initial solution to 772 

beginning of its iteration process. 773 

Advantages of Particle Swarm Optimization (PSO) algorithm can be summarized as follows: (1) 774 

Particles update themselves with the internal velocity; (2) particles have a memory important to 775 
the algorithm, (3) the ‘best’ particle gives out the information to others, (4) it often produces quality 776 

solutions more rapidly than alternative methods, (5) this algorithm simulates bird flocking 777 
behavior to achieve a self-evolution system, (6) it automatically searches for the optimum solution 778 

in the solution  space, (7) (Wan, 2013). 779 

As a result, there isn’t any algorithm which works perfectly for all optimization problems, and 780 
each algorithm has a different performance accuracy based on different data. New algorithms, 781 

therefore, should be applied, tested and finally the most powerful algorithm should be selected; as 782 
the conclusion of the research demands.  783 

5.3. Previous works and future work proposal 784 

Some research has been carried out in groundwater well or spring potential mapping using 785 
bivariate statistical models (Al-Manmi and Rauf, 2016; Guru et al., 2017; Nampak et al., 2014) 786 

using random forest (Rahmati et al., 2016) and using boosted regression tree and classification and 787 
regression tree (Naghibi et al., 2016). The ANFIS-metaheuristic hybrid models have not seen used 788 

in groundwater potential mapping. However, these hybrid models have proven efficient in flood 789 
susceptibility mapping (Bui et al., 2016; Termeh et al., 2018) and landslide susceptibility mapping 790 

(Chen et al., 2017a). Tien Bui et al. (Bui et al., 2016) ensemble the ANFIS using two optimization 791 
models, namely Genetic (GA) and PSO for the identification of flood prone areas in Vietnam. 792 

Razavi Termeh et al. (Termeh et al., 2018), used ANFIS-Ant Colony Optimization, ANFIS-GA 793 
and ANFIS-PSO in flood susceptibility mapping of Jahrom basin and stated that ANFIS-PSO had 794 

higher prediction capabilities than the two other models. Chen et al (2017) applied three hybrid 795 
models, namely ANFIS- Genetic Algorithm (GA), ANFIS-Differential Evolution (DE) and 796 

ANFIS-Particle Swarm Optimization (PSO) for identifying the areas prone to landslides in 797 
Hanyuan County, China. The results showed that ANFIS-DE had a higher performance 798 

(AUC=0.84) followed by ANFIS-GA (AUC=0.82) and ANFIS-PSO (AUC=0.78).  799 

In general, the results of the present study and different researchers revealed that by applying 800 
hybrid models, better results could be achieved for any spatial prediction modeling including 801 

groundwater potential mapping. The ensembles of ANFIS by meta-heuristic algorithms can be 802 
proposed for any spatial prediction modeling such as groundwater potential mapping, flood 803 

susceptibility mapping, landslide susceptibility assessment, gully occurrences susceptibility 804 
mapping and other endeavors at a regional scale and in other areas.  805 

For future work, it is recommended that (1) the water quality of the Koohdasht-Nourabad plain be 806 

investigated and the water quality of areas with high potential be determined for different aspects 807 
such as drinking, agricultural and industrial activities, and (2) the groundwater vulnerability 808 

assessment should be applied by some common methods including DRASTIC model for which 809 
the zones with high potential to groundwater occurrences should be preserved against pollution.  810 

6. Conclusion 811 
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Groundwater is the most important natural resource in the world and about 25 percent of all fresh 812 
water is estimated as groundwater. Thus, the groundwater potential mapping has been considered 813 

as one of the most effective tools for the management of groundwater resources for better 814 
exploitation. The conservation and the maps with high accuracy is necessary for decisions. As the 815 

natural phenomena are complex, the simple method and statistical models do not have an 816 
appropriate result in modeling of the natural phenomena. To solve the problem, the artificial 817 

intelligence models have been used for having a reasonable result but these model have some 818 
weaknesses, especially in modeling process. To resolve this problem, this study verifies the five 819 

new hybrid models of ANFIS with metaheuristic algorithms namely IWO, DE, FA, PSO and BA 820 
to increase the prediction capability of the spatial prediction of groundwater potential mapping (1) 821 

for solving the weakness of the artificial intelligence models and (2) using non-linear structure of 822 
these models which are better for modeling of the complex natural phenomena such as 823 

groundwater modeling. The result of this modeling has been evaluated using prediction rate ROC 824 
curves and the results showed that all models had very good reasonable results. However, the 825 

ANFIS-DE had the highest prediction power (0.875) followed by ANFIS-IWO and ANFIS-FA 826 
(0.873), ANFIS-PSO (0.865) and ANFIS-BA (0.839). Thus, the results revealed that the 827 

metaheuristic algorithms could optimize the weights parameters of the ANFIS model with high 828 
accuracy as the highest advantage of these algorithms 829 

According to the results of the SWARA method, most springs existed in an altitude of 1703-2068 830 
m, flat curvature, east aspect, TWI of 6.6-7.9, TRI of 0-8.7, SPI of 583969-1330153, Inceptisols 831 

soil, slope of 0-5.5 degree, 0-200 m distance from river, 500-1000 m distance from fault, rainfall 832 
between 500-600 mm, in a garden, in a Pliocene-Quaternary lithological age and OMq lithology 833 

unit. 834 

The results of the current study is helpful for Iran Water Resources Management Company 835 
(IWRMC) for sustainable management of the groundwater resources. Overall, the maps resulting 836 

from these hybrid artificial intelligence algorithms can be applied for better management of the 837 
groundwater resources in the study area, and can be used for other areas for groundwater potential 838 

assessment or mapping of gully, flood, landslide and other susceptibility uses in the world due to 839 
its high precision.  840 
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 1142 
 1143 
Abstract 1144 
Groundwater is are one of the most valuable natural resources in the world; therefore developing 1145 
advanced tools for and their sustainable management of the groundwater is highly necessary. One 1146 

of the most important methods tools in for the management ofing the groundwater is developing 1147 
groundwater potential mapping (GPM). The current study’s aim is to proposed and verified new 1148 

artificial intelligence methods for spatial prediction of groundwater spring potential mapping at 1149 
Koohdasht-Nourabad plain, Lorestan province, Iran. These methods arebenefits from a new 1150 

hybrids of Adaptive Neuro-Fuzzy Inference System (ANFIS) with five meta-heuristic algorithms, 1151 

namely Invasive Weed Optimization (IWO), Differential Evolution (DE), Firefly (FA), Particle 1152 
Swarm Optimization (PSO), and Bees (BA) algorithms. Accordingly, A a total number of 2463 1153 

springs were identified and collected, and then,  divided in two classessubsets randomly, including 1154 
70% (1725 locations) of the total springs were applied used for model training models, whereas 1155 

and the remaining 30% (738 spring locations) , which were excluded in the training phase, were 1156 
utilized for the model evaluation. Thirteen groundwater occurrence conditioning factors, namely 1157 

slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness 1158 
index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land-1159 

use/land-cover, rainfall, soil order, and lithology (units) have beenwere  selectedprepared for 1160 
modeling. In the next step, the Stepwise assessment Assessment ratio Ratio analysis Analysis 1161 

(SWARA) method was employed applied to quantify the degree of relevance determine the spatial 1162 
correlation betweenof these  springs and conditioning factors and the springs. The global 1163 

performance of these derived models  accuracy of the map achieved after applying these five 1164 
hybrid models waswas assessed determined using the area Area under Under the receiver operating 1165 

characteristic (ROC) curve (AUC). In addition, the Freidman and Wilcoxon signed rank test were 1166 
carried out to check and confirm the best model in this study.  The result showed that Although 1167 

the results of these models has high performance; however, performed models are close to each 1168 
other, butthe ANFIS-DE mdel has the highest prediction capability ( AUC = 0.875), followed by 1169 

the ANFIS-IWO model, andthe ANFIS-FA model (0.873), the ANFIS-PSO model (0.865), and 1170 
the ANFIS-BA model (0.839). The results of this research can be useful for decision makers to 1171 

sustainable management of groundwater resources. 1172 
 1173 

Key words: Groundwater spring, ANFIS-DE, ANFIS-IWO, ANFIS-FA, ANFIS-PSO, ANFIS-1174 
BA, Iran. 1175 
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1. Introduction 1176 

Groundwater is defined as the water in a saturated zone which fills rock and pore spaces (Berhanu 1177 

et al., 2014; Fitts, 2002), whereas and groundwater potential is the possibility of groundwater 1178 
occurrence in an area (Jha et al., 2010). The occurrence of groundwater in an aquifer is affected 1179 

by various geo-environmental factors including lithology, topography, geology, fault and fracture 1180 
and its connectivity, drainage pattern and land-use/land-cover (Mukherjee, 1996). As one of the 1181 

major conditioning factors, geological Geological strata acts like a conduit and reservoir for 1182 
groundwater while. Sstorage and transmissivity of the formation has influence on the suitability of 1183 

exploitation of groundwater in a given geological formation. Downhill and depression slopes 1184 
impart runoff and improve recharge and infiltration, respectively (Waikar and Nilawar, 2014).   1185 

Groundwater, which serves as a major source of drinking water to communities, for agricultural 1186 

and for industrial purposesectors, is one of the most precious natural resources in the world (David 1187 
Keith Todd and Mays, 1980) due to its consistent temperature and, widespread availability, low 1188 

vulnerability to pollution, low development cost, and drought dependability (Jha et al., 2007). The 1189 
life of about Globally, 1.5 billion people are dependsent on upon groundwater, in the world solely 1190 

for drinking purposes, and about 38% of the irrigated lands depend on the groundwater itself 1191 
(Siebert et al., 2013). Due to As the population growth, of mankind on earth increases, the demand 1192 

for of water is constantly increaseesd. The A major challenge now is how to have sustainable 1193 
management system of groundwater to preserve and ensure continuous supply with regards to the 1194 

water demand. One of the most important measures for the groundwater resource management is 1195 
having to collect adequate knowledge on spatial and temporal distribution of groundwater, its 1196 

quantity as well as its quality. 1197 

For the case of Iran, Approximately, two-third of Iran’s areathe land is covered by deserts. As a 1198 
result, similar to other arid regions, the main sources of water supply for drinking and various other 1199 

uses, especially drinking, depends on are the groundwater (Nosrati and Van Den Eeckhaut, 2012). 1200 
Agriculture, which is one of the most prominent economic sectors in Iran, and especially, in the 1201 

study area, is still be limited bydue to water scarcity (Zehtabian et al., 2010). Groundwater in Iran 1202 
supplies around 65% of the water use-up and the remaining 35% is supplied by surface water 1203 

(Rahmati et al., 2016). One of the most important measures to responsible for the increase in of 1204 
fresh-water demand for drinking and agriculture is the to identifyication of groundwater potential 1205 

zoning, as an essential tool for performing a successful groundwater determination, protection, and 1206 
management program (Ozdemir, 2011a). 1207 

There are a number of methods for groundwater exploitation in traditional approaches including 1208 
drilling as well as geological, geophysical, and hydrogeological methods. Yet, they are not only 1209 

time-consuming, and costly but uneconomical (David Keith Todd and Mays, 1980; Israil et al., 1210 
2006; Jha et al., 2010; Sander et al., 1996; Singh and Prakash, 2002). Recently, the application of 1211 
geographic information systems (GIS) and remote sensing (RS) has become an effective procedure 1212 

to for groundwater potential mapping (Fashae et al., 2014) due to their ability in handling huge 1213 
amount of spatial data, their easy performance and their applicability for being used efficiently in 1214 

a lot ofvarious fields, including water resources management, In more recent years, some 1215 
probabilistic models such as frequency ratio (Oh et al., 2011), multi-criteria decision analysis 1216 

(MCDA) (Kaliraj et al., 2014) (Rahmati et al., 2015) weights-of-evidence (WofE) (Pourtaghi and 1217 
Pourghasemi, 2014), logistic regression (LR) (Ozdemir, 2011b; Pourtaghi and Pourghasemi, 1218 

2014), evidential belief function (EBF) (Nampak et al., 2014; Pourghasemi and Beheshtirad, 1219 
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2015), decision tree (DT) (Chenini and Mammou, 2010), artificial neural network model (ANN) 1220 
(Lee et al., 2012), and Shannon's entropy (Naghibi et al., 2015) have been used considered for 1221 

recognition of groundwater potential mapping. The bBivariate and multivariate statistical models 1222 
have some disadvantages in measuring the relationship between groundwater occurrence and 1223 

conditioning factors for the definition of statistical assumptions prior to the study (Tehrany et al., 1224 
2013; Umar et al., 2014), whereas. MCDA technique is source of bias due to expert opinion. 1225 

Traditional modeling approaches are also mainly based on linear or additive modeling that is not 1226 
consistent with natural process in the environment (Clapcott et al., 2013) but,. machine in recent 1227 

year, machine learning has proven efficient models due  to ability to hand with non-linear structure 1228 
handle data from various measurement sources with different scales. In addition, machine learning 1229 

and makerequires no statistical assumptions; hence being useful for modeling applications such as 1230 
GPM. Among machine learning,  ANN model is considered as the most widely used model for 1231 

environmental modeling among other machine learning models due to its computational efficiency 1232 
(Bui et al., 2016; Ghalkhani et al., 2013; Rezaeianzadeh et al., 2014). However, Tthe ANN model 1233 

has a number of weaknesses such as poor prediction and error in modeling process (Bui et al., 1234 
2016);. therefore, hybrid models have been proposed. Thus, Among hybrid frameworks, ANN 1235 

model ensembles withof fuzzy logic model and Adaptive Neuro-Fuzzy Inference System (ANFIS) 1236 
model, which is a hybrid model proposed and used by some researchers due towas reported 1237 

efficient due to its high accuracy (Güçlü and Şen, 2016; Lohani et al., 2012; Shu and Ouarda, 1238 
2008) (Chang and Tsai, 2016). It should be noted that even though ANFIS model has a higher 1239 

accuracy than the two other model individually (Mukerji et al., 2009; Nayak et al., 2005), it has 1240 
some disadvantages since it is weak in finding the best weight parameters affecting the prediction 1241 

accuracy (Bui et al., 2016). Thus, Tthese weights can be optimized to enhance the prediction 1242 
accuracy of ground water models recognized using soft computingwith the use of machine learning 1243 

optimization processalgorithm. Optimization problem is the problem of finding the best solution 1244 
from among a set of all possible solutions.  1245 

The main aim of the current study is to carry out groundwater spring potential mapping (GSPM) 1246 
in Koohdasht-Nourabad plain, Iran using ANFIS model, with some combined with new 1247 

metaheuristic models algorithms, namely Invasive Weed Optimization (IWO), Differential 1248 
Evolution (DE), Firefly, Particle Swarm Optimization (PSO), and Bees algorithm (BA). 1249 

Consequently, the new models which have some ensembles with ANFIShave ability to solve the 1250 
weakness of the traditional ANFIS model. Another goal of the present study is drawing a 1251 

comparison between prediction capabilities of these five new hybrid models in groundwater 1252 
potential modeling in the study area as well. The main difference between the current study and 1253 

the literature review is that these new hybrid models have not been used before for groundwater 1254 
potential mapping, but their accuracy in prediction of landslide (Chen et al., 2017a) and flood 1255 
(Termeh et al., 2018) susceptibility mapping has been confirmed recently. Since no such studies 1256 

have been published so far in the study area, the current study is the pioneer work in this subject.   1257 

2. Case study description 1258 

Koohdasht-Nourabad Plain is located in the west part of the Lorestan province, Iran. It lies between 1259 

33°3′ 28 and 34° 22′ 55 N latitudes and between 46° 50′ 19 andto 48° 21′ 18 E longitudes (Fig. 1). 1260 
The region is located in the semi-arid area with mean annual precipitation of about 450 mm 1261 

(Lorestan Weather Bureau report, 2016). The plain covers around 9531.9 km2 with the population 1262 
of 362,000 people (according to 2016 census). The primary occupation of most people living in 1263 

http://link.springer.com/chapter/10.1007%2F978-3-319-03404-1_13
https://en.wikipedia.org/wiki/Differential_evolution
https://en.wikipedia.org/wiki/Differential_evolution
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the region is agriculturefarming with groundwater is the main sourceand water requirements are 1264 

met through groundwater extraction. The altitude of the study area varies between 531 m and 3175 1265 
m above the sea level, while the maximum and minimum slope is 0o and 64o, respectively. 1266 

Geologically, the study area is located in Zagros structural zone of Iran and is mostly covered by 1267 
Quaternary and Cretaceous-Paleocene geologic time scale. The dominant land-use/land-cover of 1268 

the study area is moderate forest (20%) and rocks covers the smallest area percentage 1269 
(0.000670007%). The residential areas also covers about 3% of the Koohdasht-Nourabad plain. 1270 

Rock crop/Inceptisoils are the dominant soil types in the study area, covering about 51% of the 1271 
study area. 1272 

 1273 

 1274 

Fig.1. Groundwater well locations with DEM of the study area 1275 

 1276 

3. Methodology 1277 
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The methodological approach has beenis shown in Fig 2. and will be described step by step below. 1278 

3.1. Data preparation 1279 

3.1.1. Groundwater spring inventory map 1280 

In any spatial prediction modeling such as groundwater modeling, spatial relationship between 1281 

occurrence of groundwater springs and the conditioning factors should be analyzed and assessed 1282 
to determine the best subset of these factors. In Koohdasht-Nourabad plain, a total of 2463 springs 1283 

were provided by selected from documentary source (Iranian Water Resources Management) and 1284 
considered for modeling. In which, Mmost of the spring locations were checked using during 1285 

extensive field surveys with GPS hand hole.  1286 

 1287 

Fig.2. Conceptual modelling adopted in the current study 1288 

3.1.2. Construction of the training and validation datasets  1289 

Spatial prediction of groundwater potential mapping , using machine learning model, is considered 1290 
as a binary classification with two classes,  because the groundwater potential index is divided into 1291 

two parts including spring location and non-spring location. Thereforeus, a total of 2463 non-1292 
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spring locations were constructed randomly generated using createdthe random point 1293 
commandtool in ArcGIS10.2. According to Chung and Fabbri (Chung and Fabbri, 2003), it is 1294 

impossible to validate the model performance withoutusing a cross validation method that  1295 
considering splits the dataset for the two parts (Chung and Fabbri, 2003). The first part is used for 1296 

model building model which is also called training dataset and the other part is utilized for 1297 
validating or testing the model performance which also callednamed as testing dataset (Pham et 1298 

al., 2017a). In this study, a ratio of 70/30 was selected randomly for generating the training and 1299 
testing the dataset (Pourghasemi et al., 2013a; Pourghasemi et al., 2012; Pourghasemi et al., 2013b; 1300 

Xu et al., 2012). Accordingly, Bboth spring location and non-spring location have been divided 1301 
into two groups for the training (1725 location) and the validating (738 location) purposes (Fig 1). 1302 

For building the training dataset, a total number of 1725 locations were randomly selected for both 1303 
spring and non-spring location and were then combined with each other, and 738 of the remaining 1304 

location of springs and non-springs were combined with each other again to construct the testing 1305 
dataset. Finally, both the training and the testing datasets were converted to raster format and then 1306 

overlaid with 13 groundwater conditioning factors to extract their attribute values, where. In both 1307 
training and testing dataset, the spring pixels were assigned to a value of “1” and non-spring pixels 1308 

were assigned to “0” (Bui et al., 2015). 1309 

3.1.3. Groundwater conditioning factor analysis 1310 

3.1.3.1. Selection of the Groundwater conditioning factor and multi-collinearity analysis 1311 

After definition the initial selection of the conditioningeffective factors, these conditioning factors 1312 
should be assessed for multi-collinearity problems. Multi-collinearity takes place when two or 1313 

more non-independence conditioning factors are highly correlated, or in other words inter-1314 
dependent (Li et al., 2010). Several methods have been proposed to multi-collinearity diagnose 1315 

multi-collinearity,  s fromand among whichthem, two methods of Variance Inflation Factor (VIF) 1316 
and tolerance Tolerance are widely used for multi-collinearity in environmental modeling problem 1317 

recognition (Bui et al., 2016; O’brien, 2007). The Factors with VIF greater than 5 and tolerance 1318 
less than 0.1 shows indicate the multi-collinearity problems existed (Bui et al., 2011; O’brien, 1319 

2007). Another method namely Information Gain Ratio technique was applied to identification of 1320 
the importance of the conditioning factor in order and as well as the factors with null effect must 1321 

be removed to increase the accuracy of the model (Khosravi et al, 2018).  1322 

In the current study, 13 conditioning factors have been selected including slope degree, slope 1323 
aspect, altitude, plan plan curvature, stream power index (SPI), topographic wetness index (TWI), 1324 

Terrain roughness index (TRI), distance from fault, distance from river, land-use/land-cover, 1325 
rainfall, soil order, and lithology units. These factors have been selected determined according to 1326 

thebased literature review, characteristics of the study area, and data availability (Mukherjee, 1996; 1327 
Nampak et al., 2014; Oh et al., 2011; Ozdemir, 2011a). In fact, , but there isn’t anyno agreement 1328 

is reached  on which the factors to be used for modeling. The process of converting continuous 1329 
variables into categorical classes were carried out using expert opinions as well as according 1330 

tobased on our frequency analysis of springs location (Khosravi et al, 2018; Ahmadisharaf et al., 1331 
2016) in order to define the class intervals (Bui et al., 2011).  1332 

Digital Elevation Model (DEM) has been downloaded from ASTER global DEM with 30x30 m 1333 

grid size. Based on the DEM,  and then slope degree, slope aspect, altitude, plan plan curvature, 1334 
SPI, TWI and TRI have been constructed using DEMwere derived. Slope degree of the study areas 1335 
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varies between 0-64 degree. Slope factor has a direct impact on the runoff generation and therefore 1336 
groundwater recharge., as As the lower the slope, the lower runoff generation and the higher 1337 

groundwater recharge. The slope degree has been divided in five categories using the quantile 1338 
classification scheme (Tehrany et al., 2013; Tehrany et al., 2014), including 0-5.5, 5.5-12.11, 1339 

12.11-19.4, 19.4-28.7, 28.7-64.3 degree (Fig 3a). Slope aspect is selected another factor that 1340 
hasbecause it affects the groundwater potential through solar radiation. In the study area, since the 1341 

north aspect receives a lower sun light, and as a result, is less wet or hasand low evapotranspiration. 1342 
The slope aspect has been provided in 5 different classes including, flat, north, west, south and 1343 

east (Fig 3b). The third conditioning factor is altitude. It Altitude has beenwas divided into five 1344 
classes using the quantile classification scheme, including 531-1070, 1070-1385, 1385-1703, 1345 

1703-2068 and 2068-3175 m (Fig.3c). plan Curvature Plan curvature factor has been constructed 1346 
using DEM and finally used used with divided into three classes, namely concave (<−0.05), flat 1347 

(−0.05–0.05), and convex (>0.05) (Fig.3d) (Pham et al.2017). SPI is the measurement ofrelated to 1348 
erosive power of surface runoff, whreas and TWI shows links anto amount of the flow that 1349 

accumulates at any point in the catchment. TRI, topographic roughness or terrain ruggedness 1350 
calculates the sum of change in elevation between a grid cell and its neighborhood. SPI, TWI and 1351 

TRI have beenwere constructed in the system forusing the Automated Geoscientific Analyses tool 1352 
in (SAGA-GIS 2.2) software and finally divided into five classes. that They are 0-48664, 48664-1353 

227099, 227099-583969, 583969-1330153, 1330153-4136452 (Fig.3e) for SPI. For TWI, these 1354 
classes are, 2.1-4.6, 4.6-5.6, 5.6-6.6, 6.6-7.9, 7.9-11.9 (Fig.3f) for TWI, and finally for TRI, these 1355 

classes are 0-8.7, 8.7-18.2, 18.2-29.9, 29.9-46.6, 46.6-185 (Fig.3g) for TRI. 1356 

Distance from fault and river factors have been provided generated using fault and river of the 1357 

study area via using the multiple ring-buffer toolcommand in ArcGIS10.2.  software which is 1358 
finally divided intowith  five classes including: 0-200, 200-500, 500-1000, 1000-2000 and >2000 1359 

m (Fig. 3h and Fig. 3i). Lithology plays a key role in determining the groundwater potential 1360 
occurrences due to different infiltration rate of formation that has been considered in some previous 1361 

studies (Adiat et al., 2012; Nampak et al., 2014; Pradhan, 2009). Land-use/land-cover of the study 1362 
area has been provided through Landsat 7 Enhanced Thematic Mapper plus (ETM+) images 1363 

downloaded from the US Geological Survey (USGS) and supervised image classification 1364 
techniques (Lillesand et al., 2014). Finally, the accuracy of the land-use/land-cover map has been 1365 

controlled by filed surveys.  1366 

Twenty five For the case of land-use/land-cover, twenty five types were recognized including 1367 
agriculture, garden, dense-forest, good rangeland, poor forest, waterway, mixture of garden and 1368 

agriculture, mixture of agriculture with dry farming, mixture of agriculture with poor-garden, dry 1369 
farming, follow, dense rangeland, very poor forest, mixture of waterway and vegetation, mixture 1370 

of moderate forest and agriculture, mixture of moderate rangeland and agriculture, mixture of poor 1371 
rangeland and follow, mixture of low forest and follow, wood-land, moderate forest, moderate 1372 

rangeland, poor rangeland, bare soil and rock, urban and residential, mixture of  very poor forest, 1373 
and rangeland have been identified and assigned to code 1 to 25 respectively and assign to code of 1374 

1 to 25 respectively (Fig.3j).  1375 

As the major source of recharge to the groundwater, rainfall has been provided via mean annual 1376 
historical rainfall data of past 15 years (2000–2015) using 4 rain-gauge stations in the study area. 1377 

Inverse distance weighted (IDW) method has been used for the preparation ofderiving the rainfall 1378 
map due to lower RMSE than other methods and then, rainfall map of the study area has been 1379 
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divided into with five categories including: 300-400, 400-500, 500-600, 600-700, 700-800 mm 1380 
(Fig 3k). The soil properties directly affect the water infiltration rate as well as groundwater 1381 

recharge. The 1:50,000 soil map of Lorestan province obtained from the Iranian Water Resources 1382 
Department (IWRD) has been used for the analysis. The soil map was in a polygon format which 1383 

needed to be converted to grid. The most dominant feature of the study area is rock 1384 
outcrop/Entisols, rock outcrop/Inceptisols, Inceptisols, Inceptisols/Vertisols and Badlands 1385 

(Fig.3l). 1386 

 1387 
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 1388 

Fig.3. Thematic Groundwater conditioning factor in the study area: slope degree(a), slope aspect (b), 1389 
altitude (c), plan curvature (d), SPI (e), TWI (f), TRI (g), distance from fault (h), distance from river (i), 1390 
land-use/land-cover (j), rainfall (k), soil order (l), and lithology units (m). 1391 
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 1392 

Fig.3.Continued 1393 
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 1394 

Fig.3. Continued 1395 

 1396 

Finally, all the aforementioned groundwater conditioning factors for modeling purposes were 1397 
converted to a raster grid with 30 m × 30 m pixel size in the ArcGIS 10.2 software.  Lithology 1398 

(unit) has a high influence on infiltration; thus, it has been considered in the current study. 1399 
Lithology for the study area has been constructed in scale of 1:100000, which was created provided 1400 

by Iranian Department of Geology Survey (IDGS). Accordingly,  and divided into thirty classes 1401 
were used including: OMq, PeEf, PlQc, K1bl, Plc, pd, TRKubl, TRJvm, MPlfgp, OMql, Plbk, 1402 

E2c, TRKurl, Qft2, MuPlaj, KEpd-gu, Kgu, Qft1, Ekn, KPeam, PeEtz, Kbgp, EMas-sb, Mgs, 1403 
TRJlr, Klsol, JKbl, Kur, OMas and Mmn and assigned to code 1 to 30 respectively and assign to 1404 

code of 1 to 30 respectively (Fig.3m).  1405 

3.2. Spatial relationship between spring location and conditioning factors 1406 

Step-wise Assessment Ratio Analysis (SWARA), as a Multi-Criteria Decision Making (MCDM) 1407 

was first introduced by Keršuliene in 2010 for the first time (Keršuliene et al., 2010) as a Multi-1408 
Criteria Decision Making (MCDM). Sincewas used  this method isdue to both simple and rooted 1409 

on experts’ views, SWARA it has received drawn a lot ofgreat attention in diverse various fields 1410 
in the last five years (Alimardani et al., 2013; Hong et al., 2017).   1411 

In SWARA, The the specialist expert allocates respectively the highest and lowest rank from the 1412 

most and least valuable criterion, respectively. Afterwards, the all-inclusive ranks are specified by 1413 
the average value of ranks. The phases of method are as the following:  1414 

Phase one : (for evolving decision making models):, first, the experts define the problem solving 1415 
criteria. By using the practical knowledge of the experts, the priority for each criteria are 1416 

determined as well and the criteria are organized in descending order finally.  1417 

Phase two(: regarding to each parameter’s ranking):, the following trend is employed for 1418 
calculation of the weight in each criteria: 1419 
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Starting from the second criterion, the respondent explains the relative importance of the criterion 1420 

 𝑗 in relation to the (𝑗 − 1)  criterion, and for each particular criterion as well. As Keršuliene 1421 

mentioned in his article, this process specifies the Comparative Importance of the Average 1422 

Value, 𝑆𝑗 as follows (Keršuliene et al., 2010): 1423 

𝑆𝑗 =
∑ 𝐴𝑖

𝑛
𝑖

𝑛
                                                                                                                                                      (1) 1424 

Wwhere 𝑛 is the number of experts; 𝐴𝑖 explicates the offered ranks for each factor by the experts; 1425 

j stands for the number of the factor. 1426 

Subsequently, the coefficient 𝐾𝑗 is determined as follows: 1427 

𝐾𝑗 = {
1                              𝑗 = 1
𝑆𝑗 + 1                    𝑗 > 1                                                                                                                    (2) 1428 

Recalculation of weight𝑄𝑗 is as the following: 1429 

𝑄𝑗 =
𝑋𝑗−1

𝐾𝑗
                                                                                                                                                       (3) 1430 

The relative weights of the evaluation criteria are calculated by the following equation: 1431 

𝑊𝑗 =
𝑄𝑗

∑ 𝑄𝑗
𝑚
𝑗=1

                                                                                                                                                (4) 1432 

wWhere 𝑊𝑗 shows the relative weight of j-th criterion, and m stands for the total criteria number. 1433 

3.3. Groundwater spring prediction modelling 1434 

In this research, five new hybrid models namely ANFIS-DE, ANFIS-IWO, ANFIS-FA, ANFIS-1435 
PSO, ANFIS-BA were utilized for the analysis of determination of groundwater potential zonation 1436 

in the study areas and for comparison between their prediction capabilities.   1437 

3.3.1. Adaptive Neuro-Fuzzy Inference System  1438 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is obtained from the combination of Artificial 1439 

Neural Network (ANN) and fuzzy logic (Jang, 1993). ANFIS is has been proven more efficient 1440 
than the two mentioned models in various fields (Bui et al., 2016). ThereforeThis is because, ANN 1441 

has the automatic ability but is not able to explain how to get the output from decision making. 1442 
Fuzzy logic, on the other hand, is the reverse of ANN by generating output from fuzzy logical 1443 

decision without the ability of self-operating learning (Aghdam et al., 2017; Chen et al., 2017b; 1444 
Phootrakornchai and Jiriwibhakorn, 2015). Consequently, ANFIS was proposed by Jang in 1993 1445 

(Jang, 1993) to solve nonlinear and complex problems in one framework (Rezakazemi et al., 1446 
2017). This model has been used in date processing, fuzzy control and others fields (Zengqiang et 1447 

al., 2008). The members of ANFIS are the function parameters from dataset for describing the 1448 
system behavior (Jang, 1993). ANFIS applies to Takgi-Sugeno-Kang (TSK) fuzzy model with two 1449 

rules of “If-Then” with two inputs x1 and  x2, and one output 𝑓 (Takagi and Sugeno, 1985), as 1450 
follows: 1451 
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𝑅𝑢𝑙𝑒2 1: 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1                                                             (5) 1452 

𝑅𝑢𝑙𝑒 1: 𝑖𝑓 𝑥2 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵2 , 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥2 + 𝑞2𝑥2 + 𝑟2                                                              (6) 1453 

Jang’s ANFIS consists of feed-forward neural network with six distinct layers. Detailed 1454 
description of ANFIS model described in details atcan be seen in (Jangs, 1993). 1455 

3.3.2. Meta-heuristic optimization 1456 

The main goal of this phase is to find the optimal antecedent and the consequent parameters of 1457 
the ANFIS model using IWO, DE, FA, PSO, and Bee algorithms. Fig.4 illustrates a general 1458 

methodological flow of ANFIS The processing in MATLAB software is shown in Fig 4. 1459 

 1460 
 1461 

Fig.4. General methodological flow of ANFISprocessing of ANFIS hybrid model 1462 

3.3.2.1. IWO algorithm 1463 

Invasive weed optimization (IWO) is one of the metaheuristic algorithms which mimics the 1464 
colonizing behavior of weeds. Its design is based on the way to find proper place for growth and 1465 

reproduction of weeds by Mehrabian and Locus (Mehrabian and Lucas, 2006). One characteristic 1466 
of this algorithm is its simplified structure; the number of input parameters is low and has strong 1467 

robustness. Furthermore, it is easy to understand and the same merit causes it to be used for solving 1468 
difficult nonlinear optimization problems (Ghasemi et al., 2014; Naidu and Ojha, 2015; Zhou et 1469 

al., 2015). Moreover, by comparing the results of IWO algorithm and other algorithms like SFLA 1470 
and PSO for solving optimization problems, IWO algorithm can compete with other ones 1471 

(Ghasemi et al., 2014). This algorithm consists of 4 parts as following:  1472 

1- Initialization 1473 
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Random spread of some limited weeds in searching area with dimension D is considered as the 1474 
initial population of solutions.  1475 

2- Reproduction 1476 

Weeds are able to reproduce some seeds in accordance with their fitness during their growth. In 1477 

other words, the number of produced seeds from Smin value for weeds starts with Worst fitness 1478 

and then increases in linear fashion to Smax  for them with best fitness.  1479 

3- Spatial dispersal 1480 

Produced seeds are distributed in the searching area randomly in a way that is located close to their 1481 
families with normal distribution, their mean equal to zero, and different variances. Moreover, 1482 

standard deviation decreases in each iteration from σmin  to σmax and is calculated by the following 1483 
non-linear equation:  1484 

σ𝑖𝑡𝑒𝑟 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)𝑛

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)𝑛 (σ
𝑚𝑖𝑛

− σ𝑚𝑎𝑥) + σ𝑚𝑎𝑥                                                                                        (7) 1485 

 1486 

wWhere itermax  is the last iteration, σiter is the standard deviation of iteration, and n is the non-1487 

linear index considered between 2 and 3 (Saravanan et al., 2013).  1488 

4- Competitive exclusion 1489 

All weeds and their seeds combine in order to make up the population of next generation. If the 1490 

population exceeds a definite maximum, those weeds with lower fitness will be removed. The 1491 
reproduction mechanism and the competition provide breeding opportunity for proper weeds. If 1492 

they generate fitter offspring, the offspring can survive the competition. 1493 

5- Termination Condition  1494 

Step 2 to 4 were repeated in order for the iteration to reach its maximum defined value and the 1495 
weeds with the best fitness will be the nearest condition to optimal solution. 1496 

3.3.2.2. DE algorithm 1497 

DE is another popular algorithm used as an evolutionary algorithm in recent years used for finding 1498 
global optimal answers in a problem with continuous space  (Chen et al., 2017a; Das et al., 2009). 1499 

This method was first introduced by Storn and Price (Storn and Price, 1997). It is very similar to 1500 
genetic algorithm that produces next optimum generation by three operators: mutation, crossover, 1501 

and selection. This algorithm starts by producing random population in which each individual of 1502 

population is a symbol of solution to the problem. Vector  Xi
G = (x1,i

G , x2,i
G , x3,i

G , … , xD,i
G ) shows each 1503 

individual of population i = {0,1,2, … , NP} is a number of each individual, in which D stands for 1504 

the search dimension or in other words, is a component problem and G = {0,1,2, … , Gmax} 1505 

generation time that Gmax is the total number of generations. By assuming the maximum and 1506 

minimum of every dimension of searching space, there are XL = {x1,L, x2,L, … , xD,L} and XU =1507 

{x1,U, x2,U, … , xD,U}, respecitivly; initial population is defined as the following (Storn and Price, 1508 

1997): 1509 

𝑥𝑗,𝑖
0 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿)                                                                                                    (8) 1510 
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wWhere rand(0,1) is a uniformly distributed random number in [0, 1] 1511 

3.3.2.2.1. Mutation 1512 

The first operator in DE algorithm is mutation, which produces mutant vector Vi
G =1513 

(Vi
G, V2

G, … , VD
G) by using each individual which is called target vector. Four well-known mutant 1514 

operators that are used are as the following:  1515 

DE/rand/1 : 𝑉𝑖
𝐺 = 𝑋𝑟1

𝐺 + 𝐹. (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) 1516 

DE/rand/2 : 𝑉𝑖
𝐺 = 𝑋𝑟1

𝐺 + 𝐹. (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) + 𝐹. (𝑋𝑟4
𝐺 − 𝑋𝑟5

𝐺 ) 1517 

DE/best/1 : 𝑉𝑖
𝐺 = 𝑋𝑏𝑒𝑠𝑡

𝐺 + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 ) 1518 

DE/best/2 : 𝑉𝑖
𝐺 = 𝑋𝑏𝑒𝑠𝑡

𝐺 + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 ) + 𝐹. (𝑋𝑟3
𝐺 − 𝑋𝑟4

𝐺 ) 1519 

DE/current – to – rand/1 : 𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑖

𝐺) + 𝐹. (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) 1520 

DE/current – to – rand/1 : 𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹. (𝑋𝑏𝑒𝑠𝑡
𝐺 − 𝑋𝑖

𝐺) + 𝐹. (𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 )                                               (9) 1521 

r1, r2, r3, r4, are the integer numbers that have been chosen randomly from [0,NP] and the 1522 

condition of r1 ≠ r2 ≠ r3 ≠ r4 exists. F is the Scale factor that determines the mutation scale. It 1523 

is generally selected as a random number from [0,1]. Xbest
G  is an individual that has the best fitness 1524 

value in G generation.  1525 

3.3.2.2.2. Crossover 1526 

The purpose of this step is to produce trail vector (Uij). Thus, this operator is defined by replacing 1527 

some elements of the target vector Xi
G with mutant vector Vi

G as the following (Storn and Price, 1528 

1997):  1529 

𝑈𝑖𝑗 = {
𝑉𝑖𝑗

𝐺      𝑖𝑓 𝑟𝑎𝑛𝑑 [0,1] ≤ 𝐶𝑅  𝑜𝑟  𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑋𝑖𝑗
𝐺    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

                                                                                     (10) 1530 

Where where i ∈ {1,2, … , NP}, j ∈ {1,2, … , D}, jrand, is a random number from [1,D] and CR is the 1531 
crossover rate which is uniformly distributed random number in [0,1].  1532 

3.3.2.2.3. Selection 1533 

Selection is characterized by comparing fitness value of Uij trail vector with the target vector (Xi
G) 1534 

and choosing the best ones as the next generation (Storn and Price, 1997).  1535 

𝑋𝑖 = {
𝑈𝑖

𝐺      𝑖𝑓 𝑓(𝑈𝑖
𝐺 ≤ 𝑓(𝑋𝑖)

𝑋𝑖
𝐺       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

                                                                                                              (11) 1536 

  1537 

3.3.2.3. FA algorithm 1538 
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Researches always try to design powerful evolutionary algorithms by utilization of swarm social 1539 
behavior of animals, insects, and plants to use them for problem solving (Poursalehi et al., 2015). 1540 

Firefly algorithm has been defined by Yang in Cambridge University (Yang, 2009) as an 1541 
evolutionary algorithm. In recent years, many researches in different fields have taken advantage 1542 

of this algorithm for optimization. The results of using FA algorithm in different problems, which 1543 
require optimization, have been better than other algorithms such as SA, GA, PSO, and HAS 1544 

(Alweshah and Abdullah, 2015). This algorithm is known as meta-heuristic algorithm that is 1545 
originated from flashing and communication behavior of fireflies (Yang, 2009; Yang, 2010).  1546 

Somewhere in the region of 2000, special firefly species exist that most of which produce short 1547 
and rhythmic flashes (Zeng et al., 2015). Like in every other swarm intelligence algorithm, where 1548 

their components are known as solutions for the problems, in this algorithm each firefly is a 1549 
solution and its light intensity is the objective function value. In other words, a firefly with more 1550 

light intensity is known as a solution. On the other hand, this firefly attracts more fireflies.  1551 

Generally, FAfirefly algorithm follows three idealized rules as below: 1552 

 1- All firefly species are unisex, with each of them attracting other fireflies without considering 1553 

their gender (Amiri et al., 2013). 1554 

 2- Attractiveness of a firefly is related to its light intensity. Thus, from two flashing firefly species, 1555 
the one with lower light intensity moves toward the other one with higher light intensity. It should 1556 

be noted that the distance between fireflies is significant because the farther they are from each 1557 
other, the dimmer the light gets and the attractiveness declines exponentially (Gandomi et al., 1558 

2013). Moreover, if the light intensity of fireflies were the same; they would move randomly 1559 
(Senapati and Dash, 2013).  1560 

3- Light intensity of a firefly is defined as an objective function value and must be optimized.  1561 

In order to design FA, two substantial issues are needed to be defined: light intensity variation (I) 1562 

and the attractiveness' formulation(β). Fireflies’ attractiveness is determined by their light 1563 

intensity or brightness. In addition, brightness is associated with the objective function. The light 1564 

intensity I(r) varies with the distance r monotonically and exponentially as: 1565 

I(r) = I0e−γr2
                                                                                                                        (12) 1566 

where I is the original light intensity, γ is the fixed light absorption coefficient and  r is the distance 1567 
between the two fireflies. Also, attractiveness rate is defined as below:  1568 

β = β0e−γr2
                                                                                                                             (13) 1569 

where β0  is the attractiveness when r=0. Also, the distance between two fireflies i and j with Xj 1570 

and Xj is determined by the following equation:  1571 

rij = ‖Xi − Xj‖ = √∑ (Xi,k − Xi,k)2d
k=1                                                                                   (14) 1572 

where 𝑑 is the number of the problem dimensions and  𝑋𝑖,𝑘 is the 𝑘 − 𝑡ℎ element of the 𝑖 − 𝑡ℎ 1573 

firefly. Also, the movement of a firefly 𝑖 which is attracted to another attractive firefly 𝑗, is 1574 

determined by (Yang, 2009): 1575 
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𝑋𝑖 = 𝑋𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑋𝑗 − 𝑋𝑖) + 𝛼(𝑟𝑎𝑛𝑑 −
1

2
)                                                                                     (15) 1576 

In Eq. (21), the first and the second terms determines the attraction. However; the third term is 1577 

regarded as a randomization with α, which is the step parameter, and ultimately, the rand is a 1578 

random number generator which is uniformly distributed in a range from 0  to 1. 1579 

3.3.2.4. PSO algorithm 1580 

As a Meta-heuristic algorithm, PSO was first designed by Eberhart and Kennedy (Eberhart and 1581 

Kennedy, 1995). Sensible characteristics of this algorithm include being powerful for optimizing 1582 
the non-linear problems, its quick convergence, and relatively low calculations. These 1583 

characteristics have made distinctions between this algorithm and other algorithms (Cheng et al., 1584 
2010). Thus, PSO algorithm in those problems that need optimization has a special place among 1585 

researches. This algorithm has been inspired by the way the birds and fish use their collective 1586 
intelligence for finding the best way to get food (Kennedy, 2011; Kennedy and Eberhart, 1995). 1587 

Therefore, each bird implemented in this algorithm acts as a particle that is in fact a representative 1588 
of solution to problems. These particles find the optimum answers for the problem by searching in 1589 

“n” dimension space whereas “n” is the number of problem's parameters. For this purpose, 1590 
particles were scattered randomly in considered space at the beginning of algorithm 1591 

implementation. Then, the positioning in each iteration can improve by using equation 1 and 2 and 1592 
finding better situations in that iteration and the best position of particles vector addition.  1593 

Assuming that xi
t = (xi1

t , xi2
t , … , xin

t ) and vi
t = (vi1

t , vi2
t , … , vin

t ) are the position and velocity of the 1594 

"i − th" particle in "t th" iteration, respectively. Then, position and velocity of "i th" particle in 1595 

"(i + 1) th" iteration is calculated by summing equation 1-2 (Eberhart and Kennedy 1995).  1596 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑖
𝑡 − 𝑥𝑖

𝑡)           𝑤𝑖𝑡ℎ   −𝑣𝑚𝑎𝑥 ≤ 𝑣𝑖
𝑡+1 ≤ 𝑣𝑚𝑎𝑥   1597 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                                                                                     (16) 1598 

where xi
t is the last position of "i th" particle, pi

t the best found position by "i th" 1599 

particle, gi
t the best found location by particles, r1, r2 the random number between 1 1600 

and 0. ω, c1 and c2 the inertia weight, cognitive coefficient, and social coefficient, 1601 

respectively. In order to value them, many papers have been presented (Olsson, 2010) 1602 

and finally the following equation has been used (Nieto et al., 2015).  1603 

𝜔 =
1

2𝑙𝑛2
  𝑎𝑛𝑑  𝑐1 = 𝑐2 = 0.5 + 𝑙𝑛2                                                                                       (17)  1604 

It is noteworthy that the algorithm continues until the best found position by each 1605 

particles unifies with the best found position of particles. In other words, all particles 1606 
accumulate in one position and actually the answer to the problem is optimized.  1607 

3.3.2.5. Bee algorithm 1608 

One of the meta-heuristic algorithms designed according to bee swarm-based is Bee 1609 
Algorithm. This algorithm which was first introduced by Pham (Pham et al., 2005; 1610 

Pham et al., 2011) is inspired by foraging behavior of bees' colonies in search of food 1611 
sources (flower patches) located near the hive. In the beginning, evenly distributed 1612 

scout bees are scattered randomly in different directions to identify flower patches. 1613 
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After that, scout bees come back to hive and start a specific dance called waggle dance. 1614 
This dance is for communicating with others in order to share the information of 1615 

discovered flower patches. This information indicates direction, distance, and nectar 1616 
quality of the flower patches. All the information helps the colony to have proper 1617 

evaluation of all flower patches. After evaluation, scout bees come back to the location 1618 
of discovered flower patches with other bees named recruit bees. Regarding the 1619 

distance and the amount of nectar, different number of recruit bees are assigned to each 1620 
flower patch. In other words, those flower patches with better nectar quality dedicate 1621 

more recruit bees to themselves. Following that, recruit bees evaluate the quality of 1622 
flower patches when performing the harvest process so that they leave the flower 1623 

patches if they have low quality. Conversely, if the flower patch quality is good, it will 1624 
be announced during the next waggle dance. Before implementing the BA algorithm, 1625 

the following parameters need to be defined:  1626 

The number of scout bees (n), the number of patches selected out of n visited points 1627 

(m), the number of best patches out of m selected patches (e), the number of bees 1628 
recruited for e best patches (nep), the number of bees recruited for other (m–e) selected 1629 

patches (nsp), the size of patches (ngh) and the stopping criterion. 1630 

At first, “n” number of scout bees with uniform distribution is scattered in search space 1631 
randomly. Then, the algorithm starts to evaluate the fitness of those seen places by 1632 

scout bees in order to define and select suitable bees as elite bees.  1633 

The sites of elite bees are selected from local search and the algorithm implements the 1634 

neighborhood searches within the selected bees’ sites for the best ones where more 1635 
bees exist. Only the proper bee is chosen to survive the next bee population in each site 1636 

and other bees are allocated around the search space randomly to find new potential 1637 
solutions. These steps continue until the algorithm convergences. 1638 

3.4. Model’s performance assessment 1639 

Forecasting error as the quantitative approaches, define as the difference between the 1640 

observed and estimated values which have been used for determination of the accuracy 1641 
of the performed models. In the current study the model prediction capabilities for each 1642 

hybrid model in terms of spatial groundwater prediction was evaluated using Mean 1643 
Squared Error (MSE) as follows (Tien Bui et al, 2016): 1644 

 𝑀𝑆𝐸 =
∑ (𝑂𝑖−𝐸𝑖)2𝑛

𝑖=1

𝑁
                          (18) 1645 

Where where 𝑂𝑖 and 𝐸𝑖 are observation (target) and prediction (output) values in both 1646 

training and testing dataset and N is the total samples in the training or the testing 1647 
dataset. 1648 

3.5. Model’s performance validation and comparisons 1649 

According to Chung and Fabbari (Chung and Fabbri, 2003), validation is one of the 1650 
most important steps in any spatial prediction modeling and without validation, the 1651 

result of the models do not have any scientific significance. Prediction capability of 1652 
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these five spatial groundwater models must be evaluated using both success-rate and 1653 
prediction-rate curves (Hong et al., 2015). Success-rate curves show how suitable the 1654 

built model is for the groundwater potential assessment or for the evaluation of the 1655 
goodness of fit (Gaprindashvili et al., 2014). Success-rate curves have been constructed 1656 

using groundwater potential maps and the number of spring locations used in training 1657 
dataset (Pradhan et al. 2010). Prediction rate curves which show the probabilities of the 1658 

groundwater occurrences demonstrate how good the model is or evaluate the prediction 1659 
power of the models. Therefore, it can be used for model prediction capabilities 1660 

(Brenning, 2005). The construction procedure of prediction rate is similar to the 1661 
success rate which the testing dataset (were not used in the training phase) has been 1662 

used for instead of training dataset. The area under the curve (AUC) of success and 1663 
prediction rate is the base for evaluation of model prediction power or assessment 1664 

accuracy of the groundwater potential models quantitatively (Khosravi et al., 2016a; 1665 
Khosravi et al., 2016b; Pham et al., 2017b). The AUC value varies from 0.5 to 1; the 1666 

higher the AUC, the better the prediction capability of models. 1667 

 3.6. Inferential statistics 1668 

3.6.1-Freidman test 1669 

As the conditioning factors have been classified into different classes, non-parametric 1670 

test has been used in the current study. Non-parametric statistical procedures such as 1671 
Freidman test (Friedman, 1937) have been used regardless of statistical assumptions 1672 

(Derrac et al., 2011) and do not need the data to be normally distributed. The main aim 1673 
of this test is to find whether there is a significant difference between the performed 1674 

models or not. In other words, performing multiple comparisons to detect significant 1675 
differences between the behaviors of two or more models (Beasley and Zumbo, 2003). 1676 

The null hypothesis (H0) is that there are no differences among the performance of the 1677 
groundwater potential models. The higher the P-value, the higher the probability that 1678 

the null hypothesis is not true since if the p-value is less than the significance level 1679 
(α=0.05), the null hypothesis will be rejected. 1680 

3.6.2 Wilcoxon signed-rank test 1681 

The most important drawback of Freidman test is that it only illustrates whether there 1682 
is any difference between the models or not, and does not have the ability to show 1683 

pairwise comparisons among performed model. Therefore, another non-parametric 1684 
statistical test named Wilcoxon signed-rank test have been performed. To evaluate the 1685 

significance of differences between the performed groundwater potential models, the P 1686 
value and Z value have been used. 1687 

4. Result and analysis 1688 

4.1. Multi-collinearity diagnosis 1689 

Result of multi-collinearity analysis is shown in Table 1. Result has revealed that as 1690 
VIF is less than 5 and the tolerance is greater than 0.1, there isn’t any multi-collinearity 1691 

problem among conditioning factors and all of factors are independent.  1692 
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Table.1. Multi-collinearity analysis for conditioning factors 1693 

No Groundwater conditioning factors 

Collinearity Statistics 

Tolerance VIF 

1 Slope degree 0.231 2.401 

2 Slope aspect 0.206 4.270 

3 Altitude 0.801 2.097 

4 plan CurvaturePlan curvature 0.513 1.446 

5 SPI 0.410 1.689 

6 TWI 0.541 2.113 

7 TRI 0.328 1.939 

8 Distance from fault 0.408 2.25 

9 Distance from river 0.212 3.126 

11 Land-use/land-cover 0.296 3.891 

12 Rainfall 0.298 1.686 

13 Soil order 0.205 4.039 

10 Geology (Unit) 0.215 4.150 

 1694 

4.2. Determination of the most important parameters 1695 

The most common method of information gain ratio (IGR) was applied to identification of the 1696 

most important conditioning factors. Also result of the IGR techniqueResult shows that all thirteen 1697 
conditioning factors are effective on groundwater occurrences as the land-use/landcover factor has 1698 

the most important impact on groundwater (IGR=0.502) followed by lithology (IGR=0.465), 1699 
rainfall (IGR=0.421), TWI (IGR=0.400), soil (IGR=0.370), TRI (IGR=0.337), slope degree 1700 

(IGR=0.317), altitude (IGR=0.287), distance to river (IGR=0.139), aspect (IGR=0.066), plan 1701 
curvature (IGR=0.0548), distance to fault (IGR=0.0482) and SPI (IGR=0.0323). 1702 

 1703 

4.23. Spatial relationship between springs and the conditioning factors by SWARA method 1704 

The spatial correlation between springs and the conditioning factor has been shown in Table 2. For 1705 
the slope, the class of 0-5.5 degree shows the highest probability (0.45) on spring groundwater 1706 

occurrences and there is a contrary correlation between slope degree and SWARA values. As the 1707 
slope degree increases, the probability of spring occurrence has reduced. In the case of slope 1708 

aspect, the east aspect (0.44) has the most impact on spring occurrences followed by north (0.22), 1709 
west (0.177), south (0.15) and flat (0.12) in the Koohdasht- Nourabad plain. According to 1710 

calculated results, in terms of altitude, the springs are the most abundant in the altitude of 1703-1711 
2068 m (0.6) and the least abundant in the altitude of 1070-1385 m (0.04). The SWARA model is 1712 

high in flat areas (0.4), followed by concave (0.38) and convex (0.2). For SPI, the highest SWARA 1713 
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value is found for the classes of 583969-1330153 (0.46), followed by the classes of 227099-1714 
583969(0.0.23) and 48664-227099 (0.19). In the case of the TWI, the SWARA values decrease 1715 

when the TWI reduces, while the highest TWI belongs to the classes of 6.6-7.9 (0.47), and the 1716 
lowest is for 2.1-4.6 (0.02). There is an adverse relationship between TRI and SWARA value, and 1717 

as the TRI increases, the SWARA value reduces. The highest and the lowest values of SWARA 1718 
also belongs to classes 0-8.7 (0.54) and 46.6-185 (0.001), respectively. For distance from the fault, 1719 

distance less than 2000 m has the highest impact on spring occurrences and with increase in the 1720 
distance (greater than 2000 m), the probability of spring occurrences has reduced. The highest 1721 

SWRA value belongs to distance from the fault of 500-1000 m (0.29) and the lowest value is for 1722 
greater than 2000 m (0.1). For the distance to river, it can be seen that the class of 0-200 m has the 1723 

highest correlation with the spring occurrence (0.46) and there is a contrary relationship between 1724 
spring occurrence and SWARA values; as the more the distance from the river, the lower the spring 1725 

occurrence probability. In the case of land use, the highest SWARA values are shown for garden 1726 
areas (0.219), followed by mixture of garden and agriculture (0.17), agricultural areas (0.12), 1727 

whereas the lowest SWARA is for bare soil and rock (0.00063). The rainfall between 500 and 600 1728 
mm has the highest SWARA value with 0.61 and the lowest SWARA belongs to 300-400 mm 1729 

(0.02). The Inceptisols have the highest SWARA values (0.5) followed by rock outcrop/Entisols 1730 
(0.39), rock outcrop/Inceptisols (0.056), Inceptisoils/Vertisoils (0.028), and Badlands (0.014). The 1731 

highest probability respectively belongs to the highly porous and very good water reservoir karstic 1732 
oligomiocene and cretaceous pure carbonate formation (OMq and K1bl), the young and poorly 1733 

consolidated highly porous detrital rock units (PeEf and Plq) and the unconsolidated quaternary 1734 
alluvium (PlQc). 1735 

Table.2. Spatial correlation between conditioning factors and the spring locations by SWARA methods 1736 

Factors Classes 

Comparative 
importance of 
average value 

Kj 

Coefficient 
Kj=Sj +1 

wj=(X(j-1))/kj weight wj/ sigma wj 

Slope 

(degree) 

0 - 5.55  1.000 1.000 0.454 

5.55 - 12.11 0.300 1.300 0.769 0.349 

12.11 - 19.43 1.500 2.500 0.308 0.140 

19.43 - 28.77 2.000 3.000 0.103 0.047 

28.77 - 64.37 3.500 4.500 0.023 0.010 

Slope aspect 

East  1.000 1.000 0.448 

North 1.000 2.000 0.500 0.224 

West 0.300 1.300 0.385 0.172 

South 0.100 1.100 0.350 0.156 

Flat 0.8 1.05 0.31 0.121 

Altitude (m) 

1703 - 2068  1.000 1.000 0.608 

1385 - 1703 2.200 3.200 0.313 0.190 

2068 - 3175 0.800 1.800 0.174 0.106 
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531 - 1070 1.000 2.000 0.087 0.053 

1070 - 1385 0.200 1.200 0.072 0.044 

plan 
CurvaturePl

an curvature 

Flat  1.000 1.000 0.408 

concave 0.050 1.050 0.952 0.388 

convex 0.900 1.900 0.501 0.204 

SPI 

583969.72 - 1330153.27  1.000 1.000 0.466 

227099.33 - 583969.72 1.000 2.000 0.500 0.233 

48664.14 - 227099.33 0.200 1.200 0.417 0.194 

0 - 48664.14 1.000 2.000 0.208 0.097 

1330153.27 - 4136452.25 10.000 11.000 0.019 0.009 

TWI 

6.64 - 7.92  1.000 1.000 0.471 

5.60 - 6.64 0.700 1.700 0.588 0.277 

7.92 - 11.97 1.300 2.300 0.256 0.120 

4.63 - 5.60 0.100 1.100 0.233 0.110 

2.12 - 4.63 4.000 5.000 0.047 0.022 

TRI 

0 - 5.59  1.000 1.000 0.544 

5.59 - 12.66 0.800 1.800 0.556 0.302 

12.66 - 20.62 1.500 2.500 0.222 0.121 

20.62 - 30.93 3.000 4.000 0.056 0.030 

30.93 - 75.13 10.000 11.000 0.005 0.003 

Distance 
from fault 

(m) 

0 - 200  1.000 1.000 0.242 

200 - 500 0.050 1.050 0.952 0.231 

500 - 1000 0.100 1.100 0.866 0.210 

1000 - 2000 0.050 1.050 0.825 0.200 

> 2000 0.700 1.700 0.485 0.118 

Distance 
from river 

(m) 

0 - 200  1.000 1.000 0.464 

200 - 500 1.900 2.900 0.345 0.160 

500 - 1000 0.050 1.050 0.328 0.152 

1000 - 2000 0.300 1.300 0.253 0.117 

> 2000 0.100 1.100 0.230 0.107 

Garden  1.000 1.000 0.219 
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Land-
use/land-

cover 

mixture of garden and 
agriculture 

0.282 1.282 0.780 0.171 

agriculture 0.340 1.340 0.582 0.128 

mixture of poor rangeland and 
follow 

0.419 1.419 0.410 0.090 

follow 0.233 1.233 0.333 0.073 

mixture of moderate rangeland 
and agriculture 

0.294 1.294 0.257 0.056 

mixture of  very poor forest 0.124 1.124 0.229 0.050 

mixture of waterway and 
vegetation 

0.549 1.549 0.148 0.032 

moderate forest 0.205 1.205 0.122 0.027 

mixture of agriculture with dry 
farming 

0.064 1.064 0.115 0.025 

wood-land 0.030 1.030 0.112 0.024 

good rangeland 0.043 1.043 0.107 0.023 

rangeland 0.333 1.333 0.080 0.018 

poor rangeland 0.030 1.030 0.078 0.017 

poor forest 0.210 1.210 0.065 0.014 

moderate rangeland 0.281 1.281 0.050 0.011 

bare soil and rock 0.237 1.237 0.041 0.009 

dense rangeland 0.278 1.278 0.032 0.007 

dense-forest 10.000 11.000 0.003 0.001 

waterway 0.000 1.000 0.003 0.001 

mixture of agriculture with 
poor-garden 

0.000 1.000 0.003 0.001 

very poor forest 0.000 1.000 0.003 0.001 

mixture of moderate forest and 
agriculture 

0.000 1.000 0.003 0.001 

mixture of low forest and 
follow, 

0.000 1.000 0.003 0.001 

urban and residential 0.000 1.000 0.003 0.001 

Rainfall 
(mm) 

600 - 700  1.000 1.000 0.617 

700 - 800 2.200 3.200 0.313 0.193 

800 - 900 0.600 1.600 0.195 0.121 
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500 - 600 1.500 2.500 0.078 0.048 

400 - 500 1.300 2.300 0.034 0.021 

Soil order 

Rock Outcrops/Entisols  1.000 1.000 0.509 

Rock Outcrops/Inceptisols 0.300 1.300 0.769 0.392 

Inceptisols 5.900 6.900 0.111 0.057 

Inceptisols/Vertisols 1.000 2.000 0.056 0.028 

Bad Lands 1.000 2.000 0.028 0.014 

Lithology 
(unit) 

OMq  1.000 1.000 0.133 

PeEf 0.309 1.309 0.764 0.101 

PlQc 0.253 1.253 0.610 0.081 

K1bl 0.113 1.113 0.548 0.073 

Plc 0.014 1.014 0.541 0.072 

pd 0.059 1.059 0.511 0.068 

TRKubl 0.223 1.223 0.417 0.055 

TRJvm 0.027 1.027 0.406 0.054 

MPlfgp 0.048 1.048 0.388 0.051 

OMql 0.015 1.015 0.382 0.051 

Plbk 0.081 1.081 0.353 0.047 

E2c 0.291 1.291 0.274 0.036 

TRKurl 0.059 1.059 0.258 0.034 

Qft2 0.335 1.335 0.194 0.026 

MuPlaj 0.100 1.100 0.176 0.023 

KEpd-gu 0.080 1.080 0.163 0.022 

Kgu 0.566 1.566 0.104 0.014 

Qft1 0.064 1.064 0.098 0.013 

Ekn 0.109 1.109 0.088 0.012 

KPeam 0.027 1.027 0.086 0.011 

PeEtz 0.328 1.328 0.065 0.009 

Kbgp 0.445 1.445 0.045 0.006 

EMas-sb 0.310 1.310 0.034 0.005 

Mgs 0.626 1.626 0.021 0.003 
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TRJlr 10.000 11.000 0.002 0.000 

Klsol 0.000 1.000 0.002 0.000 

JKbl 0.000 1.000 0.002 0.000 

Kur 0.000 1.000 0.002 0.000 

OMas 0.000 1.000 0.002 0.000 

Mmn 0.000 1.000 0.002 0.000 

 1737 

4.34. Application of ANFIS ensemble models and model’s assessment 1738 

In the current study, hybrids of ANFIS model and five meta-heuristic algorithms were designed, 1739 

constructed and implementedroved in MATLAB 8.0 software. These models are trained according 1740 
to the data of other intelligent models and the amount of training and optimization is tested by 1741 

using other data. All thirteen spring occurrenceusing conditioning factors and the training dataset 1742 
were applied in building the model. Methods of these models are like this: gained weights by 1743 

SWARA method for each conditioning factor was fed as the input for Training training dataset. 1744 
was used for finding the correlation between SWARA values of conditioning factor and springs 1745 

(were assigned to 1), and non-springs (were assigned to 0). Also, the spring and non-springs were 1746 
assigned to 1 and 0 respectively,These weights entered into a hybrid model as an output. It can 1747 

find and model the relationships between input and output data and the modeling accuracy is 1748 
calculated by statistical methods. The prediction ability of the five hybrid models with training 1749 

dataset as a target and estimated springs pixel as an output (in a training phase) and testing dataset 1750 
(in a validation phase) was shown in Fig.4 5 and Fig.56. 1751 

The MSE parameter indicates how much output of each hybrid’s model is close to real rate. As it 1752 

can be seen in Fig. 45, MSE values of ANFIS-IWO, ANFIS-DE, ANFIS-FA, ANFIS-PSO, and 1753 
ANFIS-BA have been calculated for the training step 0.066, 0.066, 0.066, 0.049, and 0.09, 1754 

respectively. This shows that compared to other models, ANFIS-PSO had the best performance 1755 
while ANFIS-BA had the worst one for training step. However, it should be noted that training 1756 

step is not adequate for determining the best model for MSE optimization, and MSE level for 1757 
testing phase needs to be reviewed. According to the results shown in Fig.45, values of MSE – 1758 

0.060, 0.060, 0.060, 0.045, and 0.09 – relate to the hybrid models; ANFIS-IWO, ANFIS-FA, 1759 
ANFIS-PSO, and ANFIS-BEE have been calculated and indicate that the best performance is for 1760 

ANFIS-PSO, the worst for ANFIS-BA.  1761 



69 
 

 1762 

Fig. 54. MSE and RMSE values ofin the training dataset samples of: a) ANFIS-IWO, c) ANFIS-DE, e) 1763 
ANFIS-FA, g) ANFIS-PSO l) ANFIS-BA frequency errors of train data samples of b) ANFIS-IWO, d) 1764 

ANFIS-DE, f) ANFIS-FA, h) ANFIS-PSO j) ANFIS-BA 1765 
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 1766 

Fig.56. MSE and RMSE values of the validation data samples of a) ANFIS-IWO, c) ANFIS-DE, e) 1767 
ANFIS-FA, g) ANFIS-PSO l) ANFIS-BA frequency errors of test data samples of b) ANFIS-IWO, d) 1768 

ANFIS-DE, f) ANFIS-FA, h) ANFIS-PSO j) ANFIS-BA 1769 
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However, it must be noticed that in addition to accuracy, determining the speed of used models 1770 
has recently found significance. To accomplish this, therefore, the processing time of 1000 1771 

iteration is calculated for each model where the amounts of 8036, 547, 22111, 1050, and 6993 1772 
seconds are related to ANFIS-IWO, ANFIS-DE, ANFIS-FA, ANFIS-PSO, and ANFIS-BA, 1773 

respectively (Fig. 67). As a result, it can be concluded that ANFIS-DE has had the minimum time 1774 
of processing speed compared to other models and ANFIS-FA has had the maximum time.  1775 

 1776 

Fig. 67. Cumulative curve for speed processing of methodsProcessing time used for training the models 1777 

On the other hand, it is possible to test how each model achieves convergence in learning. By 1778 
drawing a diagram, cost function values have been calculated in each iteration of convergence 1779 

graph for all five models as depicted in Fig.78.  The results show that cost function values of 1780 
ANFIS-DE and ANFIS-BA become constant in 30 and 95 iterations. This indicates a rapid 1781 

convergence of every model. On the other side, ANFIS-PSO, ANFIS-IWO, and ANFIS-FA 1782 
achieved convergence in 650, 650, and 360 iterations, respectively that indicates the low speed of 1783 

these methods in reaching convergence.  1784 
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 1785 

Fig.78. Convergence plot of methodsthe models 1786 

4.45. Preparation of groundwater spring potential maps using ANFIS hybrid models 1787 

In this study, SWARA values were standardized between 0-1 and were then transformed to 1788 
MATLAB software. Following that, ANFIS hybrid models of ANFIS with IWO, DE, FA, PSO 1789 

and BA algorithms were constructed using training dataset and standardized SWARA values. In 1790 
the next step, the built models were used for estimating the groundwater spring index (GSI), which 1791 

was assigned to whole the pixels of the study area and finally, the groundwater spring potential 1792 
mapping was developed from groundwater spring indicesex. At first, each pixel was assigned to a 1793 

unique groundwater spring index. In second step, all indices were exported in ArcGIS10.2 1794 
software and were utilized in the construction of the groundwater spring potential mapping. 1795 

Ultimately, the archived maps were divided into five potential classes, namely very low, low, 1796 
moderate, high and very high based on quantile classification scheme. Therefore, based on the five 1797 

hybrid model, five maps of groundwater spring potential were prepared (Figs.8 9 a-e). There are 1798 
six methods, namely manual, equal interval, geometric interval, quantile, natural break and 1799 

standard deviation for classification based on the different purposes. The selection of the best 1800 
method depends on the characteristics of the data and the distribution of the groundwater spring 1801 

indexes in a histogram (Ayalew and Yamagishi, 2005). If the distribution of the indexes in the 1802 
histogram is normal or close to normal, two methods of Equal interval and standard deviation are 1803 

used. However, if the indexes have a positive or negative skewness, the quantile or natural break 1804 
classification is proper for indexes classification (Akgun, 2012). In this research, the histogram 1805 

was checked and the results revealed that quantile method was better than other methods for 1806 
indexes classification.   1807 
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 1808 

 1809 

 1810 

Fig.89. Groundwater spring potential mapping using ANFIS-IWO (a), ANFIS-DE (b), ANFIS-FA (c), ANFIS-PSO 1811 
(d) and ANFIS-BA (e). 1812 
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 1813 

 1814 

Fig.89. Continued 1815 
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 1816 

Fig.89. Continued 1817 

4.56. Validation and comparisons of the groundwater spring potential map 1818 

The prediction ability and reliability of the five achieved maps have been evaluated by both the 1819 

training and the testing validating dataset. The results of the success rate revealed that the ANFIS-1820 
DE had the highest AUC value of 0.883 followed by ANFIS-IWO and ANFIS-FA (0.882), ANFIS-1821 

PSO (0.871) and ANFIS-BA (0.852) (Fig.9a10a). The results exhibited that all five models had a 1822 
very good prediction capability but the ANFIS-DE has the highest prediction rate (0.873) followed 1823 

by NFIS-IWO and ANFIS-FA (0.873), ANFIS-PSO (0.865) and ANFIS-BA (0.839), respectively 1824 
(Fig.9b10b).  1825 
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Fig.910. Success rate (a) and prediction rate (b) curves for the five performed models 1828 

4.67. Non-parametric statistical tests 1829 

The two tests of Freidman and Wilcoxon signed rank have been performed to determine whether 1830 

there are any statistically significant differences between the models performance or not. The result 1831 
of Freidman test revealed that (Table.3) as Sig and chi-square values were less than 0.05 and 1832 

greater than 3.84, respectively, null hypothesis has been rejected. The result also indicated that 1833 
there was statistically a significant difference between prediction capabilities of these five models.  1834 

Table.3. The result of Freidman test 1835 

NO Performed models Mean rank Chi-square Sig 

1 ANFIS-DE 3.04 

64.84 0.00 

2 ANFIS-IWO 3.13 

3 ANFIS-FA 2.98 

4 ANFIS-PSO 2.72 

5 ANFIS-BA 3.12 

 1836 

To show the pairwise differences between models performance, the Wilcoxon signed rank test was 1837 

carried out and result were shown in Table 4. Result of the Wilcoxon signed-rank test showed that 1838 
both P-values and z were far from the standard values of 0.05 and (from -1.96 to + 1.96), 1839 

respectively except for ANFIS-FA vs. ANFIS-DE and ANFIS-PSO vs. ANFIS-DE. This indicates 1840 
that there are statistically significant differences between models performance except for ANFIS-1841 

FA vs. ANFIS-DE and ANFIS-PSO vs. ANFIS-DE. 1842 

Table.4. The result of Wilcoxon signed rank test 1843 

NO Pairwise comparison Z-Value P-Value Significance 

1 ANFIS-DE vs. ANFIS-BA -3.97 0.00 Yes 

2 ANFIS-FA vs. ANFIS-BA -2.37 0.017 Yes 

3 ANFIS-IWO vs. ANFIS-BA -2.35 0.018 Yes 

4 ANFIS-PSO vs. ANFIS-BA -3.04 0.002 Yes 

5 ANFIS-FA vs. ANFIS-DE -1.32 0.185 No 

6 ANFIS-IWO vs. ANFIS-DE -3.96 0.00 Yes 

7 ANFIS-PSO vs. ANFIS-DE -0.841 0.41 NO 

8 ANFIS-IWO vs. ANFIS-FA -3.19 0.001 Yes 

9 ANFIS-PSO vs. ANFIS-FA -1.90 0.057 Yes 
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10 ANFIS-PSO vs. ANFIS-IWO -2.44 0.015 Yes 

 1844 

4.78. Percentage area 1845 

The percentage area of each class of final map resulting from five hybrid models has been 1846 

represented in Fig.1011. According to results, as ANFIS-DE is more accurate in groundwater 1847 
spring prediction capabilities, the percentage areas of very low, low, moderate, high and very high 1848 

groundwater spring potential are about 19.06, 19.88, 21.72, 20.55 and 18.78 % of the study area, 1849 
respectively.  1850 

.  1851 

Fig.1011. Percentage areas of different groundwater spring potential classes for five models 1852 

5. Discussion 1853 

5.1. The impact of conditioning factor’s classes on GSPM 1854 

The classificationAssessment of conditioning factor is a necessary step in finding the correlation 1855 

analysis between spring and conditioning factor. It should be noted that there isn’t anyno universal 1856 
guideline is available for regarding the number and size of the classes as well as selecting the 1857 
conditioning factors. and tThey were selected mostly depend based on some factors including 1858 

characteristics of the study area and previous similar studies (Xu et al., 2013). As the slope 1859 
increase, the probability of the water infiltration reduces and runoff generation will increase. Thus, 1860 

the more the slope, the lowest the spring occurrence probability. According to the result of the 1861 
SWARA method, the springs almost occur in a middle altitude or mountain slopes (but wells are 1862 

dug in a low-land area). The flat curvature class retains and infiltrates rainfall. Therefore, the 1863 
amount of groundwater in these areas is higher than concave or convex curvature. The east aspect 1864 

has more springs than other aspects. These results are in accordance with Pourtaghi and 1865 
Pourghasemi (Pourtaghi and Pourghasemi, 2014), that had explained most springs occurred in the 1866 

elevation of 1600-1900 m and east slope aspect (with FR method). TWI shows the amount of 1867 
wetness, and it is obvious that the more the TWI, the higher the springs probability occurrence is. 1868 

Terrain Roughness Index (TRI) or topographic roughness or terrain ruggedness calculates the sum 1869 
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of change in elevation between a grid cell and its neighborhood, and as the lowest the roughness, 1870 
the highest spring potential mapping. The SPI shows the erosive power of the water and 1871 

mountainous area is higher than plain area. So, As the SPI increases, the spring potential 1872 
occurrence increases. Rivers are one of the most important sources of groundwater recharge and 1873 

the nearer to river, the higher probability to springs occurrences. Also, as the rainfall increases, the 1874 
higher springs incident, but in the current study, some other conditioning factors affected the spring 1875 

occurrences.  1876 

Most of the springs were located in the garden land-use/land-cover. Therefore, it can be stated that 1877 

the gardens have been established near the springs. Pliocene-Quaternary formation in a geologic 1878 
time scale is newer and Quaternary formation has a high potential to groundwater springs incident 1879 

due to high permeability. The fault is discontinuity in a volume of rock. Thus, the nearer to the 1880 
fault, the higher the spring occurrence probability will be. Inceptisols soils are relatively new and 1881 

are characterized by having only the weakest appearance of horizons, the most abundant on the 1882 
Earth (https://www.britannica.com/science/Inceptisol) and mostly formed from colluvial and 1883 

alluvial materials. So, due to high permeability and high rainfall infiltration, they have a high 1884 
potential for springs occurrences. In the case of lithological unit, there are four suitable rock type 1885 

as water reservoir based on physical phenomena such as porosity and permeability that consist of: 1886 
1. unconsolidated sands and gravels; 2. sandstones; 3. Lime-stones; and 4. basaltic lava flows. In 1887 

this study area lithological units include sedimentary rocks mostly carbonate and detrital rocks 1888 
with cover of alluvium and minor soil. 1889 

5.2. Advantages/disadvantages of the models and performance analysis 1890 

The highest accuracy based on the RMSE in both training and testing dataset belonged to the 1891 

ANFIS-PSO model. However, , but based on the AUC for success and prediction rate, the ANFIS-1892 
DE model had has the highest prediction capability. The problem with RMSE comes from the fact 1893 

that, it is based on the error assessment. But the models should be acted upon holistically based on 1894 
the abilities. AAUC for Receiver operating characteristic (ROC) curves (success and prediction 1895 

rate curves) is based on the true positive (TP), true negative (TN), false positive (FP) and false 1896 
negative (FN), it is more accurate than RMSE for comparison (Termeh et al., 2018). The two axes 1897 

of the ROC curves are (Negnevitsky, 2005): 1898 

FP))(TN/(TN-1y specificit1 X                                                                                   (19) 1899 

))(TP/(TP/FN ysensitivit Y                                                                                                    (20) 1900 

ANFIS model is one of the machine learning algorithms that is proper for natural phenomenon 1901 

modeling due to its non-linear structure. The ANFIS model, which is based on Takagi–Sugeno 1902 
fuzzy inference system, is a hybrid of ANNs and fuzzy logic. Therefore, it has a potential to 1903 

capture the benefits of both in a single framework and can be considered as a robust model. The 1904 
predictions in ANFIS model are based on learning the ‘‘if–then’’ rules between groundwater 1905 

spring locations and conditioning factors.  1906 

Polykretis et al. (Polykretis et al., 2017), applied ANFIS for landslide susceptibility mapping 1907 

(LSM) in Peloponnese peninsula, Grece and stated that ANFIS model was a robust model. 1908 
Vahidinia et al. (Vahidnia et al., 2010), applied ANFIS model to LSM in the Mazandaran Province, 1909 

Iran, and revealed that ANFIS was a flexible and non-linear model and was completely appropriate 1910 

https://en.wikipedia.org/wiki/Rock_(geology)
https://www.britannica.com/science/horizon-soil
https://www.britannica.com/place/Earth
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Inference_system
https://en.wiktionary.org/wiki/framework
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for building a framework of easy inferences. Isanta Navarro (Isanta Navarro, 2013), applied 1911 
ANFIS to stability augmentation of an airplane and stated that ANFIS had some advantages 1912 

including: (1) much better learning ability, (2) need for fewer adjustable parameters than those 1913 
required in other neural network structure and (3) allowing a better integration with other control 1914 

design methods by its networks.  1915 

Despite several advantages of ANFIS model, non-adjutancy of membership function is the biggest 1916 

disadvantage of this model. Finding the optimal parameter for neural fuzzy model in a membership 1917 
function is difficult; therefore, the best parameter should be finding other optimization models. 1918 

This problem was addressed in this paper for being solved by five meta-heuristic algorithms, 1919 
namely Invasive Weed Optimization, Differential Evolution, Firefly, Particle Swarm Optimization 1920 

and Bees algorithms. The aim of any optimization is to find values of the variable to gratify the 1921 
restriction by minimizing or maximizing the objective function. These optimization algorithms are 1922 

completely new in environmental modeling (especially in groundwater potential mapping) and 1923 
have been used for natural hazards assessment by a few researchers in landslide susceptibility 1924 

assessment (Chen et al., 2017a) as well as in flood susceptibility mapping (Bui et al., 2016; Termeh 1925 
et al., 2018). 1926 

In the current study, the results showed that DE algorithm optimized the parameter for neural fuzzy 1927 

model better than four other algorithms. The main DE algorithm’s advantage is its simplicity as it 1928 
consists of only three parameters called N (size of population), F (mutation parameter) and C 1929 

(crossover parameter) for controlling the search process (Tvrdık, 2006). Advantages of DE 1930 
algorithm can be explained as follows: (1) Ability to handle non-differentiable, nonlinear and 1931 

multimodal cost functions, (2) Parallelizability to cope with computation intensive cost functions, 1932 
(4) good convergence properties, i.e. consistent convergence to the global minimum in consecutive 1933 

independent trials, and (5) random sampling and combining vectors in the present population for 1934 
creating vectors for the next generation.  1935 

Finally, it should be noted that each algorithm has some advantages or disadvantages according to 1936 

the optimization problems which can be summarized as: 1937 

Some of the advantages of IWO in comparison to other evolutionary algorithms include the way 1938 

of reproduction, spatial dispersal, and competitive exclusion (Mehrabian and Lucas, 2006) as well 1939 
as the fact that seeds and their parents are ranked together and those with better fitness survive and 1940 

become reproductive (Ahmed et al., 2014). This algorithm can benefit from combined advantages 1941 
of retaining the dominant poles and the error minimization (Abu-Al-Nadi et al., 2013) and there is 1942 

no need for continuity or differentiability of the objective function.  1943 

Bees algorithm doesn’t employ any probability approach, but utilizes fitness evaluation to drive 1944 

the search (Yuce et al., 2013). This algorithm is implemented with several optimization problems 1945 
or in other words, BA uses a set of parameters including the number of scout bees in the selected 1946 

patches, the number of best patches in the selected patches, the number of elite patches in the 1947 
selected best patches, the number of recruited bees in the elite patches, the number of recruited 1948 

bees in the non-elite best patches, the size of neighborhood for each patch, the number of iterations 1949 
and the difference between the value of first and last iterations that makes it powerful. BA also has 1950 

both local and global search capability and the local search step of the algorithm covers the best 1951 
locations. BA is really easy to use and available for hybridization combination with other 1952 

algorithms (Yuce et al., 2013). Another advantage is hiring smart bees since bees (artificial insects) 1953 

http://link.springer.com/chapter/10.1007%2F978-3-319-03404-1_13
https://en.wikipedia.org/wiki/Differential_evolution
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can memorize the location of the best food source and its quality which has been found before. If 1954 
the new solution has a lower fitness than the best-saved solution in the SB memory, it is replaced 1955 

with new candidate solution (Gorji-Bandpy and Mozaffari, 2012).   1956 

Firefly Algorithm’s (FA) advantages are summarized as: (1) handling highly non-linear, multi-1957 

modal optimization problems efficiently, (2) not utilizing velocities (3) very high speed of 1958 
convergence in finding the global optimized answer (4) ability to be integrated with other 1959 

optimization techniques as a flexible method, and finally (5) not needing a good initial solution to 1960 
beginning of its iteration process. 1961 

Advantages of Particle Swarm Optimization (PSO) algorithm can be summarized as follows: (1) 1962 

Particles update themselves with the internal velocity; (2) particles have a memory important to 1963 
the algorithm, (3) the ‘best’ particle gives out the information to others, (4) it often produces quality 1964 

solutions more rapidly than alternative methods, (5) this algorithm simulates bird flocking 1965 
behavior to achieve a self-evolution system, (6) it automatically searches for the optimum solution 1966 

in the solution  space, (7) (Wan, 2013). 1967 

As a result, there isn’t any algorithm which works perfectly for all optimization problems, and 1968 
each algorithm has a different performance accuracy based on different data. New algorithms, 1969 

therefore, should be applied, tested and finally the most powerful algorithm should be selected; as 1970 
the conclusion of the research demands.  1971 

5.3. Previous works and future work proposal 1972 

Some research has been done carried out in groundwater well or spring potential mapping using 1973 
bivariate statistical models (Al-Manmi and Rauf, 2016; Guru et al., 2017; Nampak et al., 2014) 1974 

using random forest (Rahmati et al., 2016) and using boosted regression tree and classification and 1975 
regression tree (Naghibi et al., 2016). The ANFIS-metaheuristic hybrid models have not seen are 1976 

not used in groundwater potential mapping. However, these hybrid models and are only usedhave 1977 
proven efficient in flood susceptibility mapping (Bui et al., 2016; Termeh et al., 2018) and 1978 

landslide susceptibility mapping (Chen et al., 2017a). Tien Bui et al. (Bui et al., 2016) ensemble 1979 
the ANFIS using two optimization models, namely Genetic (GA) and PSO for the identification 1980 

of flood prone areas in Vietnam. Razavi Termeh et al. (Termeh et al., 2018), used ANFIS-Ant 1981 
Colony Optimization, ANFIS-GA and ANFIS-PSO in flood susceptibility mapping of Jahrom 1982 

basin and stated that ANFIS-PSO had higher prediction capabilities than the two other models. 1983 
Chen et al (2017) applied three hybrid models, namely ANFIS- Genetic Algorithm (GA), ANFIS-1984 

Differential Evolution (DE) and ANFIS-Particle Swarm Optimization (PSO) for identifying the 1985 
areas prone to landslides in Hanyuan County, China. The results showed that ANFIS-DE had a 1986 

higher performance (AUC=0.84) followed by ANFIS-GA (AUC=0.82) and ANFIS-PSO 1987 
(AUC=0.78).  1988 

GenerallyIn general, the mentioned results of the present study and different researchers revealed 1989 

that by applying hybrid models, better results could be achieved for any spatial prediction 1990 
modeling including groundwater potential mapping. The ensembles of ANFIS by meta-heuristic 1991 

algorithms can be proposed for any spatial prediction modeling such as groundwater potential 1992 
mapping, flood susceptibility mapping, landslide susceptibility assessment, gully occurrences 1993 

susceptibility mapping and other endeavors at a regional scale and in other areas.  1994 
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For future work, it is recommended that (1) the water quality of the Koohdasht-Nourabad plain be 1995 
investigated and the water quality of areas with high potential be determined for different aspects 1996 

such as drinking, agricultural and industrial activities, and (2) the groundwater vulnerability 1997 
assessment should be applied by some common methods including DRASTIC model for which 1998 

the zones with high potential to groundwater occurrences should be preserved against pollution.  1999 

6. Conclusion 2000 

Groundwater is the most important natural resource in the world and about 25 percent of all fresh 2001 

water is estimated as groundwater. Thus, the groundwater potential mapping has been considered 2002 
as one of the most effective methods tools for the management of groundwater resources for better 2003 

exploitation. The conservation and the maps with high accuracy is necessary for decisions. As the 2004 
natural phenomena are complex, the simple method and statistical models do not have an 2005 

appropriate result in modeling of the natural phenomena. To solve the problem, the artificial 2006 
intelligence models have been used for having a reasonable result but these model have some 2007 

weaknesses, especially in modeling process. To resolve this problem, this study verifies the five 2008 
new hybrid models of ANFIS with metaheuristic algorithms namely IWO, DE, FA, PSO and BA 2009 

to increase the prediction capability of the spatial prediction of groundwater potential mapping (1) 2010 
for solving the weakness of the artificial intelligence models and (2) using non-linear structure of 2011 

these models which are better for modeling of the complex natural phenomena such as 2012 
groundwater modeling. The result of this modeling has been evaluated using prediction rate ROC 2013 

curves and the results showed that all models had very good reasonable results. However, the 2014 
ANFIS-DE had the highest prediction power (0.875) followed by ANFIS-IWO and ANFIS-FA 2015 

(0.873), ANFIS-PSO (0.865) and ANFIS-BA (0.839). Thus, the results revealed that the 2016 
metaheuristic algorithms could optimize the weights parameters of the ANFIS model with high 2017 

accuracy as the highest advantage of these algorithms 2018 

According to the results of the SWARA method, most springs existed in an altitude of 1703-2068 2019 
m, flat curvature, east aspect, TWI of 6.6-7.9, TRI of 0-8.7, SPI of 583969-1330153, Inceptisols 2020 

soil, slope of 0-5.5 degree, 0-200 m distance from river, 500-1000 m distance from fault, rainfall 2021 
between 500-600 mm, in a garden, in a Pliocene-Quaternary lithological age and OMq lithology 2022 

unit. 2023 

The results of the current study is helpful for Iran Water Resources Management Company 2024 

(IWRMC) for sustainable management of the groundwater resources. Overall, the maps resulting 2025 
from these hybrid artificial intelligence algorithms can be applied for better management of the 2026 

groundwater resources in the study area, and can be used for other areas for groundwater potential 2027 
assessment or mapping of gully, flood, landslide and other susceptibility uses in the world due to 2028 

its high precision.  2029 
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