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Abstract. Saturated hydraulic conductivity (Ksat) is an important soil parameter that highly depends on soil’s particle size

distribution (PSD). The nature of this dependency is explored in this work in two ways, (1) by using the Information Entropy

as a heterogeneity parameter of the PSD and (2) using descriptions of PSD in forms of textural triplets, different than the

usual description in terms of the triplet of sand, silt and clay contents. The power of this parameter, as a descriptor of lnKsat,

was tested on a database larger than 19,000 soils. Bootstrap analysis yielded coefficients of determination of up to 0.977 for5

lnKsat using a triplet that combines very coarse, coarse, medium and fine sand as coarse particles, very fine sand and silt as

intermediate particles, and clay as fines. The power of the correlation was analysed for different textural classes and different

triplets using a bootstrap approach. Also, it is noteworthy that soils with finer textures had worse correlations, as their hydraulic

properties are not solely dependant on soil PSD.

This heterogeneity parameter can lead to new descriptions of soil PSD, other than usual clay, silt and sand, that can describe10

better different soil physical properties, that are texture dependant.

1 Introduction

Saturated hydraulic conductivity (Ksat) is the measure of soil’s ability to conduct water under saturation conditions (Klute

and Dirksen, 1986). It is an essential parameter of soil hydrology. Soil Ksat affects many aspects of soil functioning and soil

ecological services, like infiltration, runoff, groundwater recharge and nutrients transport. Knowing values of soil Ksat appears15

to be essential in designing management actions and practices, such as irrigation scheduling, drainage, flood protection, and

erosion control.

The dependence of Ksat on soil texture has been well documented (Hillel, 1980). Different parameterizations of particle

size distributions (PSDs) were suggested to relate Ksat and soil texture. It was proposed to use d10, d20, and d50 particle

diameters (Chapuis, 2004; Odong, 2007) or slope and intercept of the particle size distribution curve (Arya and Paris, 1980;20

Alyamani and Sen, 1993). Also various functions were fitted to PSDs, and the fitting parameters were related to Ksat. For

example, Chapuis et al. (2015) proposed to use two lognormal distributions to fit the detailed particle size distribution and to

use the lognormal distribution parameters to predict the Ksat.
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A common way to parameterize the PSD for Ksat estimation purposes is using the textural triplet that provides the percentage

of coarse particles (sand), intermediate particles (silt), and fine particles (clay). Ksat values are estimated using the contents of

one or two triplet fractions or just the textural class (Rawls et al., 1998). Representing PSD by textural triplets is the common

way to estimate a large number of soil parameters (Pachepsky and Rawls, 2004). The coarse, intermediate, and fine fractions

need not to be sand, silt and clay. Martín et al. (2017) showed that different definitions of the triplet, e.g. coarse sand, sand, and5

medium sand as coarse, fine sand, very fine sand as intermediate, and silt and clay as fine triplet fractions, provide much better

inputs for bulk density estimation compared with the standard textural triplet. These different parametrizations of soil texture

might put the focus on different soil physical properties, depending on the different particle sizes represented in the triplet.

The heterogeneity of particle size distributions appears to be an important factor affecting hydraulic parameters of soils,

including the saturated hydraulic conductivity. Values of Ksat depend on both distribution of sizes of soil particles, i.e. soil10

texture, and the spatial arrangement of these particles, i.e. soil structure. Soil structure can be to some extent controlled by soil

texture, since packing of particles is affected by the particle size distributions (e.g., Gupta and Larson, 1979; Assouline and

Rouault, 1997; Horn et al., 1994; Jorda et al., 2015). It was recently proposed to use the information entropy as the parameter

of the PSD heterogeneity for predicting soil water retention (Martín et al., 2005) and soil bulk density (Martín et al., 2017).

Previously, information entropy was used, together with other predictor variables to estimate Ksat, using multivariate analysis15

(Boadu, 2000).

The objective of this work was to test the hypothesis that combining two recent developments -the description of the PSD

by different textural triplets, that may represent different soil physical properties dependent on the particle sizes present in the

triplet, and the information entropy, as a PSD heterogeneity parameter, that depends on the triplet used- may linearly correlate

with lnKsat and may be seen as a step forward to study the effect of heterogeneity widely recognized in the majority of works20

that studied the particle size - hydraulic conductivity relationships. By describing the PSD in terms of different triplets, the

input information would possibly have different physical interpretations. We wanted to link the heterogeneity of this physical

information to the hydraulic behaviour of the soil. Therefore, we explored the possible relationships between lnKsat values

and an entropy metric of soil texture heterogeneity using different size limits of coarse intermediate and fine fractions, using

the large USKSAT database on laboratory measured Ksat containing more than 19,000 samples. The triplets with highest25

correlations will be understood as the physical sizes that influence the most in the packing of particles yielding the particular

hydraulic behaviour. While PTFs are a useful tool to predict difficult-to-measure soil properties, they sometimes exhibit highly

non-linear relationships which are difficult to interpret. While the objective of this paper was the exploration of the physical

relation of the new tools and the saturated hydraulic conductivity, the future development of PTFs for prediction purposes

is promising avenue for expanding this research. We note that research in this work is a descriptive one. It does not include30

explanation of what we have observed. However, any explanatory research with mechanisms, models, etc. was historically

preceded with the descriptive research.

2



2 Materials and Methods

2.1 Database description and textural triplet selection

For this study we used USKSAT database in which detailed information can be found in Pachepsky and Park (2015). This

database consists on soils from different locations of the USA and contains soils from 45 different sources. We selected only

those sources which (a) had data on both Ksat and on the seven textural fractions, and (b) presented measurements of Ksat5

made in laboratory with the constant head method. From those, we subset those soils whose sum of mass in the seven textural

fractions, i.e. (1) very coarse sand, (2) coarse sand, (3) medium sand, (4) fine sand, (5) very fine sand, (6) silt and (7) clay

ranged from 98 to 102%. The final number of soils considered was 19,121. By USDA textural classes the total number of soils

are: 12,068 sands, 1.780 loamy sands, 2,123 sandy loams, 104 loams, 135 silt loams, 36 silts, 2,004 sandy clay loams, 78 clay

loams, 41 silt clay loams, 345 sandy clays, 0 silty clays and 407 clays. All the samples in the database used are undisturbed10

soil samples.

We used all possible triplets formed from seven textural fractions. Triplets consisted of coarse, intermediate, and fine frac-

tions. The symbols for triplet showed how the fractions were grouped. For example the “coarse” fraction for the triplet ‘3-2-2’

included very coarse sand, coarse sand and medium sand, the “intermediate” fraction included fine sand and very fine sand , and

“fine” included silt and clay; triplet ‘5-1-1’ was the standard one where “coarse” included all five sand fractions, “intermediate”15

included silt, and “fine” included clay. The amount of possible triplets with 7 textural fractions was 15.

2.1.1 Heterogeneity metric calculation

The Entropy based parametrization of textures introduced in Martín et al. (2001) has as central concept in the Information

Entropy (Shannon, 1948). Assuming the texture interval divided into k textural size ranges and that the respective textural

fraction contents are p1,p2, . . . ,pk, 1≤ i≤ k , with
k∑

i=1

pi = 1, the Shannon Information Entropy (IE) (Shannon, 1948) is20

defined by

IE =−
k∑

i=1

pi log2 pi (1)

where pi log2 pi = 0 if pi = 0. The IE is a widely accepted measure of the heterogeneity of distributions (Khinchin, 1957). In

case of three fractions, the minimum value of IE is zero when only one fraction is present, and the maximum value is 1.57

when three fractions are present in equal amounts (see Fig. 1).25

For each soil in this study, we grouped the 7 available textural fractions in the 15 possible triplet combinations and calculated

the respective triplet’s IE using formula (1). Fig 2 shows ternary graphs of IE calculated for all the soils available in this study

but using two different triplets as input. It is clear that, by changing the triplet, the calculated IE values vary differently along

the same textural triangle. IE is a measure of heterogeneity, but the triplet used is the substrate for this measure: (IE,triplet),

i.e., (IE,‘5-1-1’).30
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As we want to compare the linearity, i.e. the proportionality between the heterogeneity of the particular physical sizes

chosen and the hydraulic behaviour, we used coefficient of determination, R2, as a comparison statistic. As this statistic is

highly sensitive to the number of points in the regression, we followed the binning method of Martín et al. (2017) to research

the relationship between lnKsat and soil heterogeneity. Specifically, the range of values of IE was divided into ten bins, the

average value of lnKsat was plotted against the average IE for the bin, i.e. the bin midpoint. This way, the number of points5

in each relationship was always the same. We want to state that this way, the particular value of R2 is irrelevant, but it is to be

only used as a comparison tool among these regressions.

Linear regressions ‘bin midpoint vs. average bin lnKsat’ were computed. Besides the coefficient of determination value for

comparison purposes, the goodness-of-fit of these regressions was tested using the Root-mean-square error, RMSE

RMSE =

√√√√√ n∑
i=1

(ŷt − yy)
2

n
10

where ŷt are the predicted and yt are the measured values of lnKsat, and n is the number of soils.

In order to make some inference on these parameters we employed the bootstrap method, which has been used in a very

similar context by Schaap and Leij (2000). The bootstraph method is a tool for assessing statistical accuracy. It assumes that

one can obtain multiple samples from a single data set, by randomly drawing data with replacement from the original sample.

Thus, one can perform the same statistical analysis multiple times in different data sets, obtaining slightly diferent regression15

models, thus resulting in an uncertainty in each of the parameters of the model. All of the samples used have the same size as

the original sample they were drawn from, so the are generated by random sampling with replacement. We used 1.000 bootstrap

data sets, resulting in 1,000 linear regression models. In particular we obtained not just one R2 and one RMSE value for each

IE vs. triplet regression, but one thousand of them, that were summarized into a mean and a standard deviation values. More

information on this method can be found in (Efron and Tibshirani, 1993; T. Hastie, 2003).20

We took 1,000 samples with size equal the total amount of soils, with repetition, and calculated, for each sample, the

coefficient of determination, R2 and the Root-mean-square error, RMSE. Finally, the mean and standard deviation from these

two values, for the 1,000 samples were calculated.

These regressions were obtained for each of 15 triplets and for those of USDA textural classes that were represented in the

selected database by more than 50 samples, i.e. all of them except silty clay loams and silts.25

2.2 IE variation in the textural triangle

Ternary graphs were used to visually correlate the IE values calculated with the lnKsat values of the soils in the study. Also,

a less visual, but more quantifiable approach, to find out how much of lnKsat could be explained through IE variation was to

find out what ranges of IE are available for soils in different textural classes and compare them to the range of lnKsat values

of soils inside those same textural classes. Also, in order to compare the new tool (IE triplet), we compared these ranges to the30

ranges computed for (IE,‘5-1-1’) , i.e. to the values of the IE computed with the usual description of soil texture. We wanted

to find out if, by changing the triplet, we would obtain a wider range of variation in IE for a given range of lnKsat. This
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way we compared if the new descriptions of texture, in form of different triplets, might be suitable for explaining soil physical

properties, in particular lnKsat.

For each textural class, we did a sensitivity analisis by calculating the ratio of the range of lnKsat values inside the textural

class versus the range of lnKsat values of all the soils in the study. The same was done for IE for each triplet.

3 Results and Discussion5

3.1 The Dataset Overview

Fig. 3 presents the 19.121 soils used in this study in the USDA textural triangle and in the modified ‘3-2-2’ triangle. The

density of points reflects the dominance of coarse textural soils in the database. When the triplet is changed, the distribution of

points across the triangle changes. By setting the textural fractions to be the ‘3-2-2’ triplet, the distribution of points/soils in

the new textural triangle spreads. While there is still a high concentration of soils in the stripe of bigger than 85% of the Coarse10

fraction, where Coarse 3 includes very Coarse Sand, Coarse sand a Medium Sand, now those soils spread fully from 10 to

100% of the Intermediate-2 fraction, where Intermediate-2 contains Fine and Very Fine Sand. On the USDA textural triangle,

most of the soils are clustered in the subtriangle limited by the lines “more than 70% sand” and “less than 20% silt”. This new

textural triangle allows for a finer look into the sand fraction, revealing the distribution of soils within the USDA sandy textural

classes. This finer look might prove itself useful to study physical properties of these soils that are mainly related to the type15

and amount of sand in them.

Table 1 shows the Ksat statistics for the soils in the study. A total of 19,420 soils were used in this study, from which 299

(1.53%) had to be rejected due to missing values. The textural class sand comprises the 63.1% of all the soils, followed by

sandy loam (11.1%) and sandy clay loam (10.48%). Five textural classes were poorly represented with percentages less than

1% of the total soils. The Ksat values varied between 0.0005 and 841 cm/h being 22.57 the mean value.20

3.2 Regression in binned data: IE as a predictor of Ksat and lnKsat

Linear regressions for lnKsat were done to find out the predictive power of the proposed parameter, (IE,triplet), with the 15

possible different triplets that could be archived by grouping the available textural data. Table 2 shows the computed R2 and

RMSE values for the linear regressions using 10 interval bins.

The best triplet in terms of highest mean R2 value was ‘4-2-1’, with a mean of 0.977 and a standard deviation of 0.002,25

but the lowest mean RMSE (ln(cm/h)) value (mean=0.207, std = 0.030) was attained with the ‘1-2-4’ triplet. Figure 4 shows

a ternary represenation representation of the lnKsat values of the soils of the study on the textural triangle compared to a

ternary representation of the IE values of the same soils computed using the ‘4-2-1’ triplet. There is a high visual similarity

between these two images, with high lnKsat value zones, near the lower corners (sandy and silty soils) that correspond to low

(IE,‘4-2-1’) values. The lnKsat values tend to decrease towards the centre of the triangle. On the other hand, the (IE,‘4-2-1’)30

values tend to increase around this point.
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The standard triplet (‘5-1-1’) yielded, for the lnKsat regression, the R2 value with this triplet had a mean of 0.960 and a

standard deviation of 0.005; the RMSE mean value was 0.339 with a standard deviation of 0.021. The average of the R2 mean

values of the regressions with all possible triplets for lnKsat was 0.727.

3.3 Predictive power of IE among the USDA textural classes

In this section we show how IE works differently among textural classes: using different triplets we can find that the textural5

classes are predicted differently; what works for some, for others is counterproductive.

Table 3 shows the best triplet, chosen in terms of highest mean R2 value of all the possible regressions, for each textural

class that had N > 50. In the table are shown the mean and standard deviation for R2, of the 1,000 bootstrap samples for

lnKsat linear regressions. The best R2 values were obtained for the regression of the sand textural class against the (IE,‘5-

1-1’), i.e., the IE computed with the standard ‘5-1-1’ clay-silt-sand USDA triplet. The mean value was equal to R2=0.98710

for all the regressions. A possible explanation for this triplet being the best among all the other possible triplets, is that sandy

soils are the ones that contain percentages of the sand fraction higher than 70%, so their distribution is highly heterogeneous.

Minor fractions are now silt and clay, and the information about this two fractions could be very important for the hydraulic

properties of the soil, thus the (IE,‘5-1-1’) triplet yielded the best regression result. One might think that, having such a high

concentration of sand particles, is now silt and clay the fractions that made the difference in the packing properties, thus in the15

saturated hydraulic conductivity values. The high value of R2 indicates that the relation is very strong in this case.

Almost all sandy textural classes had the highest regression coefficients. Table 3 suggested grouping the textural classes into

two superclasses: SC1, comprising the textures sandy, sandy clay loam, sandy loam and loamy sand; and SC2, with sandy clay,

clay, clay loam, loam and silty loam. Soils in SC1 are mostly sandy soils, with the exception of the sandy clay textural class

which is within the SC2 soils which are mostly clayley and loamy soils. The lowest mean R2 value for the logKsat regressions20

in the SC1 superclass was 0.742 and the highest one for the SC2 class was 0.604. Total number of soils in SC1 was 17,975

(94.06% of total soils in the database). SC2 contained 1,069 soils (5.59% of total). Tables 4 and ?? show the R2 and RMSE

values for all regressions for the soils in SC1 and SC2.

For the SC1we observed that the best regression (R2=0.986, RMSE=0.184) against lnKsat was reached with (IE,‘4-1-2’).

This triplet creates a division among the sand fractions, grouping together very coarse, coarse, medium and fines, and leaving25

alone the very fines sand. Finally, the fines fractions contains only the silt and clays. Comparing this to the sandy textural class

results, where the best triplet was ‘5-1-1’, we observed that now more information from the sandy fraction was required to infer

hydraulic properties. The area that the SC1 soils cover in the textural triangle and the hydraulic property variation of these soils

can be related with a heterogeneity metric associated to triplets that distinguish well among the predominant fraction in that

area of the triangle, i.e., sand.30

For the SC2, best triplet was ‘1-1-5’, with R2=0.623. Regression results were worse than for SC1, but this might be just

provoked by the nature of SC2 itself: these are soils with less sand, thus higher content in clays and aggregating particles.

The packing -and consequently the Ksat- of these soils is not just mainly affected by the PSD, but also by aggregation, which

cannot be accounted for in the IE value, regardless of the triplet used.
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Furthermore, the best triplet, ‘1-1-5’, also pointed in this direction: the fines fraction contains medium sand, fine sand, very

fine sand, silt and sand particles, while the intermediate fraction contains only the coarse sand, leaving the coarse fraction with

the very coarse sand, thus giving more importance to the possibly aggregating particles than a triplet like, ‘1-4-2’ which had

R2 values equal to and 0.033.

3.4 Triplets and Scaling Break5

In the regressions made with all the soils, it was noteworthy the behaviour of the (IE,‘3-1-3’). The average value of all triplets

was 0.727, but (IE,‘3-1-3’) gave a exceptionally low R2 value of 0.087, being the next lowest (IE,‘2-2-3’) with a mean R2

value of 0.235.

The ‘3-2-3’ triplet groups fine sand with silt and clay, and coarse and very coarse sand with medium sand. Kravchenko and

Zhang (1998); Wu et al. (1993); Tyler and Wheatcraft (1992) reported the break in scaling where the powerlaw scaling of soil10

texture occurred in the size range of fine sand The Particle size distribution scales in a different way in two different regions

of the size intervals, and that the change of scaling is produced around the fine sands. The triplet ‘3-1-3’ separates these two

regions, maybe bringing forth this scaling break effect. Fig 5. shows how the relationship between lnKsat and (IE,‘3-1-3’)

could be nonlinear, maybe due to the absence of global selfsimilarity showed in the scaling break.

On the other hand, it is also noteworthy that regressions against (IE,‘3-1-3’) were actually quite good (R2=0.939) in the15

SC1, while in the SC2 they were moderate (R2=0.045).

When all the soils are considered together, then (IE,‘3-1-3’) might fail, due to the scaling break, but when we restrict the

study to a certain part of the textural triangle, that effect might diminish to a point where this triplet is even useful to predict

some textural derived properties, or maybe the scaling break effect is also restricted to some textural classes and should be

further investigated.20

As results show, IE is not powerful lnKsat predictor by itself, but combined with an input triplet. By changing the triplet, we

may focus on certain physical aspects of the soils, but it is also important to keep in mind that this might not work statistically

for random groupings of soils that belong to different textures.

3.5 IE variation as a spatial function in the textural triangle

Table 6 shows, for each textural class, the ratio of the percentage of (IE,‘5-1-1’) against the percentage of lnKsat range. The25

same ratio was also calculated using IE for the triplet that gave the best R2 value in the linear regression against lnKsat. These

values can be thought of as how much range of (IE,triplet) can be used to explain a certain variation of lnKsat inside each

textural class, i.e. as how much parametrizing power is available by the IE. In all the textural classes the parametrizing power

of the alternative triplet was higher than the one by using the usual clay-silt-sand triplet. For the sand textural class, the triplet

which gave the best R2 regression was ‘5-1-1’ thus the results are the same; the average value of the parametrizing power30

for the usual triplet was 0.50, while when we change the triplet we obtained 0.79. This shows how, by considering different

triplets, combined with IE, a better description/parametrization of lnKsat can be reached.
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3.6 Final Comments

Textural heterogeneity is a crucial factor affecting soil Ksat, but it acts along many other ecological factors, as animal activity,

root exudates, soil aggregation, etc. In this work we showed that a proper representation of textural heterogeneity, by IE,

allows one to (1) demonstrate its effect on lnKsat by binning samples based on the textural heterogeneity and (2) to statistically

parametrize this effect for some textures.5

This work has limitations, in particular, the limited available texture data of only seven fractions in the database. The bound-

aries between coarse, intermediate, and fine fractions can be moved with data from continuous measurements of texture in the

fine sand-silt-clay range of particle sized. This may bring the improvements in mean bin lnKsat estimates for non-sandy soils

that could not be achieved in this work.

Although globally the IE computed from different triplets show a potential to reflect the effect of soil texture on the lnKsat10

values, the different relationship between the IE and the lnKsat depending on the triplet used might have different possible

explanations. While the IE/lnKsat relationship is found satisfactory in some textural classes, results seem to indicate that the

IE parameter cannot reflect with the same efficiency the lnKsat values in other classes predominating fine particles, in which

other processes as aggregation or weathering can not been elucidated by the single textural data input.

Overall, the heterogeneity parameter, IE, combined with the different triplet information, appears to be a strong candidate15

as an input for the development of new pedotransfer functions (PTFs) to predict lnKsat and probably other soil physical

parameters which are strongly dependant on soil particle size distribution.

4 Conclusions

The PSD coarse, intermediate,and fine fractions in soil textural triplets can be redefined from standard ‘sand-silt-clay’ to other

fraction size ranges. The textural heterogeneity parameters obtained for some of the new triplets correlate with soil saturated20

hydraulic conductivity averaged by ranges of the heterogeneity parameters. This approach allows one to quantify the effect

of the textural heterogeneity of saturated hydraulic conductivity of soils. Given that size boundaries of sand, silt, and clay

fractions have not originally been established for the purposes of prediction of soil hydraulic conductivity, it may be beneficial

to look for other size based subdivisions of particle size distributions which, when used along with other soil properties such

as bulk density and organic matter content, may provide better predictions of the saturated hydraulic conductivity.25
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Figure 1. IE numerical approximation ternary representation: IE is computed for a sample of 5051 evenly distributed soils in the USDA

textural triangle using the clay, silt and sand fractions as input triplet. This distribution of IE is repeated for any textural triangle, when the

fractions used for its calculations are the ones at the axes of the triangle. The lowest values for the IE are near the vertex of the triangle, i.e.

where one fraction dominates above the others. Biggest values are located towards the centre of the triangle, where the distribution fractions

are more balanced.
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Figure 2. Ternary representations for IE calculated for the soils of the study but using different triplets. The usual clay, silt and sand triplet

(‘5-1-1’) was used at the left and the grouping seven textural fractions into ‘1-1-5’ was used as input for the right.
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Figure 3. Representation in the USDA textural triangle of the 19,193 soils used in this study. (a) standard sand-silt-clay, i.e. ‘5-1-1’ triplet.

(b) the ‘3-2-2’ triplet.
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Figure 4. Ternary representations for lnKsat and (IE,‘4-2-1’) represented in the USDA textural triangle.
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Figure 5. lnKsat values against IE calculated with the ‘3-1-3’ triplet in 10 interval binnings.
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Table 1. Statistical description of Ksat (cm/h) values by classes. Soils have also been grouped into two super classes, SC1 and SC2,

which can be interpreted as the sandy class and not sandy class, respectively. Legend: N , the number of soils in each class; sd, the standard

deviation; skew, the skewness number and se, the standard error.

N min 1stQ Median Mean 3rdQ max sd skew kurtosis se

Sandy clay 345 0.00 0.09 0.41 2.72 1.29 60.60 8.29 4.78 24.12 0.45

Sandy clay loam 2.004 0.00 0.12 0.50 3.23 1.67 405.00 17.11 14.04 244.07 0.38

Sandy loam 2.123 0.00 0.28 1.10 4.92 3.67 504.00 18.26 15.60 348.22 0.40

Loamy sand 1.780 0.01 1.37 5.00 9.84 13.80 189.00 13.35 3.86 29.54 0.32

Sand 12.068 0.01 11.80 23.95 32.97 43.40 841.00 32.83 4.01 51.12 0.30

Clay 407 0.00 0.04 0.16 4.07 0.73 421.00 25.49 13.12 196.18 1.26

Clay loam 78 0.01 0.04 0.22 1.26 0.71 38.20 4.56 7.27 57.93 0.52

Silty clay loam 41 0.00 0.08 0.34 18.02 1.67 159.00 43.36 2.60 5.69 6.77

Loam 104 0.01 0.17 0.72 5.77 2.89 52.60 11.26 2.43 5.42 1.10

Silty loam 135 0.00 0.17 0.69 5.20 4.42 53.90 9.65 2.90 9.40 0.83

Silt 36 0.27 1.27 5.21 19.16 22.54 213.00 40.62 3.88 16.30 6.77

SC1 17975 0.00 2.85 14.50 24.05 32.90 841.00 31.28 4.18 51.00 0.23

SC2 1069 0.00 0.07 0.31 3.74 1.36 421.00 17.21 16.54 360.54 0.53

All 19.121 0.00 1.92 13.10 22.89 31.60 841.00 31.06 4.25 51.47 0.22
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Table 2. Computed mean and standard deviation (std) for R2 and RMSE (lncm/h) values using the bootstrap method for the binned lineal

regression of lnKsat against all possible (IE,triplet).

R2 RMSE

Triplet mean std mean std

‘1-1-5’ 0.872 0.048 0.230 0.040

‘1-2-4’ 0.884 0.029 0.207 0.030

‘1-3-3’ 0.885 0.042 0.434 0.061

‘1-4-2’ 0.637 0.084 0.837 0.083

‘1-5-1’ 0.735 0.051 0.745 0.063

‘2-1-4’ 0.870 0.017 0.227 0.015

‘2-2-3’ 0.235 0.064 0.879 0.068

‘2-3-2’ 0.744 0.019 0.595 0.020

‘2-4-1’ 0.760 0.023 0.611 0.026

‘3-1-3’ 0.087 0.031 0.766 0.072

‘3-2-2’ 0.519 0.075 0.582 0.050

‘3-3-1’ 0.765 0.009 0.558 0.014

‘4-1-2’ 0.975 0.004 0.245 0.018

‘4-2-1’ 0.977 0.002 0.263 0.011

‘5-1-1’ 0.960 0.005 0.339 0.021

average 0.727 0.501
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Table 3. Summary of triplets for lnKsat with highest R2 mean values for regressions using 10 interval binnings. Both the mean value and

the standard deviation of R2 are shown.

Text class n soils triplet mean R2 std R2

Sandy clay 345 ‘1-2-4’ 0.386 0.194

Sandy clay loam 2004 ‘2-3-2’ 0.879 0.054

Sandy loam 2123 ‘1-1-5’ 0.917 0.046

Loamy sand 1780 ‘2-2-3’ 0.742 0.073

Sand 12068 ‘5-1-1’ 0.987 0.005

Clay 407 ‘1-2-4’ 0.604 0.149

Clay loam 78 ‘4-1-2’ 0.276 0.081

Loam 104 ‘3-1-3’ 0.235 0.185

Silty loam 135 ‘5-1-1’ 0.412 0.207
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Table 4. R2 and RMSE (lncm/h) values for linear regressions of IE vs lnKsat using the 15 different triplets for the SC1 selection.

R2 RMSE

triplet mean std mean std

‘1-1-5’ 0.833 0.056 0.240 0.039

‘1-2-4’ 0.794 0.046 0.213 0.035

‘1-3-3’ 0.915 0.031 0.402 0.059

‘1-4-2’ 0.646 0.088 0.786 0.081

‘1-5-1’ 0.651 0.055 0.789 0.046

‘2-1-4’ 0.748 0.028 0.252 0.015

‘2-2-3’ 0.807 0.015 0.485 0.017

‘2-3-2’ 0.769 0.019 0.548 0.020

‘2-4-1’ 0.739 0.028 0.568 0.026

‘3-1-3’ 0.939 0.007 0.191 0.011

‘3-2-2’ 0.799 0.009 0.429 0.011

‘3-3-1’ 0.720 0.009 0.592 0.013

‘4-1-2’ 0.986 0.002 0.184 0.013

‘4-2-1’ 0.977 0.002 0.255 0.011

‘5-1-1’ 0.927 0.011 0.426 0.030

max 0.986 0.184 min

average 0.817 0.424
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Table 5. R2 and RMSE (lncm/h) values for linear regressions of IE vs lnKsat using the 15 different triplets for the SC2 class.

R2 RMSE

triplet mean std mean std

‘1-1-5’ 0.623 0.092 0.634 0.103

‘1-2-4’ 0.476 0.094 0.556 0.105

‘1-3-3’ 0.105 0.074 0.770 0.121

‘1-4-2’ 0.033 0.043 0.822 0.125

‘1-5-1’ 0.268 0.173 0.633 0.129

‘2-1-4’ 0.462 0.116 0.478 0.082

‘2-2-3’ 0.085 0.072 0.728 0.117

‘2-3-2’ 0.025 0.032 0.741 0.120

‘2-4-1’ 0.156 0.091 0.760 0.087

‘3-1-3’ 0.045 0.051 0.480 0.094

‘3-2-2’ 0.142 0.112 0.591 0.125

‘3-3-1’ 0.285 0.083 0.717 0.108

‘4-1-2’ 0.331 0.188 0.465 0.135

‘4-2-1’ 0.108 0.124 0.503 0.115

‘5-1-1’ 0.078 0.082 0.570 0.145

max 0.623 0.465 min

avg 0.215 0.630
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Table 6. Comparison of parametrizing power of (IE,‘5-1-1’) against IE calculated with other triplets. The ranges of variation of IE

calculated with the different triplets are compared to the ranges of variation of Ksat for the textural classes. The triplets are chosen to be the

ones that gav the highest R2 values at the linear regressions for Ksat.

Textural class %range ‘5-1-1’ / % range lnKsat % range best triplet / % range lnKsat

silty loam 0.818 1.157

sandy loam 0.561 0.670

sandy clay loam 0.581 0.718

sandy clay 0.385 0.444

sand 0.528 0.528

loamy sand 0.426 0.875

loam 0.274 0.953

clay loam 0.124 1.011

clay 0.816 0.797
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