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Abstract: Increasing number of climate models are being produced to cover the uncertainty, which makes it infeasible to use 

all of them in climate change impact studies. In order to thoughtfully select subsets of climate simulations from a large 10 

ensemble, several envelope-based methods have been proposed. The subsets are expected to cover a similar uncertainty 

envelope as the full ensemble in terms of climate variables. However, it is not a given that the uncertainty in hydrological 

impacts will be similarly well represented. Therefore, this study investigates the transferability of climate uncertainty related 

to the choice of climate simulations to hydrological impacts. Two envelope-based selection methods, K-means clustering and 

Katsavounidis-Kuo-Zhang (KKZ) method, are used to select subsets from an ensemble of 50 climate simulations over two 15 

watersheds with very different climates using 31 precipitation and temperature variables. Transferability is evaluated by 

comparing uncertainty coverage between climate variables and 17 hydrological variables simulated by a hydrological model. 

The importance of properly choosing climate variables in selecting subsets is investigated by including and excluding 

temperature variables. Results show that KKZ performs better than K-means at selecting subsets of climate simulations for 

hydrological impacts, and the uncertainty coverage of climate variables is similar to that of hydrological variables. The subset 20 

of first 10 simulations covers over 85% of total uncertainty. As expected, temperature variables are important for the snow-

related watershed, but less important for the rainfall-driven watershed. Overall, envelope-based selection of around 10 climate 

simulations, based on climate variables that characterize the physical processes controlling hydrology of the watershed, is 

recommended for hydrological impact studies. 

  25 
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1 Introduction 

In studies of climate change impacts on hydrology, multi-model ensembles (MMEs) formed by multiple Global Climate 

Models (GCMs) and multiple emission scenarios have been widely used to drive hydrological models (Minville et al., 2008; 

Vaze and Teng, 2011; Mehran et al., 2014; Chen et al., 2011b). There are two strengths of using MMEs: (1) the MME mean 

typically performs better in representing historical climate observations than any individual model (Gleckler et al., 2008; Pierce 5 

et al., 2009; Pincus et al., 2008; Mehran et al., 2014); and (2) the spread of a MME can be used to estimate climate change 

uncertainties, for example those related to GCM structure, future greenhouse gas concentrations and internal climate variability 

(Mendlik and Gobiet, 2016; Knutti et al., 2010; Chen et al., 2011b; Tebaldi and Knutti, 2007). While climate projection 

uncertainty and spread or coverage of a MME are not equivalent, the latter does provide an imperfect estimate of uncertainty 

and, for sake of simplicity, we use the terms interchangeably in the remainder of this study.  10 

The number of GCM simulations available for impact studies is increasing rapidly. For instance, the Coupled Model 

Intercomparison Project Phase 3 (CMIP3) contains outputs from 25 different GCMs, whereas CMIP5 contains outputs from 

61 GCMs (https://pcmdi.llnl.gov), with each GCM contributing one or more simulation runs (Taylor et al., 2012). Although it 

is usually advised that all available climate simulations be employed in impact studies, the extraction, storage, and 

computational costs associated with a large MME may be prohibitive. In practice, it is not uncommon for impact studies to 15 

instead rely on a small subset of climate simulations, the members of which are often selected manually, relying on expert 

judgement. 

Several studies have considered more objective means of selecting subsets of climate simulations for impact studies based 

on different criteria. Generally, there are two main types of selection approaches. The past-performance approach weights or 

selects climate simulations according to their agreement with the observed near-past climate conditions (Gleckler et al., 2008; 20 

Perkins et al., 2007; Pincus et al., 2008). Climate model performance is often defined by various climate metrics. For example, 

Perkins et al. (2007) ranked climate models based on probability density functions of observed temperature and precipitation. 

Similarly, Gleckler et al. (2008) evaluated the performances of 22 GCMs according to relative errors of some climatological 

fields, but stressed that a wider range of metrics might give more robust results. In general, the assumption that models with 

good performance over the near-past provide more realistic climate change signals is questionable (Knutti et al., 2010; Reifen 25 

and Toumi, 2009), although recent work on emergent constraints suggests that it may be possible to remove models that fail 

to represent certain key physical processes that dictate the evolution of long-term climate projections (Klein and Hall, 2015). 

In practice, however, the metrics commonly used to evaluate model performance are often manually defined based on the 

fields of interest, which leads to substantial subjectivity within the weighting process.  

Another means to select subsets of climate simulations is the envelope-based approach, which tries to cover a sufficient 30 

range of the full ensemble in terms of future climate change signals as possible (Warszawski et al., 2014; Cannon, 2015; Logan 

et al., 2011). For instance, Cannon (2015) used two automated multivariate statistical algorithms, K-means clustering and 

Katsavounidis-Kuo-Zhang (KKZ) method (Katsavounidis et al., 1994), to select subsets of CMIP5 GCMs that bracket the 
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overall range of changes in a suite of 27 climate extreme indices. The goal of the envelope-based approach coincides with the 

motivation behind the usage of a MME, namely to account for different sources of projection uncertainty, including structural 

uncertainty (Wilcke and Bärring, 2016; Tebaldi and Knutti, 2007).  

Some studies have proposed selection methods that combine both near-past performance and climate change envelope 

coverage criteria (Mendlik and Gobiet, 2016; McSweeney et al., 2012; Lutz et al., 2016; Giorgi and Mearns, 2002). For 5 

example, Lutz et al. (2016) took both model historical skill and the range of projection uncertainty in means and extremes into 

consideration through a three-step sequential selection process. With an emphasis on model performance, these selection 

methods inherit the potential flaws of the past-performance approach. 

Regardless of underlying approach, most selection methods are only conducted on climate variables that can be calculated 

directly from the MME simulation outputs. Even subsets of simulations that account for most of the ensemble range in climate 10 

variables can be identified, it is not guaranteed that the same level of range coverage extends to hydrological impacts variables 

because of the complexity and nonlinearity of hydrological responses. For example, small perturbations in the frequency or 

intensity of temperature and precipitation regimes may have noticeable impacts on streamflow patterns and flood magnitudes 

(Muzik, 2001; Whitfield and Cannon, 2000). Consequently, whether the sufficient coverage of climate simulation uncertainty 

is transferable to hydrological impacts should be evaluated before applying envelope-based selection methods in hydrological 15 

impacts studies. 

Chen et al. (2016) investigated the transferability of optimal subsets of climate simulation to hydrological impacts by 

using two automatic selection methods over a Canadian watershed. They concluded that selected subsets of climate simulations 

do not remain optimal for hydrological variables. However, the selection methods used in their study were applied to just two 

climate variables, mean temperature and mean annual precipitation, which is a common strategy employed by practitioners 20 

who employ envelope-based approaches (Immerzeel et al., 2013; Warszawski et al., 2014). Hydrological responses are driven 

both by annual climate conditions and intra-annual climate processes, which may not be described by a small number of climate 

variables. For example, both the magnitude and intensity of a rainfall event can affect the flood discharge in a rainfall-

dominated watershed. The transferability of climate uncertainty may be diminished due to insufficient climate variables.  

Following Cannon (2015), who considered a larger suite of climate indices, this study aims to investigate the 25 

transferability of climate simulation uncertainty to the assessment of hydrological climate change impacts by using a pool of 

climate variables, including seasonal means, annual means, and climate extremes. The case study is conducted over two 

watersheds with very different climate conditions, one of which is seasonally snow-covered and the other driven by summer 

monsoon rainfall with little winter snowfall. Two envelope-based approaches (K-means clustering and KKZ method) are used 

to select subsets of climate simulations based on different sets of climate variables. Transferability is evaluated by comparing 30 

the uncertainty coverage between the climate variables and 17 hydrological variables simulated by a hydrological model. 
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2 Study Area and Data 

2.1 Study Area 

This study was conducted over two watersheds (the Xiangjiang and Manicouagan 5 watersheds) with different climate and 

hydrological characteristics (Fig. 1). The Xiangjiang watershed is a monsoon-climate and rainfall-dominated watershed located 

in south-central of China, whereas Manicouagan 5 is a temperate-climate and seasonally snow-covered watershed located in 5 

central Quebec, Canada. 

2.1.1 Xiangjiang Watershed 

The Xiangjiang watershed is one of the largest sub-basins of the Yangtze River watershed (Fig. 1a). The Xiangjiang River 

originates from the Haiyang Mountain in Guangxi Autonomous Region and flows north to the Dongting Lake in Hunan 

Province, which connects to the Yangtze River. The Xiangjiang River consists of several tributaries with a surface area of 10 

approximately 94,660 km2, but only the watershed with an area of 52,150 km2 above the Hengyang gauging station was used 

in this study. The watershed has a hilly topography ranging from a maximum elevation of 2042 m above sea level to a minimum 

elevation of 58 m above sea level at the Hengyang station. The Xiangjiang watershed is heavily influenced by a subtropical 

monsoon climate with hot and humid summers and mild and dry winters. The average annual precipitation over the catchment 

is about 1570 mm almost entirely in the form of rainfall. Around 61% precipitation occurs from April to August, resulting in 15 

high flows during this period. The average daily maximum and minimum temperatures are around 22 °C and 15 °C, 

respectively. The average daily discharge at the Hengyang station is around 1400 m3/s. The peak discharge of the averaged 

daily hydrograph is about 4420 m3/s, mainly resulting from high intensity rainfall. 

2.1.2 Manicouagan 5 Watershed 

The Manicouagan 5 watershed, the largest sub-basin of the Manicouagan River watershed, is located in the center of the 20 

province of Quebec, Canada (Fig. 1b). The Manicouagan 5 River discharges into the Manicouagan reservoir, an annular 

reservoir within the remnant of an ancient eroded impact crater, and ends at the Daniel Johnson Dam, which is the largest 

buttressed multiple arc dam in the world. The drainage area of the Manicouagan 5 River is about 24,610 km2, which is mostly 

covered by forest and has a moderately hilly topography ranging from a maximum elevation of 952 m to a minimum elevation 

of 350 m above sea level (Chen et al., 2016). The Manicouagan 5 watershed has a continental subarctic climate dominated by 25 

long and cold winters. The annual precipitation is fairly evenly distributed within the year and averages about 912 mm, around 

45% of which is snowfall. The average daily maximum and minimum temperatures are around 2.4 °C and -7.8 °C, respectively. 

The average discharge of the Manicouagan 5 River is about 530 m3/s. The peak discharge of averaged daily hydrograph is 

around 2200 m3/s, mainly resulting from snowmelt. 
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2.2 Data 

Both observed and simulated daily meteorological (maximum and minimum temperatures and precipitation) data over both 

watersheds were used in this study. All the climate data from multiple stations or grids were averaged over the watersheds. 

2.2.1 Climate Simulations 

Climate model simulation data used in this study were extracted from the CMIP5 archive (Taylor et al., 2012) for both the 5 

historical reference (1975-2004) and future (2070-2099) projection periods. Twenty-six GCMs from 15 institutions were 

selected to represent climate modeling uncertainty (Table 1). Two Representative Concentration Pathways (RCP4.5 and RCP 

8.5) were used for each GCM to represent forcing scenario uncertainty, with the exception of CMCC-CESM, which only used 

RCP8.5, and MRI-ESM1, which only used RCP4.5. On the whole, an ensemble of 50 climate simulations was used in this 

study. 10 

2.2.2 Observations 

Observed daily meteorological data used to downscale the GCM outputs and calibrate the hydrological model cover the 1975-

2004 period for both watersheds. Meteorological data for the Manicouagan 5 watershed were obtained from the 10-km gridded 

dataset of Hutchinson et al. (2009), which was created by fitting spatially continuous functions of longitude, latitude and 

elevation to daily station data using a trivariate thin plate smoothing spline interpolation algorithm. Discharge data at the outlet 15 

of the Manicouagan 5 River were based on mass balance calculations at the Daniel Johnson Dam. Meteorological and discharge 

data for the Xiangjiang watershed were observed at 100 rain gauges, 8 temperature gauges, and 1 streamflow gauge in the 

catchment above the Hengyang station. 

3 Methodology 

3.1 Subset Selection of GCM Simulations 20 

Two automated envelope-based methods were used on subset selection of climate simulations. One is the K-means clustering 

which finds centroid simulations by partitioning the multivariate ensemble into high-density clusters, and the other is the KKZ 

method which sequentially selects simulations to cover the extent of an ensemble (Cannon, 2015). Both selection methods 

operate on multivariate data, which means that they are sensitive to the choice and scaling of climate variables. 

3.1.1 Climate Variables 25 

Since the hydrological response of a watershed depends not only on annual mean temperature and precipitation but is also 

sensitive to intra-annual climate variability (e.g. seasonal means or extremes), subset selection should be based on a set of 

climate variables that includes annual and seasonal averages as well as extremes. The World Meteorological Organization’s 
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Expert Team on Climate Change Detection and Indices (ETCCDI) has recommended a set of core climate indices that can be 

easily derived from daily meteorological data series (http://etccdi.pacificclimate.org/list_27_indices.shtml). The ETCCDI 

indices are designed to monitor changes in the frequency and intensity of climate extreme events and characterize the 

variability of extremes (Zhang et al., 2011). Here, we assume that the ETCCDI indices are sufficient to characterize climate 

extremes that lead to hydrological impacts. 5 

Specifically, this study used a set of 31 climate variables as shown in Table 2 (21 ETCCDI extreme indices and 10 

seasonal or annual mean indices), including 16 temperature variables and 15 precipitation variables. Since the focus of this 

study is on the capability of selected GCM subsets to cover uncertainty of climate change signals, changes in climate variables 

(relative change for precipitation and absolute change for temperature and duration) between the historical reference period 

(1975-2004) and the future projection period (2070-2099) were calculated for 50 climate simulations over the two study 10 

watersheds. Changes in each climate variable were standardized to zero mean and unit standard deviation to eliminate 

influences from different magnitudes and units between variables. These changes in climate variables are referred to as 

simulated climate change signals. Once changes were calculated, subsets could be selected based on the multivariate space 

formed by the climate variables. 

3.1.2 K-means Clustering 15 

The K-means clustering is an unsupervised algorithm to partition clusters in multivariate data so as to minimize within-cluster 

sums of squared errors (SSE) (Hartigan and Wong, 1979). The ensemble of 50 simulations was divided into a user-specified 

number clusters and each cluster was represented by its centroid simulation. The SSE was characterized by the Euclidean 

distances from simulations to their corresponding cluster centroids in this study. The climate simulations closest to the 

centroids were selected as the subsets. Some studies have applied this method to select subsets of climate simulations (Logan 20 

et al., 2011; Cannon, 2015; Houle et al., 2012).  Due to sensitivity of the K-means clustering to initial cluster centroid positions, 

it was run 10000 times with different initializations and the best solution with lowest SSE was kept. A disadvantage of the K-

means clustering is that it needs to be run independently when the size of subset changes. The selected climate simulations are 

not ordered, which makes it inconvenient for end-users to change the subset size for different applications. 

3.1.3 KKZ Method 25 

The KKZ method was originally designed by Katsavounidis et al. (1994) as an initialization technique for identifying initial 

seed centroids in the K-means clustering, and was introduced by Cannon (2015) in the selection of climate simulations. This 

method prefers the peripheral simulations in the multivariate space. The specific procedure is as follows: 

1. The climate simulation closest to the centroid of whole ensemble is selected as the first simulation; 

2. The simulation farthest from the first selected simulation is selected as the second representative simulation; and 30 

3. Following simulations are selected according to their distance to previously-selected simulations. Specifically, for each 

remaining simulation, its distance to the nearest previously-selected simulation is calculated. Then, the simulation with the 
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largest calculated distance among remaining simulations is selected as the next representative simulation. This step can operate 

recursively until all simulations are selected. 

Compared to the K-means clustering, the selection result of KKZ method is incremental and deterministic. However, it 

is more susceptible to selecting outliers than K-means clustering. In addition, a random selection, repeated 100 times to 

minimize the influence of its stochastic nature, was conducted as a baseline to evaluate the K-means clustering and KKZ 5 

method. 

3.2 Generation of Climate Scenarios 

GCM outputs are typically on a coarse spatial grid and contain systematic biases that preclude their direct use in hydrological 

modeling (Mpelasoka and Chiew, 2009; Chen et al., 2011a; Chen et al., 2011b; Minville et al., 2008; Vaze and Teng, 2011). 

It is thus necessary to bias correct and downscale GCM outputs before running the hydrological model. The main objective of 10 

this study is to investigate the transferability of climate simulation uncertainty; hence, there is no need to use a complicated 

downscaling method. A commonly used change factor method, namely the Daily Scaling (DS) method proposed by Harrold 

and Jones (2003), was used in this study. This method assumes that climate change signals simulated by GCMs are credible 

and can be used to perturb observations to obtain future daily series. The DS method adjusts the observed daily series using 

the differences in distributions of simulated temperature/precipitation between the future period and the reference period. The 15 

specific steps are: 

1. Distributions (represented by 100 quantiles in this study) of daily temperature and precipitation simulated by GCMs are 

calculated for both reference and future periods in each calendar month (e.g., January, February, etc.); 

2. Scaling factors are estimated as the differences (for temperatures) or ratios (for precipitation) in distributions of precipitation 

or temperature between reference and future periods for each calendar month; and 20 

3. Scaling factors are added (for temperatures) or multiplied (for precipitation) to corresponding distributions of observed daily 

temperature or precipitation for each calendar month. 

The use of the DS method preserves the simulated climate change signal. It is based on differences in probability 

distributions between the reference and future periods, which are only caused by climate change signals. In addition, the 

consideration of quantile-dependent changes in the precipitation distribution is important in hydrological impact studies, 25 

because more runoff is generated in high-intensity precipitation events (Harrold and Jones, 2003; Chiew et al., 2009). However, 

temporal sequencing in the future period is assumed to be the same as in the observed data. Changes in, for example, wet/dry 

spell lengths are not informed by the GCM simulations. 
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3.3 Hydrological Response Simulation 

3.3.1 Hydrological Modeling 

The GR4J-6, which is a 6-parameter, lumped and conceptual hydrological model, was employed to simulate the hydrological 

impacts. The GR4J-6 model consists of the GR4J rainfall-runoff model and the CemaNeige snow accumulation and melt 

routines (Arsenault et al., 2015). The GR4J is a reservoir-based model developed on the basis of the GR3J model (Edijatno et 5 

al., 1999; Perrin et al., 2003). This model routes runoff through a production reservoir, two linear unit hydrographs and a non-

linear routing reservoir. This model has four parameters to be calibrated, which accounts for runoff production, groundwater, 

runoff routine and unit hydrograph, respectively. In an evaluation of hydrological models, Perrin et al. (2003) found that GR4J 

outperformed 19 models over a large sample of catchments.  

Due to its lack of snow accumulation and snowmelt algorithms, the GR4J model cannot be directly used in snow-related 10 

watersheds. Thus, the general snow accounting routine proposed by Valéry et al. (2014), CemaNeige, was added. CemaNeige 

depends on the range of daily temperature to determine the snowfall fraction in precipitation, and the updating of snowpack 

and snowmelt relies on a degree-day approach that has two free parameters (cold content factor and snowmelt factor). In 

addition, evapotranspiration in the GR4J-6 was estimated by the Oudin formulation (Oudin et al., 2005). 

The input data for GR4J-6 includes basin-averaged maximum and minimum air temperature and precipitation. The 15 

shuffled complex evolution optimization algorithm (Duan et al., 1992) was used to calibrate model parameters to maximize 

Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970). The periods of observation data used for model calibration and 

validation are shown in Table 3. The optimally chosen sets of parameters yield a NSE greater than 0.87 over both watersheds. 

The observed and simulated mean hydrographs in Fig. 2 show the applicability of GR4J-6 over two watersheds. In addition, 

the GR4J model was also calibrated in the Xiangjiang watershed. Results showed that absence of the CemaNeige snow module 20 

would not influence the performance of GR4J-6 in the rainfall-dominated Xiangjiang watershed (Table 3). 

3.3.2 Hydrological Variables 

To examine the performance of subset selection in terms of hydrological response uncertainty, this study used a set of 17 

hydrological variables based on Water Resources Indicators (WRIs), Indicators of Hydrologic Alteration (IHAs) and quantiles 

of daily flow series (Table 4). WRIs have been used in many hydrological impact studies to assess streamflow alteration due 25 

to natural and anthropogenic climate change (Eum et al., 2017; Shrestha et al., 2014; Chen et al., 2011b). IHAs are used to 

examine the temporal alterations of key streamflow hydrograph components (Eum et al., 2017; Richter et al., 1996; Shrestha 

et al., 2014). Quantiles of daily flow series have been used to describe the characteristics of flow regimes (Mu et al., 2007; 

Wilby, 2005).  

Similar to climate variables, changes in hydrological variables between the reference (1975-2004) and future (2070-2099) 30 

period were calculated. To remove the influence of systematic biases between the observations and simulations, simulated 

runoff values instead of gauge observations were used as flow data in the reference period. The first year of each period was 
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used to spin-up the hydrological model and was excluded when calculating the hydrological variables. Once the projected 

changes in hydrological variables were calculated, the uncertainty coverage of subsets could be compared between climate 

variables and hydrological variables to evaluate the transferability of climate simulation uncertainty. 

3.4 Data Analysis 

A criterion called the Percentage of Spread Coverage (PSC) is used to measure the uncertainty coverage of a subset relative to 5 

the coverage of all simulations. For a given variable and subset, PSC was calculated by dividing the variable’s range in the 

subset by the variable’s range in all simulations. Figure 3 shows examples of PSC when 5 climate simulations are selected by 

KKZ method. Since it is difficult to illustrate results in more than 3 dimensions, examples are limited to 1, 2 and 3 variables. 

In Fig. 3a, points represent the changes in ‘WiT’ (seasonal average temperature in winter) for 50 GCM simulations. The larger 

squares represent the same variable for a subset of 5 climate simulations selected by KKZ. The PSC is calculated by dividing 10 

the temperature range of the selected subset, 6.19°C, by that of the whole ensemble, 6.49°C. Therefore, for this specific variable 

the PSC (uncertainty coverage) of the subset is 95.36%. Similarly, every variable has a corresponding PSC associated with a 

subset of a given size; examples for ‘WiR’ (seasonal total precipitation in winter) and ‘Rx1day’ (annual maximum 1-day 

precipitation) are shown in Fig. 3b-c. For the random subset selection method, the reported PSC is the mean value of 100 

PSCs, each calculated for a different random subset of the specified size. 15 

4 Results 

4.1 Transferability of Climate Uncertainty 

As an illustrative example, the uncertainty transferability from one climate variable to one hydrological variable in the 

Xiangjiang watershed is shown in Fig. 4. The larger squares represent the 5 and 10 climate simulation subsets selected by the 

KKZ method. The subfigures on the top display the PSC for ‘Rx5day’ (maximum consecutive 5-day precipitation), whereas 20 

those on the bottom display the PSC for ‘Qx7day’ (7-day maximum flow). The reason for choosing these two variables is that 

there is a generally accepted linkage between high-intensity precipitation and high flow in a rainfall-driven watershed. 

Although this particular choice of climate and hydrological variables is, in some ways, unfair because the overall selection 

process is based on a high-dimensional multivariate climate space, these subfigures still illustrate the process of uncertainty 

transferability from climate simulations to hydrological impacts. Here, the PSC of the climate variable increases from 66.45% 25 

to 92% as the number of selected simulations goes from 5 to 10; at the same time, the PSC of the hydrological variable increases 

from 80.53% to 94.59%. In this case, the uncertainty coverage of the subsets in terms of the climate variable is well translated 

to uncertainty coverage of the hydrological variable. 

Figure 5 expands the example above from 1 to 2 dimensions. In this case, the subfigures on the top show a two-

dimensional space formed by the changes in two climate variables, ‘ARav’ (annual total precipitation) and ‘Rx1day’ 30 

(maximum 1-day precipitation), whereas those on the bottom show changes in two hydrological variables, ‘MD’ (annual mean 
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flow) and ‘HPD’ (mean duration of high pulses). It should be noted that the subsets of climate simulations are the same as in 

the 1-dimensional example above. As the number of selected simulations increases from 5 to 10, the mean PSC for the two 

climate variables increases from 67.24% to 91.98%, while the mean PSC for the two hydrological variables increases from 

76.33% to 98.06%. The increases are mostly due to selection of outlying simulations in the top right corner of the plots (the 

7th and 10th selected simulations). There is strong consistency between locations of selected simulations in 2-dimensional 5 

climate space and hydrology space. For example, the 5th, 7th and 10th selected simulations are close to each other in both 

climate space (Fig. 5b) and hydrology space (Fig. 5d). Accordingly, the uncertainty coverage tends to translate well from 

climate variables to hydrological variables in this 2-dimensional example. However, PSC increases are not consistent in all 

cases. For example, selection of the simulation on the left edge of Fig. 5b (the 8th selected simulation) substantially improves 

the PSC of ‘Rx1day’, but does not lie on the edge of Fig. 5d and hence does not contribute to improvements in PSC of either 10 

hydrology variable. This may be due to the nonlinearity of the hydrological model or an imperfect explanatory relationship 

between the climate and hydrological variables. 

The discussion above is limited to results for 5 and 10 simulation subsets for one watershed selected using the KKZ 

method. In the study as a whole, subset sizes from 1 to 50 simulations were evaluated in terms of transferability for two 

watersheds and envelope-based methods (K-means and KKZ). PSCs for all 31 climate variables and 17 hydrological variables 15 

were calculated for both selection methods and watersheds. Figure 6 shows distributions of climate and hydrological PSCs for 

5, 10, 20, 30 and 40 simulation subsets. For the Xiangjiang watershed (Fig. 6a-b), PSCs for the climate variables are similar 

to those for the hydrological variables. For the Manicouagan 5 watershed (Fig. 6c-d), PSCs of the hydrological variables are 

consistently slightly smaller than those for the climate variables. Overall, the tendency of the hydrological PSCs to increase 

with subset size is comparable to that for the climate PSCs in both watersheds. In other words, as the size of subset becomes 20 

larger, the improvement in PSCs of the hydrological variables is similar to that of the climate variables. When comparing the 

two envelope-based methods, KKZ tends to outperform K-means clustering. 

Given the large number of climate and hydrological variables under consideration and the challenges inherent in 

communicating information about multi-dimensional data, two summary criteria are used to generalize subset coverage results 

in this study. The first criterion is the average PSC for all climate or hydrological variables. Following Cannon (2015), the 25 

second criterion is the percentage of variables that reach a 90% PSC threshold (PSC90p).  

Figure 7 presents the average PSC and PSC90p for climate variables (solid lines) and hydrological variables (dashed 

lines) when selected subsets contain K simulations (K = 1 to 50) over the two watersheds. Generally, the KKZ method performs 

better than K-means clustering for both evaluation criteria and both watersheds, and the two automated envelope-based 

methods outperform the random selection. For the Xiangjiang watershed (Fig. 7a), the 9 simulation KKZ subset reaches an 30 

average PSC of 90% for climate variables, while K-means and random selection require 19 and 27 simulations, respectively, 

to reach this threshold. For hydrological variables, the KKZ method still shows the best performance. To reach an average 

PSC of 90%, KKZ and K-means clustering require 10 and 38 simulations, respectively. In contrast to results for the climate 

variables, K-means clustering only performs better than random selection for the hydrological variables when the subset size 
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does not exceed 29. In the case of the Manicouagan 5 watershed (Fig. 7c), the KKZ method again outperforms K-means 

clustering and random selection.  

In addition, as more simulations are selected, the average PSC increases rapidly when the subset has less than 10 

simulations for both watersheds, while the rate of increase slows when the number is larger than 10. For KKZ, the subset of 

10 simulations covers over 85% of uncertainty for climate and hydrology variables in both watersheds; selecting more than 10 5 

climate simulations leads to little change in uncertainty coverage. For these two watersheds, a subset of 10 simulations selected 

using KKZ appears to be optimal for reducing computational costs while incurring the smallest possible loss of uncertainty 

information. In addition, the performance of the KKZ method is maintained for larger subsets, while the performance of K-

means clustering fluctuates. In other words, a larger subset selected by the K-means clustering may not have a greater 

uncertainty coverage than a smaller subset. The recursive nature of the KKZ method effectively guarantees that average PSC 10 

increases monotonically with subset size. 

The focus of this study is the transferability of climate simulation uncertainty to uncertainty in hydrological impacts. For 

a given method this can be inferred from the difference in average PSC and PSC90p between climate and hydrological 

variables. For Xiangjiang watershed, the average PSC of climate variables is close to that of hydrological variables for all 

selection methods (Fig. 7a). Especially for the KKZ method, differences in average PSC are less than 5% (with the exception 15 

of K = 2 and 9). The differences in climate and hydrology uncertainty coverage are slightly larger when the K-means clustering 

or random selection is used. For the criterion of PSC90p (Fig. 7b), transferability is somewhat less apparent due to the more 

rigorous 90% PSC threshold. Although differences in PSC90p between climate and hydrological variables are sometimes 

large, especially for the K-means clustering, the PSC90p of hydrological variables still exhibits similar overall tendency and 

behaviour as the climate variables. In general, subsets of climate simulations that are selected based on a large number of 20 

relevant climate variables are effective at transferring uncertainty coverage into the realm of hydrological impacts. However, 

this transferability is method dependent; results are less variable and more consistent for KKZ than K-Means clustering. 

Figure 7c-d presents results for average PSC and PSC90p in the Manicouagan 5 watershed. On the whole, the selection 

methods behave similarly in terms of transferability as in the Xiangjiang watershed, but the uncertainty coverage of the subsets 

for the hydrological variables is reduced slightly. Degraded transferability is most apparent in larger differences in PSC90p 25 

between the climate and hydrological variables. As noted above, however, this criterion is much more stringent than average 

PSC. 

4.2 Impact of Temperature Variables 

The climate variables in Table 2 can be categorized into two groups: temperature variables and precipitation variables. Each 

variable is given equal weight in the subset selection, regardless of inter-variable correlations, and all variables are assumed 30 

to exert the same influence on the hydrological variables. However, the impacts of climate variables on flow regimes may not 

be the same in watersheds with different hydroclimatic characteristics. For example, warmer temperatures lead to earlier spring 

floods in northern seasonally snow-covered watersheds (such as the Manicouagan 5 watershed) (Whitfield and Cannon, 2000; 
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Chen et al., 2011b; Minville et al., 2008), whereas changes in temperature have little impact on the timing of floods in rainfall-

dominated watersheds (such as the Xiangjiang watershed). Since the importance of temperature is different for the two study 

watersheds, a question is raised: Can the transferability of climate uncertainty in Xiangjiang watershed be improved if 

irrelevant temperature variables are removed? To answer this question, temperature variables (the first 16 variables in Table 

2) were removed and subset selection was conducted again using the 15 precipitation variables. The average PSC and PSC90p 5 

were then calculated to compare with original results that includes temperature variables. Results from the precipitation 

analysis are shown in Fig. 8. 

For Xiangjiang watershed (Fig. 8a-b), removing temperature variables from the subset selection leads to improved 

uncertainty coverage for the hydrological variables, especially for K-means clustering. The K-means clustering now performs 

better than random selection in most cases. For KKZ, average PSC for the hydrological variables exceeds 90% with a subset 10 

of only 4 simulations, whereas the same level of coverage required 9 simulations when considering both temperature and 

precipitation. However, the effect of removing temperature variables is the opposite for the Manicouagan 5 watershed (Fig. 

8c-d). Here, coverage performance for the hydrological variables is reduced substantially when temperature variables are not 

considered. The contrasting effects are consistent with the processes that generate runoff in the two watersheds. As mentioned 

above, the Manicouagan 5 watershed is seasonally snow-covered – snow accumulation and snowmelt are the dominant 15 

processes that contribute to runoff generation – and hence it is sensitive to changes in temperature. However, temperature 

variables are not relevant in the rainfall-dominated Xiangjiang watershed. The different impacts of temperature variables in 

the two watersheds highlights the necessity of carefully choosing climate variables for subset selection based on physical 

process knowledge. 

4.3 Transferability of Multi-model Mean 20 

In addition to the overall spread in the projected climate change signal, policymakers are also concerned with the MME mean 

when communicating hydrological climate change impacts. Therefore, the selection methods are also evaluated in terms of 

their ability to preserve the multi-model mean of the full MME. It bears noting that the CMIP5 MME considered in this study 

is an ensemble of opportunity. Models are not statistically independent, for example due to shared physical parameterizations, 

and multiple simulations may be contributed by the same model. Also, the two envelope-based methods make very different 25 

assumptions about the underlying nature of the statistical distribution of the ensemble. The KKZ method is not biased towards 

dense regions in the multivariate space, preferring uniform coverage, whereas the K-means method, which assumes a mixture 

of multivariate normal clusters with equal variance, will tend to select simulations that lie in regions populated by a large 

number of simulations. These characteristics will have implications for preservation of the MME mean.  

In order to generalize the MME mean over multiple variables, standardized changes in each variable are averaged across 30 

variables and selected simulations to obtain a dimensionless criterion (referred to as averaged standardized mean change). For 

different sized subsets selected by the three selection methods, corresponding climate and hydrological averaged standardized 

mean changes were calculated and compared with values for the whole ensemble. Because projected changes are pre-processed 
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by standardizing to zero mean and unit standard deviation, the averaged standardized mean change of the whole ensemble is 

zero by construction. Therefore, if the averaged standardized mean change of a subset is close to zero, the MME mean change 

simulated by that subset is similar to that simulated by the entire ensemble. Figure 9 shows the averaged standardized mean 

changes in climate and hydrological variables when K simulations (K = 1 to 50) are selected for the two watersheds. When 

averaged over a large number of random trials, mean values will, by definition, lie close to zero for the random selection 5 

method; thus, the envelope of results across all 100 random selections are presented as blue and pink shaded areas in each 

subfigure for climate and hydrological variables, respectively. Figure 9a-b presents results for subsets when temperature 

variables are included in the selection process, whereas Fig. 9c-d presents results when temperature variables are excluded.  

Overall, when gauged against the range of variability in the 100 random selections, subsets selected by both statistical 

methods perform well in reproducing the MME mean of the entire ensemble, with K-means clustering performing slightly 10 

better than the KKZ method. When looked at in more detail, in the Xiangjiang watershed, the averaged standardized mean 

changes of subsets in climate variables tend to differ slightly from those in hydrological variables when temperature variables 

are included (Fig. 9a,c). For example, when 5 simulations are selected using the KKZ method, the averaged standardized mean 

change for climate variables is 0.21 whereas it is -0.26 for hydrological variables. Subsets selected by the KKZ method often 

have higher means than the whole ensemble for climate variables, while they have lower values for hydrological variables. In 15 

other words, a subset with positive changes in climate variables gives negative changes in hydrological variables, which means 

that selected subsets have poor transferability in terms of MME mean. However, when temperature variables are not included 

in the selection process, performance and transferability are both improved. In the Manicouagan 5 watershed, by contrast, 

differences between average changes in climate variables and hydrological variables are smaller when temperature variables 

are included (Fig. 9b,d). Again, this highlights the importance of selecting the appropriate climate variables when performing 20 

ensemble subset selection. 

5 Discussion 

In order to recommend a practical subset of climate simulations for end-users who handle the assessment of climate change 

impacts on hydrology, various selection methods have be proposed based on different criteria (Mendlik and Gobiet, 2016; 

Cannon, 2015; Gleckler et al., 2008; Lutz et al., 2016; McSweeney et al., 2012; Warszawski et al., 2014; Perkins et al., 2007). 25 

Even though these methods usually perform well in terms of the climate variables to which they are applied, their performance 

in terms of hydrological impacts needs to be verified. In normal usage, for example, envelope-based methods may only 

consider changes in mean temperature and annual precipitation (Immerzeel et al., 2013; Murdock and Spittlehouse, 2011; 

Warszawski et al., 2014), which will have a strong influence both on the overall measurement of climate uncertainty and subset 

selection results in terms of hydrological impacts. By not considering relevant climate variables, there may be a loss of 30 

information when transferring climate uncertainty to hydrological uncertainty (Chen et al., 2016). When one considers the fact 

that it is often hard to determine a one-to-one correspondence between climate and hydrological variables, it may be reasonable 
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to use a large suite of climate variables. However, this may result in the inclusion of irrelevant and redundant variables that 

could compromise performance. 

Therefore, this study assessed the transferability of climate simulation uncertainty to the hydrological world by K-means 

clustering and KKZ methods using a large number of climate and hydrological variables, including both seasonal and annual 

means and extremes. Multiple variables, when selected carefully, can improve the transferability of climate simulation 5 

uncertainty to hydrology impacts. Although the introduction of multiple climate variables may lead to irrelevant or redundant 

information, this can nonetheless give a more useful and reasonable selection for the purpose of covering an overall range of 

future climate change and its hydrological impacts.  

This study also evaluated the impact of variable selection by comparing uncertainty transferability in a rainfall-dominated 

watershed and a seasonally snow-covered watershed when including and excluding temperature variables. The different 10 

impacts of temperature variables over two watersheds indicate that climate variables, if not chosen with consideration of runoff 

generating processes, can affect the performance of the subset selection algorithms. In the rainfall-dominated Xiangjiang 

watershed, inclusion of temperature variables, which play little role in generating runoff, leads to a small loss of performance, 

whereas in the snow-related Manicouagan 5, exclusion of temperature variables resulted in a large loss of performance. This 

is reflected in results both for ensemble spread and MME mean. Thus, it is important to choose proper climate variables that 15 

characterize the physical processes controlling hydrology of the watershed for subset selection. Although the results emphasize 

the impacts of temperature variables, the judgement on relevant climate variables in this study is somewhat subjective. Some 

automated variable selection procedure may provide a more objective selection on relevant climate variables, such as 

redundancy analysis or multivariate sparse group lasso (Li et al., 2015). 

In terms of methodology, the results of this study reveal two strengths of the KKZ method over K-means clustering. First, 20 

the KKZ method selects simulations on the boundaries of the climate simulation ensemble and, as a result, it is better able to 

cover overall climate uncertainty, as measured by average PSC and PSC90p, of the ensemble than K-means clustering. Second, 

uncertainty coverage of the KKZ method for climate variables increases monotonically as more climate simulations are 

selected, whereas the K-means clustering is unstable. This is because climate simulations are added incrementally, in a 

recursive fashion, by the KKZ method as subset size increases, whereas K-means clustering needs to be run independently for 25 

each subset. Consequently, K-means clustering produces a disordered sequence of solutions. The results of this study show 

that these two strengths of the KKZ method are retained for hydrological impacts. Therefore, in the aspect of overall uncertainty 

coverage, the KKZ method outperforms K-means clustering. Performance in terms of MME mean were also evaluated in this 

study. Results show that the subsets selected by K-mean clustering produce a more similar MME mean to the whole ensemble, 

although differences between the two methods are small. This result is expected because K-means clustering selects 30 

representative simulations for each cluster according to their closeness to the cluster centroid, which is the multivariate mean. 

The two envelope-based methods in this study are from a single branch of selection methods whose purpose is to cover 

the spread (uncertainty) in projected changes of an ensemble. The model ranking approach is another common way to select 

model simulations, usually based on historical model performance, measures of statistical independence, and other evaluation 
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metrics. Some studies have investigated the impact of assigning weights to climate models on climate projections or 

hydrological impacts (Chen et al., 2017; Christensen et al., 2010). They concluded that weighting methods have little influence 

on the ensemble mean and uncertainty, and it is more appropriate to consider GCMs as being equiprobable. 

Some studies have argued that certain GCMs may not be independent from one another because of shared code or 

parameterization schemes (Evans et al., 2013; Knutti et al., 2010). In an ensemble of opportunity like CMIP5, this dependence 5 

may lead to high-density regions in climate variable space and hence influence the selection of models by methods like K-

means clustering. On the other hand, the KKZ method is designed to select simulations that lie on the edges of the ensemble. 

If these simulations are outliers because their projections are not credible, for example due to poor process representation, and 

then their selection may not be warranted. Therefore, previously removing any obviously dependent or ill-behaving GCMs 

through model weighting methods may improve the rationality of these two equal-weighting selection methods in regional 10 

impact studies. 

6 Conclusion 

In this study, the transferability of climate simulation uncertainty to climate change impacts on hydrology was investigated 

over two watersheds with different climate and hydrological regimes based on multiple climate variables. Main conclusions 

are summarized as follows: 15 

(1) In terms of uncertainty coverage, both the KKZ method and K-means clustering are effective at selecting subsets of 

climate simulations that represent the range of the climate change signal. However, when it comes to hydrological impacts, 

the KKZ method always performed better than random selection, while K-means clustering sometimes performed worse than 

random selection. 

(2) Both K-means clustering and the KKZ method are capable of reproducing the MME mean of the whole ensemble, 20 

although K-means clustering performed slightly better than the KKZ method in some cases. 

(3) The uncertainty of climate simulations based on multiple climate variables can be transferred to the assessment of 

hydrological impacts uncertainty. In other words, selected subsets can generate similar uncertainty coverage in terms of both 

climate simulation and hydrological impacts. 

(4) In order to cover an adequate range of climate simulation and hydrological impacts uncertainty with less computational 25 

costs, selection of about 10 simulations from the ensemble of 50 simulations is required. Little improvement is gained when 

the number of simulations is increased beyond 10. 

(5) The choice of climate variables affects the transferability of climate uncertainty to hydrological uncertainty. Thus, the 

climate and hydrological regimes of a watershed should be considered when choosing variables used to subset climate model 

simulations for hydrological impact studies. 30 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-703
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 

16 

 

Acknowledgements  

This work was partially supported by the National Natural Science Foundation of China (Grant No. 51779176, 51339004, 

51539009) and the Thousand Youth Talents Plan from the Organization Department of CCP Central Committee (Wuhan 

University, China). The authors would like to acknowledge the contribution of the World Climate Research Program Working 

Group on Coupled Modelling, and all climate modeling groups listed in Table 1 for making available their respective model 5 

outputs. The authors would also like to acknowledge Hydro-Québec and the Changjiang Water Resources Commission for 

providing observation data in the Manicouagan 5 and Xiangjiang watersheds, respectively. 

References 

Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A comparative analysis of 9 multi-model averaging 

approaches in hydrological continuous streamflow simulation, Journal of Hydrology, 529, 754-767, 10 

https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015. 

Cannon, A. J.: Selecting GCM Scenarios that Span the Range of Changes in a Multimodel Ensemble: Application to CMIP5 

Climate Extremes Indices*, Journal of Climate, 28, 1260-1267, https://doi.org/10.1175/jcli-d-14-00636.1, 2015. 

Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the impact of climate change on 

hydrology, Journal of Hydrology, 401, 190-202, https://doi.org/10.1016/j.jhydrol.2011.02.020, 2011a. 15 

Chen, J., Brissette, F. P., Poulin, A., and Leconte, R.: Overall uncertainty study of the hydrological impacts of climate change 

for a Canadian watershed, Water Resources Research, 47, W12509, https://doi.org/10.1029/2011wr010602, 2011b. 

Chen, J., Brissette, F. P., and Lucas-Picher, P.: Transferability of optimally-selected climate models in the quantification of 

climate change impacts on hydrology, Climate Dynamics, 47, 3359-3372, https://doi.org/10.1007/s00382-016-3030-x, 2016. 

Chen, J., Brissette, F. P., Lucas-Picher, P., and Caya, D.: Impacts of weighting climate models for hydro-meteorological 20 

climate change studies, Journal of Hydrology, 549, 534-546, https://doi.org/10.1016/j.jhydrol.2017.04.025, 2017. 

Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., Kirono, D. G. C., and Viney, N. R.: Estimating climate change 

impact on runoff across southeast Australia: Method, results, and implications of the modeling method, Water Resources 

Research, 45, https://doi.org/10.1029/2008wr007338, 2009. 

Christensen, J. H., Kjellström, E., Giorgi, F., Lenderink, G., and Rummukainen, M.: Weight assignment in regional climate 25 

models, Climate Research, 44, 179-194, https://doi.org/10.3354/cr00916, 2010. 

Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for conceptual rainfall-runoff models, 

Water Resources Research, 28, 1015-1031, https://doi.org/10.1029/91WR02985, 1992. 

Edijatno, De Oliveira Nascimento, N., Yang, X., Makhlouf, Z., and Michel, C.: GR3J: a daily watershed model with three free 

parameters, Hydrological Sciences Journal, 44, 263-277, https://doi.org/10.1080/02626669909492221, 1999. 30 

Eum, H.-I., Dibike, Y., and Prowse, T.: Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, 

Alberta, Canada, Journal of Hydrology, 544, 327-342, https://doi.org/10.1016/j.jhydrol.2016.11.034, 2017. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-703
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 

17 

 

Evans, J. P., Ji, F., Abramowitz, G., and Ekstrom, M.: Optimally choosing small ensemble members to produce robust climate 

simulations, Environmental Research Letters, 8, 044050, https://doi.org/10.1088/1748-9326/8/4/044050, 2013. 

Giorgi, F., and Mearns, L. O.: Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from 

AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method, Journal of Climate, 15, 1141-1158, 

https://doi.org/10.1175/1520-0442(2002)015<1141:coaura>2.0.co;2, 2002. 5 

Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, Journal of Geophysical Research, 

113, D06104, https://doi.org/10.1029/2007jd008972, 2008. 

Harrold, T. I., and Jones, R. N.: Generation of rainfall scenarios using daily patterns of change from GCMs, in: Water 

Resources Systems - Water Availability and Global Change, edited by: Franks, S., Blöschl, G., Kumagai, M., Musiake, K., 

and Rosbjerg, D., 280, IAHS Press, 165-172, 2003. 10 

Hartigan, J. A., and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, Journal of the Royal Statistical 

Society. Series C (Applied Statistics), 28, 100-108, https://doi.org/10.2307/2346830, 1979. 

Houle, D., Bouffard, A., Duchesne, L., Logan, T., and Harvey, R.: Projections of Future Soil Temperature and Water Content 

for Three Southern Quebec Forested Sites, Journal of Climate, 25, 7690-7701, https://doi.org/10.1175/jcli-d-11-00440.1, 2012. 

Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P.: 15 

Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and 

Precipitation for 1961–2003, Journal of Applied Meteorology and Climatology, 48, 725-741, 

https://doi.org/10.1175/2008jamc1979.1, 2009. 

Immerzeel, W. W., Pellicciotti, F., and Bierkens, M. F. P.: Rising river flows throughout the twenty-first century in two 

Himalayan glacierized watersheds, Nature Geoscience, 6, 742-745, https://doi.org/10.1038/ngeo1896, 2013. 20 

Katsavounidis, I., Jay Kuo, C. C., and Zhen, Z.: A new initialization technique for generalized Lloyd iteration, IEEE Signal 

Processing Letters, 1, 144-146, https://doi.org/10.1109/97.329844, 1994. 

Klein, S. A., and Hall, A.: Emergent Constraints for Cloud Feedbacks, Current Climate Change Reports, 1, 276-287, 

https://doi.org/10.1007/s40641-015-0027-1, 2015. 

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in Combining Projections from Multiple Climate 25 

Models, Journal of Climate, 23, 2739-2758, https://doi.org/10.1175/2009jcli3361.1, 2010. 

Li, Y., Nan, B., and Zhu, J.: Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary 

group structure, Biometrics, 71, 354-363, https://doi.org/10.1111/biom.12292, 2015. 

Logan, T., Charron, I., Chaumont, D., and Houle, D.: Atlas of climate scenarios for Québec forests, uranos for Ministère des 

Res-sources naturelles and de la Faune du Québec Techical Report ISBN 978-2-923292-12-0, 1-132, 2011. 30 

Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B., Wester, P., and Immerzeel, W. W.: Selecting representative climate 

models for climate change impact studies: an advanced envelope-based selection approach, International Journal of 

Climatology, 36, 3988-4005, https://doi.org/10.1002/joc.4608, 2016. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-703
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 

18 

 

McSweeney, C. F., Jones, R. G., and Booth, B. B. B.: Selecting Ensemble Members to Provide Regional Climate Change 

Information, Journal of Climate, 25, 7100-7121, https://doi.org/10.1175/jcli-d-11-00526.1, 2012. 

Mehran, A., AghaKouchak, A., and Phillips, T. J.: Evaluation of CMIP5 continental precipitation simulations relative to 

satellite-based gauge-adjusted observations, Journal of Geophysical Research: Atmospheres, 119, 1695-1707, 

https://doi.org/10.1002/2013jd021152, 2014. 5 

Mendlik, T., and Gobiet, A.: Selecting climate simulations for impact studies based on multivariate patterns of climate change, 

Climatic Change, 135, 381-393, https://doi.org/10.1007/s10584-015-1582-0, 2016. 

Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of climate change on the hydrology of a nordic 

watershed, Journal of Hydrology, 358, 70-83, https://doi.org/10.1016/j.jhydrol.2008.05.033, 2008. 

Mpelasoka, F. S., and Chiew, F. H. S.: Influence of Rainfall Scenario Construction Methods on Runoff Projections, Journal of 10 

Hydrometeorology, 10, 1168-1183, https://doi.org/10.1175/2009jhm1045.1, 2009. 

Mu, X., Zhang, L., McVicar, T. R., Chille, B., and Gau, P.: Analysis of the impact of conservation measures on stream flow 

regime in catchments of the Loess Plateau, China, Hydrological Processes, 21, 2124-2134, https://doi.org/10.1002/hyp.6391, 

2007. 

Murdock, T., and Spittlehouse, D.: Selecting and using climate change scenarios for British Columbia, Pacific Climate Impacts 15 

Consortium, University of Victoria, Victoria, BC, 1-39, 2011. 

Muzik, I.: Sensitivity of Hydrologic Systems to Climate Change, Canadian Water Resources Journal, 26, 233-252, 

https://doi.org/10.4296/cwrj2602233, 2001. 

Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, Journal 

of Hydrology, 10, 282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. 20 

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which potential 

evapotranspiration input for a lumped rainfall–runoff model?, Journal of Hydrology, 303, 290-306, 

https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005. 

Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation of the AR4 Climate Models’ Simulated Daily 

Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions, 25 

Journal of Climate, 20, 4356-4376, https://doi.org/10.1175/jcli4253.1, 2007. 

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, Journal of 

Hydrology, 279, 275-289, https://doi.org/10.1016/s0022-1694(03)00225-7, 2003. 

Pierce, D. W., Barnett, T. P., Santer, B. D., and Gleckler, P. J.: Selecting global climate models for regional climate change 

studies, Proceedings of the National Academy of Sciences, 106, 8441-8446, 2009. 30 

Pincus, R., Batstone, C. P., Hofmann, R. J. P., Taylor, K. E., and Glecker, P. J.: Evaluating the present-day simulation of 

clouds, precipitation, and radiation in climate models, Journal of Geophysical Research, 113, 

https://doi.org/10.1029/2007jd009334, 2008. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-703
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 

19 

 

Reifen, C., and Toumi, R.: Climate projections: Past performance no guarantee of future skill?, Geophysical Research Letters, 

36, https://doi.org/10.1029/2009gl038082, 2009. 

Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P.: A Method for Assessing Hydrologic Alteration within 

Ecosystems, Conservation Biology, 10, 1163-1174, https://doi.org/10.1046/j.1523-1739.1996.10041163.x, 1996. 

Shrestha, R. R., Peters, D. L., and Schnorbus, M. A.: Evaluating the ability of a hydrologic model to replicate hydro-5 

ecologically relevant indicators, Hydrological Processes, 28, 4294-4310, https://doi.org/10.1002/hyp.9997, 2014. 

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bulletin of the American 

Meteorological Society, 93, 485-498, https://doi.org/10.1175/bams-d-11-00094.1, 2012. 

Tebaldi, C., and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2053-2075, 10 

https://doi.org/10.1098/rsta.2007.2076, 2007. 

Valéry, A., Andréassian, V., and Perrin, C.: ‘As simple as possible but not simpler’: What is useful in a temperature-based 

snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal 

of Hydrology, 517, 1176-1187, https://doi.org/10.1016/j.jhydrol.2014.04.058, 2014. 

Vaze, J., and Teng, J.: Future climate and runoff projections across New South Wales, Australia: results and practical 15 

applications, Hydrological Processes, 25, 18-35, https://doi.org/10.1002/hyp.7812, 2011. 

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP): project framework, Proceedings of the National Academy of Sciences, 111, 3228-3232, 

https://doi.org/10.1073/pnas.1312330110, 2014. 

Whitfield, P. H., and Cannon, A. J.: Recent Variations in Climate and Hydrology in Canada, Canadian Water Resources 20 

Journal, 25, 19-65, https://doi.org/10.4296/cwrj2501019, 2000. 

Wilby, R. L.: Uncertainty in water resource model parameters used for climate change impact assessment, Hydrological 

Processes, 19, 3201-3219, https://doi.org/10.1002/hyp.5819, 2005. 

Wilcke, R. A. I., and Bärring, L.: Selecting regional climate scenarios for impact modelling studies, Environmental Modelling 

& Software, 78, 191-201, https://doi.org/10.1016/j.envsoft.2016.01.002, 2016. 25 

Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., and Zwiers, F. W.: Indices for 

monitoring changes in extremes based on daily temperature and precipitation data, Wiley Interdisciplinary Reviews: Climate 

Change, 2, 851-870, https://doi.org/10.1002/wcc.147, 2011. 

  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-703
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 

20 

 

 

Figure 1: Location maps of the (a) Xiangjiang and (b) Manicouagan 5 watersheds. 
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Table 1: Basic information about the CMIP5 models 

  

Institution Model name Resolution 

(Lon. × Lat.) 

Commonwealth Scientific and Industrial Research Organization (CSIRO) and 

Bureau of Meteorology (BOM), Australia 

ACCESS1.0 1.875 × 1.25 

ACCESS1.3 1.875 × 1.25 

Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 2.8 ×2.8 

BCC-CSM1.1(m) 1.125 ×1.125 

College of Global Change and Earth System Science, Beijing Normal University BNU-ESM 2.8°× 2.8 

Canadian Centre for Climate Modelling and Analysis CanESM2 2.8 × 2.8 

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CMS 1.875 × 1.875 

CMCC-CM 0.75 × 0.75 

CMCC-CESM 3.75 × 3.7 

Centre National de Recherches Météorologiques/Centre Européen de Recherche et 

Formation Avancée en Calcul Scientifique 

CNRM-CM5 1.4 × 1.4 

Commonwealth Scientific and Industrial Research Organization in collaboration 

with Queensland Climate Change Centre of Excellence 

CSIRO-Mk3.6.0 1.8 ×1.8 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, 

Tsinghua University  

FGOALS-g2 1.875 × 1.25 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 2.5 × 2.0 

GFDL-ESM2G 2.5 × 2.0 

GFDL-ESM2M 2.5 × 2.0 

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by 

Instituto Nacional de Pesquisas Espaciais) 

HadGEM2-CC 1.875 × 1.25 

HadGEM2-ES 1.875 × 1.25 

Institute for Numerical Mathematics INM-CM4 2.0 × 1.5 

Institut Pierre-Simon Laplace IPSL-CM5A-LR 3.75 × 1.9 

IPSL-CM5A-MR 2.5 × 1.25 

IPSL-CM5B-LR 3.75 × 1.9 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 

Research Institute (The University of Tokyo), and National Institute for 

Environmental Studies 

MIROC-ESM-CHEM 2.8 × 2.8 

MIROC-ESM 2.8 × 2.8 

Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology 

MIROC5 1.4 × 1.4 

Meteorological Research Institute MRI-ESM1 1.125 × 1.125 

MRI-CGCM3 1.1 × 1.1 
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Table 2: Definitions of 31 climate variables. The final column indicates whether the change in a given variable is expressed in the 

form of relative difference (CT = change type) 

  

Category Index Description CT 

ETCCDI 

extreme 

indices 

TXx Annual maximum value of daily maximum temperature  

TXn Annual minimum value of daily maximum temperature  

TNx Annual maximum value of daily minimum temperature  

TNn Annual minimum value of daily minimum temperature  

TX10p Percentage of days when daily max temperature < 10th percentile  

TX90p Percentage of days when daily max temperature > 90th percentile  

TN10p Percentage of days when daily min temperature < 10th percentile  

TN90p Percentage of days when daily min temperature > 90th percentile  

WSDI 
Warm spell duration index: Annual count of days with at least 6 consecutive days when 

TX>90th percentile 
 

CSDI 
Cold spell duration index: Annual count of days with at least 6 consecutive days when 

TN<10th percentile 
 

DTR 
Daily temperature range: Monthly mean difference between daily max and min 

temperature 
 

Seasonal or 

annual mean 

indices 

Tav Annual average temperature  

SpT Seasonal average temperature in spring  

SuT Seasonal average temperature in summer  

AuT Seasonal average temperature in autumn  

WiT Seasonal average temperature in winter  

ETCCDI 

extreme 

indices 

R1mm Annual count of days when precipitation ≥ 1mm  

R10mm Annual count of days when precipitation ≥ 10mm  

R20mm Annual count of days when precipitation ≥ 20mm  

CDD 
Maximum length of dry spell, maximum number of consecutive days with daily 

precipitation < 1mm 
 

CWD 
Maximum length of wet spell, maximum number of consecutive days with daily 

precipitation ≥ 1mm 
 

Rx1day Annual maximum 1-day precipitation % 

Rx5day Annual maximum consecutive 5-day precipitation % 

SDII Simple precipitation intensity index % 

R95pTOT Annual total precipitation when daily precipitation > 95th quantile % 

R99pTOT Annual total precipitation when daily precipitation > 99th quantile % 

Seasonal or 

annual mean 

indices 

ARav Annual total precipitation % 

SpR Seasonal total precipitation in spring % 

SuR Seasonal total precipitation in summer % 

AuR Seasonal total precipitation in autumn % 

WiR Seasonal total precipitation in winter % 
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Table 3: Nash-Sutcliffe Efficiency (NSE) of hydrological models in the calibration and validation over two watersheds 

  

Country Watershed name 
Area 

(km2) 

Hydrological 

Model 

Calibration 

period 

NSE 

calibration 

Validation 

period 

NSE 

validation 

China Xiangjiang 52150 
GR4J-6 1975-1987 0.912 1988-2000 0.871 

GR4J 1975-1987 0.912 1988-2000 0.872 

Canada Manicouagan 5 24610 GR4J-6 1970-1979 0.926 1980-1989 0.881 
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Figure 2: Observed and simulated mean hydrographs for (a, c) calibration and (b, d) validation periods over the (a, b) Xiangjiang 

and (c, d) Manicouagan 5 watersheds. 
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Table 4: Definitions of 17 hydrological variables. The final column indicates whether the change in a given variable is expressed in 

the form of relative difference (CT = change type) 

Category Index Description CT 

Water 

Resources 

Indicators 

(WRIs) 

MD Annual mean flow % 

SpMD Seasonal mean flow in spring % 

SuMD Seasonal mean flow in summer % 

AuMD Seasonal mean flow in autumn % 

WiMD Seasonal mean flow in winter % 

tCMD Centre of timing of annual flow  

Quantiles of 

daily flow 

Q5 5th quantile of daily flow series % 

Q50 50th quantile of daily flow series % 

Q95 95th quantile of daily flow series % 

Indicators of 

Hydrological 

Alteration 

(IHAs) 

Qx1day Annual mean 1-day maximum flow % 

Qx3day Annual mean 3-day maximum flow % 

Qx7day Annual mean 7-day maximum flow % 

tQx Julian date of annual 1-day maximum  

LPC Number of low pulses (annual median -25th percentile) in a year  

HPC Number of high pulses (annual median +25th percentile) in a year  

LPD Mean duration of low pulses in a year % 

HPD Mean duration of high pulses in a year % 
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Figure 3: Examples of PSCs when selecting 5 climate simulations over the Xiangjiang watershed using the KKZ method. The PSCs 

of each variable are presented beside the corresponding axes. 
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Figure 4: Examples of the transferability of climate uncertainty to hydrological impacts based on 1 variable when selecting (a, c) 5 

and (b, d) 10 climate simulations over the Xiangjiang watershed using the KKZ method. The PSCs of each variable are presented 

in the top left corner. 
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Figure 5: Examples of the transferability of climate uncertainty to hydrological impacts based on 2 variables when selecting (a, c) 5 

and (b, d) 10 climate simulations using the KKZ method. The PSCs of each variable are presented beside the corresponding axes. 
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Figure 6: Boxplots of the PSCs of 31 climate variables (CLI) and 17 hydrological variables (HYD) when selecting different numbers 

of climate simulations over two watersheds using KKZ method and K-means clustering. 
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Figure 7: The (a, c) average PSC and (b, d) PSC90p for three different selection methods (K-means, KKZ and random selection) 

over the (a, b) Xiangjiang watershed and the (b, d) Manicouagan 5 watershed (CLI = climate variables and HYD = hydrological 

variables). 

  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-703
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 

31 

 

Figure 8: The (a, c) average PSC and (b, d) PSC90p for three different selection methods (K-means, KKZ and random selection) 

over two watersheds when temperature variables are excluded in the process of simulation selection (CLI = climate variables and 

HYD = hydrological variables). 
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Figure 9: Averaged standardized mean changes in climate (CLI) and hydrological (HYD) variables of subsets selected by three 

selection methods (K-means, KKZ and random selection) over the Xiangjiang and Manicouagan 5 watersheds when temperature 

variables are (a, b) included or (c, d) excluded in the process of selection. The pink and blue panels are the envelopes resulting from 

100 random selections. 
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