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Replies to Referee #2 

Transferability of climate simulation uncertainty to hydrological 

climate change impacts 

Hui-Min Wang, Jie Chen, Alex J. Cannon, Chong-Yu Xu, Hua Chen 

 

We would like to thank the reviewer for the time taken in reviewing this paper. All comments will 

be incorporated into the revised manuscript. Please find the point-by-point responses below. For 

clarity, comments are given in italics, and our responses are given in plain text. We will make the 

revisions to the manuscript as suggested. 

The authors do a good job in their attempt to shed light on the important problem that impact 

modelers face in efficiently and effectively capturing the range of uncertainty in climate model 

simulations. Furthermore, they investigate whether covering this range in climate model output 

variables translates to capturing the uncertainty range of hydrological variables. The paper is 

well written and clearly presented. Though, in the end, I was not convinced that impact 

modelers can actually save much time and effort using this methodology. I would recommend 

that the manuscript needs minor revisions. Importantly, the authors need to make it clearer 

how an end user can avoid downloading all 50 simulations in order to prove which subset of 

10 are most appropriate to cover the uncertainty range in their study. 

Thanks for your positive evaluation in general and for your professional comments. Please find our 

responses in next page. 

I would begin by asking this. What do end users or impact modelers gain by this paper? You 

have shown that for your two different watersheds, a subset of approximately 10 model 

simulations are needed to reasonably capture the spread of the model uncertainty for both 

climate and hydrological variables. Additionally, you point out that not using the temperature 

variables to obtain the subset affects the hydrology of the two watersheds differently. As a result, 

you illustrate that the selection of the 10 climate models is unique to each impact assessment 

study. Furthermore, you needed all 50 simulations to test which subset was optimal for your 

two cases. I do not see how an impact modeler would not need to repeat precisely what you 

have done. In order to replicate your method, but specific to their study interest or area, they 

would need to “extract, store, and compute” (page 2, line 14) all 50 model simulations 

themselves. Then, couldn’t they just as easily implement the entire set of simulations instead of 

a smaller subset? To ask it more directly: How can an impact modeler know which 10 model 

simulations to use, for their unique case, without testing the ensemble ranges of each possible 

subset with respect to the entire set of simulations? And to do this, would they not need to run 
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all 50 model simulations? 

Sorry for the lack of clarity in the manuscript. Depending on the choice of climate variables and 

climate model ensemble, it may not be necessary to “extract, store, and compute” climate indices 

from all climate model simulations in the ensemble of interest. For example, pre-computed ETCCDI 

climate extreme indices for GCMs participating in CMIP3 and CMIP5 are publically available from 

http://climate-modelling.canada.ca/climatemodeldata/climdex/. In addition, the end-user may be 

able to refer the results of this study for watersheds with similar climate and hydrological 

characteristics, although it is likely that some level of site and study-specific analysis will be 

required. 

However, the main objective of this study is to investigate the transferability of climate simulation 

uncertainty to hydrological impacts. If the climate simulation uncertainty is transferable in the 

hydrological impacts, the selected 10 climate simulations can be directly used to drive a 

hydrological model for impacts studies instead of using all climate simulations. This is crucial for 

hydrological modelers as they usually spend a lot of computational costs in running a large number 

of climate simulations with a complicated hydrological model (e.g. SWAT). The conclusion of this 

study shows that the climate simulation uncertainty is transferable in the envelope-based selection 

based on multiple climate variables, and the subset of around 10 climate simulations can cover the 

majority of uncertainty. Therefore, end-users can choose the group of climate variables according 

to their knowledge to the climate and hydrological characteristics of watershed of interest and then 

select the representative subset of climate simulations to save computational costs in the hydrology 

world.  

All above information will be discussed in the Discussion section of the revised manuscript. 

Some more specific comments and questions are as follows: 

In section “2.2.1 Climate Simulations”: Does it make sense to lump the uncertainty ranges of 

both RCP4.5 and RCP8.5? These are two different concentration pathways that represent very 

different conditions. It is true that we currently can’t know which is more likely. I would 

recommend either treating each pathway independently with different ranges of uncertainty, 

or I would recommend also including simulations from pathways RCP2.6 and RCP6. 

Thanks for your comment. RCP4.5 is the medium stabilization scenario and RCP8.5 represents the 

very high radiative forcing scenario. The mitigation scenario, RCP2.6, was not used because recent 

analyses suggest that this RCP will be very difficult to achieve with current emission trajectories 

(Arora et al., 2011; Rozenberg et al., 2015). RCP6.0 is a scenario with radiative forcing that is 

bracketed by RCP4.5 and RCP8.5 and was not simulated by as many modeling centers as RCP4.5 

and RCP8.5. Thus, we used RCP4.5 and RCP8.5 to include a range of realistic projections (Lutz et 

al., 2016). Due to unknown future emission scenarios, two concentration pathways were used in an 

http://climate-modelling.canada.ca/climatemodeldata/climdex/
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undifferentiated manner to cover uncertainty resulting from emission scenarios in our study.  

We agree with the reviewer that two emission scenarios generate respective climate simulations. It 

may be more proper to separately use RCPs in the practical applications. Thus, we have also used 

each pathway separately to be input into the subset selection. Figure R1 shows the example results 

where only the one scenario (RCP4.5 or RCP8.5) was used in the Xiangjiang watershed 

(temperature variables were not included in the selection process). The main characters of the results 

are roughly the same as the original research where 2 RCPs were considered. In this case, the 

selection of 5 or 6 climate simulations by the KKZ method can cover adequate uncertainty range. 

Therefore, the specific choice of emission scenarios can be decided by end-users according to their 

own needs. The results for the Manicouagan 5 watershed will be further explored in the future. 

In order to stress this comment, an explanation on the choice of emission scenarios will be added in 

the Discussion section. 

Figure R1: The average PSC for three different selection methods over the Xiangjiang watersheds 

when only one emission scenario is considered (CLI = climate variables and HYD = hydrological 

variables) 

Page 7, line 17: What was the reason to use 100 quantiles instead of the total number of days 

in the periods (e.g., 1975-2004 for January = 30 years times 31 days = 930 days or quantiles)? 

The use of 100 quantiles is to smooth the distribution of simulated daily precipitation or temperature. 

The smoothing process eliminates sharp scaling factors that may occur due to outliers, especially 

for extreme values. On the other hand, Lafon et al. (2013) found that the division of 100 quantiles 

in the empirical quantile mapping generates more accurate downscaling results than that of 25, 50 

or 75 quantiles. The use of 100 quantiles in the Daily Scaling (DS) method is also the same as many 

other studies (Harrold and Jones, 2003; Mpelasoka and Chiew, 2009; Chen et al., 2013). All of these 

points will be clarified in the revised manuscript. 

Page 9, line 5: I do not anticipate for it to change your results that much, but perhaps it is 

better to use something like standard deviation as a measure of the uncertainty coverage. The 
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Percentage of Spread Coverage (PSC) is only sensitive to the range of the minimum and 

maximum values. You could end up having many of the models grouped close together, and as 

a result, your measure would overestimate your actual uncertainty coverage. 

We agree with the reviewer that the spread of a MME provides an imperfect estimate of uncertainty, 

and the PSC is sensitivity to the maximum and minimum values. We considered and found that it is 

improper to use standard deviation, in our case, as the measure of uncertainty in the evaluation on 

the uncertainty coverage of subsets. To be specific, the selected simulations in impact studies are 

often considered to be representative of specific uncertainty range instead of individual samples in 

the calculation of deviation. For example, selected simulations are regarded as the 10th and 90th 

quantiles in the range of temperature or precipitation in many impact studies (Lutz et al., 2016; 

Immerzeel et al., 2013; Sorg et al., 2014).  

In consideration of reviewer’s concern, i.e. to lower the influence from the maximum and minimum 

values, the average coverage on quantiles (ACQ) of the subsets have been used as an evaluation 

criterion. The ACQ is calculated using Eq.(R1) 
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1
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where 𝑁 is the total number of climate or hydrological variables, and 𝑄𝑠,𝑖 represents the rank of 

quantile of the 𝑖th variable for the 𝑠th selected simulation (e.g. if the change in a variable of one 

selected simulation is the 80th quantile of the changes of all simulations, then 𝑄𝑠,𝑖 = 0.8). ACQ 

evaluates the range of quantiles covered by selected simulations. Due to the use of quantiles instead 

of values, the ACQ is less influenced by the maximum or minimum values. Figure R2 presents the 

ACQ for climate variables and hydrological variables (temperature variables were excluded in the 

selection for the Xiangjiang watershed, while they were included for the Manicouagan 5 watershed). 

Compared with average PSC, ACQ results show similar characteristics but less sensitivity, and PSC 

Figure R2: The average coverage on quantiles (ACQ) for three different selection methods over 

two watersheds (CLI = climate variables and HYD = hydrological variables) 
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can more intuitively provide an evaluation of the ability of subsets to cover uncertainty. Therefore, 

PSC will be still used as the evaluation criterion in the revised manuscript.  

This will be discussed in the revised manuscript. 

Figure 2: Are you showing the observed and simulated values for the calibration and validation 

for 1 year? Or is each day the average of that day across the years (e.g., for Xiangjiang: all 

January 1 values are averaged over the time period 1975-1987, then January 2 values are 

averaged over the same years, . . .)? 

The mean hydrographs showed in Fig.2 were calculated as the average of each calendar day across 

the years. This will be clarified in the revised manuscript. 
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