
I had a look at the revised manuscript and I think, that the authors responded professionally to my 

comments. I only have a few suggestions, but in general I recommend to publish the manuscript in HESS. 

 

Minor comments: 

 

1) I appreciate that the authors give a general overview about the atmospheric mechanisms related with 

precipitation variability in the target region. For me the link with the southwest Asian monsoon is not 

trivial. Since it is an important point, as the autors argue in the conclusion, I think a bit more information 

in the introduction might be helpful. 

We have moved the paragraph on atmospheric mechanisms to the introduction of the second section 

(Page 3 Line 14, referring to the revised manuscript without track-changes). We also edited the paragraph 

a little bit such that the contents flow well. The edited paragraph is pasted below: 

“The climate mechanisms affecting JJAS precipitation patterns in western Ethiopia are quite complex. Sea 

surface temperatures (SST) in the equatorial Pacific Ocean representing the well-known El Nino-Southern 

Oscillation (ENSO) phenomena is considered a primary indicator of precipitation variability, with El 

Nino/La Nina often associated with deficit/excess of precipitation across the study region (e.g. NMSA, 

1996, Camberlin, 1997, Bekele, 1997, Segele and Lamb, 2005, Diro et al., 2011, Elagib and Elhag, 2011). 

Additionally, there is evidence of direct moisture transport from the Gulf of Guinea (equatorial Atlantic 

Ocean), the Indian Ocean, and the Mediterranean Sea, affecting Ethiopia’s summertime precipitation 

(Viste and Sorteberg, 2013a, Viste and Sorteberg, 2013b). These moisture fluxes are often related to 

pressure patterns across the continent. For instance, the St. Helena High over the southern Atlantic Ocean 

or a high pressure over the Gulf of Guinea, coupled with a simultaneous low pressure over the Indian 

Ocean or a monsoon trough over Arabic Peninsula, all bring intensified westerlies and south-westerlies 

that transport moist air across the Congo Basin to the western Ethiopian highlands (Segele et al., 2009, 

Williams et al., 2011). Similarly, the southwest Asian monsoon in the Indian Ocean, which has a strong 

positive relationship with concurrent JJAS precipitation in western Ethiopia, is associated with the 

Mascarene High over the southern Indian Ocean and a low pressure system near Bombay. During this 

monsoon season, the southeast trade winds in the southern hemisphere are channeled by the east African 

highlands while crossing the equator and become a southwest monsoon flow. They are further diverted 

by the Turkana Channel, enhancing convergence with the westerlies/south-westerlies above the western 

Ethiopian highlands and bringing moisture to the region (Kinuthia, 1992, Nicholson, 1996, Camberlin, 1997, 

Slingo et al., 2005, Segele et al., 2009, Nicholson, 2014). In addition, the effect of other hydro-climate 

variables, such as Indian Ocean SST, local and regional atmospheric pressure systems (e.g. Azores High) 

also have notable influence on Ethiopia’s precipitation variability (e.g. Kassahun, 1987, Tadesse, 1994, 

NMSA, 1996, Shanko and Camberlin, 1998, Goddard and Graham, 1999, Latif et al., 1999, Black et al., 2003, 

Segele and Lamb, 2005). Consequently, these large-scale climate variables may serve as potential 

predictors in statistical seasonal precipitation prediction models.” 

 



2) The link with the Monsoon is investigated by means of the correlation of seasonal precipitation 

amounts with SLP near Bombay. Is this correlation simultanous or does it consider a lead time? If a lead 

time is considered, is the monsoonal circulation robust, i.e. stable during subsequent months? 

This correlation is simultaneous, or concurrent, as we mentioned in the manuscript (Page 16 Line 35). No 

lead time is considered for this analysis.  

 

3) structure of the introduction and methods section: I would give the climatic overview (atmospheric 

mechanisms) in the introduction.  

Thank you. We agree with the reviewer and have moved the climatic overview in the introduction of 

Section 2. Please refer to the response to comment 1.  

In the methods section it would be appropriate, to describe the PCA techniques for the predictor 

generation first and the calibration of the LRM afterwards. 

Thank you. We agree with the reviewer and have moved the paragraphs explaining PCA and PCR forward. 

We also edited some text throughout the section to make sure it flows well (Page 6 Line 17). The edited 

paragraphs are pasted below: 

“Season-ahead (March-May) or month-ahead (May) large-scale climate variables that are physically 

relevant in potentially modulating moisture transport to the basin (or cluster) are selected as potential 

predictors. Four climate variables are selected here for further evaluation based on outcomes of the 

aforementioned prediction studies: SST, SLP, geopotential height (GH) at 500mb, and surface air 

temperature (SAT). All climate variables are from the National Centers for Environmental Prediction and 

National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset (Kalnay et al., 1996) at a 

2.5˚×2.5˚ grid scale. 

Those potential predictors are first transformed through principal component analysis (PCA; Jolliffe, 2002). 

PCA is a common approach in climate modeling to reduce the dimensionality of predictors and remove 

multi-collinearity, while simultaneously extracting the most dominant signals from the potential 

predictors, typically reflected in the first few PCs. Since PCA is independent of the predictand, retaining 

the first few PCs as predictors, in lieu of the original variables, also helps to reduce artificial prediction skill.  

Subsequently, a certain number of PCs are used as the direct inputs into a MLR model, otherwise known 

as the principal component regression (PCR). PCR is performed in a “drop-one-year” cross-validation 

mode to reduce over-fitting effects and therefore avoid overestimation of prediction skill. This requires 

reconstructing the principal components for the dropped year, and then multiplying the coefficient 

estimates with each reconstructed PC respectively in order to obtain the final predicted value for the 

dropped year (e.g. Block and Rajagopalan, 2009, Wilks, 2011). A detailed methodology is provided below.  

To avoid overfitting, the entire process including predictor selection and statistical modeling is processed 

using cross-validation. To start, drop-one-year precipitation observations for JJAS averaged across the 

region and each cluster are spatially correlated independently with each global climate variable. As a 

result, there are total of 1044 global correlation maps given the 29-year time-series, eight clusters plus 

one non-cluster, and four climate variables. Hence, a program to automatically select highly correlated 



and justifiable regions as predictors is developed. The following steps describe the subsequent statistical 

modeling process (Fig. 3): 

(1) Grid-cells within each justifiable region (e.g. equatorial Pacific; Fig. 4) with correlation above 

the 99% significance level are identified (Fig. 5). For regions containing grid-cells with both positive and 

negative correlations, the number of the identified grid-cells in each sign is counted. If a greater number 

of grid-cells is associated with significant positive correlation, for example, only grid-cells with positive 

correlations are kept for the following steps, and vice versa. 

(2) The top 10% of the identified grid-cells with the highest correlation in each region is then 

selected, in order to boost the potential model skill.  

(3) For each region, data of the selected grid-cells within the region are spatially averaged (defined 

as “pre-predictors”). 

(4) Pre-predictors are standardized, combined, and transformed through PCA for each cluster or 

non-cluster, and each dropped-year analysis separately. 

(5a) The top principal components (PCs) from the PCA with a total of 95% variance explained are 

used as predictors in PCR. For the direct case, PCR is used to directly predict the grid-level precipitation; 

for the indirect case, PCR is used to predict the intermediate cluster-level precipitation. 

 (5b) For the indirect case only, cluster-level predictions are regressed to the grid-level. Note that 

the downscaling of cluster-level predictions to grid-level predictions is also cross-validated to avoid 

overfitting.” 

 

4) I still assume that that trends in cluster 5 and 7 might lead to better forecast results. The PCAs are 

usualkly orthogonal, which does not mean that the predictors do not have any trends, Particularly for sst 

I assume strong trends during recent decades. I understand the point, that 29 years are to short for 

detrending (since decadal variations such as PDO are not captured otherwise), but I think this should be 

better communicated in the conclusions. 

Thank you. We agree that PCs can still have trends; however, as the PCA process is completely 

independent of the predictand and the model is constructed under strict cross-validation from predictor 

selection to regression, we do believe the skillful results from Cluster 5 and 7 are more likely due to the 

climate mechanisms affecting them than the trends.  

Regarding the comment on data length for trend analysis, a more comprehensive description on how 

possible trends in the time series could lead to better skill is provided in the conclusion (Page 17 Line 12). 

It is also pasted below: 

“As observational datasets continue to grow, data-driven cluster analyses and statistical modeling 

approaches may be expected to improve. Careful analysis of possible significant trends in the data is also 

warranted; a region with a relatively high correlation may be selected solely based on trends in predictors 

and observations. For shorter time series, such as the data used in this study, trend analysis may not be 

reliable; detrending can also reduce evidence of large-scale decadal climate signals.” 

 



Technical corrections: (pages and lines are taken from the track change version) 

p22, 1st sentence: I do not understand that sentence 

The original sentence was “This study demonstrates the potential for season-ahead large-scale climate 

information to produce skillful and credible high-resolution precipitation predictions under a clustered 

indirect approach in western Ethiopia.”, and we rephrased it to (Page 16 Line 2):  

“This study demonstrates the potential for applying season-ahead large-scale climate information to 

predict high-resolution precipitation using a statistical modeling approach. Skillful and credible 

predictions are produced for some regions in western Ethiopia, particularly under a clustered indirect 

statistical approach.”   

  

p22, l. 36: corrects? Do you mean correlates? 

Thank you. We have changed the “corrected” to “correlated” (Page 16 Line 37). 

 

p23,l2: what do you mean by gradient? 

By “gradient” we mean the difference in sea level pressure between a high pressure system in the 

southern Indian Ocean and a low pressure system near Bombay. If the gradient is weak, the southwest 

Asian monsoon may also be weak. We realize our original expression may be confusing; therefore, we 

have rephrased the sentence to (Page 17 Line 1):   

“Cluster 2 – one of the worst predicted clusters – shows moderately strong negative correlation with SLP 

near Bombay; however, it is also correlated strongly and negatively with SLP in the southern Indian Ocean 

(a high pressure system that drives the monsoon toward the low pressure system near Bombay), 

indicating that high JJAS precipitation in Cluster 2 is not necessarily associated with a strong southwest 

Asian monsoon.”  
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Abstract. Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral 

activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many 

studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-

level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal 10 

precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for 

western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where 

lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water 

resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal 

precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and 15 

resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models 

for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and RPSS values of 

up to 0.5 and 33%, respectively. The general skill (after bias-correction) of the two best performing dynamical models over the 

entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution 

and the raw predictions requires bias correction to guarantee comparable skills.   20 
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1 Primer on prediction models and cluster analysis 

Seasonal precipitation prediction can provide potentially actionable information to guide management of various sectoral activities. 

For instance, precipitation prediction is often translated into a hydrological forecast, which can be used to optimize reservoir 

operations, provide early flood or drought warning, inform waterway navigation, etc. As a primary input to soil moisture, 

precipitation prediction is also essential to agricultural management – farmers can take advantage of anticipated preferable climatic 5 

conditions or avoid unnecessary costs under expected undesirable conditions. Two types of models are commonly used for seasonal 

precipitation prediction: statistical and dynamical. Dynamical models, such as general circulation models (GCMs), include 

complex physical climate processes, while statistical models are purely data-driven, relating observations and hydroclimate 

variables directly.  

 10 

While both modeling approaches have produced skillful seasonal predictions for a variety of applications (e.g. Barrett, 1993, 

Hammer et al., 2000, Shukla et al., 2016), each has noteworthy drawbacks. Dynamical models often require a great amount of time 

to build and parameterize, whereas statistical models require considerably fewer resources (e.g. Mutai et al., 1998, Gissila et al., 

2004, Block and Rajagopalan, 2007, Diro et al., 2008, Diro et al., 2011b, Block and Goddard, 2012). Dynamical models also suffer 

from their high sensitivity to initial uncertain conditions, particularly given a long lead time. Consequently, a number of simulations 15 

are typically produced, each with unique initial conditions, to provide a range of possible outcomes (e.g. Roeckner et al., 1996, 

Anderson et al., 2007). Furthermore, the outputs from dynamical models often require additional bias correction, typically using 

statistical methods, to better match observations (e.g. Ines and Hansen, 2006, Block et al., 2009, Teutschbein and Seibert, 2012). 

Statistical models, on the other hand, are highly dependent on substantial high-quality historical data to capture hydroclimatic 

patterns and signals, particularly extreme conditions, which is often not available. Additionally, statistical models are often linear 20 

by construction, and may not well capture non-linear complex interactions and feedbacks. The physical nature of dynamical models, 

however, allows for prediction under non-stationary conditions, and also when insufficient historical data is available, whereas 

statistical models, by construction, typically rely on stationary relationships (Schepen et al., 2012).  

 

The spatial extent selected for statistical seasonal prediction is critical. It is not uncommon to simply assume homogeneity in 25 

precipitation across an entire study region; however, this limits addressing potential spatial variability. While this may be suitable 

for very broad regional planning, it is often ineffectual for operational and local-level decisions, particularly for locations with high 

spatial variability. This prompts the need for delineation of sub-regional scale homogeneous regions, often defined through cluster 

analysis. Defining these homogeneous regions, however, is a non-trivial process. There are a variety of methods to delineate 

homogeneous regions, including comparing annual cycles (e.g. unimodal and bimodal distributions in precipitation) between 30 

stations (or grid-cells), comparing station correlations with regional averages, applying empirical orthogonal functions (EOF), 

various clustering techniques, and other methods of increasing complexity (e.g. Parthasarathy et al., 1993, Mason, 1998, Landman 

and Mason, 1999, Gissila et al., 2004, Diro et al., 2008, Diro et al., 2011b, Singh et al., 2012). In addition, delineation of the sub-

region size is also important to consider. Smaller sized homogeneous sub-regions do not necessarily lead to improved predictions, 

as the noise at overly small scales can dominate any real signals representing spatial coherency of precipitation. For additional 35 

discussion regarding defining homogeneous sub-regions and cluster analysis, the reader is referred to Zhang et al. (2016) and Badr 

et al. (2015).  
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2 Application to western Ethiopia and objectives of the study  

Precipitation in western Ethiopia peaks in the summer with approximately 70% of annual total precipitation falling during the main 

raining season - also known as the Kiremt season spanning from June to September (JJAS). On average, the seasonal total 

precipitation in the study region is approximately 760 mm; however in the northwest, precipitation can exceed 1200 mm (Fig. 1a). 

Along with the high spatial variability in this mountainous region, the temporal variability is also remarkable with spatial-average 5 

seasonal total precipitation ranging from 650 mm in dry years up to 900 mm in wet years (Fig. 1b). These highly variable spatial 

and temporal precipitation patterns have made skillful seasonal predictions challenging, particularly at local scales (e.g. Gissila et 

al., 2004, Block and Rajagopalan, 2007).  

 

 10 

Figure 1: Spatial and temporal variability of June-September seasonal total precipitation in western Ethiopia: (a) spatial pattern of 

temporal-average, and (b) spatial-average time series. 

The climate mechanisms affecting JJAS precipitation patterns in western Ethiopia are quite complex. Large-scale climate variables 

are often evaluated as potential predictors in statistical seasonal precipitation prediction models, commonly including sSea surface 

temperatures (SST) in the equatorial Pacific Ocean representing the well-known of the El Nino-Southern Oscillation (ENSO) 15 

phenomena(Stone et al., 1996). Sea level pressure (SLP) in the eastern Pacific Ocean at Tahiti as an critical and stable component 

for measuring an ENSO index (Torrence and Webster, 1999) warrants another potential predictor. For Ethiopia, the ENSO 

phenomenon  is considered a primary indicator of precipitation variability, particularly in the main JJAS rainy season with El 

Nino/La Nina often associated with deficit/excess of precipitation amount inacross  the study region (e.g. NMSA, 1996, Camberlin, 

1997, Bekele, 1997, Segele and Lamb, 2005, Diro et al., 2011a, Elagib and Elhag, 2011). Additionally, there is Eevidences of have 20 

also shown a more direct moisture transport from the Gulf of Guinea (equatorial Atlantic Ocean), the Indian Ocean, and the 

Mediterranean Sea, affecting Ethiopia’s summertime precipitation (Viste and Sorteberg, 2013a, Viste and Sorteberg, 2013b). 

Theose moisture fluxes are often related to pressure patterns across the continent. For instance, the St. Helena Hhigh over the 

southern Atlantic Ocean or a high pressure over the Gulf of Guinea, and coupled with a simultaneous low pressure over the Indian 

Ocean or a monsoon trough over Arabic Peninsula, all bring intensified westerlies and south-westerlies that transport moist air 25 

across the Congo Basin to the western Ethiopian highlands in the summer (Segele et al., 2009, Williams et al., 2011). Similarly, 

the southwest Asian monsoon inat the Indian Ocean, which has a strong positive relationship with the concurrent JJAS 
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precipitationrainfall in the western Ethiopia, is associated with the Mascarene hHigh over the southern Indian Ocean and a low 

pressure system near Bombay. During this monsoon season, the southeast trade winds in the southern hemisphere are channeled 

by the east African highlands while crossing the equator and become a southwest monsoon flow. It isThey are further diverted by 

the Turkana Channel, enhancing convergence with the westerlies/south-westerlies above the western Ethiopian highlands and 

bringing moisture to thisthe region (Kinuthia, 1992, Nicholson, 1996, Camberlin, 1997, Slingo et al., 2005, Segele et al., 2009, 5 

Nicholson, 2014). In addition, the effect of other hydro-climate variables relevant to the aforementioned driven factors, such as the 

Indian Ocean SST, local and other regional atmospheric pressure systems such as (e.g. Azores High) also have notable influence 

on Ethiopia’s precipitation variability (e.g. Kassahun, 1987, Tadesse, 1994, NMSA, 1996, Shanko and Camberlin, 1998, Goddard 

and Graham, 1999, Latif et al., 1999, Black et al., 2003, Segele and Lamb, 2005). Consequently, these Large-scale climate variables 

may serve as potential predictors in statistical seasonal precipitation prediction models.  10 

    

Ethiopia is vulnerable to fluctuations in precipitation given its reliance on rain-fed agriculture and limited water resources 

infrastructure. The majority of agriculture and infrastructure are in western Ethiopia, where water resources are relatively rich 

compared to other parts of the country (Awulachew et al., 2007). Operational precipitation predictions in Ethiopia have been issued 

by its National Meteorological Agency (NMA) since 1987 using an analog methodology (i.e. locating a similar climate condition 15 

in the past – an analog – to predict future conditions), however this approach has produced only marginally skillful outcomes 

(Korecha and Sorteberg, 2013). For NMA’s prediction, the country is divided into eight homogeneous regions, for which NMA 

produces independent predictions. Similarly, others have also addressed seasonal prediction in Ethiopia contingent on both 

temporal and spatial precipitation patterns. Gissila et al. (2004) divide Ethiopia into four regions conditioned on the seasonal cycle 

and interannual variability coherence prior to prediction, while Diro et al. (2009) apply a similar approach but with dynamic cluster 20 

boundaries, allowing for different delineations for each rainy season. Segele et al. (2015) consider statistical precipitation 

predictions across Ethiopia as a whole, as well as for northeastern Ethiopia and at two Ethiopian cities. Block and Rajagopalan 

(2007) predict the average summertime (JJAS) precipitation over the upper Blue Nile basin – a region they claim is homogenous 

at inter-annual time scales. Korecha and Barnston (2007) select an all-Ethiopia average precipitation index to characterize 

predictability broadly, with minimal attention to operational-level predictions. All of these studies focus on predicting regional 25 

average precipitation based on subjective clustering methods applying a limited number of stations or coarsely gridded data; no 

local predictions at a finer spatial scale are explored.  

 

This study moves forward by exploring local-level seasonal precipitation prediction through the use of regional-level predictions, 

based on previous cluster analyses over western Ethiopia (Zhang et al., 2016). The advantages of defining homogeneous regions 30 

for seasonal prediction at operational (small) scales will be demonstrated by comparing approaches with and without undertaking 

a cluster analysis a priori. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal 

precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances compared to previous 

studies.  

3 Modeling high-resolution seasonal prediction  35 

To evaluate high-resolution seasonal precipitation prediction comparing with versus without cluster analysis a priori, statistical 

models are developed and further compared with bias-corrected dynamical model predictions. Four scenarios are evaluated based 

on two criteria – (1) clustered vs. non-clustered and (2) direct vs. indirect. In the clustered case, predictions are produced for each 
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homogeneous region (cluster) given a unique set of predictors. In the non-clustered case, the entire study region is considered as 

one cluster and thus only one set of predictors is utilized for predictions. For the direct case, precipitation is predicted directly at 

the local level (grid scale); for the indirect case, the average precipitation within each homogeneous region is predicted first (as an 

intermediary), and then regressed to local-level (grid scale) predictions. Combinations of the two criteria form four scenarios – 

clustered direct (C-D), non-clustered direct (NC-D), clustered indirect (C-I), and non-clustered indirect (NC-I) predictions.  5 

3.1 Cluster analysis 

Using a k-means clustering technique, western Ethiopia – the major agricultural region of the country – is divided into eight 

homogeneous regions (Fig. 2), conditioned on the interannual variability of total precipitation in JJAS, the same variable that is to 

be predicted. Precipitation is based on a 0.1˚×0.1˚ gridded precipitation dataset from NMA (Dinku et al., 2014), consisting of 7320 

grid-cells across 1983–2011 (29 years). This product has been verified against station data and has been deemed representative of 10 

observed precipitation in western Ethiopia (Dinku et al., 2014). Given the high-resolution gridded dataset, k-means clustering is 

performed for a range of predefined numbers of clusters; the optimal number of clusters is identified by various evaluation metrics 

based on the within-cluster sum of square errors (WSS), including elbow method with difference in WSS, gap statistic with 

difference in difference, and qualitative analysis on post-visualization of clusters.. During the clustering process, each grid-cell is 

assigned and reassigned to clusters until the WSS is minimized. This does not require any subjective delineation or manual 15 

delineation of boundaries between clustered stations or grid-cells; instead, an automated and objective delineation is performed. 

The mean time series of each cluster illustrates high intra-correlation within the cluster and low inter-correlation between any two 

clusters, indicating strong coherency of the clustering results. For a detailed analysis including a complete correlation table and 

unique patterns for each cluster-level time series associated with large climate variables, readers are referred to Zhang et al. (2016). 

 20 

 

Figure 2: Regionalization map of 8 homogeneous regions marked by different colors, with country boundary and river profile. After 

Zhang et al. (2016) 

Data N/A 
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Ethiopia 
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3.2 Statistical modeling approach 

Many studies have investigated statistical models for seasonal climate prediction. These studies vary by pre-classification of 

predictor or predictand regime, predictor selection process, and statistical methods. For example, Hertig and Jacobeit (2011) 

investigate sea surface temperature (SST) regimes as potential predictors for subsequent precipitation and temperature in the 5 

Mediterranean region. Through techniques including multiple applications of PCA, 17 stationary SST regimes were identified. 

Gerlitz et al. (2016) apply a k-means cluster analysis to grid-cells identified with significant correlations in the predictor field in 

order to facilitate predictor selection. Suárez-Moreno and Rodríguez-Fonseca (2015) investigate stationarity based on a long time 

series using a 21-year moving correlation window. The statistical prediction models are then applied to each stationary period 

respectively and the entire period for comparison. Despite diverse methods in seasonal prediction, multiple linear regression (MLR) 10 

is favored by many as a statistical modeling approach given its well-developed theory, simple model structure, efficient processing, 

and often skillful outcomes (e.g. Omondi et al., 2013, Camberlin and Philippon, 2002, Diro et al., 2008). As mentioned, only a few 

studies have focused on seasonal precipitation prediction in Ethiopia (Gissila et al., 2004, Block and Rajagopalan, 2007, Korecha 

and Barnston, 2007, Diro et al., 2008, Diro et al., 2011b, Segele et al., 2015), and almost all of them include the applications of 

MLR. This study also applies MLR to predict seasonal precipitation, yet differentiates from other studies by applying predictions 15 

to pre-defined homogeneous regions and further translating to local-level predictions. 

 

Large-scale climate variables are often evaluated as potential predictors in statistical seasonal precipitation prediction models, 

commonly including sea surface temperatures (SST) in the equatorial Pacific Ocean representing the well-known of the El Nino-

Southern Oscillation (ENSO) (Stone et al., 1996). Sea level pressure (SLP) in the eastern Pacific Ocean at Tahiti as an critical and 20 

stable component for measuring an ENSO index (Torrence and Webster, 1999) warrants another potential predictor. For Ethiopia, 

the ENSO phenomenon is considered a primary indicator of precipitation variability, particularly in the main JJAS rainy season 

with El Nino/La Nina often associated with deficit/excess of precipitation amount in the study region (!!! INVALID CITATION 

!!! (e.g. NMSA, 1996, Camberlin, 1997, Bekele, 1997, Segele and Lamb, 2005, Diro et al., 2011, Elagib and Elhag, 2011)). 

Evidences have also shown a more direct moisture transport from the Gulf of Guinea (equatorial Atlantic Ocean), the Indian Ocean, 25 

and the Mediterranean Sea affecting Ethiopia’s summer precipitation (Viste and Sorteberg, 2013a, Viste and Sorteberg, 2013b). 

Those moisture fluxes are often related to pressure patterns across the continent. For instance, the St. Helena high over the southern 

Atlantic Ocean or a high pressure over Gulf of Guinea, and a simultaneous low pressure over Indian Ocean or a monsoon trough 

over Arabic Peninsula bring intensified westerlies and south-westerlies that transport moist air across the Congo Basin to the 

western Ethiopian highlands in the summer (!!! INVALID CITATION !!! (Segele et al., 2009, Williams et al., 2011)). Similarly, 30 

the southwest Asian monsoon at the Indian Ocean, which has a strong positive relationship with the concurrent JJAS rainfall in 

the western Ethiopia, is associated with the Mascarene high over the southern Indian Ocean and a low pressure system near 

Bombay. During this monsoon season, the southeast trades in the southern hemisphere are channeled by the east African highlands 

while crossing the equator and become a southwest monsoon flow. It is further diverted by the Turkana Channel, enhancing 

convergence with the westerlies/south-westerlies above the western Ethiopian highlands and bringing moisture to this region (!!! 35 

INVALID CITATION !!! (Kinuthia, 1992, Nicholson, 1996, Camberlin, 1997, Slingo et al., 2005, Segele et al., 2009, Nicholson, 

2014)). In addition, the effect of other climate variables relevant to the aforementioned driven factors, such as the Indian Ocean 

SST, local and other regional atmospheric pressure systems such as Azores High also have notable influence on Ethiopia’s 

precipitation variability (e.g. Kassahun, 1987, Tadesse, 1994, NMSA, 1996, Shanko and Camberlin, 1998, Goddard and Graham, 

1999, Latif et al., 1999, Black et al., 2003, Segele and Lamb, 2005).  40 
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Consequently, seasonSeason-ahead (March-May) or month-ahead (May) large-scale climate variables that are physically relevant 

in potentially modulating moisture transport to the basin (or cluster) are selected as potential predictors. Four climate variables are 

selected here for further evaluation based on outcomes of the aforementioned prediction studies: SST, SLP, geopotential height 

(GH) at 500mb, and surface air temperature (SAT). All climate variables are from the National Centers for Environmental 5 

Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset (Kalnay et al., 1996) at a 2.5˚×2.5˚ 

grid scale. 

 

Those potential predictors are first transformed through principal component analysis (PCA; Jolliffe, 2002). PCA is a common 

approach in climate modeling to reduce the dimensionality of predictors and remove multi-collinearity, while simultaneously 10 

extracting the most dominant signals from the potential predictors, typically reflected in the first few PCs. Since PCA is 

independent of the predictand, retaining the first few PCs as predictors, in lieu of the original variables, also helps to reduce 

artificial prediction skill.  

 

Subsequently, a certain number of PCs are used as the direct inputs into a MLR model, otherwise known as the principal component 15 

regression (PCR). PCR is performed in a “drop-one-year” cross-validation mode to reduce over-fitting effects and therefore avoid 

overestimation of prediction skill. This requires reconstructing the principal components for the dropped year, and then multiplying 

the coefficient estimates with each reconstructed PC respectively in order to obtain the final predicted value for the dropped year 

(e.g. Block and Rajagopalan, 2009, Wilks, 2011). A detailed methodology is provided below. 

 20 

To avoid overfitting, the entire process including predictor selection and statistical modeling is processed using cross-validation. 

To start, drop-one-year precipitation observations for JJAS averaged across the region and each cluster are spatially correlated 

independently with each global climate variable. As a result, there are total of 1044 global correlation maps given the 29-year time-

series, eight clusters plus one non-cluster, and four climate variables. Hence, a program to automatically select highly correlated 

and justifiable regions as predictors is developed. The following steps describe the subsequent statistical modeling process (Fig. 25 

3): 

(1) Grid-cells within each justifiable region (e.g. equatorial Pacific; Fig. 4) with correlation above the 99% significance 

level are identified (Fig. 5). For regions containing grid-cells with both positive and negative correlations, the number of the 

identified grid-cells in each sign is counted. If a greater number of grid-cells is associated with significant positive correlation, for 

example, only grid-cells with positive correlations are kept for the following steps, and vice versa. 30 

(2) The top 10% of the identified grid-cells with the highest correlation in each region is then selected, in order to boost 

the potential model skill.  

(3) For each region, data of the selected grid-cells within the region are spatially averaged (defined as “pre-predictors”). 

(4) Pre-predictors are standardized, combined, and transformed through PCA principal component analysis (PCA; Jolliffe, 

2002) for each cluster or non-cluster, and each dropped-year analysis separately. 35 

(5a) The top principal components (PCs) from the PCA with a total of 95% variance explained are used as predictors – 

the direct inputs into the MLR model, otherwise known as the principal component regression (in PCR). For the direct case, PCR 

is used to directly predict the grid-level precipitation; for the indirect case, PCR is used to predict the intermediate cluster-level 

precipitation. 
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 (5b) For the indirect case only, cluster-level predictions are regressed to the grid-level. Note that the downscaling of 

cluster-level predictions to grid-level predictions is also cross-validated to avoid overfitting.  

 

 

 5 

Figure 3: Flow chat of data processing for predictors into the statistical model. Numbers framed by dash lines correspond to the 

procedures listed in the context. Note: pre. – precipitation, t-s – time-series, avg. – average. 

 

 

 10 

Figure 4: Justifiable climate regions globally for selecting predictors: (a) For SLP and GH at 500 mb with regions including EP, ES, LO, 

AH, SH, MH, and AM. For SAT, only LO is included. (b) For SST with regions including EP, NI, SI, and AT. Note: EP - equatorial 

Pacific region, ES – Tahiti island for ENSO measurement, LO - local region, AH - Azores High, SH - St Helena High, MH - Mascarene 

High, AM - SW Asian Monsoon, NI - North Indian Ocean, SI - South Indian Ocean, AT - Equatorial/South Atlantic Ocean. 

 15 
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Figure 5: Correlation map between mean JJAS seasonal precipitation time series in Cluster 5 and global SST under cross-validation, 

with correlations lower than 99% significance level masked out (one-tail test). 

 

PCA is a common approach in climate modeling to reduce the dimensionality of predictors and remove multi-collinearity, while 5 

simultaneously extracting the most dominant signals from the potential predictors, typically reflected in the first few PCs. Since 

PCA is independent of the predictand, retaining the first few PCs as predictors, in lieu of the original variables, also helps to reduce 

artificial prediction skill.  

 

PCR is performed in a “drop-one-year” cross-validation mode to reduce over-fitting effects and therefore avoid overestimation of 10 

prediction skill. This requires reconstructing the principal components for the dropped year, and then multiplying the coefficient 

estimates with each reconstructed PC respectively in order to obtain the final predicted value for the dropped year (e.g. Block and 

Rajagopalan, 2009, Wilks, 2011). A 95% confidence interval of the cross-validated predictions is also constructed conditioned on 

model errors. Q-Q plots are evaluated to verify normally distributed residuals (results not included). 

 15 

For the four scenarios, the model structures are quite similar but have subtle differences which could lead to evidently different 

outcomes (Table 1). Under the NC-D (Eq. (1a, b)) and C-D scenarios (Eq. (2a, b)), the time-series of JJAS seasonal total 

precipitation in each grid-cell (i.e. at local level) is used as the direct predictand (Yi,t); however, the NC-D and C-D scenarios differ, 

as the former uses the same predictors (Xt) across all the grid-cells, while the latter uses different predictors according to the cluster 

to which the grid-cell is assigned (Xj,t). In the indirect case, the cluster-level time-series of JJAS seasonal total precipitation (the 20 

time-series averaged over all grid-cells that belong to a given cluster, Ym,t or Yj,t) is first predicted (Eq. (3a, b) and (4a, b)). The 

predicted intermediate product (Ỹm,t  or Ỹj,t ) is then used as the only regressor in the second step to estimate the grid-level 

precipitation (Ỹi,t or Ỹiϵj,t for every j; Eq. (3c, d) and (4c, d)). Again, for the C-I scenario, predictors in the first step are unique for 

each of the eight clusters and grid-cells within that cluster (Xj,t), while predictors are identical for all grid-cells (Xt) under the NC-
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I scenario. A 95% confidence interval of the cross-validated predictions is also constructed conditioned on model errors. Q-Q plots 

are evaluated to verify normally distributed residuals (results not included). 

 

 

Table 1: Equations of linear regression panel models under four scenarios 5 

 Non-clustered Clustered 

D
ir

e
ct

 

Yi,t = α̃i + β̃iXt + εi,t ...... (1a) Yiϵj,t = α̃i + β̃iXj,t + εi,t ...... (2a) 

Ỹi,t = α̃i + β̃iXt ...... (1b) Ỹiϵj,t = α̃i + β̃iXj,t ...... (2b) 

In
d

ir
ec

t 

Ym,t = α̃ + β̃Xt + εt ...... (3a) Yj,t = α̃j + β̃jXj,t + εj,t ...... (4a) 

Ỹm,t = α̃ + β̃Xt ...... (3b) Ỹj,t = α̃j + β̃jXj,t ...... (4b) 

Yi,t = η̃i + γ̃iỸm,t + νi,t ...... (3c) Yi∈j,t = η̃i + γ̃iỸj,t + νi,t ...... (4c) 

Ỹi,t = η̃i + γ̃iỸm,t ...... (3d) Ỹi∈j,t = η̃i + γ̃iỸj,t ...... (4d) 

where Y- predictand of JJAS seasonal total precipitation; X- two predictors of top two PCs;  

ε,ν - error terms; Ỹ - predicted values of JJAS seasonal total precipitation; α̃, β̃, η̃, γ̃- estimated coefficients; i- grid-cell index; t- time (year) index; 

j- cluster index; i ∈ j- grid-cell i that belongs to clusterj; m- mean over entire study region that is equivalently the only one cluster. 

 

3.3 Dynamical modeling approach  10 

The North American Multi-Model Ensemble (NMME; Kirtman et al., 2014) is an experimental multi-model system consisting of 

coupled dynamical models from various modeling centers in North America. To our knowledge, it is also the most extensive multi-

model seasonal prediction archive. The NMME provides gridded climate predictions that cover regions globally and with different 

lead times. The hindcasts of monthly mean precipitations are easily accessible through the International Research Institute for 

Climate and Society (IRI) website (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/), and can be easily aggregated to 15 

seasonal totals for comparison with the statistical model results in this study. Therefore, NMME JJAS seasonal precipitation 

predictions (1˚×1˚ grid-cells) are extracted from model ensembles that cover the same time period (1983–2011), geographic region 

(western Ethiopia), and with the same lead time (predictions made on June 1). A subset of 10 NMME models meet these criteria 

and are retained for further evaluation: (1) COLA-RSMAS-CCSM3, (2) COLA-RSMAS-CCSM4, (3) GFDL-CM2p1, (4) GFDL-

CM2p1-are04, (5) GFDL-CM2p5-FLOR-A06, (6) GFDL-CM2p5-FLOR-B01, (7) IRI-ECHAM-AnomalyCoupled, (8) IRI-20 

ECHAM-DirectCoupled, (9) NASA-GMAO, (10) NCEP-CFSv2. The names are kept the same as on the International Research 

Institute for Climate and Society (IRI) data repository website. 

 

The NMME predictions for each of the 10 models are bias-corrected by applying probability mapping (e.g. Block et al., 2009, 

Teutschbein and Seibert, 2012, Chen et al., 2013) under cross-validation, subject to the observational dataset from NMA (Fig. 6). 25 

This is performed on a grid-cell by grid-cell basis on standardized data (the NMME dataset is reshaped to 0.1°×0.1° grid-cells to 

match the observational NMA dataset grid-cell size). The basic steps include:  

(1) Fit gamma distributions to drop-one-year time-series from each observed and NMME grid-cell; for NMME this is 

performed on an individual model basis using all ensemble members available. (Goodness-of-fit tests indicate gamma distributions 

are appropriate; results not shown.) 30 

(2) Translate gamma distributions into cumulative distribution functions (CDF).  
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(3) For any given dynamical model prediction at the grid-cell level, a corrected prediction value is attained by mapping 

from the modeled CDF to the observed CDF and applying the inverse gamma distribution. This is repeated for all grid-cells, all 

NMME models, and all dropped years. 

 

After correction, the gamma CDF of predictions and observations approximately match (Fig. 6a). Additionally, each ensemble still 5 

retains its variability over time, though the overall ensemble mean is shifted to closely match observation (Fig. 6b).  

 

 

Figure 6: (a) bias correction of NMME predictions using probability mapping; (b) precipitation time-series from NMME (colored lines) 

before and after correction, compared to observations (black line). Examples are shown for randomly selected six grid-cells.  10 
 

3.4 Performance metrics 

Pearson correlations are used to measure the standardized covariance between observations and predictions. Ranked probability 

skill scores (RPSS; Wilks, 2011) are also evaluated to determine categorical skill based on probabilistic predictions. Here, the data 

are split into three equal terciles representing below-normal, near-normal, and above-normal conditions. A perfect prediction yields 15 

an RPSS of 100%, and a prediction with less skill than climatology (long-term averages) yields an RPSS of less than zero. Median 

RPSS values from all 29 years are reported.  

4 Results 

4.1 Statistical model predictions 

Correlations between cluster-level model predictions and observations range from -0.16 to 0.51, with Cluster 5 having the highest 20 

correlation and Cluster 6 the lowest (Table 2). In approximately 1/5 of the 29 years, the observation falls outside the prediction 

envelope (Fig. 7), indicating model overfitting and an inability of the predictors to capture precipitation variability. For RPSS, 3 

out of 8 clusters indicate superior prediction skill over climatology (Table 2). Improvement in terms of RPSS over the non-cluster 

(a) 

(b) 
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scenario is evident for Cluster 1, 3 and 7. Although Cluster 5, in agriculturally rich central-northwestern Ethiopia (Fig. 2), shows 

a slightly deteriorated RPSS relative to non-cluster scenario, it still performs outstandingly with the highest correlation and a 

positive RPSS value of 0.51 and 10%, respectively. Cluster 2, 4, 6 and 8 show deteriorated RPSS compared to non-cluster scenario, 

although those clusters are mainly regions outside Ethiopia and southern Ethiopia (Fig. 2) where water resources and agricultural 

activities are considerably less (Fig. 1). 5 

 

Figure 7: cluster-level predictions and observations under C-I and NC-I scenario, with drop-one-year cross-validation. The 95% 

envelope shows the 95% confidence interval constructed using model errors.  

 

Table 2 Correlation coefficients (Corr.) and RPSS for predictions (drop-one-year cross-validated) at cluster level compared to 10 
observations under C-I and NC-I scenario.  

Cluster C1 C2 C3 C4 C5 C6 C7 C8 Non-cluster 

Corr. 0.137 -0.027 0.171 0.184 0.514 -0.157 0.353 -0.108 0.297 

RPSS(%) 22.88 -26.14 33.32 12.74 10.02 -43.61 20.92 -26.40 13.25 
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At the grid scale, depending on the case (direct or indirect), and for different clusters, correlations between predictions and 

observations can favor the clustered case or the non-clustered case (Fig. 8). In general, the indirect model provides a smoother 

pattern of correlations, with grid-cells showing a negative correlation in the direct case now improved to near or above zero (Fig. 

8). For example, Cluster 5 under the indirect case illustrates a more consistent positive correlation within the cluster. Some parts 

of the region reach a correlation over 0.6, such as central-northwestern Ethiopia (Cluster 5), which is consistent with the region of 5 

high cluster-level prediction skill. The percentage of grid-cells with correlations passing the 95% significance test is the highest 

for the NC-D case (Table 3); however, some locations demonstrate the lowest skills among all four scenarios. 

 

 

Figure 8: Pearson correlations between grid-level observations and predictions under four scenarios, with the clustering boundary 10 
delineated roughly in black.  

 

 

 

 15 
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Table 3: Grid-level Pearson correlation and RPSS statistics 

Statistical 

Model 

Grid-level correlations Grid-level RPSS 

mean stdev 
significant 

corr % 
mean (%) stdev (%) 

positive 

RPSS % 

NC-D 0.128 0.258 19.3% -5.21 27.0 42.8% 

NC-I 0.063 0.186 3.13% -2.26 14.6 43.9% 

C-D 0.055 0.230 10.6% -14.0 31.0 33.9% 

C-I 0.080 0.205 12.3% -9.93 29.3 43.7% 

Dynamical Model 

(1) -0.105 0.209 0.51% -31.4 25.4 5.70% 

(2) 0.133 0.171 6.26% -14.2 24.6 27.0% 

(3) 0.086 0.130 2.08% -14.9 25.2 26.2% 

(4) 0.027 0.156 0.38% -14.4 19.3 22.6% 

(5) 0.067 0.170 1.64% -9.66 17.0 28.4% 

(6) 0.139 0.165 6.53% -5.66 16.7 38.1% 

(7) 0.102 0.130 1.67% -8.64 17.6 31.7% 

(8) 0.009 0.185 0.90% -10.3 14.8 26.7% 

(9) 0.244 0.149 23.1% -2.33 21.8 46.0% 

(10) 0.244 0.149 21.2% -1.09 16.8 48.9% 

 

Similar findings are evident by evaluating the RPSS except for Cluster 8; instead of improving with increased RPSS in the indirect 

case, the grid-scale predictions deteriorate given poor cluster-level prediction (for the C-I case). However, the percentage of grid-

cells with positive RPSS values overall for the C-I case is still the second highest after the NC-I case(Table 3), indicating the 5 

indirect cases are superior in terms of the number of grid-cells with improved skill compared to using climatology, particularly for 

grid-cells associated with skillful intermediate cluster-level predictions. The predictions are most skillful for the same region of 

central-northwestern Ethiopia (Cluster 5; Fig. 9) with 87% of its grid-cells showing positive RPSS and a spatial average RPSS 

value of 15% under the C-I scenario (Table 4).  

 10 

Table 4: Grid-level Pearson correlation and RPSS statistics for grid-cells within Cluster 5  

Statistical 

Model 

Grid-level correlations Grid-level RPSS 

mean stdev 
significant 

corr % 

mean 

(%) 

stdev 

(%) 

positive 

RPSS % 

NC-D 0.378 0.211 60.7% 19.1 22.9 80.3% 

NC-I 0.265 0.111 12.8% 8.33 14.8 70.3% 

C-D 0.229 0.244 30.5% 6.91 24.1 62.3% 

C-I 0.346 0.167 55.4% 14.5 13.1 87.0% 

Dynamical Model 

(9) 0.353 0.110 46.8% 8.21 18.2 65.7% 

(10) 0.248 0.130 18.4% 3.92 16.2 59.5% 



15 

 

 

 

Figure 9: grid-level RPSS (%) under four scenarios using climate variables as predictors, with the clustering boundary delineated 

roughly in black. 

 5 

4.2 Dynamical model predictions  

The RPSS values based on the prediction ensembles of each dynamical model improve remarkably after bias correction. The 

median RPSS values over all the grid-cells are now close to zero (Fig. 10) with two models, NASA-GMAO and NCEP-CFSv2, 

showing the highest RPSS value (-2.3% and -1.1%, respectively; Table 3). These two dynamical models also exhibit generally 

higher grid-level correlations over the study region (averaging 0.24 for both models; Table 3 and Fig. 11), as compared with other 10 

NMME models. The two best performing dynamical models after bias correction show advantage over statistical models, as 

assessed by correlation and RPSS metrics; however, all other dynamical models are inferior to the statistical models under NC-D 

and C-I scenarios, particularly given the percent of grid-cells with significant correlation and positive RPSS metrics (Table 3).  

 

Within a certain cluster, statistical models may perform better than all dynamical models. For example, for Cluster 5, all statistical 15 

models show higher average RPSS values than that of all dynamical models (Table 4). The percentage of grid-cells with significant 

correlation reaches 61% for the statistical model under NC-D scenario, compared to the highest value of 47% among all the 

dynamical models. Similarly, the percentage with positive RPSS achieves 87% under C-I scenario as opposed to 66% for dynamical 

models. Note that the dynamical models also produce raw predictions in a lower spatial resolution (1°×1°) than the statistical 

models (0.1°×0.1°) and requires bias correction to guarantee comparable skills. 20 
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Figure 10: Boxplots of grid-level RPSS (%) for 10 dynamical models from NMME (a) before and (b) after bias correction, labeled with 

the same number as listed in the context. Note: For each box plot, the line inside the box is the median, the box edges represent the 25th 

and 75th percentiles, and the whiskers extend to the most extreme data points not considered outliers (outliers not shown).  

 5 

Figure 11: Pearson correlations between grid-level observations and ensemble mean of bias-corrected predictions for 10 dynamical 

models from NMME, labeled with the same number as listed in the context. Note that the scale ranges from -1 to 1. 
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5 Conclusions and discussion  

This study demonstrates the potential for applying season-ahead large-scale climate information to predict high-resolution 

precipitation using a statistical modeling approach. Skillful and credible predictions are produced for some regions in western 

Ethiopia, particularly under a clustered indirect statistical approach. This study demonstrates the potential for season-ahead large-

scale climate information to produce skillful and credible high-resolution precipitation predictions under a clustered indirect 5 

approach in western Ethiopia. At the regional scale, the approach shows promise for northwestern Ethiopia (Cluster 1, 3, 5, and 7), 

particularly compared to current NMA operational forecasts, which are only moderately more skillful than climatology (Korecha 

and Sorteberg, 2013). The regional average RPSS in this study under the clustered case ranges from 10% to 33% for northwestern 

Ethiopia, as opposed to values under 6% for NMA operational forecast (Korecha and Sorteberg, 2013). The approach adopted here 

also advances on previous studies (Gissila et al., 2004, Block and Rajagopalan, 2007, Korecha and Barnston, 2007, Diro et al., 10 

2011b, Segele et al., 2015) by first applying an objective cluster analysis and then conditionally constructing high-resolution 

predictions. A unique set of predictors is applied to each cluster, which contributes to superior prediction performance at cluster 

levels in northwestern Ethiopia, as compared with predictions from the non-clustered approach. Grid-level prediction under the 

clustered indirect case also reduces the effect of over-fitting relative to the direct case and improves negative RPSS values to near 

or above zeros; that said, the non-clustered direct case also illustrates higher correlation and RPSS values on average. 15 

 

Two out of 10 NMME dynamical models, NASA-GMAO and NCEP-CFSv2, demonstrate overall superior performance to the 

statistical models; however, for certain regions such as Cluster 5, the performance of statistical models under clustered indirect 

and non-clustered direct cases is still superior.  It is also worth noting that the statistical model predictions are at a one hundred 

times finer spatial resolution than the dynamical models providing additional advantages at the local scale, when skillful. 20 

Nevertheless, improvements in dynamical models continue and their application to seasonal precipitation prediction is likely to 

grow (e.g. Palmer et al., 2004, Saha et al., 2006, Lim et al., 2009).  

 

Relatively poor prediction performance is evident in some locations such as southwestern Ethiopia and regions outside Ethiopia, 

where the hydroclimatic processes that produce precipitation might be driven by local factors or other regional climate patterns 25 

rather than large-scale climate variables identified in this study. A previous study (Zhang et al., 2016) has shown that the influence 

of ENSO on JJAS precipitation in western Ethiopia decreases generally from north to south, and is likely one of the reasons why 

skills are relatively low in southwestern Ethiopia. Cluster 5 was also identified with the strongest connection to equatorial Pacific 

SST (Zhang et al., 2016), which is consistent with the highest skill found in this study. Other regions with low prediction skill 

show relatively strong connections to SST in neighboring oceanic regions. However, connections with those climate patterns 30 

appear to be less robust than with ENSO, making the predictions in their associated regions less skillful. This is also consistent 

with the findings from other studies that even though all three oceans (Indian, Atlantic, and Pacific Ocean) affect the JJAS 

precipitation in western Ethiopia, the Pacific Ocean still plays the greatest role (Segele et al., 2009, Omondi et al., 2013).  

 

The southwest Asian monsoon over Indian Ocean may also be critical in determining the precipitation, given that the clusters with 35 

better prediction skills lie along the pathway of the monsoon. Based on the global concurrent correlation maps between JJAS 

precipitation and SLP for each cluster, Cluster 5 and 7 – the two clusters with the best skills – are the only ones that are strongly 

and negatively corrected correlated with SLP near Bombay, and meantime strongly and positively correlated with the SLP at the 

eastern equatorial Pacific Ocean. The former indicates that a strong southwest Asian monsoon is associated with higher JJAS 

precipitation amount, and vice versa. The latter indicates that a high surface pressure over the eastern equatorial Pacific Ocean 40 
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often accompanied with cold SST and a raining pattern – a La Nina phenomenon – also brings higher JJAS precipitation to the 

western Ethiopia, and vice versa. Cluster 2 – one of the worst predicted clusters – shows moderately strong negative correlation 

with SLP near Bombay; however, it is also correlated strongly and negatively with SLP in the southern Indian Ocean (a high 

pressure system that drives the monsoon toward the low pressure system near Bombay), indicating that high JJAS precipitation in 

Cluster 2 is not necessarily associated with a strong southwest Asian monsoon. Cluster 2 – one of the worst predicted clusters – 5 

shows moderately strong negative correlation with SLP near Bombay; however, it is also correlated strongly and negatively with 

SLP at southern Indian Ocean, indicating a possible weak gradient of the southwest Asian monsoon. Moreover, its correlation with 

SLP over equatorial Pacific Ocean is nonsignificant. Considering in general El Nino suppresses the monsoon and La Nina increases 

it (Kumar et al., 2006), strong correlations with both ENSO and the monsoon in the correct direction, such as for Cluster 5 and 7, 

indicate a double insurance over their association with the southwest Asian monsoon. Therefore, clusters which are more affected 10 

by the southwest Asian monsoon over Indian Ocean, particularly coupled with the influence of ENSO, are likely to show more 

promises in their prediction skills. 

 

Additional prediction features also warrant future attention, including longer prediction lead times and evaluation of other relevant 

characteristics (e.g. intra-seasonal dry spells, seasonal onset or cessation, etc.). As observational datasets continue to grow, data-15 

driven cluster analyseis and statistical modeling approaches may be expected to improve. Careful analysis of possible significant 

trends in the data is also warranted; a region with a relatively high correlation may be selected solely based on trends in predictors 

and observations. For shorter time series, such as the data used in this study, trend analysis may not be reliable; detrending can 

also reduce evidence of large-scale decadal climate signals. The growing length of time series and climate change impacts also call 

for careful analysis on possible significant trends in the data. Improving predictive capabilities may not be a complete panacea, but 20 

it can continue to be an important part of a decisions-maker’s portfolio as they cope with hydroclimatic variability and its inherent 

risks.  

6 Data availability 

The National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis 

dataset can be accessed through the National Oceanic & Atmospheric Administration (NOAA) Earth System Research Laboratory 25 

(ESRL) website (https://www.esrl.noaa.gov/psd/data/reanalysis/). 

 

The NMME hindcasts are available through the International Research Institute for Climate and Society (IRI) website 

(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). 

 30 

The gridded precipitation dataset in western Ethiopia is available upon request from NMA (http://www.ethiomet.gov.et/). 

Competing interests  

The authors declare that they have no conflict of interest. 

https://www.esrl.noaa.gov/psd/data/reanalysis/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://www.ethiomet.gov.et/


19 

 

Acknowledgements  

This study was supported by NASA Project NNX14AD30G and NSF PIRE Project 1545874. We acknowledge the National 

Meteorological Agency of Ethiopia for sharing data. We also want to thank the reviewers for their suggestions in improving this 

work. 

References 5 

!!! INVALID CITATION !!! (e.g. NMSA, 1996, Camberlin, 1997, Bekele, 1997, Segele and Lamb, 2005, Diro et al., 2011, 
Elagib and Elhag, 2011). 

!!! INVALID CITATION !!! (Kinuthia, 1992, Nicholson, 1996, Camberlin, 1997, Slingo et al., 2005, Segele et al., 2009, 
Nicholson, 2014). 

!!! INVALID CITATION !!! (Segele et al., 2009, Williams et al., 2011). 10 

ANDERSON, D., STOCKDALE, T., BALMASEDA, M., FERRANTI, L., VITART, F., MOLTENI, F., DOBLAS-REYES, F., 
MOGENSEN, K. & VIDARD, A. 2007. Development of the ECMWF seasonal forecast System 3. ECMWF 
Technical Memoranda, 503. 

AWULACHEW, S. B., YILMA, A. D., LOULSEGED, M., LOISKANDL, W., AYANA, M. & ALAMIREW, T. 2007. Water 
resources and irrigation development in Ethiopia, Iwmi. 15 

BADR, H. S., ZAITCHIK, B. F. & DEZFULI, A. K. 2015. A tool for hierarchical climate regionalization. Earth Science 
Informatics, 1-10. 

BARRETT, C. B. 1993. THE DEVELOPMENT OF THE NILE HYDROMETEOROLOGICAL FORECAST SYSTEM1. Wiley Online 
Library. 

BEKELE, F. 1997. Ethiopian Use of ENSO Information in Its Seasonal Forecasts. Internet Journal of African Studies. 20 

BLACK, E., SLINGO, J. & SPERBER, K. R. 2003. An observational study of the relationship between excessively strong 
short rains in coastal East Africa and Indian Ocean SST. Monthly Weather Review, 131, 74-94. 

BLOCK, P. & GODDARD, L. 2012. Statistical and Dynamical Climate Predictions to Guide Water Resources in Ethiopia. 
Journal of Water Resources Planning and Management, 138, 287-298. 

BLOCK, P. & RAJAGOPALAN, B. 2009. Statistical–Dynamical Approach for Streamflow Modeling at Malakal, Sudan, on 25 

the White Nile River. Journal of Hydrologic Engineering, 14, 185-196. 
BLOCK, P. J., FILHO, F. A. S., SUN, L. & KWON, H. H. 2009. A Streamflow Forecasting Framework Using Multiple Climate 

and Hydrological Models. Journal of the American Water Resources Association, 45, 828-843. 
BLOCK, P. J. & RAJAGOPALAN, B. 2007. Interannual Variability and Ensemble Forecast of Upper Blue Nile Basin Kiremt 

Season Precipitation. J. Hydrometeor, 8, 327-343. 30 

CAMBERLIN, P. 1997. Rainfall Anomalies in the Source Region of the Nile and Their Connection with the Indian 
Summer Monsoon. J. Climate, 10, 1380-1392. 

CAMBERLIN, P. & PHILIPPON, N. 2002. The East African March–May Rainy Season: Associated Atmospheric Dynamics 
and Predictability over the 1968–97 Period. Journal of Climate, 15, 1002-1019. 

CHEN, J., BRISSETTE, F. P., CHAUMONT, D. & BRAUN, M. 2013. Finding appropriate bias correction methods in 35 

downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49, 
4187-4205. 

DINKU, T., HAILEMARIAM, K., MAIDMENT, R., TARNAVSKY, E. & CONNOR, S. 2014. Combined use of satellite estimates 
and rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. International 
Journal of Climatology, 34, 2489-2504. 40 

DIRO, G. T., BLACK, E. & GRIMES, D. I. F. 2008. Seasonal forecasting of Ethiopian spring rains. Meteorological 
Applications, 15, 73-83. 

DIRO, G. T., GRIMES, D. I. F. & BLACK, E. 2011a. Teleconnections between Ethiopian summer rainfall and sea surface 
temperature: part I—observation and modelling. Climate Dynamics, 37, 103-119. 

DIRO, G. T., GRIMES, D. I. F. & BLACK, E. 2011b. Teleconnections between Ethiopian summer rainfall and sea surface 45 

temperature: part II. Seasonal forecasting. Climate Dynamics, 37, 121-131. 



20 

 

DIRO, G. T., GRIMES, D. I. F., BLACK, E., O'NEILL, A. & PARDO-IGUZQUIZA, E. 2009. Evaluation of reanalysis rainfall 
estimates over Ethiopia. International Journal of Climatology, 29, 67-78. 

ELAGIB, N. A. & ELHAG, M. M. 2011. Major climate indicators of ongoing drought in Sudan. Journal of Hydrology, 409, 
612-625. 

GERLITZ, L., VOROGUSHYN, S., APEL, H., GAFUROV, A., UNGER-SHAYESTEH, K. & MERZ, B. 2016. A statistically based 5 

seasonal precipitation forecast model with automatic predictor selection and its application to central and 
south Asia. Hydrol. Earth Syst. Sci., 20, 4605-4623. 

GISSILA, T., BLACK, E., GRIMES, D. I. F. & SLINGO, J. M. 2004. Seasonal forecasting of the Ethiopian summer rains. 
International Journal of Climatology, 24, 1345-1358. 

GODDARD, L. & GRAHAM, N. E. 1999. Importance of the Indian Ocean for simulating rainfall anomalies over eastern 10 

and southern Africa. Journal of Geophysical Research: Atmospheres (1984–2012), 104, 19099-19116. 
HAMMER, G. L., NICHOLLS, N. & MITCHELL, C. 2000. Applications of seasonal climate forecasting in agricultural and 

natural ecosystems, Springer Science & Business Media. 
HERTIG, E. & JACOBEIT, J. 2011. Predictability of Mediterranean climate variables from oceanic variability. Part II: 

Statistical models for monthly precipitation and temperature in the Mediterranean area. Climate Dynamics, 15 

36, 825-843. 
INES, A. V. M. & HANSEN, J. W. 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural 

and Forest Meteorology, 138, 44-53. 
JOLLIFFE, I. 2002. Principal component analysis, Wiley Online Library. 
KALNAY, E., KANAMITSU, M., KISTLER, R., COLLINS, W., DEAVEN, D., GANDIN, L., IREDELL, M., SAHA, S., WHITE, G. & 20 

WOOLLEN, J. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological 
Society, 77, 437-471. 

KASSAHUN, B. 1987. Weather systems over Ethiopia. Proc. First Tech. Conf. on Meteorological Research in Eastern 
and Southern Africa. Nairobi, Kenya: UCAR. 

KINUTHIA, J. H. 1992. Horizontal and Vertical Structure of the Lake Turkana Jet. Journal of Applied Meteorology, 31, 25 

1248-1274. 
KIRTMAN, B. P., MIN, D., INFANTI, J. M., KINTER, J. L., PAOLINO, D. A., ZHANG, Q., VAN DEN DOOL, H., SAHA, S., 

MENDEZ, M. P., BECKER, E., PENG, P., TRIPP, P., HUANG, J., DEWITT, D. G., TIPPETT, M. K., BARNSTON, A. G., 
LI, S., ROSATI, A., SCHUBERT, S. D., RIENECKER, M., SUAREZ, M., LI, Z. E., MARSHAK, J., LIM, Y.-K., TRIBBIA, J., 
PEGION, K., MERRYFIELD, W. J., DENIS, B. & WOOD, E. F. 2014. The North American Multimodel Ensemble: 30 

Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction. Bulletin of 
the American Meteorological Society, 95, 585-601. 

KORECHA, D. & BARNSTON, A. G. 2007. Predictability of June–September Rainfall in Ethiopia. Monthly Weather 
Review, 135, 628-650. 

KORECHA, D. & SORTEBERG, A. 2013. Validation of operational seasonal rainfall forecast in Ethiopia. Water Resources 35 

Research, 49, 7681-7697. 
KUMAR, K. K., RAJAGOPALAN, B., HOERLING, M., BATES, G. & CANE, M. 2006. Unraveling the Mystery of Indian 

Monsoon Failure During El Niño. Science, 314, 115-119. 
LANDMAN, W. A. & MASON, S. J. 1999. Operational long-lead prediction of South African rainfall using canonical 

correlation analysis. International Journal of Climatology, 19, 1073-1090. 40 

LATIF, M., DOMMENGET, D., DIMA, M. & GRÖTZNER, A. 1999. The role of Indian Ocean sea surface temperature in 
forcing east African rainfall anomalies during December-January 1997/98. Journal of Climate, 12, 3497-3504. 

LIM, E.-P., HENDON, H. H., HUDSON, D., WANG, G. & ALVES, O. 2009. Dynamical Forecast of Inter–El Niño Variations 
of Tropical SST and Australian Spring Rainfall. Monthly Weather Review, 137, 3796-3810. 

MASON, S. 1998. Seasonal forecasting of South African rainfall using a non‒linear discriminant analysis model. 45 

International Journal of Climatology, 18, 147-164. 
MUTAI, C. C., WARD, M. N. & COLMAN, A. W. 1998. Towards the prediction of the East Africa short rains based on 

sea-surface temperature–atmosphere coupling. International Journal of Climatology, 18, 975-997. 
NICHOLSON, S. E. 1996. A review of climate dynamics and climate variability in Eastern Africa. The limnology, 

climatology and paleoclimatology of the East African lakes, 25-56. 50 



21 

 

NICHOLSON, S. E. 2014. The Predictability of Rainfall over the Greater Horn of Africa. Part I: Prediction of Seasonal 
Rainfall. Journal of Hydrometeorology, 15, 1011-1027. 

NMSA 1996. Climate and agroclimatic resources of Ethiopia. NMSA Meteorological Research Report Series. Addis 
Ababa, Ethiopia: National Meteorological Services Agency of Ethiopia. 

OMONDI, P., OGALLO, L. A., ANYAH, R., MUTHAMA, J. M. & ININDA, J. 2013. Linkages between global sea surface 5 

temperatures and decadal rainfall variability over Eastern Africa region. International Journal of Climatology, 
33, 2082-2104. 

PALMER, T., ALESSANDRI, A., ANDERSEN, U. & CANTELAUBE, P. 2004. Development of a European multimodel 
ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the American Meteorological 
Society, 85, 853. 10 

PARTHASARATHY, B., KUMAR, K. R. & MUNOT, A. A. 1993. Homogeneous Indian Monsoon rainfall: Variability and 
prediction. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 102, 121-155. 

ROECKNER, E., OBERHUBER, J. M., BACHER, A., CHRISTOPH, M. & KIRCHNER, I. 1996. ENSO variability and atmospheric 
response in a global coupled atmosphere-ocean GCM. Climate Dynamics, 12, 737-754. 

SAHA, S., NADIGA, S., THIAW, C., WANG, J., WANG, W., ZHANG, Q., VAN DEN DOOL, H. M., PAN, H. L., MOORTHI, S., 15 

BEHRINGER, D., STOKES, D., PEÑA, M., LORD, S., WHITE, G., EBISUZAKI, W., PENG, P. & XIE, P. 2006. The NCEP 
Climate Forecast System. Journal of Climate, 19, 3483-3517. 

SCHEPEN, A., WANG, Q. J. & ROBERTSON, D. E. 2012. Combining the strengths of statistical and dynamical modeling 
approaches for forecasting Australian seasonal rainfall. Journal of Geophysical Research: Atmospheres, 117, 
n/a-n/a. 20 

SEGELE, Z. T. & LAMB, P. J. 2005. Characterization and variability of Kiremt rainy season over Ethiopia. Meteorology 
and Atmospheric Physics, 89, 153-180. 

SEGELE, Z. T., LAMB, P. J. & LESLIE, L. M. 2009. Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. 
Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface 
Temperature. Journal of Climate, 22, 3396-3421. 25 

SEGELE, Z. T., RICHMAN, M. B., LESLIE, L. M. & LAMB, P. J. 2015. Seasonal-to-Interannual Variability of Ethiopia/Horn 
of Africa Monsoon. Part II: Statistical Multi-Model Ensemble Rainfall Predictions. Journal of Climate, 
150129124820009. 

SHANKO, D. & CAMBERLIN, P. 1998. The effects of the Southwest Indian Ocean tropical cyclones on Ethiopian 
drought. International Journal of Climatology, 18, 1373-1388. 30 

SHUKLA, S., ROBERTS, J., HOELL, A., FUNK, C. C., ROBERTSON, F. & KIRTMAN, B. 2016. Assessing North American 
multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous 
hydrometeorological events over East Africa. Climate Dynamics, 1-17. 

SINGH, A., KULKARNI, M. A., MOHANTY, U. C., KAR, S. C., ROBERTSON, A. W. & MISHRA, G. 2012. Prediction of Indian 
summer monsoon rainfall (ISMR) using canonical correlation analysis of global circulation model products. 35 

Meteorological Applications, 19, 179-188. 
SLINGO, J., SPENCER, H., HOSKINS, B., BERRISFORD, P. & BLACK, E. 2005. The meteorology of the Western Indian 

Ocean, and the influence of the East African Highlands. Philosophical Transactions of the Royal Society A: 
Mathematical,     Physical and Engineering Sciences, 363, 25-42. 

STONE, R. C., HAMMER, G. L. & MARCUSSEN, T. 1996. Prediction of global rainfall probabilities using phases of the 40 

Southern Oscillation Index. Nature, 384, 252-255. 
SUÁREZ-MORENO, R. & RODRÍGUEZ-FONSECA, B. 2015. S<sup>4</sup>CAST v2.0: sea surface temperature based 

statistical seasonal forecast model. Geosci. Model Dev., 8, 3639-3658. 
TADESSE, T. 1994. The influence of the Arabian Sea storms/ depressions over the Ethiopian weather. Proc. Int. Conf. 

on Monsoon Variability and Prediction. Geneva, Switzerland: World Meteorological Organization. 45 

TEUTSCHBEIN, C. & SEIBERT, J. 2012. Bias correction of regional climate model simulations for hydrological climate-
change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456–457, 12-29. 

TORRENCE, C. & WEBSTER, P. J. 1999. Interdecadal Changes in the ENSO–Monsoon System. Journal of Climate, 12, 
2679-2690. 

VISTE, E. & SORTEBERG, A. 2013a. The effect of moisture transport variability on Ethiopian summer precipitation. 50 

International Journal of Climatology, 33, 3106-3123. 



22 

 

VISTE, E. & SORTEBERG, A. 2013b. Moisture transport into the Ethiopian highlands. International Journal of 
Climatology, 33, 249-263. 

WILKS, D. S. 2011. Statistical methods in the atmospheric sciences, Academic press. 
WILLIAMS, A. P., FUNK, C., MICHAELSEN, J., RAUSCHER, S. A., ROBERTSON, I., WILS, T. H. G., KOPROWSKI, M., ESHETU, 

Z. & LOADER, N. J. 2011. Recent summer precipitation trends in the Greater Horn of Africa and the emerging 5 

role of Indian Ocean sea surface temperature. Climate Dynamics, 39, 2307-2328. 
ZHANG, Y., MOGES, S. & BLOCK, P. 2016. Optimal Cluster Analysis for Objective Regionalization of Seasonal 

Precipitation in Regions of High Spatial-Temporal Variability: Application to Western Ethiopia. Journal of 
Climate, 29, 3697-3717. 

 10 


	hess-2017-70-author_response-version4.pdf (p.1-5)
	hess-2017-70-supplement-version1.pdf (p.6-27)

